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Abstract 

Nanoporous metal oxide electrodes provide a high internal area for dye anchoring in dye-sensitized 

solar cells, but the thickness required to extinguish the solar photons also enhances recombination at the 

TiO2/electrolyte interface. The high extinction coefficient of inorganic semiconductor absorber should 

allow to reduce film thickness improving photovoltage. Here we study all-solid semiconductor sensitized 

solar cells, in the promising TiO2/Sb2S3/P3HT configuration. Flat and nanostructured cells have been 

prepared and analyzed, developing a cell performance model, based on impedance spectroscopy results, 

that allows us to determine the impact of the reduction of metal oxide film thickness on the operation of 

the solar cell. Decreasing effective surface area towards the limit of flat samples, produces a reduction in 

the recombination rate, increasing the open circuit potential, Voc, while providing a significant 

photocurrent. However, charge compensation problems as a consequence of inefficient charge screening 

in flat cells increase the hole transport resistance, lowering severely the cell fill factor. The use of novel 

structures balancing recombination and hole transport will enhance solid sensitized cell performance.  
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Since the first report on dye sensitized solar cells (DSCs),
1
 this research field has experienced an 

enormous increase.
2
 The success of these cells is based on the use of a new paradigm in comparison with 

the preexisting photovoltaic technologies. Electron and hole pairs photogenerated in a light absorbing 

material are quickly transferred to two different transport media. The physical separation of carriers 

reduces significantly the recombination process, relaxing the quality requirements of the device 

constituent materials and consequently reducing the production cost. The most common sensitizers used 

in these devices have been molecular dyes.
2
 As the light absorption step conventionally occurs only in a 

monolayer of the sensitizer material, the effective area of the device has to be significantly enhanced over 

the geometrical area in order to improve the light harvesting. Nanostructured photoanodes are used to 

enhance the effective area and consequently the dye loading. In the most widely used case a liquid 

electrolyte, containing a regenerative redox couple, is used as hole conductor, as it allows a complete 

wetting of whole nanostructured effective area. 

Obviously the final goal of an applied research is providing a product capable of being industrialized 

and extensively used, and the sensitized solar cells are not an exception. Aiming at industrial applications, 

it is favorable to avoid the liquid components of a device. In this sense, the interest on all solid devices 

has hugely increased in the last years.
3, 4

 Currently a big effort is carried out in order to increase the 

efficiency of these systems. Very recently it has been reported a solid DSC showing an NREL certified 

6.08 % efficiency based in an organic dye, C220, and spiro-MeOTAD as hole transporting material,
5
 

indicating the progress in this field. 

The use of alternative sensitizers to dyes, as inorganic semiconductors, is also one of the hot topics in 

these technologies.
6-10

 Inorganic semiconductors present a number of characteristics making them very 

interesting as sensitizers in semiconductor sensitized solar cells or in quantum dot sensitized solar cells 

(QDSCs), where the semiconductor reduced particle size induces a quantum confinement effect.
11

 

Semiconductor QDs present the possibility of band gap tuning,
11

 high extinction coefficient,
12, 13

 large 

intrinsic dipole moments,
14

 and potential processes of multiple exciton generation.
15

 Among these 

characteristics the high extinction coefficients of semiconductor QDs is especially interesting for the 

development of all solid sensitized devices. It is known than in solid DSCs using spiro-MeOTAD, as hole 

transporting material, the recombination rate between electrons in TiO2 and holes in spiro-MeOTAD is 

significantly higher than in conventional liquid DSCs.
16

 As consequence the thickness of photoanodes in 

these devices is limited to ~ 2 µm. Sensitizers capable of absorbing the sunlight within this restricted 

thickness are needed, enhancing the interest of the high extinction coefficient of inorganic semiconductor 

absorbers. 

Some years back, the physical mechanisms of carrier transport and accumulation in the DSC were 

discussed in order to clarify the main factors governing the operation of this device.
17-19

 Short range 

screening of electrical fields, caused by the combination of nanoscale porous morphology and highly 
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concentrated electrolyte has been agreed as a major element of the DSC, facilitating the rise of 

photovoltage and extraction of carriers with little cost in driving force. The chemical capacitance has 

become a standard feature of DSC devices,
20

 as an easy way to monitor the rise of the Fermi level of 

electrons in the screened, metal oxide nanoparticulate medium. However, it must be observed, that the 

large internal area, produced by nanoporous morphology of relatively thick layers (about 10 µm), imposes 

a price of enhanced recombination, with the consequent reduction of photovoltage. Therefore a balance 

must be achieved, between the internal area needed both to accommodate the necessary volume of 

absorber, and to maintain screening of excess negative and positive photogenerated charges.     

Taking advantage of the high extinction coefficient of semiconductors, the electrode structure for all 

solid QDSCs could be rethinked in order to minimize the recombination process. It has been shown that 

the reduction of effective surface area decreases recombination, producing an enhancement of open 

circuit voltage, Voc, in liquid QDSCs, as it has been recently shown with electrodes of ZnO nanowire 

arrays and Si-ZnO hierarchical structures.
21

 Toyoda et al.
22

 also showed high voltage QDSCs based on 

inverse opal structure of radius 300 nm, with significantly less internal area than the usual 20 nm 

nanoparticulate TiO2 photoelectrodes. The extreme case of effective surface reduction is the use of flat 

electrodes where the effective surface coincides with the geometrical surface. In this work we compare 

the solar cell performance of nanostructured (NS) electrodes with flat electrodes in all solid QDSCs. We 

have prepared TiO2/Sb2S3/poly(3-hexylthiophene) (P3HT) solid cells with NS and flat configurations, as 

depicted in Figure 1. We have chosen Sb2S3 as semiconductor sensitizer as it has shown significant solar 

cell performance in all-solid solar cells.
23-27

 Solar cells efficiencies of 5.13%, under full 1 sun illumination, 

close to the all solid DSCs efficiencies have been reported using P3HT as hole transporting material 

(HTM),
23

 highlighting the interest of TiO2/Sb2S3/P3HT configuration. We have also analyzed a reference 

nanostructured cell without Sb2S3 (TiO2/P3HT), prepared in the same way that the complete cell but with 

no semiconductor light absorbing material. 

In spite of the interest of the solid approximation for sensitized devices there is relative short number 

of works modeling their performance.
4, 16, 28-30

 The development of appropriated models of the physical 

processes in these devices in mandatory for a focused research that allows further efficiency increase. In 

addition, the determination of the fundamental parameters governing solar cell performance would be an 

extraordinary tool for this purpose. Impedance spectroscopy (IS) has been extensively used for the 

characterization of liquid DSCs
31-33

 and QDSCs.
32, 34-37

 Here, we have used IS for modeling all solid 

TiO2/Sb2S3/P3HT in flat and NS configuration. The results obtained are discussed in terms of 

fundamentals of all-solid solar cell performance, providing a device picture that could be very helpful to 

assist the development of solid sensitized solar cells. 

 

Results and Discussion 

Photocurrent generation. Flat and NS TiO2/Sb2S3/P3HT, and also reference TiO2/P3HT, have been 
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analyzed by IS at different applied forward bias, Vapp, under dark and 1 sun (100 mW cm
-2

) illumination 

conditions. Impedance measurements also provide the current obtained at each Vapp, allowing the 

construction of current-voltage (J-V) curves in real stationary condition.
32

 J-V curves, under 1 sun 

illumination obtained for flat and NS devices are plotted in Figure 2. The solar cell parameters extracted 

from these curves are summarized in Table 1. 

NS cell presents higher performance than flat cell due to a higher short circuit current, Jsc, and fill 

factor, FF. Converselly Voc is higher for the flat device. It is worth noting that despite the low effective 

surface area, and consequently lower QD loading of the flat sample, the obtained photocurrent is 

relatively high, 7.15 mA/cm
2
. There are other recent reports relating flat semiconductor sensitized devices. 

Zaban’s group have obtained Jsc=1.86 mA/cm
2
, using a flat SnO2:F (FTO)/CdSe electrode with 

polysulfide electrolyte as HTM.
38

 The same group has also proved the tandem concept using flat 

FTO/CdSe as photoanode and flat FTO/CdS as photocathode.
39

 Very high photocurrents, Jsc=12.95 

mA/cm
2
, have been also obtained for FTO/CdSe electrodes, with a 100 nm thick CdSe, presenting a 

nanostructure but without any TiO2.
40

 The performance of flat QDSCs is especially striking when it is 

compared with the performance of flat DSCs. Recently, flat TiO2 layers as electron acceptor, dye 

multilayer as donor material and PEDOT:PSS as selective hole contact has demonstrated a maximum 

photocurrent and efficiency of 1 mA/cm
2
 and η=0.30%, respectively,

41
 values sensibly lower than the 

reported in the present work, see Table 1. The higher extinction coefficient of the semiconductor 

sensitizer compared with the standard dye N719, as observed in Figure 3, predicts a higher performance 

of flat QDSCs than flat DSCs.
2
 As mentioned above, this high extinction coefficient, together with the 

absorption at higher wavelength, allows that very thin films sensitized with Sb2S3 produce similar 

currents than N719 sensitized DSCs made of films with thickness up to 10 times larger. The shape and 

values of Figure 3 suggest that Sb2S3 deposited onto the surface of TiO2 is amorphous rather than 

crystalline.
42

   

Recombination and transport. In order to understand the significant differences observed in the 

shape of J-V curves for flat and NS cells, impedance spectroscopy measurements have been carried out. A 

representative example of the complex impedance plots obtained for the analyzed cells is shown in Figure 

4. In Figure 4a three different spectra, corresponding to three different values of the applied voltage Vapp, 

obtained for NS sample under dark conditions, are represented. The spectra pattern is composed by two 

main features one at high frequency and the other one at low frequency. The arc observed at high 

frequencies is constant independently of the applied bias, see Figure 4b. This fact indicates that it does not 

depend on Fermi level position and we have ascribed it to the parallel association of the geometrical 

dielectric capacitance of the cell, Cg, and the charge transfer resistance at the P3HT-Au interface, RAu, that 

is expected to vary very slowly with voltage. 

On the other hand, a close inspection of the low frequency semicircle shows that it is deformed due to 

the fact that it is composed by two arcs merged, see Figure 4c. Each arc is associated to the parallel 
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combination of a Resistance and a Capacitance (R-C). We have ascribed the arc at lowest frequencies 

with the parallel association between Rrec, the recombination resistance of electrons in the TiO2 with holes 

in P3HT or accepting states in Sb2S3, and Cµ, the chemical capacitance of electrons in TiO2.
20

 The 

intermediate frequencies arc, of this second feature, has been ascribed to the parallel association of hole 

transport resistance along HTM, RHTM, and the capacitance of the HTM, CHTM. Presumably CHTM has not a 

single physical origin, at it is the result of several contributions as hole chemical capacitance and/or 

interfacial capacitances. These assumptions are justified by the previous observations in other all-solid 

sensitized configuration (concretely ZnO nanowires/CdSe/CuSCN),
28

 and by the physical coherence of 

final results obtained, as it is discussed below. The equivalent circuit is completed, see Figure 4d, adding 

a series resistance, Rs, due to contacts and wires. Solid lines in Figure 4a, b and c are the fitting results of 

the experimental data using the equivalent circuit plotted in Figure 4d. For more accurate fitting, constant 

phase elements are used instead of ideal capacitances. Note, that the equivalent circuit proposed in Figure 

4d presents the geometrical capacitance in parallel with the other features, while alternative equivalent 

circuit consisting in 3 parallel R-C has also the capability of fitting properly the obtained Nyquist plots. 

The choice of the parallel contribution of Cg is due to physical reasons as the geometrical capacitance is 

affected by the total voltage drop between contact electrodes (removing the voltage drop at the series 

resistance). 

Figure 5 shows RHTM, Cµ and Rrec obtained from impedance analysis under dark and 1 sun illumination 

conditions for flat and NS samples. A reference nanostructured sample without Sb2S3 has been also 

analyzed under dark conditions to further evaluate the consistency of the results. RHTM, Cµ and Rrec are 

plotted against the voltage drop in the sensitized electrode, VF. VF is obtained from the applied bias, Vapp, 

subtracting the voltage drop in the series resistance and counter electrode resistance.
32, 35

 Figure 5 is very 

useful to understand the different trends observed in J-V curves, Figure 2, for flat and NS samples. Hole 

transport along P3HT introduces a transport resistance that has to be added to Rs and RAu to obtain the 

total series resistance, Rseries = Rs + RAu + RHTM. Flat and NS samples present close values of RHTM at low 

applied voltage but NS samples present clearly much lower RHTM values as the applied voltage starts to 

increase, in both dark and illuminated measurements. Using cross-sectioned specimens it was observed by 

SEM that the thickness of P3HT layer in NS and flat cell was ~20 nm and ~50 nm, respectively, but the 

thicker P3HT layer observed in flat samples is not enough to explain the large difference in the RHTM 

obtained between flat and nanostructured cells, as we discuss below. The higher RHTM is the main reason 

for the lower FF found for flat cells.
32

 If this resistor could be eliminated, FF would rise up to 0.49 

increasing efficiency to 2%. The other reason for the poor shape in the J-V curve is the relatively low 

value of Rrec under illumination at low potentials (~100 Ω cm
2
) that produces a loss in photocurrent 

instead of the plateau like shape as in the NS sample. Conversely, at potentials larger than 0.4 V under 

illumination, Rrec is higher for flat samples than for NS cells, and consequently the Voc obtained in flat 

samples is higher than that for NS cells.
21, 32

 The reduction of the effective surface area produces a 
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decrease in the recombination rate,
21

 taking into account that the recombination rate is inversely 

proportional to Rrec.
32

 It is also remarkable the lower slope found for Rrec as a function of VF in the flat 

electrode sample which also contributes to the low FF. 
32

 

Figure SI1 represents an analogous figure to Figure 5 under dark conditions but adding the results 

obtained for an additional NS solar cell prepared in the same conditions. Figure SI1 indicate that the 

obtained IS results are reproducible and characteristic of this type of cells. 

Note that in this discussion we have only considered the series resistance introduced by the transport 

of holes along HTM and the transport of electrons along TiO2 is not considered at all, due to two reasons. 

First transport resistance of electrons along TiO2 nanostructured electrode cannot be determined from the 

impedance spectra obtained for the analyzed cells, Figure 4. The straight line part of the transmission line 

from which this transport resistance is obtained in the liquid sensitized solar cells,
32

 is not visible in this 

cas. The time constants of arcs related with hole transport and recombination are very close producing a 

high overlaping of the two arcs that hides the straight line feature. On the other hand, electron transport 

resistance decreases exponentially with Vapp being significantly low at high Vapp (where the FF is mainly 

determined).
32, 35

 The contribution of electron transport resistance to solar cell performance can be 

neglected in comparison with the hole contribution.  

It is also very interesting to compare the results obtained from nanostructured samples with and 

without Sb2S3 light absorbing layer, see Figures 5 and SI1, to obtain significant clues to understand the 

recombination process in these cells. NS cell without Sb2S3 presents higher recombination resistance that 

the complete NS cell with Sb2S3 absorber. Similar behavior has been also observed for Sb2S3 all solid 

solar cells using CuSCN as HTM.
29

 As it has been observed that Sb2S3 does not form a continuous layer 

on TiO2 (i.e. there is a direct contact between TiO2 and P3HT even in the presence of Sb2S3),
27

 the main 

recombination pathway of electrons in TiO2, in the analyzed cells, is between TiO2 and Sb2S3. In fact, it 

seems to be the general behavior for Sb2S3 cells taking in account the previous results on CuSCN.
29

 Sb2S3 

induces efficient recombination pathways, this recombination has to be avoided in order to improve the 

Voc reported for these cells and consequently their efficiencies. 

Capacitance and screening. In order to understand the physical processes that occur on a device is 

especially interesting to analyze the behavior of capacitance. Considering the chemical capacitance of 

electrons in TiO2, another significant difference can be observed between flat and NS cells. In the case of 

flat cells Cµ does not rise exponentially with VF as it should be expected from the variation of Fermi level 

with the applied voltage.
20

 In contrast, an exponential increase of Cµ is observed for NS solar cell under 1 

sun illumination at high VF, see Figure 5. This difference points to a different scenario in both cells 

affecting solar cell performance. 

Figure 6, presents three schemes of different cell configurations that will be useful to discuss the 

fundamental differences between all solid flat and NS solar cells. Figure 6a presents a cartoon of a 

conventional DSC. In DSCs, due to the high concentration of supporting electrolyte species, in the order 
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of c=10
20

 cm
-3

, it is possible to inject electrons from the substrate to the TiO2 by applying voltage and 

maintain charge neutrality in the nanostructured film, as the high concentration of compensating ions in 

the electrolyte screens the injected electrons. In this case, the electron concentration, at high voltage in the 

solar cell, is substantially lower than the electrolyte species and therefore, no charge compensation 

problem is detected in liquid DSCs. An equivalent situation can be obtained by electron injection from the 

dye by photoexcitation, than in the case of electrons supplied from the contact by the application of a 

forward bias.
31

 In both cases the electron Fermi level raises easily aided by charge screening by the 

electrolyte. Under dark conditions in equilibrium, the electron Fermi level in TiO2, EF0, aligns with the 

electrolyte redox potential, Eredox, see Figure 6a. When a voltage is applied on TiO2, or photogenerated 

electrons are injected, the electron density in TiO2 increases, shifting the electron Fermi level, EFn, up. As 

the initial concentrations in the electrolyte are not significantly modified, the Eredox remains unchanged. 

Thus, under illumination Voc is the difference between EFn and Eredox, see Figure 6a. 

In the case of all solid NS TiO2/Sb2S3/P3HT solar cell, the number of holes in the dark in p-doped 

P3HT is likely much less than the number of electrons reclaimed by TiO2 to raise the voltage, in the order 

of c=10
15

-10
16

 cm
-3

. Therefore NS all solid solar cells present high RHTM under dark and low applied 

voltage. However, photogeneration of electron-hole pairs in the absorber creates both electrons in TiO2 

and equal amount of holes in P3HT. The Fermi levels now separate and the film is homogeneously 

charged as manifest in the increase of the chemical capacitance, see Figure 5. On the other hand, note that 

for NS cell under 1 sun illumination the RHTM decreases with VF. This decrease becomes faster at VF ~0.4 

V, the same value at which begins to grow exponentially the chemical capacitance of electrons in the NS 

cell, see Figure 6. In addition the capacitance CHTM, Figure SI2, increases exponentially at VF ~0.4 V 

indicating that CHTM is governed by the hole chemical capacitance in P3HT at VF > 0.4 V. RHTM is 

inversely proportional to the hole density in the hole transporting material (i.e. P3HT conductivity is 

directly proportional to the hole density).
28

 Then the decrease of RHTM with illumination can be attributed 

to an uniform increase of hole density in P3HT, and consequently the hole Fermi level at P3HT, EFp, 

moves down as the density of holes has been significantly modified from the dark equilibrium conditions, 

in contrast with the case of liquid DSCs, see Figure 6b. In this case the Voc is determined as EFn-EFp. 

Under illumination there are enough holes, photoinjected into P3HT from Sb2S3, to compensate the 

electrons in TiO2, in addition the nanostructure architecture of the cells allows that the holes are relatively 

close to electrons. Both species mutually screen and compensate their charge, see Figure 6b. Under dark 

conditions, at low applied voltage the hole density is very low and consequently RHTM presents a high 

value for NS structured samples. As the applied voltage increases holes are injected in P3HT enhancing 

its conductivity and decreasing the RHTM value for NS samples. This is possible due to the nanostructured 

architecture that allows an efficient screening of the injected electrons and holes, permitting a significant 

increase of the hole density.  

Finally, in the planar configuration, mutual charge screening by photogenerated carriers of opposite 
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sign is not possible, as the electrons and holes become confined in spatially separated media due to the 

layered architecture, see Figure 6c. The density of carriers in TiO2 and P3HT are not uniform along the 

separate layers. Each material layer results in different charge distribution in the semiconductors, 

including band bending at interfaces. An efficient screening and compensation of charges cannot be 

attained and chemical capacitance cannot be enhanced, because capacitance is affected by bandbending 

and dielectric effects. Note that associated with the changes in the charge density and distribution 

observed in the capacitance of planar and NS electrodes, are the shapes and values of Rrec of Figure 5. 

Thus rising the electron density in TiO2 produces an equivalent decrease in Rrec. The lower density of 

holes in P3HT produces higher RHTM values than in the case of NS cells, especially under dark conditions 

at high applied bias where no photoinjected holes are present, and the inefficient charge screening does 

not allow the hole injection, as in the case of NS samples, as electron counterparts cannot screen them. 

Conversely, the higher charge separation between electrons and holes reduces the recombination rate, as 

shown in figure 5 at the higher potentials, yielding to the higher Voc observed in Figure 2. 

 

Conclusion 

In summary, the higher extinction coefficient of inorganic semiconductors allows a higher versatility 

in the electrode architecture of sensitized cells than in the case of conventional DSCs. The reduction of 

the effective surface area reduces the cell recombination, but impedes the screening and charge 

compensation effect of holes in the solid hole transporting media. This effect is significant in all solid 

devices as the concentration of holes is significantly lower than in a liquid electrolyte. The final 

consequence is an increase of hole transport resistance in the HTM, affecting the total series resistance of 

the cell and reducing the FF. This work emphasizes the fundamentals of cell performance, indicating that 

a balance between effective surface area and screening effect is needed for an optimized cell operation, 

with a reduced recombination and efficient hole transport. In addition, this balance will depend on the 

type of hole transporting material used. The development of hole transporting material with improved 

transport and screening characteristics will undoubtedly enhance the current all solid semiconductor 

sensitized cells, that present higher potentially for the development of high efficient solid devices than 

solid DSCs.  

 

Materials and Methods 

Solar Cell Preparation. The flat and nanostructured cells for impedance spectroscopy analysis were 

prepared as follows. A 50 nm dense TiO2 layer was deposited on a patterned FTO coated glass substrate 

by spraying 0.02 M solution of titanium diisopropoxide bis(acetylacetonate) at 450 
o
C (flat electrode). For 

NS samples, a 1.0 µm porous TiO2 layer was then coated onto some of the flat electrodes by screen-

printing method using TiO2 paste and followed by heat-treatment at 500 
o
C for 1 h in air atmosphere, as 

reported previously
23

 (nanostructured electrode). Here TiO2 particles of about 60 nm diameter for TiO2 
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paste were synthesized by hydrothermal treatment at 250 °C for 12 h using a peroxotitanium complex 

solution. The two type of electrodes were immersed into a solution mixture of SbCl3/acetone (0.65 g/2.5 

mL), 25 mL of a 1 M Na2S2O3 solution, and 75 mL of deionized water for 3 h.
43

 The resulting Sb2S3-

coated electrodes were annealed at 300 °C in an argon (Ar) atmosphere. For reference NS sample with no 

Sb2S3 deposited this step is skipped. Both the flat and nanostructured devices were spin-coated at 2500 

rpm for 60 s with a regioregular-P3HT (Poly-3-hexylthiophene) solution (Reike Metals Co. 15 mg/mL in 

1,2-dichlorobenzene). As a counter electrode, Au was deposited by thermal evaporator under a pressure of 

5×10
–5 

Torr, giving an active area of 16 mm
2 

for each device.  

Solar Cell Characterization. The cells were illuminated using a solar simulator at AM1.5 G, where 

the light intensity was adjusted with an NREL-calibrated Si solar cell with a KG-5 filter to 1 sun of 

intensity (100 mW/cm
2
). Impedance measurement were carried out with a FRA-equipped PGSTAT-30 

from Autolab, applying a 20 mV AC signal and scanning in a frequency range between 400 kHz and 0.1 

Hz at different forward applied bias. IS was carried out in dark and 1 sun illumination conditions. Light 

measurements were carried out using a metallic mask of 0.13 cm
2
. Current data for J-V curves has been 

obtained from impedance measurements at each applied voltage. 
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Figure legends 

 

Figure 1: Schematic illustration of device structures for (a) nanostructured and (b) flat cell. The 

meaning of the abbreviations used is: d: dense; ns: nanostructured; P3HT: Poly-3-hexylthiophene. 

 

Figure 2: Current-Potential curve extracted from impedance spectroscopy measurements for flat and 

nanostructured configurations, under 1 sun (1.5 AM G) illumination. 

 

Figure 3: Extinction coefficient of N719 and Sb2S3 absorbers. Sb2S3 presents both a larger absorption 

and also a smaller bandgap than N719. 

 

Figure 4: Nyquist plots of NS TiO2/Sb2S3/P3HT solar cell measured under dark conditions. (a) 

Nyquist plots at three different applied bias. (b) Zoom of a) at high frequency region. (c) Nyquist plot at 

Vapp=0.50 V, the frequencies at which different points were measured are included in the graph. (d) 

Equivalent circuit employed to fit the Nyquist plots. Solid lines in (a), (b) and (c) are the fittings of the 

experimental data using the model in (d). 

 

Figure 5: Hole transport resistance, RHT, Chemical capacitance of electrons in TiO2, Cµ, and 

recombination resistance, Rrec, of nanostructured and flat TiO2/Sb2S3/P3Hta s function of potential FV , 

measured under dark and 1 sun illumination. 

 

Figure 6: Scheme of nanostructured (a) (b) and planar (c) solar cells. (a) The classic Grätzel cell 

formed by dyed nanostructured TiO2 permeated with a redox I
-
/I3

-
 electrolyte. Due to high concentration 

of supporting electrolyte species, it is possible to inject electrons from the substrate by applied voltage 

maintaining charge neutrality in the nanostructured film. The electron concentration, at high voltage in the 

solar cell, is substantially less than the electrolyte species. The same situation can be obtained by electron 

injection form the dye by photoexctitation. In both cases the electron Fermi level raises easily aided by 

charge screening by the electrolyte. (b) Nanostructured TiO2/Sb2S3/P3HT solid solar cell. In this case the 

number of holes in the dark in P3HT is likely much less than the number of electrons reclaimed by TiO2 

to raise the voltage. Injection of holes from the contact is also unlikely. Therefore charging the 

nanostructured film in the dark is difficult. However, photogeneration of electron-hole pairs in the 

absorber creates both electrons in TiO2 and equal amount of holes in P3HT. The Fermi levels now 

separate and the film is homogeneously charged as manifest in the increase of the chemical capacitance. 

(c) In the planar configuration, charge screening by photogenerated carriers of opposite sign is not 

possible. Each material layer obtains different conditions of charge distribution including band bending at 

interfaces. 
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Table 1: Solar cell parameters of flat and nanostructured cells analyzed in Figure 2. 

 nanostructured flat 

Voc (V) 0.48 0.56 

Jsc (mA/cm
2
) 13.02 7.15 

FF 0.57 0.35 

Efficiency (%) 3.59 1.43 
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Fig. 2 
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Fig. 3 
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Fig. 4  
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Fig. 5 
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Fig. 6 
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