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From Fienup’s phase retrieval techniques to
regularized inversion for in-line holography:
tutorial

FABIEN MOMEY,1,* LOÏC DENIS,1 , THOMAS OLIVIER,1 AND CORINNE

FOURNIER1

1Laboratoire Hubert Curien UMR CNRS 5516, Université Jean Monnet, F-42000 Saint-Étienne, France
*fabien.momey@univ-st-etienne.fr

Abstract: This paper includes a tutorial on how to reconstruct in-line holograms using an

inverse problems approach, starting with modeling the observations, selecting regularizations and

constraints, and ending with the design of a reconstruction algorithm. A special focus is made on

the connections between the numerous alternating projection strategies derived from Fienup’s

phase retrieval technique and the inverse problems framework. In particular, an interpretation

of Fienup’s algorithm as iterates of a proximal gradient descent for a particular cost function

is given. Reconstructions from simulated and experimental holograms of micrometric beads

illustrate the theoretical developments. The results show that the transition from alternating

projection techniques to the inverse problems formulation is straightforward and advantageous.

1. Introduction

The imaging of samples at macro, micro, and nano scales is important in many fields of research

from physics (fluid mechanics, materials) to biology (cells, bacteria, viruses). Imaging remains

challenging and advanced techniques are still emerging. These new techniques often exploit

physical principles involved in light/matter interactions from a variety of radiation sources

(X-rays, electrons, visible or near-visible light, laser). In this context, imaging techniques aim

to record the perturbation of the incident electromagnetic wave by the sample of interest. The

perturbed wave depends both on the absorption and phase-shift properties of the sample. Thus,

being able to precisely measure the shape of this complex wave - the amplitude and phase of the

electromagnetic field in space and time - is crucial to fully quantitatively characterize the sample.

Holography, invented by Dennis Gabor in 1948 [1], is a technique to reconstruct the complex

wave (amplitude and phase) due to the diffraction of light when a scattering sample is illuminated

by a coherent source. This principle gave rise to a wide variety of imaging techniques (off-

axis holography, phase-shifting, in-line holography, diffractive tomography, X-ray diffractive

microscopy, etc.) [2]. Since only intensity measurements of light are available, the problem of

retrieving the phase on the sensor has fueled many studies. In contrast to interferometric setups

like off-axis or phase-shifting holography, iterative phase retrieval techniques are algorithms that

estimate the phase of light in the plane of in-line holograms.

Digital hologram reconstruction is typically performed by backpropagating the hologram from

the sensor plane to the object plane. In the absence of phase information with in-line holograms,

the reconstruction suffers from artifacts called the twin-image. To suppress the twin-image,

phase retrieval techniques were introduced in the 1970s and 1980s, and since then, improved

algorithms have regularly been described in the literature. Most phase retrieval techniques are

still derived from the methods of alternating projections initially proposed by Gerchberg and

Saxton [3] and popularized and extended by Fienup [4, 5]. This class of methods is still widely

used today [6–13], with improvements to enforce a priori knowledge (support of the objects,

admissible values domain, sparsity constraints) [14–16].

Inverse problem approaches take a different point of view from phase retrieval techniques:

rather than recovering the phase on the sensor plane (which does not completely solve the sample
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Fig. 1. Hologram reconstruction based on inverse problem approaches: the direct model

connects the sample of interest to the measurements (the holograms), inverting this model

leads to a reconstruction and/or estimation of the optical parameters of the sample. The case

chosen as an illustration in this paper is highlighted in yellow.
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reconstruction problem), they focus on the reconstruction of the complex-valued transmittance

in the object plane. Because of measurement noise and hologram truncation at the borders of

the sensor, backpropagating the complex amplitude in the sensor plane does not lead to perfect

sample reconstruction, i.e., restoring the sensor phase and reconstructing the complex wave in

the sample plane are not strictly equivalent problems.

Figure 1 gives an overview of the different ingredients of the inverse problems methodology in

the context of holographic imaging. The "direct model" relates a description of the "parameters

of interest" (i.e. the sample) and the "measurements" (i.e. the hologram), taking into account

the "instrumental parameters" (i.e. the imaging setup). The sample may be described as a

complex-valued transmittance plane [17], a volume of transmittance planes [18], or as a collection

of objects [19]. Depending on the application, the sample is absorbing, and/or translucent (it

induces a phase-shift due to a refractive index difference with respect to the surrounding medium).

It is described by the spatial distribution of the absorption, phase-shift or complex refractive

index within a plane or a volume. When individual objects are considered, their 3D location, size,

and complex refractive index are the parameters that characterize the objects. Any appropriate

optical model can then be used to describe how an incident illumination wave gets diffracted

by the sample and propagates to the sensor: diffraction by a plane (Rayleigh-Sommerfeld,

Fresnel approximation, angular spectrum) [20], diffraction by a volume (Born approximation,

Rytov approximation) [21], diffraction by a sphere (Mie scattering) [22], free-space propagation.

Multiple holograms can be recorded to improve information diversity by including lateral or axial

shifts of the sensor [16, 23], multiple illumination wavelengths [24], or multiple illumination

angles [25, 26]. When a suitable model of the observations has been defined, a "reconstruction"

(or "estimation") method can be selected. If the sample is described by a spatial distribution

within a plane or a volume, the problem amounts to an "image or volume reconstruction". If a

collection of objects is to be identified, the geometrical and optical parameters of each object

have to be estimated ("parameter estimation"). "Image or volume reconstruction" problems are

generally solved by regularized inversion [27–37], i.e., by solving a minimization problem whose

objective function is defined by a data-fitting term that penalizes the deviation of the model

from the data. Regularization terms are added to favor reconstructions with desirable properties

(e.g., smooth images, sharp edges, zero-valued background). Additional (hard) constraints

are also enforced to guarantee that the reconstruction fulfills basic physical properties such

as the positivity of the absorption or the sign of the phase-shift induced by the objects (e.g.,

thin objects with an optical index larger than that of the surrounding medium induce a positive

phase-shift). Depending on the type of cost function to minimize (quadratic, non-linear but

differentiable (smooth), non-differentiable (non-smooth), non-convex), different strategies can be

used. "Parameter estimation" of a collection of objects generally follows a different path because

the reduced number of unknowns makes the regularization unnecessary. Rather than considering

a fixed discretization of space, the 3D location of each object is generally sought in a continuous

domain (i.e. subpixel location). Objects are often detected and characterized one after another,

and the measurements are described by the superimposition of the diffraction patterns due to

each object [19, 38]. Nonlinear least-squares minimization techniques are applied to estimate

the geometrical and optical parameters of each object. In the case where the data contains

some signatures that can not be fitted by the model (outliers), e.g. out-of-field objects, the

estimations can be improved by using a robust signal processing approach such as the reweighted

least-squares [39].

The hologram formation model depends on "instrumental parameters" such as the wavelength

and coherence of the source, the sample-to-sensor distance, or the sensor response (fill-factor and

spectral sensitivity). The model of the data not only underlies the reconstruction algorithm, but

also provides a way to calibrate the experimental parameters.

The goal of this paper is to illustrate the inverse problems methodology and to draw connections
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Fig. 2. In-line holography principle: a plane wave illuminates the sample plane with normal

incidence. The presence of inhomogeneities in the spatial distribution of the complex-valued

refractive index, in the sample plane, distorts the illumination wave. A diffraction pattern is

recorded on the sensor plane.

with the popular phase retrieval techniques based on Fienup’s approach. We selected a problem

that can be addressed using either approach: the reconstruction of an in-line hologram of a non-

absorbing plane sample that induces spatially varying phase-shifts. We discuss the advantages

provided by the inverse problems framework and interpret Fienup’s as an instance of a proximal

gradient algorithm applied to a specific cost function.

The paper is organized as follows: next, we present the phase retrieval problem in the context of

in-line digital holography. We then present the standard alternating projections strategy proposed

by Gerchberg and Saxton, Fienup, and subsequent variants. In section 4, we present the inverse

problems methodology applied to the reconstruction of in-line holograms of phase-only samples.

We validate and compare the algorithms in section 5, first in numerical simulations, then on

experimental in-line holograms of microscopic beads. Finally, we discuss the possible extensions

of inverse problems approaches for phase retrieval.

2. The inverse problem of image reconstruction in in-line holography

The object of interest, i.e. the sample, can be modeled as a two-dimensional (2D) complex

transmittance plane t(r) (r = (x, y) is the vector of 2D spatial coordinates and all complex-valued

variables are underlined in this paper). A transmittance t(r) = 1, ∀r , means a fully transparent

plane that leaves any illumination wave unperturbed after passing through it. Consequently, the

presence of scattering objects in this plane will be revealed by a certain deviation o (r) from a

unit transmittance:

t(r) = 1 + o(r) = ρ(r)eiϕ(r) (1)

o(r) is the quantity of interest. It models the distribution of the phase ϕ(r) and amplitude ρ(r),
directly linked to the complex refractive index difference between the observed objects (beads,
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droplets, cells, etc.) and the medium.

Digital in-line holography (DIH) (cf. Fig. (2)) consists in illuminating a sample plane with a

coherent (generally plane) wave a0(r) of wavelength λ, and in recording on a digital sensor the

intensity I(r) of the total diffracted wave az(r) at a distance z from the sample plane (the sensor

plane being parallel to the sample plane). From the Huygens-Fresnel principle, the physical data

acquisition process writes:

I(r) =
����
∬
R2

hz(r − r ′) a0(r
′) t(r ′) dr ′

����
2

= |hz ∗
r

(
a0 · t

)
|2 (2)

where ∗ is a convolution operator and hz is the propagation kernel. Depending on the approxima-

tions considered, the Rayleigh-Sommerfeld and the Fresnel kernels are used as hz [20]. In this

paper, we use the Fresnel kernel (paraxial approximation), which writes:

hz(r) =
1

iλz
exp

(
iπ

λz
| |r | |2

)
(3)

The backpropagation kernels h−z can be used to recover the original complex wave from a

diffracted (i.e., propagated) wave.

Considering Eq. (1), and under the assumption that the incident wave is plane (a0(r) = a0),

Eq. (2) becomes:

I(r) = |a0 |
2 |1 + hz ∗

r
o|2 = |a0 |

2
(
1 + 2 Re(hz ∗

r
o) + |hz ∗

r
o|2

)
︸                                ︷︷                                ︸

model m(o)

. (4)

The intensity I(r) is recorded by a digital sensor. Therefore, effective intensity measurements

correspond to sampled (and noisy) intensity values that can be collected in the form of a column

vector d =
(
dq

)T

q=1...M
with M data measurements. This also leads to considering the targeted

physical quantity o as a vector o =
(
xq

)T

q=1...N
of N unknowns. In imaging systems, N is often

equal to M as we aim to recover an image of the same size as the hologram, i.e. the field of view.

In the context of inverse approaches, the unknown field of view of o can be extended, leading

to N > M (cf. Sec. 6). We note D and O respectively the feasible domains of d and o, i.e. the

domains of valid values for each quantity. From Eq. (4), D ⊂ RM and O ⊂ CN . As discussed

in Sec. 1, in order to ensure physically relevant properties of the object of interest, the feasible

domain O can be restricted, for example to impose a positive absorption or the sign of the phase

shift. Such properties are applied in the regularized inverse approach developed in our case study

in Sec. 4.2.

The algebraic process that "transforms" o in d is modeled by the mapping m which goes from

D to O, and is a discretized version of the physical - analytic - formulation m in Eq. (4). Finally,

we get the following algebraic formulation of the image formation model:

d = c m(o) + η = c |1 +Hz o |
2
+ η (5)

where the square modulus operator |x |2 of a vector x is applied component-wise, leading to

an M-dimensional vector, and 1 is a vector of 1 of size M. η =
(
ηq

)T

q=1...M
corresponds to a

vector of M noise values to model electronic noise in the measurement system, and mathematical

approximations involved in the model, etc. Hz is the complex-valued convolution operator

that calculates the discrete propagation of the object o: Hz is a M × N matrix such that

[Hz o]q = [hz ∗ o]q , for all pixels q. The Hermitian transpose of Hz , written H†z , corresponds to

the backpropagation operator H−z . Because of sampling and field truncation at the border of

the images, the backpropagation does not exactly inverts the propagation, yet the approximation
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H†zHz ≈ I is often used to get an intuitive understanding of holographic reconstruction. Finally,

c is a scalar scaling factor that accounts for the intensity of the incident wave |a0 |2 as well as the

detector gain and quantum efficiency.

Retrieving the unknown image of the sample o, noted o∗, from the observed hologram d, based
on the hologram formation model in Eq. (5), constitutes the inverse problem of holographic
reconstruction.

3. Fienup’s alternating projections strategies

The standard alternating projection strategy, still widely used to date, was first proposed by

Fienup in 1978 [4] as the Error-Reduction (ER) algorithm. It is an upgraded variant of the initial

method proposed by Gerchberg and Saxton in 1972 [3] from two-plane intensity measurements.

In [5], Fienup has proposed several variants of the ER algorithm, such as the Basic Input-Output

(BIO) or the Hybrid Input-Output (HIO), involving a parameter β in the "projection on data" step

that relaxes the strict projection on the feasible domain. These variants are known to be more

efficient that the classical ER strategy (HIO is considered as the most efficient). In this paper,

we focus on the classical approach ER, which we find the most intuitive way to understand the

alternating projections strategy. We show in Sec. 4.3.3 that this algorithm can be reformulated to

fit the inverse problems framework. Thus, our goal is not an exhaustive comparison of inverse

approaches with all variants of the alternating projections strategy, but rather to give an "inverse

problems" interpretation of Fienup’s strategy and show that inverse problems offer a framework

that as accessible, yet more flexible and powerful than alternating projections.

Algorithm (1) summarizes the Fienup ER strategy. Details of implementation are given in

Appendix A, in Algo. (3).

Fienup’s ER algorithm only requires one intensity measurement image d at the sensor plane at

distance z. This measurement image has to be normalized so that the background equals 1, to

ensure that the retrieved transmittance plane o is normalized the same way (o = 1 stands for a

fully transparent plane, see Sec. 2), and that appropriate physical constraints can be applied. The

normalized data image, noted d̄, can be obtained for example by dividing d by its mean or its

median (almost valid in case of a low-density distribution of objects).

The principle is to iteratively alternate the following steps starting from an estimate of the

object o(i) at the sample plane to get a new estimate o(i+1):

• The estimate o(i) is propagated to the sensor plane to get a simulated complex wave a(i+
1/2)

z

corresponding to the total diffracted wave in this plane.

• At the sensor plane, a "projection on data" step forces the amplitude of a(i+
1/2)

z
to match the

square root of the normalized measurement vector d̄ (projection on a non-convex set), to

get a modified wave a(i+1)
z

.

• The modified wave a(i+1)
z

is backpropagated to the object plane to get a new estimate

o(i+
1/2).

• At the sample plane, Re(o(i+1/2)) and Im(o(i+1/2)) are forced to be positive or negative

quantities (depending on the hypothesis concerning the object of interest), and/or forced to

be zero outside a restricted support. This step, that leads to the new estimate o(i+1), can

be summed up as a projection step PO(o(i+1/2)) on the feasible domain O ⊂ CN (usually a

convex set).

This approach is based on the approximation H†zHz ≈ I that makes it possible to go back and

forth between the sample plane and the sensor plane. Since H†z is not the exact inverse of Hz ,

there are strong limitations related to sampling and truncation effects (e.g., objects on the border
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of the field-of-view are inevitably distorted). If the algorithm is stopped after several iterations

and the sensor plane constraint applied, the data are augmented by the phase information (i.e.,

the lost phase on the sensor plane is retrieved by the algorithm). Thanks to this restored phase,

the twin-image phenomenon typical of in-line holography is strongly reduced.

The great popularity of this class of algorithms is due to the fact that the strategy is very

intuitive as well as being easy to implement. Likewise, these algorithms have been proven to

converge to a local minimum [40–42]. Such approaches have been mainly exploited in the fields

of X-ray coherent diffraction imaging [7, 43–46], digital holographic microscopy [29, 47, 48].

As a result, research in this field is still active and new approaches are often proposed. In

the past 30 decades, it has benefited from many practical improvements [6, 10, 11, 13, 49] and

theoretical studies [9, 41, 50]. Recent approaches include new constraint enforcement strategies

using sparsity constraints in the object or data spaces [51, 52] or in the wavelets domain [16, 53] .

Algorithm 1: Fienup’s Error-Reduction (ER) algorithm [4]

Input:

d̄ ; {normalized intensity measurements (background = 1) at sensor plane at distance z}
Hz,H−z ; {Propagation and backpropagation operators}
o(0) ; {initial estimate of o: e.g. the backpropagated measured amplitude at sensor plane

H−z

(√
d̄ − 1

)
or simply random values}

Output:

o∗ ; {estimated complex transmittance at sample plane}

begin

1 i ← 0 ;

repeat

2 a(i+
1/2)

z
← 1 +Hz o

(i) ; {Step 1: propagation to the sensor plane}
3 a(i+1)

z
←

√
d̄ ⊙

(
a(i+

1/2)
z
/|a(i+1/2)

z
|
)

; {Step 2: enforce the measured amplitude at

sensor plane}
{N.B.: the product ⊙, the division /, and the modulus | · | are applied pixelwise}

4 o(i+
1/2) ← H−z (a(i+1)

z
− 1) ; {Step 3: backpropagation to the sample plane}

5 o(i+1) ← PO
(
o(i+

1/2)) ; {Step 4: projection on the domain O}
6 i ← i + 1 ;

until Maximum number of iterations reached;

7 o∗ ← o(i) ;

end

4. Inverse problems methodology for the reconstruction of in-line holograms:
a tutorial

4.1. A linearized image formation model

The first step of the inverse problems methodology is to derive a suitable image formation model,

by analyzing the object and data characteristics. Here we describe a linearized model based on

two hypotheses: (i) the sample is a distribution of purely and weakly dephasing objects (ρ(r) = 1,

see Eq. (1)) such that:

t(r) = 1 + o(r) = eiϕ(r) ≈ 1 + iϕ(r) = 1 + io(r) ; (6)

Thus, we define a new unknown image o(r) which is real and stands for the phase image ϕ(r).
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(ii) we neglect the 2nd order term in Eq. (4), leading to the following approximated real and

linear image formation model:

m̃ (o) = 1 − 2 Im(hz) ∗ o (7)

The new discrete image formation model writes:

d = c m̃(o) + η with m̃(o) = (1 +Gzo) (8)

where Gz = −2 Im(Hz) is a linear propagation operator. It is a real-valued convolution operator:

Gz is still a M × N matrix such that [Gz o]q = [az]q = [−2 Im(hz) ∗ o]q , for all pixels q.

We note the convolution kernel gz = −2 Im(hz). As it is real and even, the operator Gz is

symmetric. Therefore GT
z = Gz . The noise η now also includes modeling errors due to the above

mentioned approximations. Model approximations are very often considered because of their

computational interest in leading to tractable mathematical and numerical resolution strategies.

The inverse problem is now fully real-valued (model m̃ and unknown o), and constitutes

a simple case-study to pedagogically illustrate the basic ingredients and tools required to

build a relevant inverse problems approach and draw a parallel with Fienup’s alternating

projections approaches. It is of course also possible to consider non-linear direct models and

both the attenuation and phase-shift induced by the sample. An example of such an approach can

be found in [17].

4.2. Building a regularized inverse approach

First, we recall the definition of the l2 and l1 norms applied to a vector x: | |x | |2 =
√∑

q x2
q and

| |x | |1 =
∑

q |xq |. The notation | |x | |W, where W is a positive definite matrix, corresponds to:

| |x | |2
W
= xTWx.

4.2.1. Data-fidelity

An inverse approach consists in retrieving an optimal solution o∗ to Eq. (8), knowing an

approximate numerical model m̃(o) of the data formation process.

To do so, we define a calculable metric Jfid(o, d) that evaluates the error between the data

d and the model m̃(o) obtained from a guessed o. This error term Jfid(o, d), also called the

data-fidelity term, acts as a penalization: the larger the error, the farther the guess o is from the

solution and the more it has to be corrected to reach a better estimate.

The most popular data-fidelity term is the weighted least squares criterion, which derives from

the assumption of Gaussian errors. The criterion corresponds to the W-weighted squared l2 norm

of the differences between d and m̃(o), which writes:

Jfid(c, o, d) = ‖c m̃(o) − d‖2W
= (c m̃(o) − d)T W (c m̃(o) − d)
=

∑
q

wq

(
m̃q(o) − dq

)2
(if errors are uncorrelated, i.e., W is diagonal)

=

∑
q

wq

(
1 + [gz ∗ o]q − dq

)2
(9)

where m̃q(o) is the q-th pixel of the model m̃(o), and dq is the q-th pixel of the hologram. wq

(q-th element of the diagonal of matrix W) is a weight associated with pixel q on the sensor. In

imaging problems, this allows to avoid unmeasured pixel data yq in the field of view, by setting

to 0 the corresponding weight wq . As discussed later (see Sec. 6), these unmeasured pixels could
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be those outside the sensor field of view, when out-of-field objects have to be taken into account

because of their contribution to the recorded hologram 1.

To solve the inverse problem, the objective is to find the solution o∗ that minimizes the criterion

Eq. (9), thus the error between the data d and the model m̃(o∗). Such a minimization problem

writes:

{o∗, c∗} = arg min
o,c

Jfid(c, o, d) (10)

and is the standard formulation of an inverse problem. In this formulation of our particular

problem, the optimal solution also depends on the scalar scaling factor c. The optimal value for c

can be obtained in closed form:

c∗(o) = m̃(o)TWd

m̃(o)TWm̃(o) . (11)

If matrix W is diagonal, the expression of c∗ takes a simpler form:

c∗(o) =
∑

q wqm̃q(o)dq∑
q wqm̃q(o)2

, (12)

We can then solve the following problem with regards to o:

o∗ = arg min
o

Jfid(c∗(o), o, d) (13)

We discuss how this minimization problem can be addressed in Sec. 4.3.2.

4.2.2. Constraints and regularizations

The minimization problem Eq. (10) is not sufficient to obtain a satisfactory solution because

measurements are noisy and there are too many unknowns for a reliable estimation based only on

data fitting. As a result, unsatisfactory reconstructions can be found that perfectly match the data,

i.e. solutions of the problem where the noise is also fitted by the model.

These issues are the characteristics of what is called an ill-posed problem. To overcome these

limitations, the resolution of the problem can not be achieved by only considering the data-fidelity

term Eq. (10). One has to find a solution o∗ that best fits a particular prerequisite on the targeted

information: one has to enforce some prior knowledge about the unknown o.

Such prior knowledge can be injected in the minimization problem Eq. (10), taking the form

of hard and/or soft constraints. The new minimization problem writes:

o∗ = arg min
o∈O

Jfid(c∗(o), o, d) + Jreg(o, θ) (14)

where o ∈ O and Jreg(o, θ) correspond to the enforced prior knowledge, that take respectively

the form of hard and soft constraints, see for example [55, 56].

o ∈ O imposes the feasible domain of values O for the estimate o. In many inverse problems

involving real quantities, a relevant constraint is to enforce positivity. This is for example the case

in positron emission tomography (PET), where the quantity of interest is a photon count [57].

1W can be viewed from a statistical point of view: if the noise statistics is known a priori, W can be set to the

inverse of the noise covariance matrix Cη = E
[
η η

T
]

(where E [·] stands for the expectation) [54]. In this case, the

weighted least squares criterion corresponds to the co-log-likelihood, where the noise follows Gaussian statistics. Under

the additional assumption of an uncorrelated noise, W is a diagonal matrix and the diagonal elements wq correspond

to the inverse of the variance at the pixel yq (the larger the variance of the noise in a given pixel yq , the smaller the

weight assigned to this pixel in the criterion Eq. (9)). The maximum likelihood estimation theory suggests minimizing

the weighted least-squares under a Gaussian assumption [55].
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Fig. 3. Illustration of the behavior of several regularization terms on reconstructions (in a

region of interest) of a simulated hologram (a) using a regularized inverse problems approach.

Details on the method, the simulation and reconstruction parameters are given in Sec. 5,

Tab. (1) and Tab. (2). a) Data (in-line hologram). The yellow frame indicates the region

of interest that is extracted from the field of view for visualization. b) Ground truth phase.

c-f) Reconstructed images using the following regularizations: c) the squared l2 norm of

the gradient Jl2∇ (Eq. (15)), d) the edge-preserving smoothness JTVǫ
(Eq. (16)), e) the

l1 sparsity constraint Jl1 (Eq. (17)), f) a composition of the l1 sparsity constraint and the

edge-preserving smoothness Jreg = Jl1 + JTVǫ
(Eq. (18)). Red curves show a line profile

passing through two particles of the image.

Jreg(o, θ) are soft constraints imposed as a combination of regularization terms, parameterized

by the set of hyperparameters θ that balance each term with respect to the data-fidelity term. In

general, standard regularizations aim to smooth the estimate o to filter high frequencies due to

noise. In the following, we present three popular regularizations in image processing. Figure 3

illustrates their behavior on reconstructions, using a regularized inverse problems approach, of

the simulated hologram that will be used in Sec. 5 for further demonstrations. More details on

the method, the simulation and reconstruction parameters are also provided in Sec. 5.

A possible strategy is to minimize the squared l2 norm of the gradient image ∇o:

Jl2∇(o, µ) = µ
∑
q

| |∇qo | |22 (15)

where the gradient operator ∇q corresponds to the finite difference operator at pixel q (a 2D

vector with the differences in x and in y directions). However, this solution tends to oversmooth

the sharp features of the estimate o (cf. Fig. (3)(c)) and is consequently not suitable for images

with almost sharp edges. To overcome this limitation, more sophisticated regularizations can

enforce piecewise smoothness, i.e. edge preservation. This is the targeted behavior of the very



Research Article Author version 11

popular total variation (TV) [58], which enforces sparsity of the gradient image by minimizing

the sum of the l2 norm of the gradient vector at each pixel. This regularization favors piecewise

continuous images, i.e., sharp edges. Because it promotes the appearance of flat areas, which is

not desired in cases where smooth variations are expected, it is often replaced by a generalized

version, also known as "edge-preserving smoothness" [59]:

JTVǫ
(o, µ, ǫ) = µ

∑
q

√
| |∇qo | |22 + ǫ2 (16)

where ǫ , which must be different from zero to ensure the differentiability of the criterion, tunes the

regularization behaviour. For values of the gradient norm much higher than ǫ the regularization

acts as TV (preservation of sharp edges), while for much lower values, the regularization is almost

quadratic (it almost acts as the regularizer of Eq. (15)) and the estimate o will be smoothed (cf.
Fig. (3)(d)). Thus this criterion is more flexible and can impose more natural constraints than TV.

Direct sparsity of the image can also be enforced. This strategy is very often used to favor a low

density distribution of objects in the image. This is implemented by minimizing the separable l1
norm of the image:

Jl1 (o, µ) = µ ‖o‖1 = µ
∑
q

|oq | (17)

This type of regularization limits the size of the objects support [29] by favoring reconstructions

with pixels at zero. Indeed, looking at Fig. (3)(e), we clearly see that the objects of interest

constitute the only signal reconstructed, while the remaining background is set to 0. Note that

when o is constrained to be nonnegative, the above equation is just µ times the sum of the values

in o, hence a linear term in o (see Fig. (5)).

These regularizations can be mixed to benefit from each of their advantages (cf. Fig. (3)(f)),

leading Jreg(o, θ) in Eq. (14) to be a combination of some of these terms. This increased

flexibility comes at the cost of a more difficult tuning of the reconstruction algorithms because of

the increase of the number of hyperparameters. For example, in Fig. (3)(f) and reconstruction

experiments in Sec. 5, we use a combination of a separable sparsity prior Jl1 (Eq. (17)) and an

edge-preserving regularization JTVǫ
(Eq. (16)), leading to the following expression for the global

regularization term Jreg(o, θ):

Jreg(o, θ) = Jl1 (o, µl1 ) + JTVǫ
(o, µTV, ǫTV) (18)

with θ = {µl1, µTV, ǫTV}, the set of all tuning hyperparameters.

4.3. Case-study: solving a standard sparsity-based problem

4.3.1. The problem

Following the methodology presented in the previous section, we now focus on the resolution of

the following criterion that corresponds to a popular sparsity-based approach:

o∗ = arg min
o≥0

Jfid(c∗(o), o, d)︸             ︷︷             ︸
smooth part G

+ Jl1 (o, µ)︸    ︷︷    ︸
non-smooth part H

= arg min
o≥0

‖c∗(o) m̃(o) − d‖2W + µ ‖o‖1 (19)

The criterion minimizes the sum of a least squares data-fidelity term developed in Eq. (9) and

an l1 regularization (cf. Eq. (17)), weighted by the hyperparameter µ, to enforce the sparsity of

the solution in the spatial domain. A positivity constraint is imposed on the solution (o ≥ 0).
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Fig. 4. The principle that underlies proximal gradient methods is the iterative minimization

of a local approximation of the original cost function. If the parameter t is chosen small

enough, the approximation is majorant and minimizing the approximation improves the

current solution until convergence. When the non-smooth componentH is separable (as is

the case of the ℓ1 norm), minimizing the local approximation is easily done (see Fig. (5)).
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Fig. 5. Computation of the proximal operator: an illustration with the case of the l1 norm

under positivity constraints. Values that are smaller than µt are mapped to 0 by the proximal

operator. Larger values of the regularization weight µ therefore lead to more values being

set to 0, i.e., a sparser solution.
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The problem Eq. (19) constitutes our case-study from which we must find suitable minimization

strategies.

In the following, we introduce a simple yet efficient method to solve this inverse problem,

named Iterative Shrinkage-Thresholding Algorithm (ISTA). This method belongs to the class

of proximal gradient methods [60], whose general principle is depicted in Fig. (4). The key

idea is to replace the original minimization problem by a sequence of simpler minimization

problems involving a surrogate function that majorizes the original function. The cost function

is decomposed into the sum of a smooth (i.e., differentiable) and a non-smooth (i.e., non

differentiable) term. The smooth term is replaced by a separable quadratic approximation.

Minimizing this approximation corresponds to computing the proximal operator associated to

the non-smooth term [60]. In the case of a regularization by an l1 norm, under a positivity

constraint, we recall in Fig. (5) that the proximal operator corresponds to a soft-thresholding

operation with a clipping of negative values to 0. In the following, we also establish that there is

a strong connection between Fienup’s alternating projections method and this strategy applied to

a particular formulation of the minimization problem.

4.3.2. Optimization strategy

The application of the proximal gradient framework to the minimization of Eq. (19) leads to the

following iteration:

o(i+1)
= Tµt

(
o(i) − t ∇G(o(i))

)
= Tµt

(
o(i) − t ∇Jfid(c∗(o(i)), o(i), d)

)
= Tµt

(
o(i) − 2 t c∗(o(i)) GT

z W
(
c∗(o(i)) m̃(o(i)) − d

) )
(20)

where the soft-thresholding operator Tµt is applied to the current reconstruction, improved by a

steepest gradient descent step (t is the step length). As proved in Fig. (5), the proximal operator

for the l1 norm under positivity constraint is defined by:

Tα(o)q = max(0 , oq − α) . (21)

This soft-thresholding sets to 0 all values below a threshold α, which effectively denoises the

reconstruction and tends to remove small fluctuations in the background. This projection step

enforces sparsity directly in the spatial domain. It is also possible to derive proximal operators

that enforce sparsity in "transformed" domains, such as the image gradient space (total-variation

regularization, see [61]) or the wavelet domain (see [62]).

To ensure the convergence of the algorithm, the step length t has to be chosen adequately. For

our problem, a suitable value depends on the maximum eigen value of GT
z Gz (i.e., the Lipschitz

constant of Jfid, see [60,61]). As Gz is a convolution operator, this is equivalent to the maximum

squared modulus of the Fourier transform of the kernel gz . It is also possible to use back-tracking

methods to reduce the step length t if it is found that the surrogate function does not majorize the

original cost function for the current value of t [61].

In [61], the authors propose a strategy to accelerate the convergence rate of ISTA, leading to the

popular algorithm named Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). We detail

the general steps of FISTA in Algorithm (2). Implementation details are given in Appendix A,

Algo. (4). In Algo. (2), if the scalar factor s is kept to the value 1, we fall back to the simpler

ISTA algorithm.
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Algorithm 2: FISTA algorithm [61] for solving problem Eq. (19)

Input:

d ; {intensity measurements at sensor plane zdet }
o(0) ; {initial estimate of o: e.g. 0 or random values}
µ ;

t ;

Output:

o∗ ; {estimated phase map on the sample plane zobj}

begin

1 u(0) ← o(0) ;

2 s(0) ← 1 ;

3 i ← 0 ;

repeat

4 o(i+1) ← Tµt
(
u(i) − 2 t c∗(u(i)) GT

z W
(
c∗ m̃(u(i)) − d

) )
; {ISTA iteration (cf.

Eq. (20))}
5 s(i+1) ← 1

2

(
1 +

√
1 + 4 (s(i))2

)
; {get a new interpolation coefficient}

6 u(i+1) ← o(i) + s(i)−1
s(i+1)

(
o(i+1) − o(i)

)
; {move according to previous iterate}

7 i ← i + 1 ;

until convergence;

8 o∗ ← o(i) ;

end

4.3.3. The alternating projections point of view

We analyze the alternating projections strategy under the ISTA formulation presented in Fig. (4).

From steps 1 to 4 in Algo. (1), we derive the equivalent iteration step of Fienup’s algorithm as

follows:

o(i+1)
= PO

(
H†z

(√
d̄ ⊙

a(i+
1/2)

z

|a(i+1/2)
z |

− 1

))
(22)

with a(i+
1/2)

z
= 1 + Hz o(i), and given that H†z = H−z . ⊙ stands for the Hadamard pixelwise

product, and the division and modulus operators are also applied pixelwise. Since H†z Hz ≈ I,

we can rewrite Eq. (22) as follows:

o(i+1) ≈ PO

[
o(i) −H†z

(
a(i+

1/2)
z

|a(i+1/2)
z |

⊙
(
|a(i+1/2)

z
| −

√
d̄
) )]

(23)

The term in the square brackets on which the projector PO is applied corresponds to a steepest

gradient descent step that decreases the following data-fidelity criterion:

Jfid(o, d̄) =



|az(o)| − √

d̄




2

2
=




|1 +Hz o | −
√
d̄




2

2
. (24)

Contrary to the previous data-fidelity (weighted least-squares), this term involves the square

root of the observations d̄ and does not correspond to the co-log-likelihood under a Gaussian

assumption. Deriving the gradient term∇Jfid must be done carefully because o is complex-valued.
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Separating the real and imaginary parts, or alternatively using Wirtinger calculus, leads to the

gradient expression in (Eq. (23)), see for example [63].

The projector PO is the orthogonal projection onto the convex set O, and corresponds in our

case to forcing positive or negative values of the real and/or imaginary parts of o, and/or to

forcing to zero all pixels that are outside the support of the object. PO is in fact the proximal

operator associated with the indicator function ιO of the domain O [60]:

ιO(o) =



0 if o ∈ O
+∞ otherwise

(25)

Then, applying Fienup’s alternating projections strategy given in Eq. (23) is analogous to

performing ISTA iterations with a fixed step length t = 1
2
, derived from the following problem:

o∗ = arg min
o




|1 +Hz o | −
√
d̄




2

2︸                   ︷︷                   ︸
smooth part G

+ ιO(o)︸︷︷︸
non-smooth part H

(26)

where the smooth part G correponds to the data-fidelity term Jfid in Eq. (24) and the non-smooth

partH is the indicator function ιO in Eq. (25).

The above analysis is important since it demonstrates that the alternating projections method

underlies a particular inverse problems approach, and thus falls within this rigorous framework.

The same as with the method developed in Sec. 4.3.2, the accelerated FISTA algorithm can then

be applied to this problem, and it is even possible to replace the standard projection PO by, for

example a soft-thresholding proximal operator Tµt to enforce sparsity of o (real or/and imaginary

part), or other regularization terms (provided that an efficient computation of the associated

proximal operator is possible).

This interpretation of the alternating projections strategy in the framework of inverse problems

and convex optimization methods has already been noted in previous works. In [5] Fienup

already analyzed his variants of the ER algorithm as particular steepest descent strategies. Levi

and Stark [50] have established that this method can be analyzed as an nonconvex instance

of the Projection Onto Convex Sets (POCS) algorithm. This was rigorously demonstrated by

Bauschke et al. [41] since Fienup’s BIO and HIO are shown to be instances of Dykstra and

Douglas-Rachford algorithms. In [12], alternating projections strategies are reformulated as

proximity operators derived from the maximum likelihood point of view.

Conversely, this analysis makes it possible to interpret the ISTA strategy in Eq. (20) from

the alternating projections point of view, since we can deduce that this algorithm performs a

succession of a propagation step Gz of the image o to get a model of the data m̃ (o), followed by

a pseudo backpropagation step GT
z of an error term (difference between m̃ (o) and d) and finally

a projection step Tµt on constraints.

With the inverse problems point of view, Fienup’s ER algorithm becomes much more flexible.

We can for example avoid the data normalization step d̄ and inject the optimal parameter c∗(o).
Taking the square root of the data is not necessarily a good solution since it does change the

noise statistics. Moreover, the image formation model m of our approach directly calculates an

intensity image m̃ (o) that can match the raw intensity measurements d, with or without the

approximations of Sec. 4.1. Therefore, the approach developed in Sec. 4.3.1 is to be preferred, as

it can be considered as a similar but more sophisticated alternating projections strategy.

With the above interpretation, we want to demonstrate that the inverse problems framework,

in some specific but adapted cases, can keep the intuitive nature and ease of implementation

property that generally constitutes the argument for preferring the use of Fienup’s method. This

is an original contribution of this paper compared with the previous works.
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Table 1. Experimental and simulation parameters of in-line holograms data.

Simulation Experiment

illumination wavelength (in nm) λ 532

propagation distance (in µm) z 12.5 7.3

refractive index of the medium n0 1.52

refractive index of the beads nbead 1.59 1.59 (commercial data)

diameter of the beads (in µm) dbead 1.0 1.0 (commercial data)

magnification factor (microscope objective) mag 56.7

size of the image (in pixels) N = M 512 × 512 1920 × 1080

pixel size (in µm) ∆x = ∆y 4.4 2.2

noise type η Gaussian i.i.d. -

signal-to-noise ratio < d > /ση 200 -

5. Results

In this section, we present the reconstruction results obtained with the proposed inverse problems

approach formulated in Eq. (19), using the ISTA iteration given in Eq. (20) and its acceleration

with the FISTA algorithm Algo. (2). We compare this method with Fienup’s alternating

projections approach defined by the iteration Eq. (23) using two versions: (i) the standard way

with positivity constraint enforcement, (ii) an upgraded way with a soft-thresholding step (l1
sparsity constraint). All the reconstruction strategies also enforce a positivity constraint. In the

following interpretations of the results, our regularized inversion approach method is referred to

as "the ri method", while Fienup’s alternating projections approach is referred to as "the Fienup

method".

5.1. Data

We reconstruct two data-sets: an experimental in-line hologram of polystyrene beads in immersion

oil (cf. Fig. (7)(a)), and a simulated in-line hologram of beads in similar conditions (cf. Fig. (6)(a)).

In this simulation, the transmittance o is modeled as 2D truncated Gaussian footprints (the

Gaussians are truncated so that the footprint has a diameter of 6σ, and 0 outside.). The peak

value of this footprint is set to a refractive index difference (n0 − nbead) = 0.07. The in-line

hologram is simulated under Fresnel approximation. Table 1 summarizes the experiment and

simulation parameters.

Looking at the data in Fig. (6)(a), we can see that a particle outside the field of view is also

present. Its diffraction fringes are truncated at the top of the hologram. We intentionally included

this out-of-field object to illustrate that the inverse approach framework allows the reconstruction

of holograms in a wider-field of view than that seen by the sensor. We discuss this particular

point in Sec. 6.

In these conditions, the maximum phase-shift induced by the particles is equal to ∆ϕ =

2πdbead(n0 − nbead)/λ ≈ 0.83rad. Then, the hypothesis (weakly dephasing objects) made to

derive the model proposed in Sec. 4.1 are not valid. Still, in addition to the fact that the problem

is simplified (only a real image has to be estimated), we show that this approximate model leads

to good reconstructions.

5.2. Reconstructions

For each experiment, all the reconstruction parameters in Fig. (6) and Fig. (7) are summarized in

Tab. (2).
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Table 2. Reconstruction parameters for simulations and experiments in Fig. (3), Fig. (6),

Fig. (7) and Fig. (8).

Reconstruction parameters

Figure Method
Gradient

descent

step

Positivity
Gradient

smooth-

ness

l1-

sparsity

Edge-preserving smoothness max. nb.

of

iterations

t µl2∇ µl1
µTV ǫTV

Fig. (3)(b) ;

Fig. (6)(b)

Ground truth

Fig. (6)(d) Fienup 1.0 yes - - - - 1000

Fig. (6)(e) Fienup 1.0 yes - 0.01 - - 1000

Fig. (6)(f) Fienup 1.0 yes - 0.01 - - 10

Fig. (3)(c) ri | VMLMB - yes 1.0 - - - 1000

Fig. (3)(d) ri | VMLMB - yes - - 0.1 0.01 1000

Fig. (3)(e) ;

Fig. (6)(g)

ri | FISTA 0.1 yes - 0.1 - - 1000

Fig. (3)(f) ;

Fig. (6)(h)

ri | FISTA 0.05 yes - 0.1 0.1 0.01 1000

Fig. (6)(i) ri | FISTA 0.05 yes - 0.1 0.1 0.01 10

Fig. (7)(c) Fienup 1.0 yes - - - - 100

Fig. (7)(d) Fienup 1.0 yes - 0.1 - - 100

Fig. (7)(e) Fienup 1.0 yes - 0.1 - - 10

Fig. (7)(f) ri | FISTA 0.1 yes - 0.5 - - 100

Fig. (7)(g) ri | FISTA 0.1 yes - 0.5 0.01 0.01 100

Fig. (7)(h) ri | FISTA 0.1 yes - 0.5 0.01 0.01 10

Fig. (8)(c) ri | FISTA 0.01 yes - 0.1 0.001 0.01 100

Fig. (8)(d) ri | FISTA 0.01 yes - 0.1 0.1 0.01 100

Figure 6 shows the results of the reconstruction of the simulated hologram data, using the two

methods presented above, with different parameters. For each reconstructed image in Fig. (6)(d-i),

the values of hyperparameters are given in Tab. (2). First, we can observe that both reconstruction

methods using a soft-thresholding step give a satisfying estimation of the objects’ support. We

see that the Fienup method enforcing this sparsity constraint is clearly better than the standard

approach with a positivity constraint alone. However, the simulated objects have a spatially

extended support, i.e. they cannot be considered as point objects. Thus, the sparsity constraint

tends to create tiny holes within the objects. The sparsity constraint alone is not well-adapted to

this particular hologram reconstruction problem. The RI method can be improved by adding an

edge-preserving regularization in the form of the edge-preserving term presented in Eq. (16).

The new minimization problem writes:

o∗ = arg min
o≥0

Jfid(c∗(o), o, d) + JTVǫ
(o, µTV)︸                                   ︷︷                                   ︸

smooth part G

+ Jl1 (o, µl1 )︸      ︷︷      ︸
non-smooth part H

= arg min
o≥0

‖c∗(o) m̃(o) − d‖2W + µTV

∑
q

√
| |∇qo | |22 + ǫ2 + µl1 ‖o‖1 . (27)

As this additional regularization term is differentiable, it is included in the smooth part of the

proximal gradient algorithm (see Fig. (4)). Thus the development of the ISTA iteration yields
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Fig. 6. Phase image reconstructed from simulated data with different methods and regu-

larization terms. a) Data (in-line hologram). The yellow frames indicate the regions of

interest that are extracted from the field of view for visualization. b) Ground truth phase. c)

Evolution of the normalized cost criterion (minimum and maximum values ranged between

0 and 1) for each reconstruction. d-i) Reconstructed images using: d) Fienup method, e)

Fienup method + soft-thresholding, f) Fienup method + soft-thresholding, stopped at 10

iterations, g) ri method using FISTA with soft-thresholding, h) RI method using FISTA with

soft-thresholding + edge-preserving, i) RI method using FISTA with soft-thresholding +

edge-preserving, stopped at 10 iterations. For each reconstruction, a positivity constraint is

imposed to the solution. The values of the hyperparameters are indicated in Tab. (2). Black

dots delimit the contour of the ground truth image. Red curves show line profiles passing

through particles of the image.

(see Fig. 9):

o(i+1)
= Tµl1

t

(
o(i) − t

(
∇Jfid(c∗(o(i)), o(i), d) + ∇JTVǫ

(o(i), µTV)
))

= Tµl1
t

©­­«
o(i) − 2 t c∗(o(i)) GT

z W
(
c∗ m̃(o(i)) − d

)
− t µTV

∑
q

∇T
q

©­­«
∇qo(i)√

| |∇qo(i) | |22 + ǫ2
ª®®¬
ª®®¬
.

(28)
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The reconstruction via this combination of regularizations is shown in Fig. (6)(h), where a clear

benefit of considering both a sparsity constraint and an edge-preserving smoothing constraint is

observed, as already demonstrated in Fig. (3)(f). Using the inverse problems interpretation of the

Fienup method, we could also adapt Fienup’s algorithm to include both regularizations.

In Fig. (6)(c), we show the evolution over the iterations of the global (normalized) criterion

of the RI and Fienup methods, respectively the criteria Eq. (27) and Eq. (26). We illustrate

the convergence of the RI method with several optimization strategies: FISTA, ISTA, and

VMLMB [64, 65], a quasi-Newton gradient Variable Metric method with Limited Memory

requirements and possibly Bound constraints enforcement on the unknowns. Whatever the

method, an empirical convergence of the criteria values is reached in less than ten iterations.

This is confirmed in the reconstructions Fig. (6)(f,i) which show the same reconstructions as

Fig. (6)(e,h) after only 10 iterations. We see that both the reconstructions (ri and Fienup) are

almost the same as the solution obtained after 1000 iterations.

Figure 7 shows reconstructions of the experimental hologram data, using the two methods

presented above with different parameters. The field of view has been cropped to 1080 × 1080

images. For each reconstructed image in Fig. (7)(c-h), the values of the hyperparameters are

given in Tab. (2). In Fig. (7)(b), the evolution over the iterations of the global normalized criterion

of the methods is shown.

The observations and analysis that can be performed on these reconstructions match those

made on the simulated data: the objects of interest are clearly detected. Moreover, the estimation

of their shape, diameter (see Fig. (7)(h)) and phase-shift are coherent with the expected values.

Indeed, from the experimental parameters in Tab. (1), the maximum phase-shift should be around

0.83rad. Again, we notice that the convergence of the criteria is almost reached in a few tenth of

iterations.

6. Discussion

As pointed out in Sec. 5.1, the linear model derived in this paper is only an approximation.

Nevertheless, we observe, both in the simulated and experimental results, that the shape of

the beads is correctly retrieved and that the phase-shift values estimated remain close to the

expected values (the difference is less than one order of magnitude). The values obtained on

the experimental holograms even match the expected phase-shift at the center of the beads

(∆ϕ ≈ 0.83rad).

This illustrates that the regularizations and constraints introduced to solve the inverse problem

balance the modeling errors and lead to a satisfying solution: the reconstruction is robust to

measurement and modeling errors.

In Sec. 5.1, we mentioned that an out-of-field particle was considered in the simulation, leading

to cropped diffraction fringes in the upper part of the data (cf. Fig. (8)(a)). The inverse problems

framework makes it possible to account for this data truncation (a problem also frequently faced

in X-ray computerized tomography [66]) and reconstruct a wider-field of view. This can be done

by two equivalent ways: (i) an extension of the size of both the reconstructed object plane and

the measured hologram; (ii) a field extension of only the reconstructed object plane. In the first

case, unmeasured pixels (i.e., pixels outside the field-of-view of the sensor) are given a weight

wq = 0 in Eq. (9). In the second case, the model is rewritten to include a truncation operator (i.e.,

a rectangular matrix obtained by chopping off rows corresponding to unmeasured pixels):

m̃(o) = T (1 +Gzo) (29)

Figure 8 shows reconstructions of the simulated hologram with the RI method, where the object

field of view is doubled compared to the data field of view. These reconstructions illustrate that

the out-of-field particle can be detected. Since a major part of the diffraction pattern of this bead

is missing, the reconstruction is not as good as for other beads. If a proper regularization is used,
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Fig. 7. Phase image reconstructed from experimental data with different methods and

regularization terms. a) Data (in-line hologram). The yellow frame indicates the region

of interest that is extracted from the field of view for visualization. b) Evolution of the

normalized cost criterion (minimum and maximum values ranged between 0 and 1) for each

reconstruction. c-h) Reconstructed images using: c) Fienup method, d) Fienup method + soft-

thresholding, e) Fienup method + soft-thresholding, stopped at 10 iterations, f) RI method

using FISTA with soft-thresholding, g) RI method using FISTA with soft-thresholding

+ edge-preserving, h) RI method using FISTA with soft-thresholding + edge-preserving,

stopped at 10 iterations. For each reconstruction, a positivity constraint is imposed to the

solution. The values of the hyperparameters are indicated in Tab. (2). Red curves show a

line profile passing through two particles of the image.

the bead can be detected (a "too large" sparsity regularization would tend to suppress it). Here,

the signal-to-noise ratio and the approximate direct model lead to an imperfect reconstruction of

the morphology of the bead (asymmetrical shape). Other "reconstruction" approaches based on

a parametric model of the spherical beads coupled with an adequate inversion algorithm (e.g.,

continuous matching pursuit algorithm) lead to accurate estimations even out of the field of
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Fig. 8. Reconstruction (detection) of an out-of-field particle using RI method and field

of view extension. a) Data in-line hologram highlighting (in yellow) a part of the out-of-

field hologram. b) Ground truth image. c,d) Reconstructions with two different sets of

regularization weights values (cf. Tab. (2)). The red frames show the initial data field of

view (pixels seen by the detector). The green frames are zooms on the out-of-field particle.

view [19].

These discussions give an overview of the refinements made possible by a properly built inverse

approach to enhance the quality of reconstructions and extract the most relevant information

from the data.

7. Conclusion

In this work, we have presented the inverse problems methodology applied to the reconstruction

of the phase information from in-line intensity holograms. The main goal was to provide a tutorial

for this reconstruction strategy, in comparison with the standard alternating projections method

proposed by Fienup. To this end, we have presented the overall methodology for building an

inverse approach dedicated to the targeted application, from the modeling of data formation to the

choice of suitable constraints and regularizations. Deriving a reconstruction algorithm from a cost

function is straightforward, for classical regularization terms, by following a decomposition into

smooth and non-smooth components, as summarized in figure 9. We have shown that Fienup’s
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Fig. 9. Derivation of a reconstruction algorithm from a cost function.

method is analogous to a particular formulation of this phase retrieval problem when solved by

proximal gradient descent iterations, i.e., the ISTA algorithm. We have shown reconstructions

from our proposed RI method compared with standard and upgraded versions of Fienup’s method,

and for which we have provided algorithmic details of implementation. The analysis of the

results has shown that the reconstruction quality can be quite similar when the Fienup method is

refined using the inverse problems framework. We hope that we have convinced the reader that

developing a reconstruction strategy following the inverse problems methodology can bridge a

gap in reachable reconstruction quality, while allowing much more flexibility to extract relevant

information from the data, at no cost in terms of implementation efforts and computational burden.

We think that this unifying point of view on various approaches to hologram reconstruction will

help the cross-fertilization of algorithmic ideas.

A. Appendix: detailed implementations of Algo. (1) and Algo. (2)

In order to facilitate the derivation of the equations and the algorithms, we used the formalism

of linear algebra in the main body of the paper. While it simplifies the expressions, it also

makes the implementation of the algorithms less straightforward. In this appendix, we rewrite

the algorithms to explicitly define which operations are involved (pixel by pixel operation, 2D

discrete convolution).

The image of the object plane o (or o) that has to be reconstructed, as well as intermediate

images such as the propagated wave az , the convolution kernels gz (or hz and h−z), and others,

are implemented as 2D arrays of size Nx × Ny . In the absence of field extension or pixel

super-resolution, the number of pixels Nx × Ny in the object plane is equal to the number of

pixels in the measured data. We define each 2D array x as follows: x ∈ TNx×Ny , T being the real

domain R or the complex domain C. We keep the notation xq to represent the q-th pixel of image

x. A 2D discrete convolution h ∗ x with a kernel h is typically computed in the Fourier space
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using fast Fourier transforms (FFTs) and adequate 0-padding to prevent periodization artifacts.

Algorithm 3: Detailed implementation of Algo. (1)

Input:

d ∈ RNx×Ny {intensity measurements}
hz ∈ CNx×Ny ; {propagation kernel hz }
h−z ∈ CNx×Ny ; {backpropagation kernel h−z }
Λrmin ∈ RNx×Ny ; {minimum bound constraint for each pixel of Re(o) (feasible domain O)}
Λrmax ∈ RNx×Ny ; {maximum bound constraint for each pixel of Re(o) (feasible domain O)}
Λimin ∈ RNx×Ny ; {minimum bound constraint for each pixel of Im(o) (feasible domain O)}
Λimax ∈ RNx×Ny ; {maximum bound constraint for each pixel of Im(o) (feasible domain O)}
maxiter ; {maximum number of iterations}
Output:

o ∈ CNx×Ny ; {unknown deviation from unit transmittance t }
Allocations:

a ∈ CNx×Ny ; {array for storing the simulated diffracted wave az }

begin

{Step 0: initializations}
1 d ← normalize(d) ; {normalize the data hologram so that the background equals 1}

{N.B.: for instance divide d by its mean or its median (almost valid in case of a low-density

distribution of objects).}
2 o← h−z ∗ (

√
d − 1) ; {First guess: for instance direct backpropagation of the data (or

initialization with random values).}
{N.B.: the square root

√
is applied pixelwise.}

for i ← 1 : maxiter do

3 a← 1 + hz ∗ o ; {Step 1: propagation to the sensor plane}
for q← 1 : Nx · Ny do {Step 2: enforce the measured amplitude at sensor plane}

if aq , 0 then

4 aq ←
√

dq ·
(
aq/|aq |

)
;

else

5 aq ← 0 ;

end

end

6 o← h−z ∗ (a − 1) ; {Step 3: backpropagation to the sample plane}
for q← 1 : Nx · Ny do {Step 4: projection on the domain O}

7 Re(o)q ← min
(
Re(o)q,Λrmaxq

)
;

8 Re(o)q ← max
(
Re(o)q,Λrminq

)
;

9 Im(o)q ← min
(
Im(o)q,Λimaxq

)
;

10 Im(o)q ← max
(
Im(o)q,Λiminq

)
;

{N.B.: The operators Re() and Im(), giving respectively the real and imaginary parts

(arrays) of the array o, are applied pixelwise.}
end

end

end
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Algorithm 4: Detailed implementation of Algo. (2)

Input:

d ∈ RNx×Ny {intensity measurements}
gz ∈ RNx×Ny ; {propagation kernel gz }
w ∈ RNx×Ny ; {confidence weights applied to each pixel data (these array’s values constitutes to the

diagonal of the matrix W in Eq. (9))}
f lagpos ; {flag (t r ue or f al se) for enforcing a positivity constraint}
µ ; {hyperparameter value for the soft-thresholding (sparsity contraint)}
t ; {steepest gradient descent step length}
Output:

o ∈ RNx×Ny {unknown deviation from unit transmittance t }
Allocations:

oprev ∈ RNx×Ny ; {estimate at previous iterate}
m̃ ∈ RNx×Ny ; {array for storing the direct model}
r ∈ RNx×Ny ; {array for storing the residues (difference between the model and the data)}
u ∈ RNx×Ny ; {intermediate array}
c ∈ R ; {intensity hologram scaling factor}
s ∈ R ; {scalar factor for the acceleration step}
sprev ∈ R ; {previous scalar factor for the acceleration step}

begin

{Step 0: initializations}
1 oprev ← zeros(Nx, Ny) ; {First guess: for instance zeros(Nx, Ny) returns a Nx × Ny array of

zeros.}
2 u← oprev ;

3 sprev ← 1 ;

repeat

4 m̃← 1 + [gz ∗ u] ; {Step 1: calculate the direct model}
5 c← ∑

q wqm̃qdq /
∑

q wqm̃2
q ; {Step 2: get optimal current scaling factor}

for q← 1 : Nx · Ny do

6 rq ← wq(c m̃q − dq) ; {Step 3: get the weighted residual pixel values}
end

7 r ← gz ∗ r ; {Step 4: backpropagation of the residues}
{N.B.: the backpropagation kernel is equal to the propagation kernel (cf. Sec. 4.1)}

for q← 1 : Nx · Ny do

8 oq ← uq − 2 t c rq ; {Step 5: steepest gradient descent step}
if f lagpos = t r ue then {Step 6: soft-thresholding}

9 oq ← max
(
0, oq − µt

)
;

else

10 oq ← sign(oq) max
(
0, |oq | − µt

)
;

end

end

11 s← 1
2

(
1 +

√
1 + 4 (sprev)2

)
; {Step 7: get new scalar factor s for the acceleration step}

12 u← o +
sprev−1

s

(
o − oprev

)
; {Step 8: new intermediate array u according to previous

iterate}
{N.B.: this step is applied pixelwise.}

13 sprev ← s ;

14 oprev ← o ; {Step 9: update memory of previous values}
until convergence;

end

In Algo. (4), if the scalar factor s is kept to the value 1, we fall back to the simpler ISTA algorithm.
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