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Abstract

Federated learning is a recently proposed distributed machine learning paradigm for privacy preservation, which has found

a wide range of applications where data privacy is of primary concern. Meanwhile, neural architecture search has become

very popular in deep learning for automatically tuning the architecture and hyperparameters of deep neural networks. While

both federated learning and neural architecture search are faced with many open challenges, searching for optimized neural

architectures in the federated learning framework is particularly demanding. This survey paper starts with a brief introduction

to federated learning, including both horizontal, vertical, and hybrid federated learning. Then neural architecture search

approaches based on reinforcement learning, evolutionary algorithms and gradient-based are presented. This is followed by

a description of federated neural architecture search that has recently been proposed, which is categorized into online and

offline implementations, and single- and multi-objective search approaches. Finally, remaining open research questions are

outlined and promising research topics are suggested.

Keywords Federated learning · Deep learning · Privacy preservation · Neural architecture search · Reinforcement learning ·

Evolutionary algorithm · Real-time optimization

Introduction

Deep neural networks (DNNs) have made great success

in the fields of image classification, natural language pro-

cessing, autonomous driving systems, and many others.

However, designing DNNs with high-quality architectures

usually requires to manually try a large number of different

hyperparameters, which is always a tedious task requiring

broad expertise in both machine learning and the applica-

tion area. Therefore, neural architecture search (NAS) has
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become increasingly popular in recent years [1], which aims

to automatically search for good neural architectures.

Conventional centralized learning systems, however,

require that all training data generated on different devices

be uploaded to a server or cloud for training a global model,

which may give rise to serious privacy concerns. To address

this concern, federated learning [2] has been proposed to

protect user’s data privacy by communicating the model

parameters or other model information instead of the raw

data between the server and local devices. Naturally, per-

forming NAS in a federated learning environment becomes

of particular importance, although it is still in its infant stage.

This survey aims to provide an overview of research work

both on federated learning and neural architecture search,

focusing, however, on the emerging area of federated neu-

ral architecture search. We categorize federated learning

systems into offline and online approaches, where online fed-

erated neural architecture search is more challenging due to

additional requirements on the performance of the networks

during the search process and stronger constraints on the

computational resources. In addition, we briefly discuss the

differences between single- and multi-objective search neu-

ral architecture search methods to highlight different ways
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of handling multiple objectives in federated learning, such as

accuracy, communication costs, model complexity and mem-

ory requirements on the local devices. Finally, we outline the

main remaining challenges in federated neural architecture

search.

Federated learning

Federated learning [3] distinguishes itself from distributed

learning in three aspects. First, the main purpose of federated

learning is to protect user’s private information while dis-

tributed learning aims to accelerate training speed. Second,

federated learning cannot determine the data distribution of

any client devices. By contrast, distributed learning is able to

arbitrarily allocate subsets of the whole learning data. Finally,

federated learning faces a more challenging training environ-

ment as it may contain millions of unbalanced participating

clients whose connections to the server are probably unstable.

For example, edge devices like mobile phones are frequently

offline.

Federated learning is often categorized based on the distri-

bution characteristics of the data [2] which is originally used

in distributed learning. Strictly speaking, federated learning

does not have the concept of ’the whole dataset’; therefore,

it is hard to accurately describe the federated data distribu-

tion to some extent as defined in distribute learning. In the

following, we will discuss the data distributions in federated

learning in greater detail.

Horizontal federated learning

Horizontal federated learning is proposed for the scenarios in

which datasets on the participating clients share the same fea-

ture space but have different samples. The name ’horizontal’

originates from instance distributed learning [4] as shown in

Fig. 1a, where the whole dataset is horizontally partitioned

over data samples and allocated to two clients. Similarly, as

indicated by the part surrounded by the two dashed lines in

Fig. 1b, the data can be considered as horizontally partitioned

in federated learning, when different data are generated on

different clients that have the same attributes (features). For

instance, two hospitals in different regions may have differ-

ent patients, although they performed the same tests for each

patients and collected the same personal information such as

the name, age, gender and address.

There are three main differences between instance dis-

tributed learning and horizontal federated learning. First, data

are typically independent and identically distributed (IID) in

distributed learning but may be non-IID in horizontal fed-

erated learning. As mentioned before, distributed learning

is mainly designed for reducing the training time; there-

fore, designers can manually allocate every subsets of the

client data to be IID to enhance the convergence. However,

in horizontal federated learning, the central server has no

access to any raw data, which are usually non-IID on dif-

ferent clients. Second, horizontal federated learning always

contains massive connected clients, but instance distributed

learning often does not have a very large number of workers,

because too many workers will worsen the performance of

distributed training, when the total amount of data is fixed

[5]. Finally, global model update mechanisms are slightly

different. In instance distributed learning, such as multi-

GPU training (GPUs are always embedded inside a server,

communication effects can thus be ignored), a deep neural

network tends to synchronously update the global model once

the local gradients of the mini-batch data are calculated, to

ensure the correct distributed model learning direction. This

global model updating approach is intrinsically not suited for

horizontal federated learning because frequent upload and

download of data are not desirable due to the constraints on

the communication costs.

Typical horizontal federated learning (Fig. 2) algorithms,

such as the FedAvg proposed in [3], consist of the following

main steps.

1. Initialize the global model parameters on the server and

download the global model to every participating (con-

nected) clients.

2. Every connected clients learn the downloaded global

model on its own data for several training epochs. Once

completed, the updated model parameters or gradients

Fig. 1 Instance distributed

learning (a) and horizontal

federated learning (b)
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Fig. 2 Flowchart of federated learning. θ is the global model parame-

ters, nk is the data size of client k, K is the total number of clients and

t is the communication round in federated learning. We just initialize

global model parameters randomly at the beginning of the communica-

tion round and use updated model parameters afterwards

(gradients here means the difference between the down-

loaded model and updated model) would be sent to the

server. Note that the clients may have different amounts

of training data and unbalanced computational resources.

As a result, the server is not able to receive the uploads

from different clients at the same time.

3. The server aggregates the received uploads (synchronously

or asynchronously) to update the global model.

4. Repeat the above two steps until convergence.

From the above steps, we can find that the central server can

only receive model weights or gradients of the participating

clients and has no access to any local raw data. Therefore,

users’ privacy is immensely protected in horizontal federated

learning.

The above steps of the horizontal federated learning algo-

rithm appear to be very similar to those in synchronous dis-

tributed systems. However, these two schemes have different

learning environments and purposes. Horizontal federated

learning is performed in a more complex environment since

the connected edge devices like mobile phones may become

frequently offline and the global learning performance cannot

be guaranteed. In contrast to federated learning, distributed

learning systems are often designed and run in a more stable

environment to ensure a good learning performance. Apart

from that, the purpose of federated learning is to protect

local user’s private data, while distributed learning is mainly

designed to accelerate the learning speed.

Horizontal federated learning has three additional main

challenges compared to the traditional centralized learning:

(1) it must reduce the communication resources as much as

possible, (2) it needs to improve the convergence speed, and

(3) it must make sure that no private information is leaked

in passing the model information. Much research work has

focused on reducing communication costs, such as client

updates sub-sampling [6–8] and model quantization [9,10].

More recently, Chen et al. [11] propose a layer-wise asyn-

chronous update algorithm to reduce the communication

costs by decreasing the update frequency of the deep lay-

ers in the neural network. In addition, Zhu et al. [12] use a

multi-objective evolutionary algorithm (MOEA) to simulta-

neously enhance the model performance and communication

efficiency. Learning a good model in horizontal federated

learning is not an easy task since the training data on different

clients are usually non-IID, leading to possible model diver-

gence. To solve this issue, Zhao et al. [13] empirically explore

the effect of non-IID data and provide a statistical analysis

of divergence. Li et al. [14] propose a FedProx algorithm to

alleviate negative impacts of the system’s heterogeneity by

injecting a proximal term into the original loss on each client.

Apart from it, an attentive aggregation method [15] is used

to minimize the weighted distance between the server model

and client models on non-IID datasets.

The central server is often regarded as honest but curi-

ous (follow federated learning protocol but try to infer client

data information) in horizontal federated learning, and the

revealed gradients of each client may potentially leak the

data information [6]. For this reason, Phong et al. [16] math-

ematically prove that model gradients (especially the first

hidden weights) are proportional to the original data and

adopt additive homomorphic encryption [17] to encrypt and

protect model gradients. In their method, the secret key is

kept confidential to the server but known to all participating

clients and the central server can easily get the plain model

gradients as long as one of connected clients uploads its secret

key. In order to mitigate this issue, secure multiparty compu-

tation (SMC) [18,19] is proposed to partition an intact secret

key into several key shards and each client can just hold one

shard. As a result, the server must get at least t shards (t is

the threshold value) for decryption. Consequently, privacy

preserving is significantly improved.

However, homomorphic encryption will increase the com-

putation load, and SMC consumes much more communica-

tion resources, since encrypted model weights need to be

downloaded and uploaded between the server and at least t

clients for partial decryption. Therefore, a more light-weight

privacy-preserving technique called differential privacy [20]

can also be used in horizontal federated learning. Such as

the methods used in [6,21], a Gaussian or Laplacian noise is

added to the gradients of each client before sending them to

the central server. Note, however, that the learning process

may be interrupted if the accountant [22] exceeds a pre-

defined threshold value. Most recently, Truex et al. suggest a
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hybrid approach that combines differential privacy together

with homomorphic encryption.

Vertical federated learning

In contrast to horizontal federated learning, vertical feder-

ated learning is applicable to the situations where the datasets

share the same sample space but have different feature space,

as shown by part of surrounded by the dashed lines in Fig.

3b. For example, two different financial agents may have

the same customers but provide different services. Different

from horizontal federated learning, vertical federated learn-

ing is similar to feature distributed learning [4] to some extent

which ’vertically’ partitions the training data, as shown in

Fig. 3a upon the feature space. Moreover, the central server

is often called a coordinator [23] in feature distributed learn-

ing or vertical federated learning since its main task is to

calculate the total loss rather than aggregating the uploaded

weights.

Vertical federated learning is first introduced in [23], in

which the overall framework contains one trusted coordinator

and two parties, where each party represents one client. The

coordinator computes the training loss and generates encryp-

tion key pairs. Homomorphic encryption is adopted for the

privacy-preserving purpose and the effect of entity resolu-

tion is also discussed. More recently, a two-party architecture

[24,25] is proposed by removing the trusted coordinator

which greatly reduces the complexity of the system. A typi-

cal two-party framework of vertical federated learning using

a simple logistic regression model includes the following

steps:

1. Assume Party A contains the data labels. Party A creates

a homomorphic encryption key pair and sends the public

key to Party B. Both parties initialize their local model

parameters according to their feature dimensions of local

training data.

2. Both parties compute their local inner products of data

and the model. Then Party B sends its results to Party A.

3. Party A sums two inner products and calculates the loss

function by data labels. The loss is encrypted with a public

key and is sent to Party B. The model gradients of Party

A are also calculated.

4. Party B calculates the encrypted model gradients from the

received loss and encrypt. In addition, a random number

is encrypted and added to the encrypted gradients. The

summation should be sent to Party A for decryption.

5. Party A uses a secret key to decrypt the summation value

and sends it to Party B.

6. Update both model parameters of the two parties.

7. Repeat Step 2 to Step 6 until convergence.

In Step 3, the training loss is encrypted before being sent

to Party B, because it contains the information of the data

labels in Party A which cannot be revealed to Party B. As a

result, Party B needs to calculate its local model gradients on

the encrypted loss and a Taylor approximation is commonly

used [23,25] for simplifying this computation.

From the above discussions, we can see that vertical

federated learning is dramatically different from horizontal

federated learning. The central server in horizontal federated

learning is used for model aggregation, while in vertical fed-

erated learning the server plays the role of calculating the loss

or collecting features. In addition, the server can be removed

in vertical federated learning, e.g., summing the training loss

within one of participating parties (clients). Apart from the

above, we often assume that not all parties contain the data

labels in vertical federated learning, e.g., only Client B con-

tains data labels in Fig. 3b and those parties with no data

labels are not able to update their models locally. Therefore,

we call the server ’coordinator’ that coordinates the feature

predictions from all parties for calculating the training loss

in vertical federated learning.

Most studies of vertical federated learning only support

two parties (with or without a central coordinator) using

a simple binary logistic regression model. Feng et al. [26]

adopt the idea of multi-view learning to extend the previous

scheme into a multi-participant multi-class vertical federated

learning framework. Besides, Liu et al. introduce a federated

stochastic block coordinate descent algorithm, where all par-

ticipating parties update their local models for multiple times

to reduce the total number of communication rounds. In addi-

Fig. 3 Feature distributed

learning (a) and vertical

federated learning (b)
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Fig. 4 a Symmetric federated

learning, and b asymmetric

federated learning

tion, Chen et al. propose an asynchronous vertical federated

learning method and differential privacy is also used for pri-

vacy protection.

Hybrid federated learning

Hybrid federated learning is more realistic in the real world

and it assumes that datasets on different clients not only

have different sample spaces but also different feature spaces.

Therefore, in this scenario, different parties need to share the

data identity (ID) information to find the intersection part

for distributed training, which is a threat to local clients’ pri-

vacy. Since participants in hybrid federated learning are often

asymmetric [27], for instance, some participants are small

companies always requiring to protect their ID information,

while some participants are large companies that have no

concern about the ID privacy. Symmetric federated learning

and asymmetric federated learning are illustrated in Fig. 4.

Secure ID alignment protocol is significant for hybrid

federated learning, such as the commonly used Private Set

Intersection (PSI) protocol. In standard PSI, all participants

want to collaboratively find the intersection (the part indi-

cated by the dashed lines in Fig. 4) and keep unintersected

parts private. The PSI protocols can be implemented by a

classical public-key cryptosystem [28,29] or other similar

techniques.

Federated model training is similar to vertical federated

learning; however, for asymmetric federated learning, Gen-

uine with Dummy (GWD) approach [27] is used to ensure

the correctness of computation results.

Neural architecture search

Since the quality of deep neural networks (DNNs) heav-

ily depends on their architecture, increasing research efforts

have been committed to design of novel structures in the

deep learning community. However, manually designing

deep neural networks requires considerable expertise in the

field of deep learning and the investigated problem, which is

unrealistic for many interested users. Not until recently has

automated machine learning (Auto ML), in particular neu-

ral architecture search (NAS) become very popular to allow

interested users without adequate domain knowledge to profit

from the success of deep neural networks. The framework of

NAS methods involves three dimensions [1], namely search

space, search strategies, and performance estimation strate-

gies.

The search space is a collection of network architec-

tures, which has a major influence on the performance of

the generated networks and search efficiency. The search

strategy defines the method used to automatically design the

optimal network architecture. To be specific, these search

strategies can be divided into at least three categories: rein-

forcement learning (RL), evolutionary algorithms (EAs), and

gradient-based (GD) methods. In addition, a few additional

methods, such as random search [30,31], Bayesian optimiza-

tion [32,33] and multinomial distribution learning [34], fall

outside of the above categories. The search strategy aims

at finding architectures that can obtain high performance on

the test dataset. To guide searches effectively, these strategies

utilize a performance estimation strategy to evaluate the qual-

ity of candidate architectures. Early work uses a simple way

of performance estimation, for example, by iteratively train-

ing a candidate architecture on the training dataset with the

stochastic gradient descent (SGD) [35] and evaluating its per-

formance on the validation data [36–41]. Such an evaluation

strategy typically results in a prohibitively high computa-

tional cost. For example, to design a good performance of

neural network, the automatic evolving convolutional neural

network (AE-CNN) [40] algorithm consumes 27 GPU-days

and the neural architecture search approach [36] consumes

22400 GPU-days on the CIFAR10 dataset. Because ineffi-

cient search strategies require a large number of GPUs, many

NAS methods cannot be implemented given limited compu-

tational resources. To address these challenges, much recent

work dedicates to developing effective methods which can

reduce the computational costs of performance evaluation,

e.g., surrogate-assisted evolutionary algorithms (SAEAs)

[33,42,43], information reuse [44,45], one-shot neural archi-

tecture search [46–50], among many others.
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NAS based on reinforcement learning

Early work on NAS depends on RL to search for high-

performance neural architectures [36–38]. The design of a

network model is considered as an agent’s action, which spec-

ifies the architecture of the network (i.e., a child model). The

network is then trained and its performance on the validation

data is returned as the agent’s reward.

A policy gradient method has attempted to approximate

some nondifferentiable reward function to train a model

which needs parameter gradients. Zoph et al. [36,38] first

adopt this algorithm in NAS to train a recurrent neural net-

work (RNN) model that generates architectures. As is shown

in Fig. 6, the controller as a navigating tool to find more

promising architectures in the search space. The original

method in [36] uses a macro-search space that generates the

entire network at once. As is shown in Fig. 5, the whole archi-

tecture consists of n sequential layers where the dashed lines

indicate skip connections. Hence, the macro-search space

aims to design the entire CNN architecture in terms of the

number of hidden layers n, operations types (e.g. convo-

lution), network hyper parameters (e.g., the convolutional

kernel size), and the link methods (e.g. skip connections).

However, this method is expensive when the data set is large.

To reduce the computational cost, Zoph et al. [38] propose

a more structured search space, called micro-search space.

The micro-search space only covers repeated smaller mod-

ules, called normal cell and reduction cell, and then connects

them together to form an entire network. As shown in Fig.

5, these cells are built in complex multi-branch operations

(e.g. convolution). Each cell structure contains two inputs

h[i − 1] and h[i − 2] coming from two previous layers.

Hence, the micro-search space aims to design structures of

these two types of cells. In addition, the cell structures should

have a good capability of generalizing to other related tasks.

For example, the proposed method searches for optimal cell

structures on the CIFAR10 data set and transfers them to the

ImageNet data set by stacking together multiple copies of

this cell. After that, the NASNet [38] method is extended

to a multi-objective optimization variant to simultaneously

optimize the classification performance and computational

cost using different scalarization parameters.

Q-learning [51], as a class of popular RL methods, has

been widely used for NAS. Baker et al. [52] employ an ǫ-

greedy Q-learning strategy to train a policy that sequentially

chooses a type of layers (e.g. convolutional layer, pooling

layer, and fully connected layer) and their corresponding

hyperparameters. Zhong et al. [53] extend this method to

a block-wise network generation approach, which designs

blocks with the same Q-learning paradigm. After that, the

optimal blocks are repeated and stacked to construct the

entire network architecture. To accelerate the search pro-

cess, a distributed asynchronous strategy and an early-stop

approach are adopted.

Parameter sharing introduced in efficient NAS (ENAS)

[46] is a promising approach for speeding up the search pro-

cess for RL-based NAS methods, which treats architectures

as different sub-graphs (sub-net) of a larger graph (super-net)

and forces all sub-graphs to share a common set of weights

that have edges of this larger graph in common. Pasunuru

et al. [54] propose a multi-task architecture search (MAS)

approach based on ENAS [46] for finding a cell structure that

Fig. 5 Illustration of the marco-

and micro-search spaces
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Fig. 6 An overview of

RL-based NAS method

performs well across multiple tasks. Hence, the cell struc-

ture generated by NAS can transfer to a new task. Bender

et al. [55] propose a thorough comparison between random

search NAS methods and ENAS [46] on a larger search

spaces for image detection and classification tasks, respec-

tively. In addition, a new reward function is suggested, which

can effectively improve the quality of the generated networks

and reduce the difficulty for manual hyperparameter tun-

ing. Liu et al. [56] present a novel knowledge distillation

[57] approach to NAS, called architecture-aware knowledge

distillation (AKD), which finds student models (compressed

teacher models) that are best for distilling the given teacher

model. The authors employ a RL-based NAS method with

a KD-guided reward function to search for the best student

model based on a given teacher model.

NAS based on EAs

EAs are a class of population-based, gradient-free heuristic

search paradigms, which have been widely used in solving

various complex optimization problems [12,58–60]. His-

torically, EAs have already been used for simultaneous

optimization of the topology, weights of the connections

and hyperparameters of artificial neural networks (ANNs)

[61,62,62–64]. The neuroevolution with augmenting typolo-

gies (NEAT) algorithm [65] is one of the popular early

methods that have shown powerful performance. However,

the traditional approaches are not well suited for optimizing

DNNs due to the complex network architectures and large

quantities of connection weights. EA-based NAS approaches

to optimizing deep network architectures have started gain-

ing momentum again recently [66,67], mainly because they

can simultaneously explore multiple areas of the search space

and their relative insensitiveness to a local minimum [68,69].

Figure 7 shows a generic framework of EA-based NAS algo-

rithms. Broadly speaking, the whole process of an EA-based

NAS algorithm follows the procedure of an EA contain-

ing at least four-steps: population initialization, offspring

generation, fitness evaluation, and environmental selection.

Generally, each neural network in the search space is encoded

as a chromosome, and crossover and mutation operations

of the chromosomes are performed in the exploration. Then

each chromosomes is transformed into a corresponding neu-

ral network, and iteratively trained on the training dataset.

The trained network is evaluated on the validation dataset to

get their fitness value.

Xie et al. proposed a genetic CNN [39] method that

is one of the early studies using an EA for optimizing

convolutional neural networks (CNNs). The genetic CNN

algorithm searches over the entire architecture space and

employs a fixed-length binary string to represent the connec-

tion between a number of ordered nodes (e.g. a convolutional

operation). Although this early algorithm has some limita-

tions, including a limited number of nodes as well as limited

sizes and operations of convolutional filters, the generated

structures have not only achieved competitive results on the

CIFAR and SVHN datasets, but also shown excellent trans-

ferability to the ImageNet dataset [70].

Miikkulainen et al. [71] propose a coevolution DeepNEAT

(CoDeepNEAT) method by extending the NEAT algorithm

[65] to DNNs. In CoDeepNEAT, each neural network is

assembled by modules and blueprints. A coevolutionary

method is adopted that evolves two populations of modules

and blueprints separately, in which each module chromo-

some represents a small DNN. The blueprints chromosome

represents a graph where each node contains a pointer to

a particular module species. The assembled networks are

trained and evaluated in an ordinary way of NAS. The fitness

of the network is the average fitness of the entire candidate

models containing the blueprints or modules. In addition,

Liang et al. found that the CoDeepNEAT also achieves

promising performance in the Omniglot multi-task learning

domain [72].

In fact, the length of a chromosome usually represents

the depth of the corresponding neural network and a fixed

encoding scheme may limit the performance of the optimized

network. To address this issue, some recent NAS algorithms

have attempted to use a variable-length encoding scheme.

123



646 Complex & Intelligent Systems (2021) 7:639–657

Fig. 7 A generic EA-based

NAS framework

Real et al. [73] propose a large-scale evolutionary NAS

method, which utilizes a variable-length encoding method

in which the network architectures can adaptively change

their depths. Sun et al. [40] propose an AE-CNN algorithm

that can fully automatically design CNN architectures, with-

out requiring any pre-processing or post-processing. Inspired

by the ResNet [74] and DenseNet [75], AE-CNN’s search

space is defined by some predetermined building blocks,

including ResNet block and DenseNet block, max pool-

ing layer and mean pooling layer. Then, the authors design

an EA-based NAS framework, including the variable-length

encoding and a novel crossover and mutation operators based

on the variable-length encoding, as the search strategy to

search the optimal depth of the CNN. Given the nature of

the variable-length encoding strategy, the algorithm employs

a repair mechanism that avoids to produce invalid CNNs.

Inspired by directed acyclic graph (DAG), William et al.

[76] introduce a DAG-based encoding strategy, which can

represent CNNs of an arbitrary connection structure and an

unlimited depth.

Suganuma et al. [77] propose a CGP-CNN algorithm to

design CNN architectures using genetic programming. The

search space of CGP-CNN is represented by a DAG, where

the nodes represent either convolutional blocks or concatena-

tion operations. Then CGP-CNN uses the Cartesian genetic

programming (CGP) [78,79] encoding scheme to represent

network architectures and their connectivity. This encoding

scheme can represent variable-length network architectures

and skip connections.

Most EA-based NAS methods aim at finding better topolo-

gies for DNNs while leaving the learning of weights to SGD.

It is known that the SGD optimizer heavily relies on the ini-

tial values of the weights. To alleviate this problem, Sun et

al. [80] propose an EA-based NAS method, named Evolving

Deep CNNs (EvoCNN), to automatically design CNN archi-

tectures and corresponding connection weight initialization

values without manual intervention. To reduce the search

space, two statistical measures, including the mean and stan-

dard deviation of the connection weights, are encoded in the

chromosome to represent tremendous numbers of the con-

nection weights. In addition, the incomplete training scheme

is employed to accelerate the fitness evaluation. According

to the Occam’s razor theory [81], the number of connection

weights is also considered as an indicator to scale the quality

of candidate networks.

Sun et al. [41] use a genetic algorithm (GA) to design CNN

architectures (CNN-GA). In CNN-GA, the standard convo-

lutional layer is replaced by a novel building block, called

the skip layer. The skip layer consists of two convolutional

layers and one skip connection. Hence, the genotype encodes

information of the skip layers and pooling layers. The fully

connected layers are discarded, mainly because they easily

result in the overfitting [82].

Rather than generating the entire CNNs, the micro-search

space [46] has also been successfully employed by many

recent EA-based NAS algorithms [83–87]. Real et al. [85]

propose an extension of the large-scale evolution [73], called

AmoebaNet, which has achieved better results on ImageNet

compared with hand-designed methods for the first time.
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Since EAs are a class of population-based search meth-

ods, the main computational bottleneck of EA-based NAS

approaches lies in evaluating the fitness of the individuals

by invoking the lower-level weight optimization. One such

evaluation typically takes several hours to days if the net-

work is large and if the training dataset is huge. For instance,

on the CIFAR10 datasets, the AE-CNN [40] consumed 27

GPU days, CNN-GA [41] consumed 35 GPU days, and the

large-scale evolutionary algorithm [73] consumed 2750 GPU

days, AmoebaNet [85] consumed 3150 GPU days. This seri-

ously limits the practical usability of most evolutionary NAS

methods under a constrained search budget.

Therefore, various techniques have been suggested to

accelerate the fitness evaluation, such as information reuse

[44,47] and SAEAs [88]. SAEAs have been popular to solve

computationally expensive optimization problems, which

use cheap classification and regression models, e.g., radial

basis function networks (RBFNs) [89,90] and Gaussian pro-

cess (GP) models [91,92], to replace the expensive fitness

evaluation [93]. Generally, the candidate networks are trained

from a few number of expensive fitness evaluations, and then

the trained networks are used to build a fitness predictors to

reduce the cost of fitness evaluations. In the area of evolution-

ary NAS, Swersky et al. [33] adopt Bayesian optimization

[94] to speed up evolutionary optimization, which is called

freeze–thaw Bayesian optimization. Unfortunately, this algo-

rithm is based on Markov chain Monte Carlo sampling and

also suffers from high computational complexity. Sun et al.

proposed a performance predictor termed E2EPP, which is

based on a class of SAEAs method [43] meant for offline

data-driven evolutionary optimization of expensive engineer-

ing problems. Specifically, E2EPP builds a surrogate that

can predict the quality of a candidate CNN, thereby avoid-

ing the training of a large number of neural networks during

the search process. Compared with AE-CNN, a variant of

AE-CNN assisted by E2EPP (called AE-CNN+E2EPP) can

achieve a 2.3x and 2.1x reduction in GPU days on CIFAR100

and CIFAR10, respectively. Lu et al. [95] adopt two surro-

gates to address the bi-level NAS problem. On the one hand, a

fine-tuning method is adopted at the weight level to improve

the efficiency of SGD training. On the other hand, an online

learning method is used to improve the sample efficiency for

the search space at the neural architecture level.

Knowledge inheritance [44,47] is another promising

approach to accelerate fitness evaluations. Zhang et al. [44]

propose an EA based on asexual reproduction to find bet-

ter typologies for deep CNNs and knowledge inheritance to

reduce the computation cost. Once the topology of an off-

spring individual is generated by its parent, the weights of

offspring networks are directly copied from its parents. For

edges that do not appear in its parent network, the weights

are randomly initialized.

To reduce the computational burden for fitness evalua-

tions, another widely adopted approaches are to train and

evaluate individuals using proxy metrics [85–87]. The per-

formance of the proxy models is used as the surrogate

measurements to guide the evolutionary search. Such proxy

metrics include reducing the width (the number of channels)

and the depth (number of layers) for the intended network

architecture to create a small-scale network, shortening the

training time, reducing the resolution of input images, and

training on a subset of the full training dataset. However,

these simple proxy model constructing methods may result

in a low correlation in prediction mainly because they may

introduce biases in fitness estimation. Zhou et al. [86] have

conducted extensive experiments on different combinations

of proxy metrics to investigate their behaviors in maintaining

the rank consistency in NAS, based on which a reliable hierar-

chical proxy strategy is proposed to accomplish economical

neural architecture search (EcoNAS). The hierarchical proxy

strategy aims at discarding less promising candidate individ-

uals earlier with a fast proxy and estimates more promising

individuals with a more expensive proxy. Hence, the EcoNAS

method is able to achieve a 400× reduced search time in

comparison to AmoebaNet [85] without sacrificing the per-

formance. Lu et al. [87] empirically establish the trade-off

between the correlation of proxy performance to true perfor-

mance and the speed-up in estimation.

Evolutionary multi-objective NAS methods considering

multiple conflicting objectives have been reported. One of

the earliest evolutionary multi-objective methods to design

CNNs is NEMO [96], which simultaneously optimizes clas-

sification performance and inference time of a network based

on NSGA-II [97]. Inspired by NEMO, Lu et al. [84] con-

sider classification error and computational complexity as

the two objectives. In addition, they empirically test multiple

computational complexity metrics to measure the inference

time of a network containing the number of active layers, the

number of activating connections between layers, and the

number of floating-point operations (FLOPs). And then, the

FLOPs are used as a second conflicting objective for opti-

mization. Moreover, a Bayesian network (BN) is adopted to

learn the knowledge about promising architectures present

in the search history and then guide the future exploitation in

generating new architectures. Subsequently, Lu et al. suggest

NSGANet-v2 [87], an extension of NSGANet [84], where a

comprehensive search space including more layer operations

and one more option that controls the width of the model is

introduced. Dong et al. [98] present a DPP-Net on the basis of

[99] that optimizes both GPU memory usage and the model

performance. Elsken et al. [100] proposed the LEMON-

ADE method, which formulates the NAS as a bi-objective

optimization problem that maximizes the performance and

minimizes the required computational resources. Inspired

by [101], LEMONADE reduces computational cost through
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Fig. 8 A generic pipeline GD-based NAS method

a custom-designed approximate network morphisms, which

makes offspring individuals to share weights with their fore-

runners, avoiding training new networks from scratch. Note

that evolutionary multi-objective structure optimization of

shallow networks can be traced back to a decade ago [102].

Lu et al. [103] proposed a method that integrates multi-

objective evolutionary algorithm and online transfer learning

for designing task-dependent network architectures trading-

off model performance and computational complexity. The

authors first train a task-specific one-shot model covering the

search space once, then specialized sub-models can be sam-

pled from the search space without additional training. And

then they adopt an online regressor as a surrogate model to

predict the performance of sub-models in the one-shot model.

NAS based on GD

Compared with the above gradient-free optimization meth-

ods, the GD-based methods (Fig. 8) have become increas-

ingly popular recently, mainly because their search speed

is much faster than RL-based and EA-based methods.

Early GD-based methods [104–107] implement this idea for

optimizing layer hyperparameters or connectivity patterns,

respectively. Lorraine et al. [108] introduce an algorithm for

inexpensive GD-based hyperparameter optimization. Liu et

al. [109] employ GD in the DARTS algorithm, which opti-

mizes both the network weights and the architecture. The

authors use relaxation tricks to make a weighted sum of

candidate operations differentiable, and then apply the gra-

dient descent method to directly train the weights. Inspired

by DARTS [109], Dong et al. [110] introduce gradient-

based search using the differentiable architecture sampler

(GDAS) method. The authors develop a differentiable archi-

tecture sampler which samples individual architectures in a

differentiable way to accelerate the architecture search proce-

dure. Stochastic NAS (SNAS) [111] optimizes a probability

distribution of the connections between different candidate

operations. Li et al. [112] observe that models with a higher

performance during the search phase may perform worse in

the evaluation. Hence, they divided the search process into

sub-problems and proposed sequential greedy architecture

search (SGAS) based on DARTS, which chooses and prunes

candidate operations (e.g. convolutional layers) greedily. The

authors apply SGAS for CNNs and graph convolutional net-

works (GCNs) and have achieved competitive performance.

Xu et al. [113] present Partially-Connected DARTS (PC-

DARTS), which samples a small part of super-network to

reduce the redundancy in exploring the network space. Com-

pared with DARTS, PC-DARTS not only enjoys both faster

speed and higher training stability but also a highly com-

petitive learning performance. Gao et al. [114] propose the

first GD-based NAS method in generative adversarial net-

works (GANs), called adversarial neural architecture search

(AdversarialNAS), which can search the architectures of gen-

erator and discriminator simultaneously in a differentiable

manner.

One bottleneck of the above GD-based NAS methods (e.g.

DARTs) is that it requires excessive GPU memory during

search in that all candidate network layers must be explicitly

instantiated in the GPU memory. As a result, the size of the

search space is constrained. To address this issue, Wan et

al. [115] propose DMaskingNAS, a memory and computa-

tionally efficient DARTS variant. DMaskingNAS employs a

masking mechanism for feature map reuse. Hence, although

the search space of DMaskingNAS is expanded up to 1014×

over conventional DARTS, memory and computational costs

stay nearly constant.

Another way to address the above problem is to utilize

proxy tasks, e.g., learning with only a small number of build-

ing blocks or training for a small number of epochs [109,111].

However, these approaches cannot guarantee to be optimal on

the target task due to the restricted block diversity [107]. Cai

et al. [107] proposed ProxylessNAS method, which directly

designs the networks based on the target task and hardware

instead of with proxy. Meanwhile, the authors used path bina-

rization to reduced the computational cost (GPU-hours and
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GPU memory) of NAS to the same level of normal train-

ing. Hence, ProxylessNAS algorithm can generate network

architectures on the ImageNet dataset without any proxy.

Most recently GD-based NAS methods are formulated

as bilevel optimization problems, However, He et al. [116]

observe that bilevel optimization in the current methods is

solved based on a heuristic. For instance, solution of the

problem needs to get an approximation of the second-order

methods [109,110]. He et al. [116] demonstrate that the

approximation has a superposition influence mainly because

it is based on a one-step approximation of the network

weights. As a result, gradient errors may cause the algorithm

to fail to converge to a (locally) optimal solution. Hence, the

authors propose mixed-level reformulation NAS (MiLeNAS)

that uses a first-order method on the mixed-level formula-

tion. Experimental results show that MiLeNAS has achieved

higher classification accuracies than those achieved by the

original bilevel optimization methods.

Federated neural architecture search

Federated NAS aims to optimize the architecture of neu-

ral network models in the federated learning environment.

As discussed in section “Federated Learning”, distributed

model training is intrinsically more difficult than central-

ized training, and it becomes even more challenging for

NAS problems. In this section, we would like to introduce

the current research on federated NAS and discuss them

from two perspectives: online and offline optimization, and

single- and multi-objective optimization. It should be noticed

that research on federated NAS work is presently limited to

horizontal federated learning and federated NAS in vertical

federated learning has not been reported so far.

Offline and online federated neural architecture
search

Most NAS methods include two steps, i.e., search the archi-

tecture of the neural network model, and training the weights

of the found neural network model afterwards. And most

importantly, only the final performance matters. We define

these approaches as offline NAS, because the search and

training steps are typically separate and only an optimized

network will be used. By contrast, online NAS requires that

the architecture optimization and weight training be done at

the same time, and some of the models must be used dur-

ing the search process. As a result, the performance of the

models during the optimization must be acceptable.

This concept can be easily extended to federated learning.

In other words, federated NAS systems in which neural archi-

tecture search and weight training of the global model must

be performed simultaneously are called online or real-time

federated NAS, whilst federated NAS in which neural archi-

tecture search can be conducted at first and then the weights

of the found models are trained are offline. Similarly, online

federated NAS requires that the neural network models can

be used during the optimization process.

For example, the method proposed in [12] is a typical

offline federated NAS framework using a multi-objective

evolutionary algorithm. An offline evolutionary federated

NAS algorithm can be summarized as follows:

1. Initialize parents with a population size N and each indi-

vidual represents one architecture of the neural network.

Construct and train N neural network models in federated

learning with all participating clients to achieve the fitness

values (e.g., validation accuracy) of the parents.

2. Generate N offspring individuals by applying genetic

operators on the parents. Construct and train all the gener-

ated offspring models for fitness evaluations in federated

learning.

3. Combine the parent and offspring populations into one

population and perform environmental selection. Select

the best N individual from the combined population as

the new parents.

4. Repeat the above two steps until the evolutionary algo-

rithm converges.

5. Train the weights of the optimized neural network models

in federated learning.

It can be seen that all participating clients are used for

federated model training, i.e., at each generation, all partici-

pating clients must train each of the N individuals for certain

rounds for fitness evaluations, which significantly increases

both computation and communication costs. Client sampling

can be used to alleviate this issue, in which only subsets

of participating clients contribute to one individual’s model

training. For example in [117], all the connected clients are

divided into different groups and each sampled model use

one group of clients for local training. The overall process of

this approach is summarized as follows:

1. Initialize the global model and a list of resource budgets

in the server.

2. Generate a list of simplified global models by model

pruning [118] based on the current global model. And

then these global models are distributed to different group

clients.

3. For each communication round, every group of clients

train their allocated group models for a number of pre-

defined epochs and calculate the test accuracies on the

validation datasets. Then both local test accuracies and

validation data sizes are uploaded to the server. The server

aggregates the uploaded local models and calculates a

weighted accuracy for each group model. Remove α%
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of global models with the worst test accuracies (removed

global models that will not be trained and updated from

the next communication round). The remaining groups

of clients upload their calculated model gradients to the

server for aggregation.

4. Repeat the above step for a number of pre-defined com-

munication rounds.

5. Replace and store the global model with the first model

in the global model list.

6. Repeat the above four steps until convergence.

7. Perform federated training on any stored global model.

Although the above procedure uses different architecture

generation methods (model pruning) and search space com-

pared to the evolutionary approach, it is clearly a population

based offline federated NAS framework (weight training and

architecture search are separate). In addition to client sam-

pling, the authors also remove subsets of global models to

further reduce the communication costs. However, the test

accuracies of each global model in the list is calculated before

model aggregation, which sometimes cannot represent the

real test accuracies, especially for the cases when the clients’

data are particularly non-IID.

The overall framework of Offline federated NAS is shown

in Fig. 9 and it has two main difficulties: (1) the number

of communication rounds for federated model training of

each individual is hard to determine. Setting a small number

of communication rounds may make the individual’s model

under-trained and bias the fitness evaluations. On the other

hand, setting a very large number of communication rounds

consumes too many communication resources. (2) Train-

ing the candidate neural network models consume additional

communication resources, which should be avoided in fed-

erated learning. For the above reasons, online federated NAS

frameworks need to be developed to solve the above issues.

Online federated NAS trains the model and does the archi-

tecture optimization simultaneously (shown in Fig. 10). To

the best of our knowledge, there are currently two approaches

to online federated NAS. One is gradient-based method

proposed in [119], and the other is an EA-based method

proposed in [120]. The gradient-based method adopts the

idea of DARTS [109], which is implemented in the feder-

ated environment. The global model here is called supernet

which consists of repeated directed acyclic graphs (DAGs)

and each DAG contains all candidate operations. And relax-

ation tricks [121] are used to make a weighted sum of the

candidate operations differentiable so that the architecture

parameters can be directly updated by the gradient descent

algorithm. A brief description of this method is given below.

1. The server initializes the supernet and its architecture

parameters.

2. All connected clients download the supernet and its archi-

tecture parameters from the server.

3. Each client trains and updates the supernet with fixed

architecture parameters on mini-batch training data at

first. Then update the architecture parameters with fixed

model parameters on mini-batch validation data. These

two procedures are performed alternately within one local

training epoch.

4. After local training for several epochs, all participating

clients upload both model and architecture parameters to

the server. The server performs weighted averaging upon

the supernet and architect parameters.

Fig. 9 Overall framework of

offline federated NAS
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Fig. 10 Overall framework of online federated NAS. Client sampling

are often used to ensure all offspring models are evaluated within one

communication round

5. Repeat from step 2 to step 4 until convergence.

Unlike aforementioned two offline federated NAS frame-

work, this scheme is not population based since all candidate

operations are jointly optimized. In addition, architecture

search and weight training of the supernet model are

conducted alternately during the period of federated train-

ing. Therefore, no additional communication resources are

required for training the candidate models. However, jointly

optimizing the supernet on local clients requires much more

computation and memory resources, which is not well suited

for the edge devices like mobile phones.

To reduce the memory usage of local devices, a more

light-weighted real-time evolutionary NAS framework (RT-

FedEvoNAS) is proposed in [120]. Different from the previ-

ous gradient-based approach, RT-FedEvoNAS adopts model

sampling technique [47,122] in federated learning, where

only one path of repeated cells in the global model is sam-

pled and downloaded to local clients. As a result, both local

computation and uploading costs are significantly reduced.

The overall process is described as follows:

1. Initialize the supernet in the server. Generate the parent

population containing N individuals, each representing a

one-path subnet sampled from the supernet using a choice

key. Do client sampling to allocate L clients evenly into

N groups.

2. Download the subnet of each parent individual to each

group of clients for training. Once the training is com-

pleted, upload the L local subnets to the server for

aggregation to update the supernet model.

3. Generate N offspring individuals using crossover and

mutation. Similarly, generate a choice key for each off-

spring individual to sample a one-path subnet from the

supernet. And then use client sampling technique to down-

load sampled subnets (download the choice keys from the

second generation) for training and uploading the trained

subnets to the server for aggregation.

4. Download the supernet together with the choice keys of

all parent and offspring individuals to all participating

clients to evaluate the objectives. Upload all the objective

values to the server and calculate the weighted average of

the validation errors for each individual.

5. Combine the parent and offspring individuals into a whole

population. Perform environmental selection to select N

new parents.

6. Repeat Step 3 to Step 4 until the generation number

reaches the pre-define maximum value.

Since only one path of the supernet needs to be trained on

each client, this sampling approach can significantly reduce

both upload and local computation costs. There is a small

detail in Step 4 that downloads all the supernet model to every

client to calculate the validation accuracies; thus, only choice

keys are downloaded in the next generation since the whole

supernet has been already downloaded in the last generation.

Online methods enable federated NAS systems to perform

architecture search and train the model simultaneously. Both

fitness evaluation thresholds, e.g. the number of communi-

cation rounds in federated learning and extra communication

resources for training the searched models are not required

using online approaches, which are highly desired for feder-

ated learning. However, the search space of online federated

NAS is fairly limited, which affects the diversity of the archi-

tecture search.

Single- andmulti-objective search

The aforementioned gradient-based federated NAS frame-

work only considers and optimizes the model performances,

which is usually not enough for federated learning, because

federated NAS is naturally a multi-objective optimization

problem. In addition to the maximization of the model perfor-

mance, the payload (communication costs) to be transferred

between the server and clients should be minimized. Single-

objective optimization often aggregates conflict objectives

into one objective using hyperparameters, while Pareto

approaches aim to obtain a set of models presenting trade-off

relationships between the conflicting objectives.

For example in RT-FedEvoNAS, the validation accuracy,

model size and model floating point operations per second

(FLOPs) of the sampled subnets are considered as the objec-
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tives need to be optimized and NSGA-II [97] is used as the

basic search algorithm. Finally, after several generations of

evolutionary optimization, multiple well trained subnets can

be obtained chosen from the trade-off solutions based on the

user’s preferences.

Open challenges

Currently, research on federated NAS is still very preliminary

and several challenges remain to be solved.

Horizontally partitioned data

There is no general solution that can well solve the non-IID

learning degradation problems in horizontal federated learn-

ing, let alone in federated NAS. The earliest work to explore

non-IID data effect is proposed in [13]. The authors analyze

the possible reasons for divergence in global model training

on non-IID data and propose a strategy to mitigate this influ-

ence by globally sharing a small part of the data across all

connected clients. However, this kind of data sharing intrin-

sically violate the scope of privacy-preserving scheme.

The federated distillation approaches [123,124] also have

the potential risk of local data leakage. For the distillation, the

teacher models are evaluated on mini-batches of unlabeled

data on the server and their logits for mini-batch are used to

train the student model on the server. The server can get a

lot of local data information even on fake mini-batch data

generated by local GAN generators [125].

Some statistical aggregation methods [14,126] are pro-

posed to replace the original federated averaging algorithm

(FedAvg). Both mathematical and experimental results prove

that the proposed aggregation algorithms outperform the

FedAvg on non-IID data. However, these approaches are

often limited to some specific models and datasets, and it

is unclear if they can show better performance for federated

NAS frameworks. Hsieh et al. discuss the effect of non-IID

data for DNNs in detail and different federated optimization

methods are used upon different DNNs, such as GoogleNet

[127],and ResNet [74]. Experiment results show that batch

normalization [128] performs really poorly on non-IID data,

but batch renormalization [129] and group normalization

[130] are much more robust for non-IID data, which are

much more suited for federated learning. Most recently, it

is shown in [10] that ternary quantization is helpful in alle-

viating model divergence in federated learning, although its

effectiveness remains to be validated on federated NAS.

Vertically partitioned data

Current federated NAS methods are all based on horizontal

federated learning. Unlike horizontal federated learning, it

is really hard to determine whether the data are IID or non-

IID in vertical federated learning since they are ’partitioned’

towards the feature space.

Most existing vertical federated learning frameworks are

built on two-party systems using simple linear models. Since

only one party can hold the labels, the loss needs to be calcu-

lated on ciphertext; otherwise, the label information will be

revealed. Then the gradients are very hard to calculate since

the total loss is encrypted. Some approximation techniques

like Taylor expansions [23,25] are often used to simplify the

gradient calculations, which, however, may introduce strong

biases for complex models like DNNs.

Overall, vertical federated NAS is totally different from

horizontal federated NAS, which is in general still an unex-

plored research area.

Adversarial federated neural architecture search

Adversarial federated learning has two purposes: (1) infer-

ence of the client data information; (2) attack the global

model to conduct backdoor [131] elements or even let the

model unusable. And the adversary in federated learning can

be one of participating clients or the central server, since

we often assume the server is honest-but-curious. Thus, the

server should also be considered as a potential risk.

Federated learning is still fragile to white box attacks since

the model gradients and parameters still contain local data

information. Geiping et al. [132] showed that local images

can be reconstructed from the knowledge of model param-

eters (or gradients) by inverting gradients techniques. In

addition, an adversarial GAN [125] generator can be devel-

oped on either the server [133] or the client side [134]. The

adversary can reconstruct other participating clients’ private

data even if it has no knowledge of the label information.

Enthoven and Al-Ars [135] summarize most defence

strategies used in federated learning, which can be cate-

gorized into three types: (1) subsample or compress the

communicated gradients [6,7,136]; (2) differential privacy

and SMC [19], and (3) robustness aggregation [137] using,

e.g., the Byzantine resilient aggregation rule [138,139].

In general, finding robust model architectures in federated

learning to defend against the adversarial attacks is still a hard

task.

Encrypted federated neural architecture search

Homomorphic encryption technologies are often applied to

prevent privacy leakage from the gradient information sent

to the server. However, using homomorphic encryption in

federated NAS system has two main difficulties.

First, homomorphic encryption, including encoding and

encryption, is computationally expensive in federated learn-

ing. At first, all communicated model parameters need to
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be encoded into large inter numbers, because homomor-

phic encryption does not work on real numbers. Then the

encoded parameters need to do modulus calculations with

large prime numbers one by one. Unfortunately, modern

deep neural network models contain millions of parameters,

making the encryption process computationally extremely

intensive. Therefore, developing a light weighted encryption

method is an important yet challenging task for federated

learning, let alone for federated NAS.

Second, the original federated encryption is introduced

in which the server holds the public key and clients hold

the private key. This framework is unsafe, because only one

of clients uploads its secret key to the server. Therefore, a

more advanced SMC approach is adopted that divides the

whole secret key into several shards, and the server can-

not decrypt the gradients unless it collected t (secret key

recover threshold) key shards. Unfortunately, the encrypted

gradients must be frequently transferred between the server

and clients, which significantly increases the communica-

tion costs, since the local clients can only partially decrypt

the gradients through their key shards. This is a big burden

to the communication resources, which needs to be solved in

the future.

Conclusion

In this survey paper, a brief overview of federated learning

and NAS is provided, and a combination of both tech-

niques, i.e., federated NAS is introduced. Given several

remaining challenges in both federated learning and NAS,

federated NAS becomes extremely challenging since many

techniques developed in centralized NAS are no longer suited

for federated NAS, and NAS will be subject to more con-

straints introduced by the federated learning environment.

Two approaches to federated NAS are discussed, one is

offline optimization and the other is online optimization.

It is noted that offline evolutionary NAS methods are not

applicable for many real-world scenarios, mainly because

the offline approach performs architecture search and weight

training separately and requires a large amount of communi-

cation costs. In addition, the performance of neural network

under optimization must be acceptable for application and

serious performance drop is not allowed. RT-FedEvoNAS

[120] offers a solution to the above challenges, although its

search space is highly constrained.

Despite that many grand challenges remain to be solved,

federated NAS is of paramount practical significance for

many real-world problems, where handcrafted deep neural

networks may fail to work properly. We hope that this survey

will help understand the promises and challenges in federated

NAS, thereby triggering more research interests in devel-

oping new theories and algorithms, thereby promoting the

application of AI techniques to a wider range of fields where

data privacy and security is a primary concern.
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