
From First-order Temporal Logic to

Parametric Trace Slicing

Giles Reger and David Rydeheard

University of Manchester, Manchester, UK

Abstract. Parametric runtime verification is the process of verifying proper-

ties of execution traces of (data carrying) events produced by a running system.

This paper considers the relationship between two widely-used specification ap-

proaches to parametric runtime verification: trace slicing and first-order temporal

logic. This work is a first step in understanding this relationship. We introduce a

technique of identifying syntactic fragments of temporal logics that admit no-

tions of sliceability. We show how to translate formulas in such fragments into

automata with a slicing-based semantics. In exploring this relationship, the paper

aims to allow monitoring techniques to be shared between the two approaches and

initiate a wider effort to unify specification languages for runtime verification.

1 Introduction

Runtime verification [12] is the process of checking properties of execution traces pro-

duced by running a computational system. An execution trace is a finite sequence of

events generated by the computation. In many applications, events carry data values –

the so-called parametric, or first-order, case of runtime verification. To formalise run-

time verification, we need to provide (a) a specification language for describing prop-

erties of execution traces, and (b) a mechanism for checking these formally-defined

properties during execution, i.e. a mechanism for generating monitors from specifica-

tions. Many different formalisms have been proposed (see Sec. 7). In fact, almost every

runtime verification approach introduces its own specification language. One aim of

this work is to develop techniques for relating approaches to runtime verification as a

first step to bringing some order to this variety of formalisms.

One approach to runtime verification [3, 15] is to use automata both to specify trace

properties and to act as monitors of execution traces. In the first-order case, the seman-

tics of automata can be defined in terms of so-called trace slicing [9], whereby traces are

projected according to the values carried by events, and properties are evaluated on these

projections. This has been shown to be highly efficient [1]. An alternative approach is to

use temporal logic to specify properties of traces. Mechanisms for constructing moni-

tors from first-order temporal logic specifications have been proposed (see, for example,

[20, 5, 7, 10, 14]). This paper considers the relationship between these two approaches.

In general, properties expressed in a first-order temporal logic do not respect trace

slicing. We examine the reasons for this and then introduce a technique for exploring

the relationship between trace slicing and temporal logic. To do so, we introduce a first-

order linear temporal logic with a finite trace semantics. The key step is then to identify

syntactic fragments of this logic and the corresponding notions of ‘sliceability’. We give

one example of such a syntactic fragment and prove that it admits a notion of sliceabil-

ity. We then show how we may construct monitoring automata from formulas in the

fragment. To what extent do such syntactic fragments provide specification languages

for runtime verification? As we discuss, currently the expressivity of formalisms for

runtime verification is not easy to assess as we do not have adequate data on specifica-

tions likely to occur in runtime verification activities.

There are two main motivations behind this work. Firstly, giving a translation from

first-order temporal logic into slicing-based formalisms allows specifications written in

the former language to be monitored using techniques based on the latter. Secondly, the

wide range of specification languages for (parametric) runtime verification often makes

comparison and re-usability of specifications difficult. This work therefore is a contri-

bution to unifying specification languages for runtime verification. More precisely, it is

a necessary first step in the authors’ wider goal of finding a correspondence between

the full expressiveness of the slicing-based formalism QEA and temporal logics.

The contributions of this paper are as follows:

– Based on a first-order linear temporal logic (Sec. 2) and slicing (Sec. 3), we describe

restrictions that slicing places on the structure of formulas, and introduce a syntactic

fragment that satisfies these restrictions (Sec. 4)

– To make the correspondence practically useful we provide a translation from for-

mulas in the fragment to a slicing-based formalism (Sec. 5)

The paper finishes with related work (Sec. 7) and conclusions (Sec. 8).

2 A First-Order Linear Temporal Logic

We begin by presenting a first-order discrete linear-time temporal logic, FO-LTLf , with

a finite-trace semantics, where traces are finite sequences of events (see [8] for a dis-

cussion). As we are focussing on the correspondence with slicing, we do not consider

general first-order functions and predicates; we plan to consider these in future work.

LetΣ be a finite set of names of events, Var be a finite set of variable names and Val

be a finite set of value symbols (constants) disjoint from Var . An event e(z1, . . . , zn)
is an element of the set Σ × (Var ∪ Val)∗. An event is ground if all of its parameters

are values. We write events as a,b . . . A (ground) trace is a finite sequence of (ground)

events. We write the empty trace as ǫ. Given a trace τ we write the length of a trace as

|τ | and the i-th element as τi where the first element is at index 0.

The syntax of FO-LTLf is defined as the following formulas:

φ = true | a | ∀x : φ | ¬φ | φ ∨ φ | φ U◦ φ

We use standard identities, defining false = ¬true, φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2),
∃x : φ = ¬∀x : ¬φ and φ1 → φ2 = ¬φ1∨φ2. The logic incorporates a single temporal

modality U◦ which can be read as next until. This is sufficient for defining in FO-LTLf

the temporal modalities that we would expect to see in a discrete linear-time temporal

logic: the ‘next’ modality ©φ = false U◦ φ; ‘until’ φ1 U φ2 = φ2∨ (φ1∧ (φ1 U
◦ φ2));

‘eventually’ ♦φ = true U φ; and ‘always’ �φ = φ U false.

A valuation is a map (i.e. a partial function with finite domain) from variables to

values. For valuations θ1 and θ2 let θ1 † θ2 be the valuation where θ2 overrides or

extends values for variables in θ1. Valuations can be applied to events and to formulas

to replace variables with values. A domain is a map from variables to sets of values. Let

events(φ) be the set of events occurring in φ.

A formula φ is a sentence if it has no free variables. We define the semantics of

FO-LTLf in terms of a models relation |= on sentences:

Definition 1 (Semantics). We define the semantics of FO-LTLf with respect to a quadru-

ple (D, τ, v, i) where D is the domains of variables, τ is a trace, v is a valuation and i
an index of the trace. The relation |= is defined as follows:

D, τ, v, i |= true

D, τ, v, i |= a if τi = v(a)
D, τ, v, i |= ¬φ if D, τ, v, i 6|= φ
D, τ, v, i |= φ1 ∨ φ2 if D, τ, v, i |= φ1 or D, τ, v, i |= φ2
D, τ, v, i |= φ1 U

◦ φ2 if there exists a j > i such that either D, τ, v, j |= φ2 or

j = |τ | and φ2 = false

and for every k where i < k < j we have D, τ, v, k |= φ1
D, τ, v, i |= ∀x : φ if for every d ∈ D(x) we have D, τ, v † [x 7→ d], i |= φ

Linear temporal logics are usually defined on infinite traces. However, in runtime

verification, we evaluate formulas on finite traces. We therefore consider how tempo-

ral properties should behave at the end of a trace. A common approach (see [18]) is

to assume that next and eventually evaluate to false beyond the end of a finite trace

and always evaluates to true. This captures the intuition that these modalities represent

obligations for something desired to happen in the unfinished trace whereas the always

modality captures an obligation for something undesired not to happen. We capture this

idea with a special treatment of φ1 U
◦ φ2, where φ2 is false . In this case, we allow the

obligation to hold after the end of the trace. This gives the above trace semantics for the

temporal modality U◦ .

We write τ |= φ if a trace τ satisfies a property φ, defined as follows

τ |= φ iff dom(τ, φ), τ, [], 0 |= φ

where the domain function dom is defined as:

dom(τ, φ)(x) = {di | e(. . . , di, . . .) ∈ τ ∧ e(. . . , xi, . . .) ∈ events(φ) ∧ xi = x}

Prefix semantics. An alternative way of viewing finite traces is as prefixes of infinite

traces, leading to a multi-valued semantics based on whether the trace could be ex-

tended to an accepting infinite trace [8]. We do not consider this view here but note that

QEA [3] has this notion of multi-valued verdicts based on possible extensions. We will

explore this correspondence further in future work.

3 Parametric Trace Slicing

Parametric trace slicing [9] is a technique that transforms a monitoring problem involv-

ing quantification over finite domains into a propositional one. The idea is to take each

valuation of the quantified variables and consider the specification grounded with that

valuation for the trace projected with respect to the valuation. Ground events can then

be considered as propositional symbols in the specification and in the projected traces.

The benefit of this approach is that projection can lead to efficient indexing techniques.

Introductory example. We illustrate the notion of trace slicing using an example of

calls and returns of (non-recursive) methods. A required property is that whenever a

method m2 is called inside a method m1, the method m2 should return before m1. This

gives rise to a set of abstract events: call(m1), return(m1), call(m2), return(m2).
The property should hold for all values for m1 and m2 and is therefore a quantified

property. To understand how trace slicing works consider the following trace:

call(A).call(B).call(C).return(C).return(B).call(C).return(C).return(A)

There are three values that m1 and m2 can take, A, B or C, and the trace is sliced with

respect to each valuation of m1 and m2. The following table gives the trace slices for

the non-equal values for m1 and m2, omitting symmetric cases.

m1 m2 slice

A B call(A).call(B).return(B).return(A)
A C call(A).call(C).return(C).call(C).return(C).return(A)
B C call(B).call(C).return(C).return(B).call(C).return(C)

Each slice can be checked against a quantifier-free property for a given m1 and m2.

The above property is captured in the automaton below which processes the trace by

replacing m1 and m2 appropriately for each slice.

1 2 3call(m2), return(m2)

call(m1) call(m2)

return(m1) return(m2)

3.1 Defining slicing

We define a variant of slicing as in [17], which is based on [9]. Let A(X) be an event

alphabet (i.e. a set of events) where events use exactly those variables in the set X . A

quantifier-free property P(X) over alphabet A(X) defines a language L(P(X)) over

A(X). This can be grounded by giving values for X . Given a valuation θ with domain

X let the grounded language L(θ,P(X)) be given by θ applied to each event in each

trace of L(P(X)). For example we may have a(x).b(y) ∈ L(P({x, y})) and therefore

a(1).b(2) ∈ L([x 7→ 1, y 7→ 2],P({x, y})). Slicing can then be defined in terms of the

ground events from the trace that match events in the event alphabet:

Definition 2 (Slicing). Given a trace τ and valuation θ let τ ↓θ be the θ-slice of τ

ǫ ↓θ = ǫ

τ.e(v) ↓θ =

{

(τ ↓θ).e(v) if ∃e(z) ∈ A(X) : θ(e(z)) = e(v)
(τ ↓θ) otherwise

A quantified property 〈Λ(X),P(X)〉 consists of a list of quantifications (quan-

tifiers and variables) and a quantifier-free property over a shared set of variables X .

Some systems [15] only consider universal quantification and in this case acceptance

is defined as the acceptance by P(X) of all θ-trace slices for all possible valuations

θ. However, it is straightforward to introduce existential quantification also [3]. In this

case the notion of acceptance captures the boolean combination of the quantifier-free

acceptance for possible valuations.

Definition 3 (Acceptance). The trace τ is accepted for quantification list Λ(X) and

propositional property P(X) if τ |=
P(X)
[] Λ(X), defined as

τ |=
P(X)
θ ∀x : Λ if for every d ∈ dom(x) we have τ |=

P(X)
θ†[x 7→d] Λ

τ |=
P(X)
θ ∃x : Λ if for some d ∈ dom(x) we have τ |=

P(X)
θ†[x 7→d] Λ

τ |=
P(X)
θ ǫ if τ ↓θ∈ L(θ,P(X))

3.2 Choices for the quantifier-free language

The JAVAMOP system [15] is based on parametric trace slicing and introduces multiple

languages for the quantifier-free part, including finite state automata and linear temporal

logic. Quantified Event Automata (QEA) [3, 16] use a form of extended finite state

machine that allows unquantified variables to capture changing values in the trace. Later

(Sec. 8) we discuss how this can be used to extend the fragment of FO-LTLf defined

next. Note that QEA has a very efficient monitoring tool MARQ [17]. Here we use a

simplified form of QEA that uses finite state automata as the quantifier-free formalism.

4 Temporal logic and trace slicing

In this section, we introduce a syntactic fragment of FO-LTLf (see Sec. 2), and show

how it relates to trace slicing. We begin by introducing the notion of slicing invariance

and then discuss restrictions on FO-LTLf formulas that respect this invariance. Finally,

we describe a syntactic fragment that satisfies these restrictions.

4.1 Sliceability

A formula in FO-LTLf is sliceable if its truth value for a valuation of its free variables

is the same over a trace and the corresponding trace slice:

Definition 4. A formula ψ with free variables X is sliceable if for valuation θ over X
and trace τ

τ, θ |= ψ ⇔ τ ↓θ, θ |= ψ.

We can phrase sliceability in terms of invariance with respect to non-relevant events

i.e. the evaluation is stable under the deletion and addition of those events that are

removed during slicing. The events relevant to a formula ψ, for valuation θ, are defined

as relevant(ψ, θ) = {θ(a) | a ∈ events(ψ)}. Thus, a trace slice includes exactly those

events relevant to the valuation. A formula is slicing invariant if adding/removing non-

relevant events to/from a trace has no effect on whether the trace satisfies the formula:

Definition 5 (Slicing invariance). Given a formula ψ with free variables X and valu-

ation θ over X , let L(ψ, θ) = {τ | τ, θ |= ψ} be the set of traces that satisfy ψ. Let the

non-relevance-closure of L(ψ, θ) be inductively defined as the smallest set satisfying

τ ∈ LC(ψ, θ) if τ ∈ L(ψ, θ)
τ1.τ2.τ3 ∈ LC(ψ, θ) if ∀a ∈ τ2 : a /∈ relevant(ψ, θ) and τ1.τ3 ∈ LC(ψ, θ)
τ1.τ3 ∈ LC(ψ, θ) if ∃τ1.τ2.τ3 ∈ LC(ψ, θ) : ∀a ∈ τ2 : a /∈ relevant(ψ, θ)

The formula ψ is slicing invariant if L(ψ, θ) = LC(ψ, θ).

k(a) f(a) f(b) g(a) g(b) h(b, a) f(b) h(b, c) g(b)

�(f(x) ∨ g(x)) or ♦(¬f(x) ∧ ¬g(x))f(x) ∨ ♦k(x)

Fig. 1. Illustrating sliceable restrictions

Note that if we treat ground events as propositional symbols, as is common in slicing

approaches, this invariance corresponds to removing/adding symbols from/to the trace

that do not occur in the formula ψ.

We show that the notions of being sliceable and being slicing invariant are the same.

Lemma 1. The sliceable and slicing invariant formulas coincide. For slicing invariant

formula ψ over X , valuation θ over X and trace τ ,

τ ∈ L(ψ, θ) ⇔ τ ↓θ∈ L(ψ, θ)

Proof. Firstly we note that as ψ is slicing invariant L(ψ, θ) = LC(ψ, θ) as per Def. 5.

The proof proceeds by induction on the length of τ . For the base case where τ = ǫ
we have τ = τ ↓θ and the property holds trivially. In general, note that if τ and τ ↓θ
have the same length then τ contains only relevant events and τ = τ ↓θ. Therefore, we

assume τ = τ1.a.τ2 for some non-relevant event a

In the ⇒ direction assume τ ∈ L(ψ, θ). As a is non-relevant and by the second

rule in Def. 5 we have τ1.τ3 ∈ L(ψ, θ). As τ1.τ3 is shorter than τ we can apply the

induction hypothesis to conclude (τ1.τ3) ↓θ∈ L(ψ, θ). By definition τ ↓θ= (τ1 ↓θ).
(τ3 ↓θ) = (τ1.τ3 ↓θ) and the property holds. In the ⇐ direction assume τ ↓θ∈ L(ψ, θ).
By definition τ ↓θ= τ1 ↓θ .τ3 ↓θ as a is non-relevant. As τ1 ↓θ .τ3 ↓θ is shorter than τ
we can apply the induction hypothesis to conclude that τ1.τ3 ∈ L(ψ, θ). Therefore, by

the third rule in Def. 5, we have τ1.a.τ3 ∈ L(ψ, θ).

Next, we discuss restrictions that this invariance imposes on formulas. This will

motivate a syntactic fragment that allows only sliceable formulas to be written.

4.2 Restrictions on the structure of formulas

Not all FO-LTLf formulas are sliceable. We discuss restrictions that the notion of slic-

ing invariance places on FO-LTLf formulas. We use Fig. 1 to illustrate these restric-

tions. It gives an example trace where shaded states are not relevant to a formula ψ over

{x} and to the valuation [x = b].
Top-level quantification: Consider the following formula with embedded quantifiers

∃x : �(f(x) → ∃y : ♦h(x, y)). It is not possible to rewrite this so that the ∃y appears

at the top level. Our example trace satisfies the property, but we cannot use slicing to

capture this 1. In the definition of slicing in Sec. 3 all variables must be used for slicing.

To check this property for x = b it would be necessary to include every h(b, y) event for

an arbitrary number of ys, requiring an arbitrary number of quantifications. Therefore,

we consider only FO-LTLf formulas that have quantification at the top level.

1 Here we refer to the notion of slicing in Sec. 3. A more general notion of slicing involves free

variables [3], which could be used for y. It is future work to consider this generalisation.

Starting at the start: Consider the formula f(x)∨♦k(x) as in Fig. 1. The trace does not

satisfy this formula for x = b. The first event is not f(b) and there is no k(b). However,

in the slicing approach, the first event for the [x = b]-slice is f(b) and this would be

accepted. The formula ¬f(x) ∨ ♦k(x) would have similar (symmetrical) discrepancy.

This means that we cannot allow events (in positive or negative form) at the top level of

a sliceable formula. Furthermore, we cannot allow U◦ formulas at the top level, as it is

not possible to tell whether it should be evaluated from the first or second event in a trace

slice, as illustrated by the formula ¬f(x) U◦ g(x) for the trace g(a).g(a).f(b).g(b).

Never saying next: Consider the formula �(f(x) → ©g(x)) on the trace in Fig. 1.

For x = b we have g(a) after a f(b); however, in the [x = b]-slice this is removed. This

shows that evaluation differs after slicing. Formulas must therefore be next-free. This

next-freeness extends to the left side of U and U◦ formulas in general. Consider the

formula �(f(x)∨g(x)) = (f(x)∨g(x)) U false as in Fig. 1. The trace does not satisfy

the formula; however, for the [x = b]-slice it would as the non-relevant events violating

f(x) ∨ g(x) are removed. This shows that the left side of any U or U◦ formula must

evaluate to true for non-relevant events.

Never saying never: Consider the formula ♦(¬f(x) ∧ ¬g(x)) = true U (¬f(x) ∧
¬g(x)) as in Fig. 1. Here the obligation (¬f(x)∧¬g(x)) is never satisfied in the [x = b]-
slice but it is in the full trace. This shows that the right side of an U or U◦ formula

must evaluate to false for non-relevant events.

Symmetry: Note that there is a symmetry between the restrictions on the left and right

of U and U◦ formulas. This is due to the following identity ψ2 U ψ3 = ¬(¬ψ3 U ¬ψ2)
which can turn a restriction on the left to one on the right.

4.3 A syntactic fragment

We introduce a syntactic fragment F of FO-LTLf that incorporates the restrictions

discussed above. The fragment consists of formulas Q1x1 : . . . Qnxn : ψT for zero

or more quantifications Qixi, with Qi = ∀ or ∃, and quantifier-free ψT inductively

defined as :
ψT = ψL U ψR | ψT ∨ ψT | ψT ∧ ψT
ψL = true | ψL ∨ ψU | ψL ∧ ψL | ¬a
ψR = false | ψR ∧ ψU | ψR ∨ ψR | a
ψU = ψL U◦ ψR | ψL U ψR | ψU ∨ ψU | ψU ∧ ψU

where a is an event. This syntax captures the restrictions discussed above: the restricted

form of ψT captures the restrictions on ‘start’, and the restrictions on the left and right

of U and U◦ formulas are captured by the restricted forms of ψL and ψR respectively.

Not all identities in FO-LTLf can be expressed in the fragment F . For example, the

definition of the next modality ©φ = false U◦ φ is not in F , as false cannot occur

by itself on the left side of a U◦ formula. The identity ♦ψR = true U ψR however,

for quantifier-free ψR, is expressed in F , but �φ = φ U false is not in general in F
because of the restrictions placed on the left side of U◦ . However, �(a → ψR) is

expressible in F as ¬a ∨ ψR is an allowed left formula for U .

We show that formulas in F are sliceable. Lemma 2 first shows that the structure of

formulas in F allows non-relevant events to be added and removed from a trace.

Lemma 2. For any formula ψ ∈ F with free variables X , traces τ1 and τ2, valuations

θ over X , events a /∈ relevant(ψ, θ) and indices i and j:

Case 1. If ψ is in ψL, ψR or ψU and (τ1.a.τ2)i ∈ relevant(ψ, θ) then τ1.a.τ2, θ, i |=
ψ ⇔ τ1.τ2, θ, j |= ψ where j = i if i < |τ1| or j = i− 1 otherwise.

Case 2. If ψ is in ψL then τ1.a.τ2, θ, |τ1| |= ψ i.e. ψ holds at a

Case 3. If ψ is in ψR then τ1.a.τ2, θ, |τ1| 6|= ψ i.e. ψ does not hold at a

Case 4. If ψ is in ψT then τ1.a.τ2, θ, 0 |= ψ ⇔ τ1.τ2, θ, 0 |= ψ

Proof. By simultaneous structural induction on ψ, under the assumption that the prop-

erties hold for appropriate subformulas.

Case 1. If i 6= |τ1| then (τ1.a.τ2)i = (τ1.τ2)j and i = |τ1| is not allowed as the event

at (τ1.a.τ2)i must be relevant. The base cases true , false , a and ¬a hold trivially. The

conjunctive and disjunctive cases follow from the induction hypothesis. The interesting

cases are U and U◦ , we consider U and then describe the extension to U◦ .

For the ⇒ direction assume τ1.a.τ2, θ, i |= ψL U ψR and therefore there must exist

a k ≥ i such that τ1.a.τ2, θ, k |= ψR. By the induction hypothesis τ1.τ2, θ, l |= ψR
where l depends on the location of a, note that the induction hypothesis can be used as

by case 3, the event at k is relevant. By the assumption, ψL holds at all points m ≥ i
and m < l in τ1.a.τ2 and so by the induction hypothesis and case 2 (when the point is

not relevant) it holds in all such points in τ1.τ2. Therefore, τ1.τ2, θ, j |= ψL U ψR.

The ⇐ direction is similar. Again, we can assume that τ1.τ2, θ, k |= ψR for some

k ≥ i and therefore, by the induction hypothesis, τ1.a.τ2, θ, l |= ψR. Also we argue by

the assumption, the induction hypothesis and case 2 that ψL holds for all points i to l,
including the new |τ1| if included in the range. Therefore, τ1.a.τ2, θ, i |= ψL U ψR.

For the U◦ case the proof is similar but we reason about ψR being satisfied at a

point k strictly greater than i. This relies on τi being relevant as this prevents i = |τ1|,
which is necessary for the ⇒ direction. If i = |τ1| and k = |τ1| + 1 then due to the

semantics of U◦ we can no longer argue that τ1.τ2, θ, l |= ψR implies that τ1.τ2, θ, j |=
ψL U◦ ψR as we would have l = j.

Case 2. If ψ = true then this holds trivially. If ψ = ¬b then this will be satisfied by

all non-relevant a. Both the conjunctive and disjunctive cases follows from the inductive

hypothesis as in the ∧ case both parts are in ψL and in the ∨ case at least one is.

Case 3. If ψ = false then this holds trivially. For ψ = b, b 6= a as a is not relevant.

Again the conjunctive and disjunctive cases follow from the inductive hypothesis.

Case 4. The conjunctive and disjunctive cases follow from the inductive hypothesis.

The U case is the same as the argument above for case 1 where i = 0 and the condition

that τi is relevant can be dropped as this is not used.

Finally, any formula that can be expressed in F is sliceable:

Theorem 1. All formulas in F are sliceable.

Proof. (Sketch) Any ψ ∈ F is slicing invariant. This follows from Lemma 2 by induc-

tion on the length of τ using Def. 5 (similar to the proof of Lemma 1).

x = y

e(y)
e(y)
−−→ true

x 6= y

e(y)
e(y)
−−→ false

ψ
e(y)
−−→ ψ′

¬ψ
e(y)
−−→ ¬ψ′

ψ1
e(y)
−−→ ψ′

1 ψ2
e(y)
−−→ ψ′

2

ψ1 ∧ ψ2
e(y)
−−→ ψ′

1 ∧ ψ
′

2

ψ1
e(y)
−−→ ψ′

1 ψ2
e(y)
−−→ ψ′

2

ψ1 ∨ ψ2
e(y)
−−→ ψ′

1 ∨ ψ
′

2 ψ1 U◦ ψ2
e(y)
−−→ ψ2 ∨ (ψ1 ∧ (ψ1 U◦ ψ2))

accept(true) = true

accept(a) = false

accept(ψ1 ∧ ψ2) = accept(ψ1) and accept(ψ2)
accept(ψ1 ∨ ψ2) = accept(ψ1) or accept(ψ2)

accept(¬ψ) = not accept(ψ)
accept(ψ1 U◦ ψ2) =

true if ψ2 = false

false otherwise

Fig. 2. The progression and acceptance rules.

5 From Temporal Logic to Automata

In this section, we introduce a translation from formulas in F to the slicing-based for-

malism QEA. This is based on the notion of progression and a normal form that ensures

a finite number of syntactically different formulas resulting from progression.

5.1 Progression

Fig. 2 gives the progression and acceptance rules for FO-LTLf formulas. The progres-

sion rules show how formulas are rewritten, note that these convert formulas in F to

formulas not necessarily in F . The acceptance rules capture whether a formula is cur-

rently accepting. Firstly, we note that progression preserves the semantics of FO-LTLf :

Lemma 3. For every FO-LTLf formula ψ, valuation θ and trace τ we have

τ, θ, 0 |= ψ ⇔ τ, θ, |τ | |= ψ′ for ψ
τ↓θ

−−→ ψ′

Proof. (Sketch) By induction on the structures of τ then ψ, noting that the progression

rules follow |= (in Def 1). For a similar proof, see Lemmas 3 and 4 in [6].

Secondly, the acceptance rules capture the desired behaviour i.e. what the verdict

would be if the trace terminated at this point. Note that the rule for U◦ reflects the

notion of outstanding obligations alongside the finite-trace interpretation of �:

Lemma 4. For every ψ ∈ F and valuation θ

ǫ, θ, 0 |= ψ ⇔ τ, θ, |τ | |= ψ ⇔ accept(θ(ψ))

Proof. (Sketch) By induction on the structure of ψ, we show that accept respects the

semantics |=.

5.2 A normal form

We give a normal form that gives an upper bound for the number of progression steps to

syntactically different formulas. This approach was inspired by [18] and a similar result

has recently been established in [19].

The normal form is given by the following rewrite rules.

true ∧ ψ → ψ
ψ ∧ true → ψ
¬true ∨ ψ → ψ
ψ ∨ ¬true → ψ

¬¬ψ → ψ
ψ1 ∧ ψ2 → ψ1 if ψ1 = ψ2

ψ1 ∨ ψ2 → ψ1 if ψ1 = ψ2

(
∨

i ψi) ∧ (
∧

j ψj) →
∨

i(ψi ∧ (
∧

j ψj)

A formula is in normal form if none of these rewrite rules can be applied to any of

its subformulas. We write nf(ψ) for the normal form of ψ. If ψ ∈ F then nf(ψ) is a

disjunction of conjunctions where each conjunct is either an event or a temporal formula

i.e. a U◦ formula. We first show:

Lemma 5. For ψ ∈ F , let T be the temporal subformulas of ψ, every formula ψ′ such

that ψ
τ
−→ ψ′ for any trace τ , has temporal subformulas T ′ ⊆ T .

Proof. The only progression rule dealing with temporal formulas is the U◦ rule. This

copies the temporal formula. Therefore, no new temporal formulas are created.

Next we show that there can be no infinite progression sequences without repeating

formulas syntactically equivalent up to normal form.

Lemma 6. Any formula ψ ∈ F has a finite number of formulas ψ′ such that ψ
τ
−→ ψ′

for any trace τ .

Proof. Let P(ψ) be the set of formulas in normal form that can be built from boolean

combinations of events in ψ and formulas in T , the temporal subformulas of ψ. The set

P(ψ) is finite as there are a finite number of events and T is finite. From Lemma 5, ψ′,

we have ψ′ ∈ P(ψ) and therefore there are a finite number of such ψ′.

Furthermore, P(ψ) is bounded by 2|ψ| (see the result in [19]), giving an upper bound

on such a sequence.

5.3 Progression-based translation

We now introduce a translation based on progression. We begin by introducing a trans-

lation from quantifier-free formulas to state machines.

Definition 6 (Quantifier-free translation). Given a quantifier-free formula ψ ∈ F , let

translate(ψ) = 〈Q, q0,A, δ, F 〉 be the automaton such that

A = events(ψ)
q0 = nf(ψ)

Q = {q0} ∪ {nf(ψ′) | ∃τ : ψ
τ
−→ ψ′}

δ(ψ′,a) = nf(ψ′′) where ψ′ ∈ Q,a ∈ A and ψ′ a
−→ ψ′′

F = {ψ′ ∈ Q | accept(ψ′)}

It is important that the constructed state machine is finite, so that this translation step

terminates. This follows from Lemma 6, as there are only a finite number of syntacti-

cally distinct ψ′ such that ψ
τ
−→ ψ′. This also puts an upper bound of 2|ψ| on the number

of states of the automata.

There exists a simple procedure for building this state machine that begins with a set

of states S containing the initial formula/state and the set of events A and considers all

possible progressions from states in S for events in A, producing a new set of reachable

states S′. This is then repeated for S′\S.

This automata translation captures the progression semantics directly:

Lemma 7. For every quantifier-free formula ψ and trace τ

ψ
τ
−→ ψ′ ⇔ δ(ψ, τ) = ψ′

where δ is the transition relation of translate(ψ)

Proof. (Sketch) By induction on the structure of τ . Note that δ is defined directly in

terms of progression.

We then define the full translation from quantified temporal formulas in F to QEA.

Definition 7 (Translation). Let translate(φ) = 〈Λ(X), E〉 such that for φ = Q1x1 :
. . . Qnxn : ψ, Λ(X) = Q1x1 : . . . Qnxn and E = translate(ψ).

5.4 An example of the translation

Let us consider the translation of the standard HasNext temporal formula that will be

described in Sec. 6. In the following, we use h = hasNext(i) and n = next(i). The

formula for the property is given as follows where we rewrite U , � and →.

ψ = (h ∨ (n ∧ (¬n U◦
h))) ∧ (¬n ∨ (¬n U◦

h)) ∧ ((¬n ∨ (¬n U◦
h)) U◦ false)

The following shows the normal form of rewriting each subformula of ψ with re-

spect to the events h and n.

φ1 = n
h
−→ false
n
−→ true

φ2 = h
h
−→ true
n
−→ false

φ3 = ¬φ1 U
◦ φ2

h,n
−−→ φ4

φ4 = φ2 ∨ (¬φ1 ∧ φ3)
h
−→ true
n
−→ false

φ5 = ¬φ1 ∨ φ3
h
−→ true
n
−→ φ4

φ6 = φ5 U
◦ false

h,n
−−→ φ5 ∧ φ6

ψ = φ4 ∧ φ6
h
−→ φ5 ∧ φ6
n
−→ false

From this we can observe three states: ψ, false and φ5∧φ6. Observe that φ5∧φ6
n
−→

(φ4∧φ5∧φ6) = ψ. The final states are given by accept where accept(false) = false

and accept(ψ) and accept(φ5 ∧ φ6) are true due to their top level U◦ operators.

This gives the following automaton.

ψfalse φ5 ∧ φ6

h

n
h

n

h,n

5.5 Correctness of translation

We show that the translated QEA is trace-equivalent to the original formula. We first

establish the unquantified case.

Lemma 8. For any unquantified ψ ∈ F with free variables X , trace τ , and valuation

θ over X
τ, θ |= ψ ⇔ τ ↓θ∈ L(translate(ψ))

Proof. As ψ ∈ F is sliceable (by Theorem 1) this can be rewritten as

τ ↓θ, θ |= ψ ⇔ τ ↓θ∈ L(translate(ψ)) (1)

By definition L(translate(ψ)) = {τ | δ(ψ, τ) = ψ′ and accepts(ψ′)}. Therefore,

by Lemmas 7 and 4 the right side of (1) can be rewritten

ψ
τ↓θ

−−→ ψ′ and τ ↓θ, θ, |τ ↓θ | |= ψ′ (2)

and by Lemma 3, (2) can be rewritten as τ ↓θ, θ |= ψ, showing the equivalence holds.

This can be used to show the correctness in the quantified case.

Theorem 2. For every trace τ and a formula φ ∈ F

τ |= φ ⇔ τ |=
P(X)
[] Λ(X)

where translate(φ) = 〈Λ(X),P(X)〉.

Proof. (Sketch) By structural induction on the quantification structure of φ and Lemma 8.

6 The fragment F as a trace specification language

Are syntactic fragments of FO-LTLf that respect a notion of sliceability expressive

enough to be considered as practically useful trace specification languages? We con-

sider how we may answer this question for the syntactic fragment F . However, as-

sessing the (practically useful) expressiveness of a specification language for runtime

verification is currently not easy and there are no accepted methods, or accepted corpora

of cases or specification patterns likely to occur in real runtime verificaion applications.

Common patterns. In 1999 Dwyer et al. conducted a survey of common finite-state

properties used for model-checking in industry and academia [11]. We consider whether

some of the more common properties are expressible in F .

A common pattern is that of response written �(P → ♦Q). This can be rewritten

to (¬P ∨ (true U Q)) U false , which is a formula expressed in the fragment. Another

pattern in the collection is an absence property stating that P does not occur before R.

We show how this can be rewritten into a formula expressed in the fragment.

(♦R→ ¬P U R) = (¬(true U R) ∨ (¬P U R)) = (¬R U false) ∨ (¬P U R)

A more complex absence property that may appear to be outside of the fragment at

first is that P does not occur between Q and R, written as �((Q ∧ ©♦R) → (¬P ∧

©(¬P U R))). This can be written using the identities such as ©♦R = true U◦ R to

be (¬Q ∨ (¬R U◦ false) ∨ (¬P ∧ (¬P U◦ R))) U false .

A set of patterns from this study that cannot be expressed in F are the general

universality patterns �P . However, specific cases of these may be expressible.

This is but a small sample, and only for common model-checking properties, but

the technique is clear.

Specifications in the literature. There are specifications commonly occurring as ex-

amples in RV literature that belong to the fragment F , we give some of these here.

HasNext. For every iterator i the first event is hasNext(i) and whenever a next(i)
event occurs there is not another next(i) event until there has been a hasNext(i) event.

This can be captured by the following formula in F .

∀i : (¬next(i) U hasNext(i)) ∧�(next(i) → (¬next(i) U◦ hasNext(i)))

UnsafeMapIter. For every map m, collection c and iterator i, whenever c is created

from m and i is created from c, after m is updated i should not be used.

∀m : ∀c : ∀i : �(create(m, c) → �(iterator(c, i) → �(update(m) → �¬use(i))))

CallNesting. The call-nesting property given to motivate the slicing approach earlier

can also be specified in F as follows.

∀m1 : ∀m2 : (¬return(m1) U call(m1)) ∧ (¬return(m2) U call(m2))∧
�(call(m1) → (¬call(m1) U return(m1))) ∧�(call(m1) →
(call(m2) → ((¬return(m2) ∧ ¬call(m2)) U return(m2))) U return(m1))

Note how the formula requires many parts to capture the different paths through the

previously defined automaton. This demonstrates the differing usability of the two ap-

proaches. This study could be extended by considering the slicing-based specifications

for the Java JDK given in [13]. We expect all slicing-based specifications from work

with JAVAMOP that use a regular propositional language to be expressible in F .

7 Related Work

This work aims to connect approaches based on parametric trace slicing with those

based on first-order temporal logic. We give an overview of related work in each area.

We have not considered the rule-based system approach [4], where some work has

linked the expressiveness of rule systems with (propositional) temporal logic [4].

Slicing. Arguably, the first system to use trace-slicing was tracematches [2], but the pa-

per did not use this terminology, and the suffix-based matching meant that the authors

did not need to solve the main technical difficulty in slicing i.e. dealing with partial bind-

ings. The JAVAMOP system [15] has made the slicing approach popular with its highly

efficient implementation. The QEA formalism [3, 16] and associated MARQ tool [17]

were inspired by JAVAMOP. The notion of slicing presented here is compatible with

that used in JAVAMOP. Note that the combination of slicing and propositional LTL

used in JAVAMOP does not correspond to a first-order temporal logic. For example,

the JAVAMOP property Λx.�(f(x) → ©g(x)) does not have the standard first-order

temporal logic interpretation as discussed in Sec. 4.

First-order temporal logics in RV. Most approaches that add first-order reasoning to

LTL for runtime verification use similar concepts, with the main difference typically be-

ing the domain of quantification. An early work extending LTL by parameters by Stolz

and Bodden [20] makes bindings locally in a PROLOG-style. Bauer et al. [7] have pro-

posed a variant of first-order LTL where quantification is restricted to the values known

at a single point in time. Decker et al. [10] introduce the notion of temporal data logic,

an extension of temporal logic with first-order theories. Monpoly [5] constructs moni-

tors for a safety-fragment of metric first-order temporal logic where temporal operators

are augmented with intervals. Yoshi et al. [14] introduce a parallel monitoring approach

for first-order LTL extended with second-order numerical constraints. In principle it

would be possible to consider restricting all of these logics syntactically so that they

could be sliceable. However, in some cases the syntactic fragment may not be useful.

8 Conclusion

The aim of this work is to explore the relationship between first-order temporal logic

and parametric trace slicing. We have introduced a technique based on identifying syn-

tactic fragments of temporal logics which respect trace slicing, and defined one such

fragment of FO-LTLf . From this fragment, we have shown how we may construct au-

tomata with a slicing interpretation i.e. QEA.

The notion of trace slicing, and hence sliceability, used in this work is more restric-

tive than that used in [3] as it requires all variables to participate in slicing. We briefly

discuss possible future work that could lead to different fragments, perhaps of more

expressive temporal logics:
Embedded quantification. There are cases when embedded quantification can be nec-

essary in specification e.g. ∀x : ∀t1 : �(start(x, t1) → ∃t2 : stop(x, t2)). Here the

existential quantification of t2 cannot be lifted outside of the scope of �. However,

embedded quantification is supported in QEA using free variables.
Predicates and functions. First-order logics usually include predicates and functions.

A simple extension would allow predicates on quantified values of the form ∀x :
p(x) → ψ and ∃x : p(x)∧ψ. The translation to the slicing setting would be straightfor-

ward as QEA support global guards of this form. A more general incorporation of pred-

icates and functions would be supported by the guard and assignments on transitions

in the QEA formalism; this would be most appropriate alongside embedded quantifi-

cation. Predicates and functions require interpretation. These interpretations could be

supplied on a built-in or ad-hoc basis or taken from a formal theory, as is done in [10].
Translation from QEA to temporal logic. Even the restricted form of QEA used in

this paper are more expressive than the temporal logic, as it inherits the star-freeness

of standard LTL. For example, the language ‘there are an even number of a(x) events’

cannot be expressed in the logic, but can be expressed as a QEA. Therefore, to translate

QEA to temporal logic a more expressive temporal logic is required.

Whilst the fragment F introduced here does not cover all specifications that might

be written in a slicing framework, we have considered how we may assess its practical

expressiveness and provided a technique for translating formulas in F to QEA.

We believe the goal of this work, seeking methods for unifying existing specifica-

tion languages, is of considerable importance in runtime verification in allowing us to

improve the comparability and interoperability of tools.

References

1. CSRV 2014. http://rv2014.imag.fr/monitoring-competition.

2. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták, O. de Moor,

D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching with free variables to

AspectJ. SIGPLAN Not., 40:345–364, 2005.

3. H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Rydeheard. Quantified event

automata: Towards expressive and efficient runtime monitors. In FM, pp. 68–84, 2012.

4. H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time monitoring: from

EAGLE to RuleR. J Logic Computation, 20(3):675–706, 2010.

5. D. Basin, M. Harvan, F. Klaedtke, and E. Zlinescu. Monpoly: Monitoring usage-control

policies. In Runtime Verification, vol. 7186 of Lecture Notes in Computer Science, pp. 360–

364. Springer Berlin Heidelberg, 2012.

6. A. Bauer and Y. Falcone. Decentralised LTL monitoring. CoRR, abs/1111.5133, 2011.

7. A. Bauer, J.-C. Kster, and G. Vegliach. The ins and outs of first-order runtime verification.

Formal Methods in System Design, pp. 1–31, 2015.

8. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL semantics for runtime verification.

J. Log. and Comput., 20(3):651–674, 2010.

9. F. Chen and G. Roşu. Parametric trace slicing and monitoring. In Proceedings of the 15th

International Conference on Tools and Algorithms for the Construction and Analysis of Sys-

tems (TACAS’09), vol. 5505 of LNCS, pp. 246–261, 2009.

10. N. Decker, M. Leucker, and D. Thoma. Monitoring modulo theories. In Tools and Algorithms

for the Construction and Analysis of Systems - 20th International Conference, TACAS 2014.,

pp. 341–356, 2014.

11. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for finite-

state verification. In Proceedings of the 21st International Conference on Software Engi-

neering, ICSE ’99, pp. 411–420. ACM, 1999.

12. Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification. In Summer

School Marktoberdorf 2012 - Engineering Dependable Software Systems, to appear. IOS

Press, 2013.

13. C. Lee, D. Jin, P. O. Meredith, and G. Roşu. Towards categorizing and formalizing the JDK

API. Technical Report http://hdl.handle.net/2142/30006, Department of Computer Science,

University of Illinois at Urbana-Champaign, 2012.

14. R. Medhat, Y. Joshi, B. Bonakdarpour, and S. Fischmeister. Parallelized runtime verification

of first-order LTL specifications. Technical report, University of Waterloo, 2014.

15. P. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the MOP runtime

verification framework. J Software Tools for Technology Transfer, pp. 1–41, 2011.

16. G. Reger. Automata Based Monitoring and Mining of Execution Traces. PhD thesis, Univer-

sity of Manchester, 2014.

17. G. Reger, H. C. Cruz, and D. Rydeheard. MARQ: monitoring at runtime with QEA. In Pro-

ceedings of the 21st International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS’15), 2015.

18. G. Roşu and K. Havelund. Rewriting-based techniques for runtime verification. Automated

Software Engg., 12(2):151–197, 2005.

19. Y. Shen, J. Li, Z. Wang, T. Su, B. Fang, G. Pu, and W. Liu. Runtime verification by conver-

gent formula progression. APSEC 2014.

20. V. Stolz and E. Bodden. Temporal assertions using AspectJ. In Proc. of the 5th Int. Workshop

on Runtime Verification (RV’05), vol. 144(4) of ENTCS, pp. 109–124. Elsevier, 2006.

