
lNTkRcHr93 24-29 April1993

From “Folklore” To “Living Design Memory”

Loren G. Terveen Peter G. Selj?-idge M. David Long

600 Mountain Avenue 600 Mountain Avenue 2000 N. Naperville Road

AT&T Bell Laboratories AT&T Bell Laboratories AT&T Bell Laboratories

Murray Hill, NJ 07974 Murray Hill, NJ 07974

(908) 582-2608 (908) 582-6801

terveen@research. att.com pgs@research.att. com

ABSTRACT

We identify an important type of software design knowledge

that we call community specific folklore and show

problems with current approaches to managing it. We built

a tool that serves as a living design memory for a large

software development organization. The tool delivers

knowledge to developers effectively and is embedded in

organizational practice to ensure that tie knowledge it

contains evolves as necessary. This work illustrates

important lessons in building knowledge management

systems, integrating novel technology into organizational

practice, and managing research-development partnerships.

KEYWORDS: organizational interfaces, organizational

design, knowledge representation, software productivity

INTRODUCTION

Developing and maintaining large software systems is

notoriously difficult and expensive, Several factors

contribute to this situation. Software development is a new

discipline; this leads to rapid change in languages, tools,

and methodologies. Relatively simple software constructs

and components can be composed to build large systems;

this leads to systems that perform very complex tasks, are

built by many people, and are beyond the understanding of

any single person. Software is a highly malleable medium;

this raises the possibility of change, and market pressures

ensure the necessity of change.

A crucial implication of this picture is that the knowledge

required for effective software development is vast, com-

plex, heterogeneous, and evolving. Much of the knowledge

required to be a successful developer in a particular

organization is community specific, concerning the

application domain, the existing software base, and local

programming conventions. This knowledge typically has

the status of folklore, in that it is informally maintained

and disseminated by experienced developers. This process is

(1) ineffective - not everyone gets the knowledge they need,

(2) inefficient - communication of knowledge, whether in

formal meetings or informal consulting, comes to take up

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

diract commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinary. To copy otherwisa, or to republish, requiras a fee

and/or specific permission.

~ 1993 ACM Q.8979J.~75-~/93 /QOQ4/QQ~ 5...$1.50

more and more time, and (3)

Naperville, IL. 60566

(708) 979-5648

mdlong@ihlpb.att. com

fragile – loss of kev t)ersonnel

canmean loss of critical knowledge.

We addressed the problem of managing design knowledge in

a software development organization in AT&T. The goat

of our work was to construct a system for recording and

effectively disseminating “folklore” design knowledge

throughout the organization. We aimed to improve both the

software product and the software development process. We

describe this type of system as a living design memory.

The term “living” emphasizes that the system must be

embedded in the organization’s normal design process, in

particular, that it must evolve in response to problems

detected with it or changes in the knowledge situation of the

organization. We constructed a system according to these

guidelines and deployed the tool in the organization.

We have learned important lessons from this work, starting

with technical issues involved in developing a system for

managing design knowledge (see [22] for details). Here we

emphasize more general lessons that concern embeddmg any

technical solution in organizational practice and carrying

out a successful research-development partnership. The two

most important lessons are:

● knowledge of~acts is not enough; it also is necessary

●

to know- how the knowledge is be used – where in

the process it fits, how to access only relevant

knowledge, and how to allow for change;

the members of the communitv in which a svstem is

to be deployed must own the ~ystem – they ‘must be

able to use it effectively and modify it when

necessary; this leads us to reject the metaphor of

“technology transfer” in favor of “knowledge

communication” as an appropriate paradigm for a

research-development partnership.

The focus of this paper is to elaborate the context in which

these lessons were learned. We fiist explore the knowledge

management problem in more detail and dkcuss challenges

to acquiring, maintaining, and disseminating design

knowledge. We then describe a framework for integrating a

design memory tool into an existing software development

process, making it living. We next present the implemented

tool that instantiates the framework. We emphasize how

the tool evolved in response to the expectations of the user

community and the shifting of “ownership” from the

research members of the team to the developers. We

15

24-29 April1993 lNTfRcHr9

conclude by comparing our work to other approaches,

bringing out unique characteristics of our work through the

comparison, and describing areas for future work.

THE KNOWLEDGE MANAGEMENT PROBLEM IN
LARGE SCALE SOFTWARE DEVELOPMENT
The work described here was a collaboration between AT&T

research (represented by the first two authors, LGT and

PGS) and a large AT&T software development organization

(represented by the third author, MDL). The collaboration

was initiated to address problems in managing design

knowledge in the development organization, which consists

of several thousand people who maintain and enhance a

large telecommunications software system. It is important

to realize that software development in this organization

never begins “from scratch”; it always involves enhancing

or repairing an existing, deployed software system.

Our work has focused on the design process. This process

starts with a specification document, originating from either

a customer request or an internal source. The specification

document describes a new feature of the software in

customer (behavioral) terms. This document is used by a

software developer to produce a design document, which

describes how that new feature will be implemented and

added to the existing software architecture. This design

document then is formally reviewed by a committee of

experts. If necessary, feedback is incorporated into the

design and the process iterates. Once the design document is

complete and approved, it is passed to a coding phase. This

process is shown in figure 1.

~

c)coding

Figure 1: The Design Prceess

One major problem in the design process is the lack of

accessible general design knowledge. This knowledge

involves such things as real-time and performance

constraints (“one real-time segment shouldn’ t take more

than 200 milliseconds or overall performance will suffer”),

properties of the current implementation (“the terminating

Terminal process is already close to its memory lirnkition,

so you can’ t add much to it”), impact of design decisions on

orher aspects of the so~are (W you modify the Automatic

Testing process, you’ll need to update the customer

documentation”), local programming conventions (“call the

central error reporting mechanism if your function get a bad

message”), and personnel and organization (“ask Nancy

about tha~ she knows about local stack space”). This kind

of knowledge usually is not written down, rather, it is part

of the community specific folklore that is maintained and

disseminated by experienced individuals in the organization.

This form of knowledge maintenance and dissemination is

unsatisfactory. FirsL not only are experts difficult to locate

when needed, but individuals must know who the expert is

for their particular problems. Studies in this organization

have shown that successful developers are those who have

effective “expertise networks” and thus know who to ask

about particular problems. Second, experts can spend more

time disseminating knowledge than solving problems

relevant to their jobs. Third, knowledge often is generated

(e.g., in design, review, testing, fault analysis) only to be

lost, thus depriving the organization of a valuable resource

and leading to potential duplication of effort in the future.

Finally, since key knowledge often is only known to a few

individuals, loss of personnel can mean loss of knowledge,

Failure to manage design knowledge effectively can result

in sub-optimal designs, late and costly detection of errors,

long delivery times, and personal frustration.

AT&T has been trying to improve its software development

productivity for some time. A major emphasis has been to

institute various quality initiatives aimed at formalizing the

process to make it measurable, repeatable, and more easily

managed [6]. As in the design process shown in figure 1,

sequences of steps have been defined, suppliers and

customers identified, and inputs and outputs specifkd. Any

solution to the problem of managing design knowledge will

be deployed in the context of the existing design process.

The organization tried to address the problem of managing

design knowledge by documenting as much knowledge as

possible in structured text files. Even if all relevant facts

could be captured in this manner, this approach still is

inadequate for three reasons:

● The documents are not organized fo r ejJicient access —

without adequate indexing, the resulting information

base is simply too large to be very useful (busy

people, including software developers, will not read

large documents that are not immediately relevant to

their current task).

● There is no way to ensure compliance – that is, it is

impossible to be sure that developers and reviewers

have consulted all the information that is relevant for

a particular design problem.

● There is no natural way to ensure evolution of the

documents – documents will be incomplete and

incorrect, and the programming constructs,

requirements, constraints, and methodologies they

describe all will change over time.

From our perspective, the crux of the problem is that the

on-line documents are not a living design memory. They

are not well integrated into organizational practice and do

not address how knowledge is to be used and changed. For

a design memory tool to be adequate, developers must use

the tool consistently and at appropriate points in the

development process. Then they have to incorporate

knowledge from the tool into their designs (the fundamental

purpose of the tool is to produce better software designs).

16

INT{RCHI’93 24-29 April1993

In addition, there should be an organizational method for

encouraging tool use and checking whether the tool was

used and the advice followed. Finally, exceptions and

modifications to the advice need to be captured, both for

maintenance and to assure credibility with the developers.

The maintenance issue is critical: improperly maintained

knowledge will, rightfully, go the way of improperly

maintained documentation.

A FRAMEWORK FOR LIVING DESIGN MEMORY

We have developed a framework for integrating a design

memory tool into a software development process that

addresses the above requirements. The framework is based

on two components. Frost, a design knowledge base records

relevant information. Second, a Designer Assistant program

provides access to the knowledge base, following the

general paradigm of interactive assistance for software

development [21]. Our framework assumes the Designer

Assistant augments the existing development process. This

process uses informal design artifacts, i.e., text documents.

Therefore, the Designer Assistant provides textual advice to

developers, and it is their responsibility to incorporate the

advice into their designs or explain why the advice does not

apply to their designs. Attempts to formalize design

artifacts through the use of knowledge-based tools [1, 16,

19, 20] are complementary to our approach.

However, this framework is flawed; it would be adequate

only if all relevant design knowledge could be captured

completely, once and for all. This clearly is an unlikely and

unrealistic assumption. As Ckmcey states particularly well

[5], a knowledge base is always subject to additional

refinement and re-intexpret.ation. More important, the world

changes: the software base changes (indeed, this is the goal

of the design activity), the hardware and software

technology changes, protocols and conventions change,

customer requirements change, faults are observed in the

running software, and all the other assumptions and

constraints are subject to continual, if slow, evolution.

This places some additional requirements on our framework,

in particular, that it support (1) the elaboration and

evolution of design knowledge as the tool is used and

evaluated; and (2) the addition of new knowledge generated

during design activities.

To support the fwst requirement, we record a trace of user

interactions with the Designer Assistant and annotate the

Design Document with this trace. This allows those aspects

of the design that were influenced by the advice to be traced

during design review. In addition, we modify the review

process slightly to make the advice itself an object of

review. To support the second requirement, note that the

problem is not to produce new knowledge, but rather to

ensure the new knowledge already generated during normal

development activities is captured in the knowledge base.

We do this in three ways. First, the Designer Assistant

elicits comments from developers concerning revisions or

additions they think should be made to the knowledge base.

Second, when a fault is observed in the running software

system, and analysis shows that it was due to a design

error, a report detailing the problem and its solution is

generated to be encoded in the knowledge base. Finally, we

add a knowledge base maintenance activity to the design

process. This activity takes as input information to be added

to the knowledge base, in particular, fault reports and the

annotated design document and reviewer comments; it

produces changes or updates to the design knowledge base

as necessary. Figure 2 shows the complete framework.

To summarize the framework, the design knowledge base

contains information relevant to design tasks in the

application domain. As developers design, the Designer

Assistant program helps them to access relevant knowledge.

The result of the design process includes the design

documen~ feedback from the developer about updates to the

design knowledge base, and a trace of the interactions of the

developer with the Designer Assistant. At the review,

reviewers examine the design and identify issues, some of

which result from the advice of the design assistant. Such

issues lead to (proposals for) modifications of the design

knowledge base. Other issues lead to (proposals for)

addhion of new knowledge to the knowledge base. All pro-

Figure 2: The Living Design Memory Framework

17

24-29 April1993 IN1*RCHI

posals for updates to the knowledge base that are generated

during design, review, or fault analysis are collected and

sent to a knowledge base maintainer. The knowledge base

maintainer then updates the knowledge base. The Designer

Assistant is embedded in organizational practice so that it

evolves in response both to shortcomings in its own

knowledge and to changes in the external sitnation.

EVOLVING A DESIGN MEMORY TOOL

We developed a design memory tool within our framework

that contains significant “folklore” knowledge in the

telecommunications software domain. The knowledge has

been acquired by engineering several domains and analyzing

several fault reports. The tool works by leading developers

through a dialogue concerning characteristics of their

design, then providing advice based on the answers. The

tool is integrated into the development process, and all

levels of the organization, from high-level management to

developers, view the tool favorably. Work continues on

engineering new domains. We focus here on tracing the

evolution of the tool, emphasizing that making the tool

successful involved a process of transfer of ownership to the

development organization.

Constructing a Prototype

We fwst identilZed a design knowledge sub-domain in which

to construct a prototype. We selected an error handling

mechanism that is critical to the system’s fault-tolerance.

This mechanism is used if the code being designed reaches

an illegal state. The mechanism is implemented as a macro

call with a number of arguments that have various effects

on the system. For example, one value of one argument

initializes the processor that is running the current process.

Other arguments cause the dumping of different kinds of

data needed to diagnose the problem or schedule a data-

checking audit. Thus, when developers decide to use this

error mechanism, they have to make a series of decisions

about exactly how to invoke it. Some of these decisions are

quite complicated and interact in various ways.

This domain, while limited, still has the following

important features. Fwsq it is a difficult domain: developers

typically do not know when to use the mechanism, how to

use it, or even how to find out about it. This is especially

true of novices in the organization, but even experienced

developers commonly misuse the construct (in fact, many

of the existing uses in the code base are incorrect). Second,

there are local experts who have extensive knowledge about

this mechanism. However, this knowledge is managed as

folklore, as we described it earlier experts disseminate this

information in a frustrating and inefficient manner, i.e.,

one-to-one communication with individual developers.

Finally, discussions with developers showed that this

domain is typical in all of these respects, and that many

other domains within the organization share these

problems.

Once the domain was chosen we spent dozens of hours

interviewing severat domain experts about the knowledge

needed to use this mechanism and studying the existing

written documentation. We took a set of examples of the

mechanism in the current code base and asked the experts to

categorize the examples in terms of design attributes, the

features of a design that all the uses of the mechanism in

each category responded to. This was a very important

abstraction step because it meant that the tool interaction

could use terms that are familiar to developers, rather than

refer to syntactic features of the construct. Presumably

developers won’t be familiar with the latter vocabulary,

since it is precisely this they are getting help about.

After several iterations, the experts succeeded in generating

a small number of design attributes with ahnost complete

domain coverage. Each attribute could be expressed as a

yes/no question, e.g., “Does your design update data in the

Database?”. Attributes could be arranged in a generalization

hierarchy, with more general attributes subsuming more

specific attributes. Thus, under the previous question

might be the additional question “Is it possible for dynamic

and static data to become de-synchronized?’. Then, for each

design attribute, we elicited from the domain experts advice

about how to use the error handling mechanism in this

situation. Some advice might apply only to very specific

design sitnations (the leaf nodes in the attribute hierarchy),

while other advice could apply to more general situations

(interior nodes). The advice was distilled into small units

of text that we call advice items. Indexing by design

attribute has proved to be a very useful way of acquiring and

organizing knowledge in this and other domains. (See [22]

for details about the representation of design attributes and

advice items.)

The next task was to construct a prototype design memory

tool. To do so, we had to represent the information we had

acquired and construct an interface to allow developers to

access the information. We used the language CLASSIC

[3,4] to represent the information. We then developed a

simple dialogue-based interface. Because of the wide variety

of terminals used within the target organization, the tool

had to be ASCII-based, independent of any specitlc window

or platiorm features. The prototype simply used basic C

input and output routines. The interaction basically

consisted of the tool asking a developer yes/no questions to

guide the developer down the attribute hierarchy (an

interactive classification task); when a developer responded

“yes” to a leaf node in the attribute hierarchy, the system

presented several paragraphs of advice about how to use the

error handling mechanism for this situation. The advice

was computed by collecting the advice items associated

with the leaf attribute description and all generalizations of

that attribute description (in addition, several mechanisms

for overriding and ordering advice were applied [22]). When

the interaction was complete, the tool asked several

evaluation questions – “Was this session useful?’ and “Was

the level of detail about right, too much, or too little?” –

and gave the user a chance to enter more detailed comments

and suggestions about the interaction with the tool.

18

INIERCHI’93 24-29 April1993

The output of the tool is a script of the interaction. The

script is added to the formal design document for two

reasons. First, the advice becomes part of the document and

gets reviewed during the formal review process. The

reviewers have a chance to verify that software developers

dld receive information relevant to their design situation and

either followed the advice of the tool or determined that

their situation was an exception to the situation anticipated

by the tool – in such cases, the exception itself is worth

noting, discussing and acquiring. Second, the advice itself

can be reviewed, and changes and modifications can be

directed to the maintenance process illustrated in figure 2.

From Prototype to Deployed Tool

We next carried out informal user tests on the prototype.

We created a realistic software design problem and asked

half a dozen developers to write a section of design

involving the error handling mechanism. They used the

tool to get advice on how to do so. Their reaction was

highly favorabl~ in some cases, it was asserted that the 20

minutes spent using the tool saved from 4 to 8 hours of

their time! The reason for this is that the only other way to

find out the knowledge presented by the tool would have

been to track down the local experts or search through large

documents, both notoriously time-consuming activities.

Considering these results to be very positive, we deployed

the Designer Assistant in the design process. That is, the

formal process definition was modified to include the steps

“run the Designer Assistant and append the resulting

transcript to your Design Document.” We sent ema.il to all

the developers in the organization announcing the

availability of the tool. Within 15 days, more than 85

developers had used the DA. Their feedback was

unexpectedly negative. Only 38 YO judged the interaction

“useful” and 58% said the level of detail was “too little”.

These rating and detailed comments from the users indicated

that the DA had two major problems. FirsL developers

would not consider it useful until it had more knowledge -

it was more trouble than it was worth to run a tool that

contained information about just one small domain.

Second, the interface did not match user expectations, e.g.,

it gave no guidance in entering legal answers, and the

overall structure of the dialogue was unclear.

Thus far in the project, the research members of our team,

LGT and PGS, had designed and implemented the

prototype. However, responsibility for the tool now was

shifting to MDL. He was faced with the two problems of

improving the interface and adding more knowledge. To do

so, he took a major step, re-implementing the Designer

Assistant in an internal AT&T system development

environment, the Data Collection System (DCS). DCS is

a tool for constructing screen-based menu-driven interfaces.

DCS provided much useful functionality, including input

type checking, ability to revisit and re-answer any previous

question, text and cursor-based menus, automatic recording

of user responses, and output of a transcript in a convenient

database forma~ so it solved many of the user complaints.

The re-implementation illustrates several interesting points:

(1) MDL now “owned’ the re-implemented Designer

Assistant - it was a facile tool for him. This meant

that he could modify or add knowledge easily.

(2) DCS was a known resource in the repertoire of the

developers but not the researchers. Once the researchers

moved out of their world of workstations and X

Windows, their knowledge of system development en-

vironments was limited. We learned that making a new

tool meet user expectations is facilitated by exploiting

the system development environments available in the

target user community. More generally, this

highlighted for us that a research-development part-

nership involves mutual learning [14], and that the type

of learning required maybe impossible to anticipate.

(3) Changing the underlying technology from CLASSIC to

DCS involved some tradeoffs. Gains in ease of

interaction and ownership by MDL came at the expense

of great loss of representational power. However, where

the CLASSIC prototype focused on elegant rep-

resentation and efficient computation of advice,

experience showed that it was much more important to

be able to manage structured hierarchical dialogues

effectively, and DCS was much better at this. This

illustrates another general lesson. Any design project

inevitably involves tradeoffs. Those members of the

design team who actually implement the design have

great inftuence in deciding how the tradeoffs are resolved

[9]. Research and development members of a joint

design team might well judge how to resolve particular

tradeoffs differently. Thus, tradeoffs that have not been

articuMed and discussed may well become the occasion

for re-design or re-implernentation as ownership of a

system shifts from researchers to developers.

(4) The re-implementation shed new light on what had been

accomplished thus far in the project. We came to see

the CLASSIC prototype as a “running specification” of

the behavior for an adequate tool. In a new partnership

undertaken by LGT and PGS, all parties have agreed up

front that this is what the researchers will produce.

When the re-implemented Designer Assistant was deployed,

complaints about the interface ended. However, user

feedback was only marginally more positive. Of 67 users

who provided feedback, 42?Z0rated the interaction “useful”,

and 46% now said the level of detail was “about right”.

More knowledge still had to be added before a majority of

developers would consider the tool useful.

Since then, much new knowledge has been added, including

one large domain – impacts of design decisions on customer

documentation – and several smaller domains. In addition,

rules derived horn analysis of several fault reports have been

encoded. The knowledge can be divided into three

categories, (1) expert knowledge – like the error handling

mechanism, specialized areas of design knowledge that most

designers are not familiar with, (2) impact knowledge -

how characteristics of a design impact another area of the

19

24-29 April1993 INIERCHI

software, and (3) fault prevention knowledge – how

characteristics of a design could lead to a faultj and how the

fault can be avoided. To facilitate adding knowledge, MDL

designed a simple rule language tailored for representing

hierarchies of design attributes and a compiler that produces

DCS code from the rules. The Designer Assistant now

contains more than 250 rules. The ongoing process of
knowledge acquisition has shown that one of the most

useful results of the project has been the principle of

organizing knowledge in terms of questions that index from

characteristics of a design situation (that are familiar to

developers) to advice about a particular domain (e.g., use of

the error handling construct, impact on customer

documentation, necessary changes to the database). This

heuristic is useful for acquiring domain knowledge from

experts, organizing the knowledge, and providing efficient

accessto the knowledge.

User satisfaction with the current version of the Designer

Assistant is significantly higher. Since it has been

deployed, 354 developers have used the system and 256

have provided feedback. Of those who provided feedback,

61 YO judged the interaction “useful” and 63% said the level

of detail was “about right”. Table 1 summarizes user

judgments of the three versions of the Designer Assistant

that have been in use.

metric Classic Des 1 DCS 2

number of users >85 95 354

users giving feedback 85 67 256

% judging “useful” 38 42 61

% judging “about right” 41 46 63

Table 1: Usage statistics for the Designer Assistant

User evaluation of the current tool is positive, but not

highly so. However, the development organization

considers the Designer Assistant to be very successful since

it does record knowledge that previously was available only

as informal folklore or in inefficient documents.

Developers are using the system on a daily basis and are

able to access information effectively. Further, it is clear

that what is required to increase user satisfaction is still

more knowledge, and progress on this front is very good.

Several additional domains and fault analyses are ready to be

encoded. The knowledge base should grow by 50’ZOwithin

the next few months. Finally, there is managerial

commitment to the Designer Assistant approach to

managing design knowledge and to providing the resources

necessary to increase its effectiveness. We discuss

additional ways of evaluating the success of the Designer

Assistant in the next section.

To summarize, the research members of our team

constructed a prototype Designer Assistant that served the

role of a “running specification.” Ownership of the

prototype was transferred to the development organization,

with successful transfer requiring a re-implementation. A

knowledge acquisition and organization heuristic (indexing

by design attribute) developed in building the prototype has

proved extremely useful in ongoing knowledge engineering.

DISCUSSION

We next compare our living design memory approach to

other related work, bringing out important characteristics of

our framework by contrast. First, AI and expert systems

work also is aimed at capturing knowledge in particular

domains. These systems contain a knowledge base and a

reasoning component that computes the desired inferences,

e.g., relating patient symptoms to disease classifications

[23] or customer computer orders to a configuration diagram

[18]. Expert systems typically are intended to aurornate a

task, i.e., to perform like an expert in their domain. Expert

systems work to the extent that knowledge in a domain can

be completely formalize@ this requires both articulating the

knowledge precisely and encoding it in a format that allows

the system to compute the proper inferences. This type of

approach applied to software design might involve deriving

a program from some (formal or informal) specification of a

problem to be solved.

However, we see limits on the applicability of the

formalization that expert systems require. First, various

researchers have advanced strong theoretical arguments that

many domains cannot be completely formalized and that AI-

style knowledge bases are inherently incomplete [5, 24,

26]. Second, attempts to construct automated software

design systems [2] have proved unsuccessful, leading the

field to shift its emphasis to assisting people in designing

software (e.g., the annual Knowledge-Based Software

Engineering Conference; this trend also appears in AI

approaches to design in general, e.g., the annual

International Conference on AI in Design). Our work is

part of this trend. Our experience has shown the

effectiveness of giving software designers efficient access to

relatively informal information, like “ask Nancy; she

knows about local stack space.” This sort of information

helps to reduce the high communications overhead in large

organizations by making some information available

through the Designer Assistant and guiding developers

directly to the relevant expert when additional

communication is required. We also have addressed not just

acquiring factual knowledge, but also how the knowledge is

to be used – for example, at what point in the process it

should be consulted, how it should be indexed for efficient

access, and when and how it should evolve. Thus, our

focus is on helping a software development organization

manage its knowledge effectively, rather than automating

parts of the software development process.

Second, there has been previous work that has called for a

design memory (10, 19) and even suggested that a design

memory must evolve over time. However, this work has

used formal representations of design artifacts and com-

ponents, e.g., code modules. Much power is gained from

this formal representation, e.g., a design assistant system

can help in fitting new designs into a library of existing

designs, acquiring and organizing the rationale for designs,

and can use rules to evaluate designs, judge trade-offs, etc.

20

lNliiR(w93 24-29 April1993

We view this work as complementary to ours (in fact, we

have done similar work in the past [25]). However, there

are several differences. First, in the development

organization we have worked with, design artifacts are

English documents; thus, an approach that required a formal

representation of design artifacts was not possible

immediately. However, we see this as a promising area of

future work, and our success to date increases the likelihood

that this more radical innovation will be considered. Next,

the “folklore” knowledge we have captured is a much

broader class of knowledge than these systems have handled,

and we deliver it in different ways. Finally, we go beyond

these approaches to focus on how any design memory must

be integrated into organizational processes – we view the

design memory and organizational processes as mutual

resources that must be co-designed to ensure a living design

memory. In particular, while previous proposals for

supporting evolution have focused on the individual

designer, in our approach, knowledge evolution is a formal

organizational process – it is neither fully automated nor is

it left up to individual designers. There are a number of

reasons for this, chiefly that it is been our experience that

systems must have “owners” (in our case, the knowledge

maintenance group), since if no one is responsible for the

integrity of a system, it decays rapidly over time.

Third, work on design rationale [1, 7, 11, 12, 17, 20] also

is relevant. Design rationale captures the reasons behind

the design, including issues that were considered, alternative

resolutions of these issues, and arguments for and against

the different resolutions. Many approaches to capturing and

using design rationale exist, ranging from very formal AI-

type representations [12, 20] to relatively informal text or

hypertext representations [7]. Work reported by Conklin

and Yakemovic [7] in applying the IBIS [17] methodology

to a software development project is most relevant to the

concerns of this paper. They developed a simple textual

form of IBIS that was suitable for use on the technology of

the development organization with which they were

working. The development project successfully used this

method to record and consult information relevant to their

evolving design. One important reason why the IBIS

technology was effective was that it incrementally improved

an existing task (that is, participants in a design project

already kept track of relevant information with handwritten

notes) instead of creating a whole new task. The new

technology offered some payoff with minimal cost of

adoption and disruption of existing organizational practice.

We addressed the same general issue, how to develop a

system for managing design knowledge that could be

integrated into existing organizational practice. However,

the “folklore” knowledge we were concerned with is more

general than design rationale, and it must be used and

modified not primarily in one design projeet, but over time

in many projects in the AT&T development organization,

We focused not just on integrating the Designer Assistant

program into existing practice, but also into existing

organizational processes, modifying these processes as

necessary. Specifically, we instituted knowledge review and

maintenance processes to ensure the evolution of the

knowledge. We also share Conklin and Yakemovic’s

commitment to cost-benefit analysis [15] concerning the

adoption of new technology. The Designer Assistant is

quick and easy for developers to use – no training is

required, and the average session lasts about 10 minutes –

and it offers substantial benefits, e.g., they do not have to

read long documents, waiting time is reduced, review

meetings can be smaller, thus scheduled more quickly, and

reviewers can be satisfied more easily. Domain experts

have a larger burden, since they are asked to cooperate with

the knowledge maintenance group to encode their domains.

However, we have found that experts are eager to do so

because it reduces the amount of time they have to spend on

consulting and lets them accomplish other work, and it

helps to ensure that design rules they think are important

are communicated throughout the development community,

Finally, our framework responds to many of the points

made by Curtis, Krasner, and Iscoe [8] in their discussion of

large software development projects. They state that

software development must be seen as a learning and

communication process. They recommend that software

development tools facilitate the enterprise wide sharing of

knowledge, accommodate change as a normal and expected

process, and serve as mediums of communication for

integrating people and information. We identified a

particular type of knowledge to be managed, developed a

tool for managing and a heuristic for acquiring it, and

constructed a framework for integrating the tool into the

software development process.

We conclude by discussing areas for future work. First, we

will continue to encode new knowledge in the Designer

Assistant. Thus far, indexing by design attributes has

proved effective; however, we are looking for types of

knowledge that cannot be coded adequately in this way.

Second, we will do more evaluation of the system. We

will track the metric number of faults per line of source

code due to the design process. As the Designer Assistant

contains more and more knowledge, including knowledge of

past design faults, we expect this number to decrease by at

least 25%. We will examine feedback from developers who

have used the system and interview individual developers to

identify “success stories” of the form “I would have made

the following design error if not for advice from the

Designer Assistant.. .“ Third, we will improve the

knowledge maintenance process by defining the process

more precisely and by developing a tool to assist knowledge

maintainers in updating the design knowledge base. We

postponed work on such a tool until we gained experience

with how the process of updating the knowledge base was

working in practice. We now can begin to state

requirements for this tool. Finally, several other

organizations within AT&T are very interested in using the

Designer Assistant tool and methodology to manage their

knowledge, and we have begun working with them to

enable them to do so.

21

24-29 April1993 INTERCHI

REFERENCES

1.

2.

3.

4.

c,

Bailin, S.C., Moore, J.M., Bentz, R., & Bewtra, M.

1990. KAPTUR: Knowledge Acquisition for

Preservation of Tradeoffs and Underlying Rationale.

Proc. 5th Annual Knowledge-Based Soflware Assistant

Conference. (Syracuse, NY, Sept. 1990), pp. 95-104.

Barstow, D.R. 1979, An Experiment in Knowledge-

Based Automatic programming. Artificial Intelligence.

12(2): 73-119.

130rgida, A., Brachman, R.J., McGuinness, D.L, &

Resnick, L.A. 1989. CLASSIC: A Structural Data

Model for Objects. Proc. ACM SIGMOD Int’1. Con.

on Management of Data.

Brachman, R.J., McGuinness, D.L., Patel-Schneider,

P.F., Resnick, L.A., & Borgida, A. 1990. Living with

CLASSIC: When and How to Use a KL-ONE-Like

Language, in Sowa, J., Ed. Formal Aspects of

Semantic Networks. Morgan Kauffman.

. . Clancev, W. 1991. The Frame of Reference Problem in

the Design of Intelligent Machines. In vanLehn, K.,

Ed. Architectures for Intelligence: The Twenty-Second

Carnegie Symposium on Cognition. Hillsdale, NJ:

Lawrence Erlbaum Associates.

6. Colson, J.S. & Prell, E.M. 1992. Total Quality

Management for a Large Software Project. AT&T

Technical Journal. 71(3): 48-56.

7. Conklin, E.J. & Burgess Yakemovic, KC. 1991. A

Process-Oriented Approach to Design Rationale.

Human-Computer Interaction. 6 (3-4): 357-391.

8. Curtis, B., Krasner, H., & Iscoe, N. 1988. A Field

Study of the Software Design Process for Large

Systems. CACM. 31(11): 1268-1287.

9. Ehn. P. & Kvn~, M. 1991. Cardboard Comtmters:

10.

11.

12.

Mocking-it-up o~’Hands-on the Future. In [131. ‘

Fischer, G., Grudin, J., Lemke, A. C., McCall, R.,

Ostwald, J., & Shipman, F. 1992. Supporting

Indirect, Collaborative Design with Integrated

Knowledge-Based Design Environments. To appear in

Human-Computer Interaction. 7(3).

Fischer, G., Lemke, A.C., McCall, R., & Morch, A.L

1991. Making Argumentation Serve Design. Human-

Computer Interaction. 6 (3-4): 393-419.

Franke, D.W. 1991. Deriving and Using Descriptions

of Purpose. IEEE Expert. April 1991.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

(

1

3reenbaum, J. & Kyng, M. 1991. Design at Work:

Cooperative Design of Computer Systems. Hillsdale,

NJ: Lawrence Erlbaum.

Greenbaum, J. & Kyng, M. 1991. Introduction:

Situated Design. In [13].

Grudin, J. 1988. Why CSCW Applications Fail:

Problems in the Design and Evaluation of

Organizational Interfaces. CSCW-88. 85-93.

Johnson, W.L., Feather, M. S., & Harris, D.H. 1991.

The KBSA Requirements/Specification Facet: ARIES.

Proc.s 6th Knowledge-Based Software Engineering

Conference (Syracuse, NY. Sept. 1991), pp. 57-66.

Kunz, W., & Rittel, H. 1970. Issues as Elements of

Information Systems. Working Paper 131. Center for

Planning and Development Research. The University

of California at Berkeley.

kIcDerrnott, J. 1982. Rl: A Rule-Based Configure of

Computer Systems. Artificial Intelligence. 19:39-88.

Mark, W., et al. 1992. Commitment-Based Software

Development. IEEE Transactions on Software

Engineering. October 1992.

Ramesh, B. & Dhar, V. 1991. Representation and

Maintenance of Process Knowledge for Large Scale

Systems Development. Proc. 6th Annual Knowledge-

Based Sojtware Engineering Conference. Syracuse,

NY. Sept. 1991), pp. 223-231.

Rich, C. H., & Waters, R.C. 1990. The Programmer’s

Apprentice. Reading, MA Addison-Wesley.

Selfridge, P.G., Terveen, L.G., & Long, M.D. 1992.

Managing Design Knowledge to Provide Assistance to

Large-Scale Software Development. Proc. 7th

Knowledge-Based Soj7ware Engineering Conference,

(McLean, VA, Sept 1992).

Shortliffe, E.H. 1976. Computer-Based Medical

Consultation: MYCIN. New York American Elsevier.

Suchman, L.A. 1987. Plans and Situated Action.

Cambridge: Cambridge University Press.

Terveen, L.G. & Wroblewski, D.A. 1991. A Tool for

Achieving Consensus in Knowledge Representation.

AAAI-91 .

Winograd, T. & Flores, F. 1986. Understanding

Computers and Cognition. Norwood, NJ: Ablex,

22

