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1 Introduction

Isoprenoids are known as secondary metabolites, which
provide plant oils and resins with characteristic smells. In
addition, they comprise crucial photosynthetic pigments
such as carotenoids, are assumed to be involved in fruit
ripening processes and serve plants as defense against
herbivores [1–3]. Isoprenoids also include metabolites
important for cellular function such as dolichols, ubiqui -

nones, growth regulators, and sterols [4]. For instance, the
triterpene squalene is converted in a sequence of consec-
utive reactions into ergosterol, which is vital for mem-
brane integrity in fungi.

Isoprenoids have received great attention in research
owing to several reasons. First and foremost, isoprenoids
have a considerable societal relevance due to a broad
spectrum of applications ranging from food products,
pharmaceuticals, and cosmetics to fuels. Second, with
more than 40 000 compounds [5], isoprenoids are not only
the largest, but also one of the structurally and function-
ally most diverse group of chemicals in the plant kingdom.

This review attempts to forge a bridge over the diverse
applications of isoprenoids with a main focus on those
considered to be advanced biofuel precursors. For this
purpose, some of the most eminent examples from each
field will be presented as well as the strategies for com-
mercial production of isoprenoids in the microbial host
Saccharomyces cerevisiae. Therefore, isoprenoids’ under-
lying biosynthetic pathway will be elucidated to illustrate

Mini-Review

From flavors and pharmaceuticals to advanced biofuels:
Production of isoprenoids in Saccharomyces cerevisiae

Stefan Tippmann1, Yun Chen1, Verena Siewers1,2 and Jens Nielsen1,2

1 Systems & Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology,
 Gothenburg, Sweden

2 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark

Isoprenoids denote the largest group of chemicals in the plant kingdom and are employed for a
wide range of applications in the food and pharmaceutical industry. In recent years, isoprenoids
have additionally been recognized as suitable replacements for petroleum-derived fuels and could
thus promote the transition towards a more sustainable society. To realize the biofuel potential of
isoprenoids, a very efficient production system is required. While complex chemical structures as
well as the low abundance in nature demonstrate the shortcomings of chemical synthesis and
plant extraction, isoprenoids can be produced by genetically engineered microorganisms from
renewable carbon sources. In this article, we summarize the development of isoprenoid applica-
tions from flavors and pharmaceuticals to advanced biofuels and review the strategies to design
microbial cell factories, focusing on Saccharomyces cerevisiae for the production of these com-
pounds. While the high complexity of biosynthetic pathways and the toxicity of certain isoprenoids
still denote challenges that need to be addressed, metabolic engineering has enabled large-scale
production of several terpenoids and thus, the utilization of these compounds is likely to expand
in the future.

Keywords: Biofuels · Isoprenoids · Metabolic engineering · Microbial cell factories · Saccharomyces cerevisiae

Correspondence: Prof. Jens Nielsen, Systems & Synthetic Biology,
 Department of Chemical and Biological Engineering, Chalmers University
of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
E-mail: nielsenj@chalmers.se

Abbreviations: CVS, citrus valencene synthase; DMAPP, dimethylallyl pyro -
phosphate; FPP, farnesyl pyrophosphate; GGPP, geranylgeranyl pyrophos-
phate; GPP, geranyl pyrophosphate; HMG-CoA, hydroxymethylglutaryl-
CoA; IPP, isopentenyl pyrophosphate; MEP, 2-C-methyl-D-erythritol-4-phos-
phate; MVA, mevalonate

Received 22 APR 2013
Revised 14 AUG 2013
Accepted 11 SEP 2013



Biotechnology
Journal Biotechnol. J. 2013, 8, 1435–1444

1436 © 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

the complexity and challenges of developing microbial
cell factories.

2  Production of isoprenoids

The production of isoprenoids can be realized by several
different means. Considering their natural occurrence in
plants, the most obvious method is isolation. Hereby,
parts of the plant such as the peel or tree bark are collect-
ed and the target isoprenoid is extracted by mincing and
subsequent hydro- or steam distillation. However, even
though isoprenoids are ubiquitous in nature, many of
them are present in low quantities in the plant source.
The leaves of Artemisia annua were reported to contain
the largest amounts of the antimalarial drug artemisinin
with 0.44% per dry weight [6]. Considering over 200 mil-
lion infections of malaria in 2010 [7], plant extraction is not
sustainable as it cannot be employed for large-scale pro-
duction. Furthermore, slow plant growth and yield
dependency on seasonal changes as well as geographical
conditions highlight further shortcomings of the extrac-
tion from plant material.

Likewise plant extraction, chemical synthesis is char-
acterized by a number of drawbacks. First and foremost,
the stereochemistry of pharmaceuticals and flavors,
which is essential for their functionality, often compli-
cates enantioselective synthesis and reduces the overall
yield. As an example, for the efficient synthesis of the
complex diterpenoid taxol, which possesses 11 stereo -
genic centers, 37 steps are required, while yields of 0.4%
are attained [8]. Furthermore, hazardous solvents, which
are often required for chemical synthesis, as for the allylic
oxidation of (+)-valencene for the production of nootka-
tone, pose health risks, and raise environmental concerns
[9].

Besides plant extraction and chemical synthesis,
biotechnology offers alternative production strategies for

isoprenoids. Most promising is the application of engi-
neered microbes, which has several advantages over the
previous strategies. Microorganisms feature fast growth,
can be cultivated easily and production by microorgan-
isms is easy to scale. Most importantly, microbes are able
to couple a sequence of enzymatic reactions to specifi-
cally produce a desired chemical from inexpensive and
renewable carbon sources such as glucose [10]. In addi-
tion, biological systems can be altered, redesigned, and
even completely new pathways can be established using
synthetic biology tools, which allows for the production of
a wide range of chemicals [11].

The development of microbial cell factories is a com-
plex task, which not only requires extensive knowledge
about cellular metabolism and recombinant DNA tech-
nologies, but also the integration of other engineering dis-
ciplines. However, first and foremost, an appropriate host
organism has to be selected with regard to the desired
chemical. For production of functional isoprenoids, main-
ly S. cerevisiae and Escherichia coli are employed, since
they are amenable to genetic manipulations with exten-
sive molecular resources. The comparison of isoprenoid
production presented in Table  1 shows that the titers
achieved by metabolic engineering of E. coli are in most
cases superior. Besides, slower growth of S. cerevisiae
and its lacking ability to utilize alternative carbon sources
such as xylose, which is abundant in plant biomass,
denote economical disadvantages, and obstacles regard-
ing its use in prospective industrial applications [12]. On
the other hand, it allows for a facilitated expression of
functional cytochrome P450 enzymes, which are essential
for the modification of many isoprenoids and thereby
responsible for their structural diversity. In addition, 
S. cerevisiae is more robust in large-scale fermentations
compared to E. coli. It is relatively tolerant to low pH and
high concentrations of sugars, as well as fairly resistant to
inhibitors [13, 14]. Furthermore, a number of advanced
molecular biology tools have been developed for precision
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Table 1. Examples of isoprenoids produced in S. cerevisiae and E. coli

Isoprenoid S. cerevisiae E. coli

Titer References Titer References

Monoterpenes
Limonene – – ~60 mg/L [68]

Sesquiterpenes
Farnesol 4.63 g/L [83] 135.5 mg/L [76]
α-Farnesene 9.8 mg/L [57] 400 mg/L [57]
β-Farnesene 762 mg/L [57] 1100 mg/L [57]
Bisabolene >900 mg/L [77] >900 mg/L [77]
Amorphadiene 40 g/L [47] 25 g/L [48]
Artemisinic Acid 25 g/L [46] – –
Valencene 1.5 mg/L [35] – –

Diterpenes
Taxadiene 8.7 mg/L [51] 1 g/L [52]
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engineering of yeast [15, 16] as well as much information
about regulation of its metabolism is available [17–19]. It
is therefore the preferred cell factory for industrial pro-
duction and in this review, we therefore focus on the pro-
duction of isoprenoids in S. cerevisiae.

3  Biosynthesis of isoprenoids

Isoprenoids are all assembled from activated forms of iso-
prene, namely isopentenyl pyrophosphate (IPP) and its
isomer dimethylallyl pyrophosphate (DMAPP). These two
precursors are made via two different pathways: the
mevalonate (MVA) and the 2-C-methyl-D-erythritol-4-
phosphate (MEP) pathway. The MVA pathway was first

discovered in the 1960s [20, 21] and was assumed to be
the only pathway leading to IPP in all living organisms for
almost 40 years. However, in the 1990s, the MEP pathway
was found in bacteria, green algae, and higher plants as
an alternative pathway [22]. With some exceptions, the
MVA pathway is utilized by most eukaryotes as well as
archaea, whereas the MEP pathway is typically found in
prokaryotes and the plastids of photosynthetic organisms
[23].

DMAPP is a reactive primer which undergoes elonga-
tion by head-to-tail condensation with one or more IPP
molecules, to form geranyl pyrophosphate (GPP), farnesyl
pyrophosphate (FPP), or geranylgeranyl pyrophosphate
(GGPP) (Fig. 1). By terpene synthases, the precursors GPP,
FPP, and GGPP can be cyclized and/or rearranged to form

Biotechnol. J. 2013, 8, 1435–1444
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Figure 1. Production of isoprenoids in Saccharomyces cerevisiae: Overview of the mevalonate pathway and products that can be derived from it. Gene names
are in italics. ERG10, acetoacetyl-CoA thiolase; ERG13, HMG-CoA synthase; HMG1/HMG2, HMG-CoA reductases; ERG12, mevalonate kinase; ERG8,
phosphomevalonate kinase; ERG19, mevalonate pyrophosphate decarboxylase; IDI1, IPP:DMAPP isomerase; ERG20, FPP synthase; BTS1, GGPP synthase.
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monoterpenes, sesquiterpenes, and diterpenes, respec-
tively. Once the basic skeletons are formed, they are often
further modified by terpene modifying enzymes, particu-
larly cytochrome P450 monooxygenases, to generate
functional products constituting the enormous diversity
of isoprenoid families.

3.1  The MVA pathway

The yeast S. cerevisiae uses the MVA pathway to gener-
ate the precursors IPP and DMAPP from acetyl-CoA
through seven enzymatic reactions (Fig. 1). This involves
the conversion of three molecules of acetyl-CoA to MVA
via acetoacetyl-CoA and hydroxymethylglutaryl-CoA
(HMG-CoA). MVA subsequently undergoes phosphoryla-
tion and decarboxylation to form IPP. A stereospecific iso-
merization reaction converts IPP to its isomer DMAPP.

Several enzymes, especially HMG-CoA reductase, IPP
isomerase, and FPP synthase, have been elucidated as
key enzymes for engineering isoprenoid biosynthesis in 
S. cerevisiae. Two isozymes, Hmg1p and Hmg2p, both
possess HMG-CoA reductase function, Hmg1p being
responsible for about 83% of the enzyme activity in wild
type yeasts, depending on the cultivation conditions [24].
On the post-translational level, Hmg2p was shown to
undergo endoplasmic reticulum-associated degradation
(ERAD) depending on ubiquitination [25], while Hmg1p
was found to be relatively stable. ERG20 encodes GPP
synthase/FPP synthase, which combines IPP and DMAPP
to GPP and catalyzes the subsequent addition of another
IPP to yield FPP. A study in which Erg20p was overex-
pressed revealed an increased ergosterol production
which indicates that FPP synthase may be a flux control-
ling enzyme [26].

Furthermore, FPP is situated at an important intersec-
tion building the connection to numerous compounds
and primary metabolism. It is further condensed to squa-
lene and subsequently undergoes nineteen conversion
steps to form ergosterol, which is essential for cell growth
and has a great impact on the regulation of membrane
permeability and fluidity. FPP is also an important precur-
sor for biosynthesis of many primary metabolites, such as
dolichols, ubiquinone, carotenoids, and prenylated pro-
teins [27].

3.2  The MEP pathway

The MEP pathway generates IPP and DMAPP in eight
reactions based on pyruvate and glyceraldehyde 3-phos-
phate. In the first part, which requires the enzymes Dxs
and Dxr, the two precursors are condensed to 1-deoxy-D-
xylulose 5-phosphate, which is subsequently reduced to
MEP. In a sequence of further reactions catalyzed by
enzymes specified as IspD, IspE, and IspF, MEP is con-
verted to 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate.
The following reduction to 1-hydroxy-2-methyl-2-(E)-

butenyl 4-pyrophosphate and final conversion to IPP/
DMAPP are catalyzed by IspG and IspH.

A comparative study of the two distinct biosynthetic
pathways has shown that the MEP pathway is stoichio-
metrically more efficient than the MVA pathway [28]. For
this reason and in order to bypass endogenous regulation,
recent efforts have addressed the heterologous expres-
sion of the MEP pathway in S. cerevisiae [29, 30]. How -
ever, the strains were unable to grow and could not com-
pensate for the loss of the endogenous MVA pathway,
which was inhibited using lovastatin or by deletion of
ERG13. Labeling experiments revealed that the heterolo-
gous pathway was only active until 2-C-methyl-D-erythri-
tol-2,4-cyclopyrophosphate, since S. cerevisiae failed to
functionally express the iron sulfur cluster proteins that
catalyze the last two reactions [29].

4  From flavors and pharmaceuticals 
to biofuels

4.1  Flavors

Two major families of isoprenoids, monoterpenoids (10
carbons) and sesquiterpenoids (15 carbons) are tradition-
ally valued as fragrances and flavors, as they are the pri-
mary constituents of essential oils from flowers. They
have been commercialized for ages but depend on plant
extractions which are considered expensive and unreli-
able. Recently, two sesquiterpenoids, named nootkatone
and valencene have been made available in commercial
quantities by Allylix using a microbial fermentation
process [31]. Nootkatone is a high-value flavorant used in
perfumery and the flavor industry. It is a natural con-
stituent of citrus oils, and stands out as a distinguished
flavor and aroma of grapefruit. Valencene is also a charac-
teristic fruit flavor and aroma component, which is cur-
rently used in beverage and chewing gum flavors, as well
as in the production of nootkatone.

Valencene is commonly identified in nature but the
corresponding synthase gene had not been cloned until
Sharon-Asa et al. [32], Greenhagen [33], and Lücker et al.
[34] isolated and characterized different Citrus valencene
synthase (CVS) genes, the product of which catalyzes the
cyclization of FPP to valencene. Since then, some efforts
have specifically addressed valencene biosynthesis, but
also other fragrances and flavors. All strategies described
are clustered into four. 
(1) Enhancing flux through the MVA pathway. Co-ex-

pression of a heterologous Arabidopsis or human FPP
synthase (AsFPPS or HsFPPS) with truncated Hmg1p
lacking the N-terminal regulatory domain (tHmg1) im-
proved valencene production four-fold [35]. In a recent
study, a multi-step engineering approach was taken to
increase the flux through the MVA pathway in order to
enhance the production of the sesquiterpene santal-

www.biotechnology-journal.com
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ene [36]. This involved overexpression of tHMG1 as
well as ERG20 (encoding FPP synthase) and GDH2
(NADH dependent glutamate dehydrogenase). Addi-
tionally, a point-mutated version of the transcription
factor Upc2p was introduced to upregulate the ex-
pression of MVA pathway genes.

(2) Limiting the use of the FPP pool. Down-regulation of
squalene synthase in yeast by replacing the native
ERG9 promoter with the tunable MET3 promoter in-
creased valencene production by 50% [37], and this
strategy was further pursued for production of santal-
ene [38]. In another study, by introducing a knockout
mutation of the squalene synthase gene (erg9Δ) and
simultaneously obtaining a mutant capable of effi-
cient aerobic uptake of ergosterol from the culture me-
dia, accumulation of farnesol (the dephosphorylated
form of FPP) was significantly increased, indicating an
enhancement in the FPP pool [39]. Similarly, the use of
a defective squalene synthase (dErg9) allowing more
FPP to be available for isoprenoid production while
still producing sufficient squalene to allow cell growth
is beneficial, especially as this does not require the ad-
dition of nutrients such as ergosterol or methionine
[40]. On the other hand, Farhi et al. [35] found that nei-
ther eliminating geranylgeranyl diphosphate synthase
(Bts1p) nor two endogenous lipid phosphatases (dia-
cylglycerol diphosphate phosphatase [Dpp1p] and
lipid phosphate phosphatase [Lpp1p], both involved in
dephosphorylation of FPP) could enhance valencene
biosynthesis, which was similar to the finding that a
single DPP1 knock-out did not exhibit improved va-
lencene production [39]. 

(3) Spatial subcellular arrangement of metabolic en-
zymes. Mitochondrial targeting of a valencene syn-
thase led to a three-fold rise in valencene titers com-
pared to the ones generated by the corresponding cy-
tosolic forms of the synthase. Combination of this ap-
proach with mitochondrial targeting of FPP synthase
led to an additional 40% improvement [35].

(4) Synthase engineering. Greenhagen elucidated the
catalytic mechanism of terpene synthases leading to
formation of valencene and other compounds [33, 41].
A transition between valencene and germacrene A
production was found at approximately pH 8.2, which
is close to the pKa value of cysteine (pH 8.4). This is
consistent with the fact that germacrene A synthases
only differ from CVS by the presence of C440 in the ac-
tive site. Either the single mutant CVS-I516V or the
double mutant CVS-C402S/V516I exhibited a signifi-
cant increase in the proportion of germacrene A. Al-
though there has been no report on improving the syn-
thase activity so far, this structure-function analysis
would facilitate engineering activities and specifici-
ties of terpene synthases.

4.2  Pharmaceuticals

The potential of isoprenoids in the treatment of diseases
is widely acknowledged. Since ancient times plant oils
and herbal medicines have been used as antifungal and
antibacterial agents. Many of them contain monoter-
penoids, which are known for their cytotoxicity [42]. In the
following some of the large efforts that have been made to
enable microbial production of artemisinin and taxol are
presented, which were addressed among others in sever-
al reviews in the recent past [43, 44].

4.2.1  Artemisinin
The discovery of artemisinin denotes a landmark in the
treatment of malaria and dates far back into Chinese his-
tory, as its ability to efficiently inhibit parasite growth was
first identified during the Jin Dynasty [45]. Nowadays,
this sesquiterpene lactone is still utilized as the first-line
treatment against malaria in artemisinin-based combina-
tion therapies (ACTs). Following the biosynthetic path-
way, FPP is converted to amorpha-4,11-diene, which is
subsequently oxidized via three reactions to artemisinic
acid, the immediate precursor of artemisinin. As the final
conversion is not yet fully understood, semi-synthetic pro-
duction of artemisinin aims at providing its biochemical
precursor artemisinic acid, which can subsequently be
converted chemically to artemisinin via dihydro arte mi -
sinic acid at a yield between 40 and 45% [46]. Amorpha-
diene and artemisinic acid have both been successfully
produced in S. cerevisiae. Overexpression of all MVA
pathway genes to ERG20 together with an amorphadiene
synthase derived from A. annua led to final amorphadiene
titers of 40 g/L in optimized fed-batch fermentations with
pure ethanol feed [47]. In comparison, amorphadiene
titers of 25 g/L were attained in a nitrogen and glucose
limited fed-batch process with engineered E. coli [48].
Likewise, the authors reported successful conversion to
artemisinic acid by overexpressing the involved cyto -
chrome P450 oxidase (CYP71AV1) and its cognate reduc-
tase (CPR1), which was, however, manifold lower. The
efficient conversion to artemisinic acid was recently
achieved by introduction of the complete oxidation path-
way from A. annua using the artemisinic alcohol and alde-
hyde dehydrogenase (ADH1/ALDH1) in combination
with cytochrome b5 (CYB5) together with CYP71AV1 and
CPR1. Using this approach, final artemisinic acid titers of
25 g/L were attained in fed-batch fermentations demon-
strating the crucial importance of the dehydrogenases
[46].

4.2.2  Taxol
The complex diterpenoid Taxol is an effective antineo-
plastic drug in the treatment of different cancer types
such as ovarian, breast, and colon cancer since it prevents
microtubule deploymerization and thereby blocks the cell
cycle [49].

Biotechnol. J. 2013, 8, 1435–1444
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Taxol production is still strongly dependent on primary
resources, but can be realized semi-synthetically from 
10-deacetylbaccatin III and baccatin III, its biosynthetic
precursors, which are extracted from the needles of vari-
ous taxus species. The biosynthetic production is equally
complicated and not yet fully understood. In 19 enzy matic
reactions, including 8 cytochrome P450-mediated oxy-
genations, taxol is derived from GGPP [50]. Approaches
for microbial production of taxol have mostly focused on
three aspects: the supply of GGPP for diterpene produc-
tion, overexpression of taxadiene synthase for an
increased conversion of GGPP to the committed interme-
diate taxa-4(5),11(12)-diene [51], and engineering of the
cytochrome P450-mediated oxidation of taxadiene to
taxa-4(20),11(12)-dien-5α-ol [52]. Taxadiene titers of
8.7 mg/L were attained in S. cerevisiae by using a codon
optimized taxadiene synthase from Taxus chinensis,
upc2-1, a mutant allele of the transcriptional sterol regu-
lator, and a GGPP synthase from Sulfolobus acidocaldar-
ius in combination with a truncated HMG-CoA reductase
(tHmg1) [51]. In comparison, taxadiene levels could
already be raised up to 1 g/L in engineered E. coli [52],
which is still over 100-fold higher. It is especially the high
pathway complexity that demands for the integration of
systems biology tools to promote microbial production of
taxol and its precursors. Recently, a computational
approach (a variation of the minimization of metabolic
adjustment [MoMA] algorithm) was applied to enhance
taxa-4(5),11(12)-diene production in E. coli [53]. As a
result, four genetic engineering targets outside of the
native isoprenoid precursor pathway were identified,
which would improve cofactor availability and could
thereby increase taxadiene accumulation.

4.3  Fuels

The ongoing search for alternative transportation fuels is
complicated by demands for fuels that fit the current

infrastructure and that can be produced at low cost and
at extremely high volumes. While the primary objective is
to produce low cost and environmentally friendly fuels
from renewable sources, they additionally have to fit nar-
row constraints in terms of density, chain length, com-
bustion heat and efficiency, lubricity, and stability [54].
Within the past years, much research efforts have been
dedicated to the use of terpenes for fuel applications 
[55, 56]. While monoterpenes have properties similar to
conventional aviation fuels such as Jet A and Jet A-1,
sesquiterpenes have potential applications as diesel.
Table 2 lists properties of some terpene-derived fuels in
comparison with conventional jet fuel and petroleum
based diesel. The most promising examples include the
monoterpene limonene, the sesquiterpenes farnesene
and bisabolene and the sesquiterpene alcohol farnesol,
which can either be used as fuel additives or directly as
replacements for diesel and jet fuels in their hydrogenat-
ed form [57–59]. Other cyclized monoterpenes, which can
be used as fuel precursors or additives are pinene,
cymene, myrcene, camphene, and terpinene. Further-
more, valuable gasoline additives such as isopentanol and
isoamylacetate can be produced from the isoprenoid
pathway [56], and were shown to possess beneficial blend
properties as they increase the octane number [60].

4.3.1  Monoterpene fuels
Due to low densities, which limit the heating value, jet
fuels produced from cellulosic butanol (Biojet) are consid-
ered to be deficient. On the other hand, limonene, pinene,
and camphene are regarded as suitable raw material for
high-density renewable fuels [61]. Pinene was reported to
have a net heat of combustion comparable to JP-10 and
dimerization of these isomers results in a higher density,
which is beneficial for an additional increase of the com-
bustion heat [62]. Since many liquid catalysts are haz-
ardous, corrosive, and require large efforts for waste treat-
ment and recycling, recent studies have focused on the

www.biotechnology-journal.com

Table 2. Comparison of conventional diesel and jet fuel with isoprenoid based biofuelsa)

Property Unit D2 diesel Farnesane Bisabolane Limonane Myrcane Jet A Limonene
(wt 50 %) (wt 10 % (wt 10 % (dimers)

in diesel) in diesel)

Density g/mL 0.865 0.774 0.820 n.a. n.a. 0.811 0.914

Cloud point °C –21 <–50 <–78 –11 –11 n.a. n.a.

Flash point °C 73 109 111 58.9 60 43 n.a.

Cetane number – 41.6 58.6 41.9 42.8 44.7 n.a. n.a.

Net heat of combustion MJ/kg 42.4 44.2 n.a. n.a. n.a. 43.4 41.906

Viscosity mm2/s 2.440 2.325 2.91 2.311 3.899 4.1 n.a.
(at °C) (at 40°C) (at 40°C) (at 40°C) (at 40°C) (at 20°C)

References [57] [57] [77] [63] [63] [59, 86] [61]

a) Farnesane, bisabolane, limonene, and myrcane refer to the hydrogenated forms of farnesene, bisabolene, limonene and myrcene, respectively. N.a., not available.
Similar values were also presented in [64, 84, 85].
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investigation of different catalysts to approach sustain-
able dimerization of pinenes and other monoterpenes [61,
62]. In addition, full hydrogenation of the reactive double
bonds in the olefinic structures of limonene and myrcene
was performed successfully using palladium and plat-
inum catalysts, which increases their value as fuel [63].

The microbial production of monoterpenes is facing a
fundamental challenge. Contrary to other isoprenoids,
monoterpenes have been reported to be highly toxic,
which makes them interesting antimicrobial agents. The
mechanism of toxicity is not yet fully understood and it
remains unclear if it is either derived directly from molec-
ular interactions or from phase toxicity, which was recent-
ly discussed by Brennan et al. [64]. Based on their hydro -
phobicity, monoterpenes interact with cellular and mito-
chondrial membranes and dismantle membrane integrity.
Microarray analysis of gene expression profiles of S. cere-
visiae under α-terpinene exposition revealed the up-regu-
lation of genes associated with lipid and fatty acid metab-
olism, detoxification, and cell wall structure [65]. Based on
these observations, the authors concluded that ergosterol
synthesis is inhibited during the treatment with ter-
pinene. Severe growth restrictions for S. cerevisiae were
also observed under the impact of other monoterpenes. 
β-Pinene was shown to inhibit respiration and transport
of H+ and K+, which is essential for ATP generation [66].
Limonene was reported to inhibit growth completely at
concentrations between 0.5 and 0.8 g/L [64, 67]. Under
these circumstances, one possibility to realize microbial
production of toxic biofuel precursors is to employ an
extractive two-phase fermentation. By adding an immis-
cible organic layer onto the cultivation medium, the prod-
uct can be harvested in situ and the harmful impact on the
host organism can be reduced. Using dibutyl phthalate,
the minimum inhibitory concentration (MIC) of limonene,
an indicator of its toxicity, could be increased up to
42.1 g/L for S. cerevisiae [64]. However, the selection of an
appropriate layer is elaborate, since organic solvents have
to be adapted to product and host. On the other hand,
efflux pumps are considered to be a promising opportuni-
ty to enhance biofuel tolerance. Recently, a computation-
al approach was used to identify new efflux pumps, which
improved resistance to toxic biofuels. For this purpose, a
library of 43 efflux pumps from sequenced bacterial
genomes was created and heterologously expressed in 
E. coli. As a result, strains expressing an efflux pump 
from Alcanivorax borkumensis revealed significantly
increased limonene production [68]. Similarly, the pleio -
tropic drug resistance (PDR) network, a subgroup of ABC
transporters, which serves the efflux of cytotoxic com-
pounds and is therefore essential for detoxification, was
expected to enhance limonene tolerance of S. cerevisiae.
However, overexpression of several PDR transporters,
which appeared to be upregulated under limonene stress,
did not attain the desired effect [67].

4.3.2  Sesquiterpene fuels
Since all sesquiterpenes originate from FPP, microbial pro-
duction poses a challenge in terms of redirecting metabol-
ic fluxes from this branch point. Regarding the production
of the sesquiterpene alcohol farnesol in S. cerevisiae, dele-
tion of squalene synthase and adjusting the pH to 7 ele-
vated the final concentrations up to 102.8 mg/L, whereas
ergosterol had to be added to the medium to maintain via-
bility [69]. Besides, the abundance of the direct precursor
FPP and the converting enzymes are considered to have
the greatest impact on the production levels of this fuel
compound. By overexpressing a modified Hmg1 reduc-
tase, a significant increase of farnesol production in 
S. cerevisiae was recorded at pH 7 with 145.7 mg/L [70].
Depyrophosphorylation of FPP can be realized by several
enzymes. In S. cerevisiae, the native alkaline phosphatase
Pho8p as well as the lipid phosphatases Dpp1p and Lpp1p
were reported to hydrolyze FPP to farnesol in two reactions
[71, 72]. On the other hand, pyrophosphatases are able to
catalyze this reaction directly in one step and may denote
a potential engineering target. However, no pyrophos-
phatase has been characterized with regard to farnesol for-
mation until now [73]. Furthermore, the promiscuity of
phosphatases in terms of their substrate specificity com-
plicates the selection of an appropriate engineering target.
Another possibility is the utilization of terpene synthases.
Heterologous expression of the OsTPS13 gene in E. coli,
which encodes a farnesol synthase from Oryza sativa,
showed that 84.2% of FPP could be converted to farnesol
[74]. One last critical aspect for farnesol production in 
S. cerevisiae originates from its regulatory function. Far-
nesol causes degradation of HMG-CoA reductase and
thereby inhibits its own production [75] – a fact that needs
to be addressed in further engineering strategies.

In comparison, farnesol production in E. coli remains
superior so far. Heterologous expression of the MVA path-
way together with the overexpression of ispA led to final
farnesol titers of 135.5 mg/L in only 48 h of cultivation time
[76].

Further sesquiterpenes that can be used as fuel pre-
cursors comprise farnesene and bisbolene. The latter was
recently identified as a biosynthetic precursor of D2
diesel, since its hydrogenated derivative bisabolane was
presumed to be a potential fuel due to its chemical struc-
ture [77]. The authors, who used an existing microbial
platform for amorphadiene production, were able to attain
final titers above 900  mg/L of bisabolene in E. coli and 
S. cerevisiae, which imparted no toxic effects on the
microbial hosts used in this study.

Farnesene was first identified in apple peel [78].
Besides its high energy density and low hygroscopicity,
its hydrogenated form farnesane is characterized by a
cetane number of 58, which is advantageous over con-
ventional diesel [57, 79]. Stepwise optimization of α-far-
nesene production has been performed successfully in 
E. coli. For this purpose, a codon optimized gene of the
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plant synthase from Malus domestica was used and the
rate limiting enzymes of the MEP pathway, Dxs and Idi,
were overexpressed. In combination with the heterolo-
gously expressed MVA pathway and a fusion of the FPP
synthase with the α-farnesene synthase, this led to α-far-
nesene accumulation up to 380 mg/L [79].

5  Future perspectives

The group of isoprenoids has been studied for many years
and includes valuable products that are required in large
quantities by the food and pharmaceutical industry. Addi-
tionally, several isoprenoids were assigned with fuel prop-
erties in the recent past, which has elevated the interest
for these compounds. Even though chemical finishing is
required, which increases the price of these fuels, they
combine several advantageous properties and are benefi-
cial over conventional biodiesel and jet fuel. Associated
with the structural and functional diversity of this group
of chemicals, the product range is likely to expand further
in the future. However, the overall success will strongly
depend on the production process, which is demanding
in terms of productivity, cost efficiency and sustainabili-
ty. While chemical synthesis and plant extraction suffer
from numerous drawbacks, microbial cell factories have
emerged as a platform technology for the supply of bulk
and specialty chemicals. To this day, metabolic engineer-
ing has successfully enabled industrial production of for
example valencene and farnesene in large-scale fermen-
tation processes and there are bright prospects for further
biobased isoprenoids. However, several challenges
remain, one of them being engineering of the terpene syn-
thases due to their often observed product promiscuity
and low activities. While several studies succeeded in
altering product specificity (e.g. [80, 81]) examples of
increasing enzyme activity (e.g. [82]) remain scarce. As
well-established cell factories, S. cerevisiae and E. coli
have predominantly been employed. While the endoge-
nous MEP pathway of E. coli is energetically more effi-
cient than the MVA pathway, the expression of
cytochrome P450 oxygenases is facilitated in yeast,
which can be crucial for the production of active pharma-
ceutical ingredients such as taxol. Numerous strategies
have been investigated ranging from overexpression of
different plant synthases to heterologous expression of
complete pathways. Yet the functional and regulatory
complexity that is comprised by metabolic networks
demands for the integration of other engineering disci-
plines in many cases. These may also be beneficial in
establishing a functional MEP pathway in S. cerevisiae,
an approach that is still to be demonstrated. It is espe-
cially the available tools from systems biology, which will
progressively contribute to this field and have the poten-
tial to accelerate the design of future cell factories for iso-
prenoid production.
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