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Abstract. Fault-based testing is a technique where testers anticipate
errors in a system under test in order to assess or generate test cases. The
idea is to have enough test cases capable of detecting these anticipated
errors. This paper presents a theory and technique for generating fault-
based test cases for concurrent systems. The novel idea is to generate
test purposes from faults that have been injected into a model of the
system under test. Such test purposes form a specification of a more
detailed test case that can detect the injected fault. The theory is based
on the notion of refinement. The technique is automated using the TGV
test case generator and an equivalence checker of the CADP tools. A
case study of testing web servers demonstrates the practicability of the
approach.

1 Introduction

The area of specification-based testing has advanced over the last couple of years
and the results contributed to a reconciliation between the testing and the formal
verification communities. Testing is now commonly acknowledged as a comple-
mentary V&V technique, if carried out systematically and well-founded. Gaudel
was the most prominent who started this process [1]. Since then, many techniques
and tools have emerged that generate test cases from formal specifications and
are based on complete and sound testing theories.

However, the field is far from being complete, as the growing number of publi-
cations in this area indicates. Non-classical testing paradigms have to be studied
and incorporated into theories. The formal underpinnings allow a deeper under-
standing of the relationships between testing and other verification theories, like
simulation and refinement. This will lead to further applications of tools, like
model checkers and constraint solvers, to generate test cases.

In this paper, we present a method that aims to advance the field in the
following directions. (1) Mutation testing, traditionally applied to program text
is applied on the specification level. (2) A model checker is not used to generate
the test cases directly, but to generate test purposes, a high-level description
of the testing goal. The method is founded on the testing theories on labeled
transition systems. Tool support comes from the TGV test case generator [2] as
well as from the CADP tools [3]. In particular, we address the following problems.
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Problem 1 Lack of test selection strategy.
The early work on conformance testing in the area of distributed systems was

mainly concerned with the soundness and completeness of the testing theory.
Emphasis was given to develop a realistic conformance relation and a test case
generation algorithm that was sound (no false negatives) and complete (no false
positives). Since the models were finite labeled transition systems (LTSs), the
problem of how to select a manageable subset out of the exhaustive test set was
not a major concern. Abstraction was used to cope with the complexity. This
lack of a test selection strategy limited the application domain to highly abstract
protocol specifications.

Problem 2 Identifying test purposes.
To overcome this shortcoming, test purposes have been introduced. Here, a

test purpose is a special LTS that specifies the subset of test cases to be gener-
ated. With test purposes, a tester can steer a test case generator according to
his strategy. However, the problem remains, how many and which test purposes
to select. Thus, the problem has been lifted, but not entirely solved.

In our approach, we want to support the tester in formalising test purposes,
by turning his focus on possible faults. Possible faults can be anticipated by
inspecting a specification, by using domain knowledge, or by heuristic mutation
operators. In all cases, the fault is modeled at the specification level by altering
the specification. We call this altered version a mutant. The idea, is to generate
test cases that would find such faults in the implementation.

Problem 3 Equivalent mutants.
A common problem in this approach is known as the Equivalent Mutant

Problem. Not all mutations represent actual faults that can be observed at the
interface level. Thus, no test case exists that can distinguish the original from
such an equivalent mutant.

On the specification level, equivalence checkers can be used to eliminate such
equivalent mutants. The problem is which equivalence relation, based on simu-
lations, is appropriate for our purposes. Once, the equivalence relation is fixed,
the problem is solved.

Problem 4 Test generation automation.
The technique should automatically generate test cases. Many use the counter

examples (or witnesses) produced by a model checker as test cases. However, a
counter example is not a test case in the traditional sense. A test case should
provide the stimuli and the responses for a system. However, a counterexample
exemplifies only one possible choice of computation (a path). In case of non-
determinism involved this is not sufficient for a test case, since a test case should
predict and take care of all possible responses, as well as reject wrong responses.

Therefore, we propose to use the counterexample as a test purpose. A test case
generator, then, will generate a proper test case to cover the counterexample.
Hence, our idea is to generate test purposes from injected faults, such that the
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generated test cases will discover this anticipated faults. Fault-prevention, not
structural coverage is our testing strategy.

The paper is organized as follows. After this introduction, Section 2 introduces
the models, the testing theory as well as the concept of test purpose. Then,
Section 3 develops the general properties of fault-based test purposes. Next,
Section 4 presents the technique to generate test purposes using the CADP tools.
A case study, briefly summarized in Section 5 completes the picture. Finally, we
draw the conclusions and discuss related work in Section 6.

2 Conformance Testing

In this section we introduce the models for test case generation and explain how
they are used to describe specifications, implementations, test cases and test
purposes. These models are based on the classical formalism of labelled transition
systems (LTSs) with distinguished inputs and outputs. For a full definition of
the testing theory we refer to [4].

2.1 Input-Output Conformance

Definition 1 (Input-Output LTS). An IOLTS is an LTS M=(QM , AM , →M

, qM
0 ) with QM a finite set of states, AM a finite alphabet (the labels) partitioned

into three disjoint sets AM = AM
I ∪ AM

O ∪ IM where AM
I and AM

O are respec-
tively input and output alphabets and IM is an alphabet of unobservable, internal
actions, →M⊂ QM × AM × QM is the transition relation and qM

0 is the initial
state.

We will use the following classical notations of LTSs for IOLTSs. Let q, q′, q(i) ∈
QM , Q ⊆ QM , a(i) ∈ AM

I ∪ AM
O , τ(i) ∈ IM , and σ ∈ (AM

I ∪ AM
O )∗. q

ε⇒ q′ =df

(q = q′ ∨ q
τ1...τn→ M q′) and q

a⇒ q′ =df ∃q1, q2 : q
ε⇒M q1

a→M q2
ε⇒M q′ which

generalizes to q
a1...an⇒ q′ =df ∃q0, . . . , qn : q = q0

a1⇒M q1 . . . qn−1
a→M qn = q′. We

denote q afterM σ =df {q′| q
σ⇒M q′} and Q afterM σ =df

⋃
q∈Q(q afterM σ).

We define OutM (q) =df {a ∈ AM
O | q

a→M} and OutM (Q) =df {OutM (q)|q ∈ Q}.
We will not always distinguish between an IOLTS and its initial state and write
M ⇒M instead of qM

0 ⇒M . We will omit the subscript M (and superscript M )
when it is clear from the context.

A specification is given in a formal description language which semantics
allows to describe the behavior of the specification by an IOLTS (e.g. CSP,
Estelle, SDL or LOTOS). The testing assumption is that the behavior of the
implementation under test (IUT) can also be described by an IOLTS which can
never refuse an input.

Definition 2 (Conformance). The conformance relation says that an IUT
conforms to S iff after a trace of S, outputs of the IUT are outputs of S:

IUT ioconf S =df ∀σ ∈ Trace(S) : Out(IUT afterIUT σ) ⊆ Out(S afterS σ)
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Note that this is a simplified version of ioco [4] excluding quiescence for the sake
of clarity. All results apply to ioco as well.

2.2 Test Purposes

Test cases for complex concurrent systems correspond to elaborate executable
programs: testing a certain procedure may require (1) to initialize a set of test
processes that collaborate, (2) to execute a given preamble before being able
to call the procedure, (3) to run an oracle process giving a verdict if the test
has passed, and (4) to execute a postamble to get the system under test into
a safe state after the test has been performed. In the telecom industry, TTCN
[5] a special language for expressing test cases is used. It includes classical ele-
ments of programming languages: data types, variables, control structures and
procedures.

In order to cope with the complexity of real test cases, test purposes serve to
specify the goals of a test. Hence, a test purpose is a specification of a test case
capturing the essence of a test in a short and abstract description. In conformance
testing the notion of test purpose has been standardized [6]:

Definition 3 (Test purpose, informal). A description of a precise goal of
the test case, in terms of exercising a particular execution path or verifying the
compliance with a specific requirement.

For generating test cases from test purposes, the notion of test purpose has
been formalized, and implemented in tools like SAMSTAG [7], TGV [2], TorX
[8], and most recently in Microsoft’s XRT [9]. Here, we use the formalization of
TGV.

Definition 4 (Test purpose, formal). Given a specification S in form of an
IOLTS, a test purpose is a deterministic IOLTS TP = (QTP , ATP , →TP , qTP

0 )
equipped with two sets of sink states, AcceptTP which defines Pass verdicts and
RefuseTP which allows to limit the exploration of the graph S. Furthermore,
ATP = AS and TP is complete (∀q ∈ QTP , a ∈ ATP : q

a→TP ).

The specification to be covered by the test cases is formed by the synchronous
product of the specification S and the test purpose TP . Furthermore, as test
generation only considers the observable behavior of S it can be simplified by
replacing all internal actions by τ , reducing the τ actions, and determinizing
the result. This reduced specification SPV IS is equipped with AcceptV IS and
RefuseV IS sink states derived from the test purpose.

2.3 Test Cases

In this testing framework for concurrent systems, a test case is a process running
in parallel to the IUT. Hence, test cases can be modeled as an IOLTS that
synchronize with the model of the IUT. TGV generates such test cases from
the specification and a test purpose according to the algorithm described in [2].
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Here, we only give the properties of a test case TC = (QTC , ATC , →TC , qTC
0 )

that has been generated from the restricted and simplified specification SPV IS =
(QV IS , AV IS , →V IS , qV IS

0 ) containing only visible actions. A test case TC has
the following properties:

1. QTC ⊂ QV IS ∪ {fail}, and qTC
0 = qV IS

0 ,
2. ATC = ATC

I ∪ ATC
O with ATC

I ⊆ AIUT
O and ATC

O ⊆ AV IS
I (mirror image of

actions and all possible outputs of IUT considered),
3. Pass = AcceptV IS ∩ QTC , Inconc ⊆ QV IS and fail are sink states and

every state of TC except fail can reach either a Pass or an Inconc state,
fail and Inconc states can be reached directly only by inputs,

4. ∀q ∈ QTC , ∀a ∈ ATC
I : (∃q′ ∈ Inconc ∪ {fail} : q

a→TC q′ ⇒ q
∗→ Pass) and

(q a→TC fail ⇒ q � a→V IS),
5. ∀q ∈ Inconc : q � ∗→V IS Accept (Accept states cannot be reached from incon-

clusive states),
6. ∀q ∈ QTC , ∀a ∈ ATC

O : q
a→TC ⇒ ∀b �= a : q � b→TC (only one output action

per state).

For illustration purposes, Figure 1 shows the model of a coffee machine, with
a test purpose and a resulting test case. Note that other test cases would be
possible for this test purpose.

?coin(1)

?coin(1)

?coin(2)

?coffee

!coffee

?sugar

?tea

!tea

!sugar

?coffee

!coffee

!sugar

?tea

!tea

Accept

!coffee

∗

pass

!coin(2)

!coffee

?coffee

fail

?tee
?sugar

Fig. 1. IOLTS of a coffee machine, a test purpose, and a test case

3 A Theory of Fault-Based Testing

In this section, we develop a general fault-based testing theory that incorporates
test purposes. As in our previous work, we use the concept of refinement as the
basis to define what kind of test cases we are interested in. The difference here
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is that we use the notion of refinement from [10] which relates test cases, test
purposes and specifications.

3.1 Fault-Based Testing

Fault-based testing was born in practice when testers started to assess the ade-
quacy of their test cases by first injecting faults into their programs, and then by
observing if the test cases could detect these faults. This technique of mutating
the source code became well-known as mutation testing and goes back to the
late 70-ies [11, 12]; since then it has found many applications and has become the
major assessment technique in empirical studies on new test case selection tech-
niques [13]. In the early 90-ies formal methods entered the testing stage [14, 15]
and it took not long until mutation testing was applied to formal specification
languages [16]. Here, the idea is to model design errors or misinterpretations of
requirements in a very early stage, and then design test cases to prevent such
errors. The goal is not to test the specifications, but to derive test cases that
would detect implementations of the mutated specifications. Hence, our strategy
is to prevent the IUT to conform to erroneous specifications.

In our previous work, we have shown that the notion of refinement may be
used to define the properties of such fault-based test cases. In [17] we discussed
mutation testing in Back’s refinement calculus. More recently, we developed a
tool for generating test cases from mutated OCL specifications based on these
ideas [18]. In the following, we will reformulate these ideas for IOLTSs and test
purposes.

3.2 Relating Test Purposes, Test Cases and Specifications

In the context of software specification, programs are linked to their specification
by a refinement relation. The conformance relation in Definition 2 is an example
of such a refinement relation between IOLTS models. In the context of black-box
testing, we can imagine a similar relation between test cases and test purposes,
since test purposes are specifications of test cases [10]: The relation

refines(TC, TP, S),

where TC is a test case, TP a test purpose and S a specification, captures
the property when a test case is a refinement of a test purpose in the context
of a specification. Note that it is necessary to include the specification, since a
test purpose is only meaningful together with a specification. In TGV the refines
relation is defined by the properties of test cases presented in Section 2.3. Hence,
given the test case generation algorithm of TGV generateTGV (TP, S) we have

refines(generateTGV (TP, S), TP, S)

This relation expresses the fact that the test purpose TP and the specification
S are consistent such that TGV is able to generate a proper test case. Hence,
we abbreviate it as
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consistentTGV (TP, S) =df refines(generateTGV (TP, S), TP, S)

3.3 Fault-Based Test Purposes

We will now use this consistency (refinement) relation to express the property of
the test purposes (test cases) we are interested in. Imagine a specification S and a
mutated version Sm which has been modified by inserting a fault into S. Our goal
is to generate a test case that is able to distinguish an implementation of S and
Sm. For generating such a test case TC we need to formulate an appropriate test
purpose TP that would guarantee that only such discriminating test cases are
generated. Hence, the test purpose must not abstract away from the erroneous
part in Sm, but must detect the differences between S and Sm. This can be
formally expressed via the consistency relation:

consistentTGV (TP, S) and ¬consistentTGV (TP, Sm)

This conjunction expresses the fact that the test purpose is able to distinguish
between S and Sm, since it is inconsistent with the later. This means that the
test goal can be achieved with respect to one specification, but not with the
other. Consequently, a test case generated from such a test purpose TP will be
able to distinguish between implementations of S and Sm. These are the test
purposes we are going to generate.

One well-known challenge of mutation testing are equivalent mutants. An
equivalent mutant occurs when an introduced syntactical change in the model
does not represent an observable fault, hence the original S and a mutant Sm

are observably equivalent (S ≈ Sm). Without yet defining the kind of observable
equivalence relation, we may formalize that if a discriminating test purpose does
not exists, we have observable equivalence:

� ∃ TP : (consistentTGV (TP, S) ∧ ¬consistentTGV (TP, Sm)) ⇒ (S ≈ Sm)

This leads us immediately to the property that will be the basis for our test
purpose generation:

(S �≈ Sm) ⇒ ∃ TP : (consistentTGV (TP, S) ∧ ¬consistentTGV (TP, Sm))

In the next section we will see that an equivalence checker for finite LTSs can
be used to generate test purposes from equivalence counter examples.

4 A Technique for Fault-Based Testing

In this section, we present the technique for generating test purposes from in-
jected faults. As indicated in the previous section, an equivalence checker for
labelled transition systems forms the key technology of the generation process.
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4.1 The Process

We use an equivalence checker of the CADP tools which also contain TGV. We
use LOTOS as a specification language, but other input formats that can be
converted to the internal CADP format for a LTS are possible.

We first present an overview of the essential steps in the process and then
discuss the details.

1. Model a system to be tested in LOTOS with explicit input and output
actions. Select a mutation operator for LOTOS and create a mutant Lm

from the original model L.
2. Generate an IOLTS Sτ and Sm

τ from the specifications L and Lm respectively
(using CADP-Caesar).

3. Simplify the rather large IOLTS Sτ and Sm
τ to obtain S and SM using the

Safety Equivalence relation (using CADP-Aldebaran).
4. Check the reduced IOLTS S and Sm for Strong Bisimulation (using CADP-

Aldebaran).
5. The equivalence check gives

(a) True: Sm is an equivalent mutant (no fault), no test purpose can be
generated. Study the cause of equivalency. There might be a redundancy
in the model!

(b) False: CADP-Aldebaran issues a diagnosis (counterexample): a discrim-
inating sequence c.

6. Add one more valid transition from S to the counterexample c (if any) in
order to create a valid path which can discover the injected error. This
sequence forms the wanted test purpose.

7. Generate a test case from the discriminating test purpose (using CADP-
TGV).

8. Test the IUT with this test case to prevent that the IUT conforms to the
faulty specification Lm.

9. Repeat this for every interesting mutation possible.

The IOLTS generated from LOTOS needs to be simplified, since it contains
many redundant internal τ actions. As mentioned in Section 2.2 the test case
generation process does involve visible actions only. CADP provides a simplifi-
cation tool that removes all τ actions and generates an LTS that is equivalent
with respect to safety properties. This Safety Equivalence relation is defined as
follows [19]:

Definition 5 (Safety Equivalence). Let S = (Q, Aτ , T, q0) be a Labelled
Transition System and let p, r ∈ Q. Safety equivalence is defined as

p ≈saf r =df p �saf r ∧ r �saf p

The relation �saf may be characterized as weak simulation:

p �saf r iff ∀a ∈ Aτ , ∀p′ : (p
τ∗a−→ p′ ⇒ ∃r′ • (r

τ∗a−→ r′ ∧ p′ �saf r′))
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Then, since all τ actions are removed, a strong bisimulation check can be applied
to determine the observational (non-)equivalence of both models. In the more
likely case of non-equivalence, CADP generates a sequence of actions leading to
a state where both behaviors deviate. Then, a test purpose IOLTS is produced
which has as its only trace this sequence plus the next discriminating action of
the original. This test purpose serves to generate a test case that will distinguish
an implementation of the original from an implementation of the faulty mutant.
This process has to be repeated for all faults one wishes to test for. Only one
fault per mutant is injected (coupling effect assumption).

4.2 Mutation Operators

At the heart of this fault-based testing technique is the set of faults that are
injected into a given model. These faults represent the errors one is able to an-
ticipate and that are to be prevented by the generated test cases. They also form
the basis for the coverage criterion: For each injected fault (that can be observed)
there must exist a test case in the test suite able to detect it. Consequently, the
set of injected faults is critical.

A common strategy in mutation testing is to define a set of mutation op-
erators for the language in use. A mutation operator syntactically transforms
a language construct, by exchanging, deleting or adding parts of it. Once the
mutation operators are defined the mutants can be generated systematically or
even automatically. We have defined such a set of mutation operators for Full
LOTOS (see Table 1). Most of these operators are not special to LOTOS and
have been considered before. ORO, SNO, ENO, LRO, RRO, MCO, ACO, STO
and ASO are taken from [20]. EDO, ESO, ERO, EIO, SOR, POR, MRO, CRO,
USO, HDO and PRO are taken from [21] (mutation operators for CSP). Others,
like in [22], used subsets of these. We have newly added the PSP, PRP, ESP,
ERP, SSP and SRP operators which are special to LOTOS.

Mutation operators are not the only source for injected faults. This is espe-
cially true on the modeling level. In security testing known vulnerabilities might
be modeled as mutations. Another source for faults are common semantic mis-
interpretations of requirements or of a modeling language. One might imagine
a set of mutation operators for UML constructs that are ambigous. Test cases
could be designed such that a common interpretation of these models is enforced.

5 Web Server Case Study

In this section we report an a case study on testing web servers that serves to
demonstrate that our technique is applicable. The aim was to test the correct
implementation of parts of the HTTP protocol in the Apache web server. We fo-
cused on the GET-Method responsible for retrieving pages and limited ourselves
to single client-server connections.

The source for the LOTOS model was the Internet standard RFC 2616 (Re-
quest for Comments). RFC 2616 specifies the syntax of the HTTP protocol in
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Table 1. Mutation Operators for Extended LOTOS

Symbol Mutation Operators Description

EDO Event Drop Operator Eliminate one of the events from the process definition
ESO Event Swap Operator Change order of the 2 neighbouring events
ERO Event Replacement Operator Replace event by other events
EIO Event Insertion Operator Inserts one event after each event in the process definition
SOR Sequential Operator Replacement Replace the sequential composition operator (enabling

and disabling) >> and [>
POR Process Operator Replacement Replace the operator on processes (Parallel composition

general case, pure interleaving and full synchronization)
||, |[]| and |||

MRO Message Replacement Operator Replace the message of each communication channel with
other message

CRO Channel Replacement Operator Replace the channel with other channels within the pro-
cess definition

USO Unobservable Sequence Operator Change the action prefix from unobservable to observable
HDO Hiding Delete Operator Delete an event from hide definition
PRO Process Replacement Operator Replace the process name with stop or exit events
SEO Stop and Exit interchange Operator Interchange the Stop and Exit events
PSP Process Swap Parameter Change order of the two neighbouring parameters in pro-

cess calls
PRP Process Replace Parameter Replace one parameter with other in process calls
ESP Exit Swap Parameter Change order of the two neighbouring parameters in Exit

operator calls
ERP Exit Replace Parameter Replace one parameter with other in Exit operator calls
SSP Sequential composition Swap Parameter Change order of the two neighbouring parameters in Pa-

rameterized Sequential Composition operator calls
SRP Sequential composition Replace Parameter Replace one parameter with other in Parameterized Se-

quential Composition operator calls
ORO Operand Replacement Operators Replace an operand (variable or constant) by another syn-

tactically legal operand in data type declarations
SNO Simple Expression Negation Operators Replace a simple expression by its negation
ENO Expression Negation Operators Replace an expression by its negation
LRO Logical Operators Replacement Replace a logical operator (and, or, not) by another
RRO Relational Operators Replacement Replace a relational operator (<, ≤, >, ≥, =, �= on basic

types or whatever is declared in data type declarations)
by any other except its opposite

MCO Missing Condition Operators Delete conditions from conjunctions, disjunctions and im-
plications

ACO Adding Condition Operators Add conditions from conjunctions, disjunctions and im-
plications

STO Stuck At Operators Replace a simple expression with 0 or 1
ASO Associative Shift Operators Change the association between variables

BNF and describes the semantics in natural language (English). Our model con-
sists of two LOTOS processes, the client and the server, running in parallel. The
client is issuing a request message and then waits for a response message from
the server process. The request message contains three parts, each one modeled
as an action: (1) a Request Line (with a Method (here GET), a URI and the
HTTP-version), (2) a Request Header and (3) an optional Request Body. The
Request Header facilitates conditional requests, like e.g. header If Modified Since
supports a restricted download of pages that have been recently updated. The
Response message of the server contains three parts, too: (1) a Status Line (with
the HTTP-version, a Status Code and a Reason), a Response Header (with in-
formation about the web page) and a Response Body (which contains the web
page in most cases).

The choice of the level of granularity of the actions is a pragmatic one. Which
part of the protocol is modeled as an action depends on the actual testing strat-
egy and how the actions are easily mapped to real interactions with the web
server. For example, the three parts of the Request Line have been merged into
a single action, since we were not interested in testing variations of URI’s and
HTTP-versions.

Given the mutation operators in Table 1, almost 1500 mutants were derived
from the HTTP model. Table 2 shows that a relative high number of equivalent
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Table 2. Number of generated mutants

Symbol Mutation Operator No.Mutants No.Equiv Mutants

EDO Event Drop Operator 57 0
ESO Event Swap Operator 15 0
ERO Event Replacement Operator 65 5
EIO Event Insertion Operator 63 7
SOR Sequential Operator Replacement 17 7
POR Process Operator Replacement 5 1
MRO Message Replacement Operator 97 0
CRO Channel Replacement Operator 46 0
USO Unobservable Sequence Operator 2 0
HDO Hiding Delete Operator 0 0
PRO Process Replacement Operator 6 0
SEO Stop and Exit interchange Operator 45 0
PSP Process Swap Parameter 41 10
PRP Process Replace Parameter 59 0
ESP Exit Swap Parameter 44 15
ERP Exit Replace Parameter 48 0
SSP Sequential composition Swap Parameter 10 0
SRP Sequential composition Replace Parameter 12 0
ORO Operand Replacement Operators 154 77
SNO Simple Expression Negation Operators 154 77
ENO Expression Negation Operators 78 38
LRO Logical Operators Replacement 80 8
RRO Relational Operators Replacement 15 0
MCO Missing Condition Operators 41 18
ACO Adding Condition Operators 69 27
STO Stuck At Operators 220 30
ASO Associative Shift Operators 48 22

Total 1491 342

mutants was obtained, especially by the ORO and SNO operators. The reason
is that the synchronized product of the GET request of the client and the more
complete specification of the server makes large parts of the HTTP model re-
dundant. For example, the server is ready to listen to all kinds of Methods, but
only one (GET) is actually requested by the client.

The large number of appr. 1150 non-equivalent mutants shows that a testing
with mutation operators can only be done if the testing process is completely
automated. However, complete automation was not the goal of this case study.
Hence, we selected about 100 interesting mutations that were partly reflecting
ambiguities in the HTTP standard. From these we generated the test purposes
according to the process described in the previous section and used TGV to
generate the test cases.

The implementation under test was our institute’s Apache Web Server 2.0.40
for Red Hat Linux with HTTP/1.1 protocol. The tests have been carried out
manually via a telnet session to Port 80 of the web server’s URL. This is possible
since the HTTP protocol is ASCII based.

We did not expect to find major flaws in the Apache Web Server, since it
has been widely used since years. However, we found a case where Apache be-
haves unexpectedly. As mentioned above, conditional requests can be formed by
adding header fields. They serve to control the caching done by a proxy server.
The combination of several such header fields is underspecified in the standard.
However, on page 56 of RFC 2616 the standard says:

“An HTTP/1.1 origin server, upon receiving a conditional request that
includes both a Last-Modified date (e.g., in an If-Modified-Since or If-
Unmodified-Since header field) and one or more entity tags (e.g., in an
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If- Match, If-None-Match, or If-Range header field) as cache validators,
must not return a response status of 304 (Not Modified) unless doing so
is consistent with all of the conditional header fields in the request.”

Entity Tags and Last-Modifed Times are metainformations used to find out
whether a cache entry is an equivalent copy of an entity. The description in
the RFC is ambiguous, but it indicates that priority should be given to the If-
Match, If-None-Match, and If-Range header fields. The first tests showed that
the Apache developers shared our interpretation:

IDHeader 1 satisfied? Header 2 satisfied? Response Status
1 If-Match = true If-Modified-Since = true OK (200)
2 If-Match = true If-Modified-Since = false Not Modified (304)
3 If-Match = false If-Modified-Since = true Precondition Fail (412)
4 If-Match = false If-Modified-Since = false Precondition Fail (412)
5 If-Match = false If-Unmodified-Since = true Precondition Fail (412)
6 If-Match = false If-Unmodified-Since = false Precondition Fail (412)
7 If-None-Match = false If-Unmodified-Since = false Precondition Fail (412)

Note that test cases 3–7 respond with code 412 following the interpretation
that the response of the Match header has higher priority. However, the follow-
ing test cases suddenly deviate from this pattern:

IDHeader 1 satisfied? Header 2 satisfied? Response Status
8 If-None-Match = false If-Modified-Since = false Not Modified (304)
9 If-None-Match = false If-Unmodified-Since = true Not Modified (304)

This is a rather unexpected response of Apache which does not seem to be
consistent with the If-Match cases.

6 Conclusions

We have presented a mutation testing technique for generating test purposes.
The theory relating fault-based test purposes to mutated specifications is very
similar to our previous testing theory for the refinement calculus and OCL.
There, a test case t for distinguishing implementations of S and Sm had to
satisfy refines(S, t) and ¬refines(Sm, t), with refines being defined via weakest
preconditions (refinement calculus [17]) and implication (OCL [18]). Hence, our
fault-based IOLTS theory is a further instantiation of this refinement property
and demonstrates its generality.

To our present knowledge this is the first work on generating test purposes via
specification mutation. However, others have worked on mutation testing on the
specification level before. Most of them either focus on testing the specification or
on generating test cases directly. To our present knowledge Budd and Gopal were
the first [23]. They applied a set of mutation operators to specifications given in
predicate calculus form. The method relies on having a working implementation
generating output.
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Tai and Su [24] propose algorithms for generating test cases that guarantee
the detection of operator errors, but they restrict themselves to the testing of
singular Boolean expressions, in which each operand is a simple Boolean variable
that cannot occur more than once. Tai [25] extends this work to include the
detection of Boolean operator faults, relational operator faults and a type of
fault involving arithmetic expressions. However, the functions represented in the
form of singular Boolean expressions constitute only a small proportion of all
Boolean functions.

Stocks applied mutation testing to Z specifications [16]. He presented the
criteria to generate test cases to discriminate mutants, but did not automate his
approach. Woodward investigated mutation operators for algebraic specifications
[26].

More recently, Simon Burton presented a fault-based test case generator for
Z specifications [27]. He uses a combination of a theorem prover and a collection
of constraint solvers. The theorem prover generates a disjunctive normal form,
simplifies the formulas and helps in formulating different testing strategies.

Black et al. studied mutation operators using the SMV model checker [28].
However, they do not consider test purposes. A group in York has recently started
to use fault-based techniques for validating their CSP models [21]. Their aim is
not to generate test cases, but to study the equivalent mutants. Similar research
is going on in Brazil with an emphasis on protocol specifications written in the
Estelle language [29].

Wimmel and Jürjens [30] use mutation testing on specifications to extract
those interaction sequences that are most likely to find security issues. This work
is closest to ours, since they generate test cases for finding faults in concurrent
systems.

Our approach needs further evaluation. Its efficiency compared to structural
model-based testing techniques needs to be analysed. Especially, the optimal
choice of mutation operators deserves our attention. The case study indicates,
for example, that some mutation operators are more likely to generate equivalent
mutants than others.

The presented technique is specific to the TGV test case generator and sim-
ilar tools. However, the theoretical discussion of the properties of fault-based
test purposes has been included to make the result more widely applicable. For
example, [10] discusses test purposes for the B specification language. Conse-
quently, a similar technique could be developed for B and other model-oriented
specification languages.
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