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This paper presents an overview of modeling fractal media by continuum mechanics using the method of dimensional

regularization. The basis of this method is to express the balance laws for fractal media in terms of fractional integrals and,

then, convert them to integer-order integrals in conventional (Euclidean) space. Following an account of this method, we

develop balance laws of fractal media (continuity, linear and angular momenta, energy, and second law) and discuss wave

equations in several settings (1d and 3d wave motions, fractal Timoshenko beam, and elastodynamics under finite strains).

We then discuss extremum and variational principles, fracture mechanics, and equations of turbulent flow in fractal media.

In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional

forms for continuous media with Euclidean geometries upon setting the dimensions to integers. We also point out relations

and potential extensions of dimensional regularization to other models of microscopically heterogeneous physical systems.

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Natural or man-made objects are often broken or fractured in space or time and exhibit non-smooth or highly irregular

features. Such objects are referred to as fractals, a term introduced by Benoı̂t Mandelbrot [1]. Fractals in space include

coastlines, porous media, cracks, turbulent flows, clouds, mountains, lightning bolts, snowflakes, melting ice, and even

parts of living entities such as the neural structure or the surface of the human brain [2–4]. Fractals in time include signals,

processes, and musical compositions. Geometric fractals exhibit a self-similarity property, that is, they appear similar at all

levels of magnification. The Koch curve and the Cantor set are well-known examples of geometric fractals [2]. These fractal

objects can be continuous or subdivided in parts, each of which is a reduced-size copy of the whole in a deterministic or

stochastic sense. However, fractals encountered in real applications do not possess this powerful property of self-similarity.

Nevertheless, they display a weaker or statistical version of self-similarity where randomness plays a key role in generating

the body’s geometry [4, 5]. For this reason, fractal models have been adopted to characterize random and even porous

materials leading to mechanics based on fractal concepts [6, 7].

Mathematical fractal sets are characterized by the Hausdorff dimension D, which is the scaling exponent characterizing

the fractal pattern’s power law. For regular fractals, D is a constant and it is mathematically determined. But in the case of

random fractals, D becomes a random variable and its evaluation is restricted to statistical methods [5]. Physical fractals

can be modeled by mathematical ones only for some finite range of length scales within the lower and upper cutoffs.

These objects are called pre-fractals [8]. The mechanics of fractal and pre-fractal media is still in a developing stage.

It is inadequately explored and rarely utilized in comparison to continuum mechanics. Nevertheless, fractal mechanics

can generate elegant models for problems where continuum mechanics fail particularly for bodies with highly irregular

geometries [8–12].

Fundamental balance laws for fractals can be developed using a homogenization method called “dimensional regular-

ization”. This paper is an overview of using this method to model fractal or pre-fractal media by continuum mechanics.

With this method, fractional integrals over fractal sets are transformed to equivalent continuous integrals over Euclidean
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2 M. Ostoja-Starzewski et al.: From fractal media to continuum mechanics

sets [13]. Dimensional regularization produces balance laws that are expressed in continuous form, thereby simplifying

their mathematical manipulation both analytically and computationally. A product measure is used to achieve this transfor-

mation.

Tarasov used dimensional regularization to map a mechanics problem of a fractal onto a problem in the Euclidean space

in which this fractal is embedded. He developed continuum-type equations for conservation of mass, linear momentum,

and energy of fractals, and studied several fluid mechanics and wave problems [6, 7, 14, 15]. His approach to dimensional

regularization of fractal objects employs fractional integrals in Euclidean space, a technique with its roots in quantum

mechanics [16]. An advantage of this approach is that it admits upper and lower cutoffs of fractal scaling, so that one

effectively deals with a physical pre-fractal rather than a purely mathematical fractal lacking any cutoffs.

The original formulation of Tarasov is based on the Riesz potential, which is more appropriate for isotropic fractal media

than for anisotropic fractal media. To represent more general heterogeneous media, Li and Ostoja-Starzewski introduced a

model that is based on a product measure [17–19]. Since this measure has different fractal dimensions in different directions,

it grasps the anisotropy of fractal geometry better than the Tarasov formulation for a range of length scales between the lower

and upper cutoffs [17, 19]. The great promise is that the conventional requirement of continuum mechanics, the separation

of scales, can be removed with continuum-type field equations still employed. This approach was applied, among others,

to thermomechanics with internal variables, extremum principles of elasticity and plasticity, turbulence in fractal porous

media, dynamics of fractal beams, fracture mechanics and thermoelasticity [8–10, 13, 20].

2 Homogenization of fractal media via dimensional regularization

2.1 Mass power law and product measure

The basic approach to homogenization of fractal media by continua originated with Tarasov [6, 7, 15]. He worked in the

setting where the mass obeys a power law

m(R) ∼ RD, D < 3, (2.1)

with R being the length scale of measurement (or resolution) and D the fractal dimension of mass. Note that the relation

(2.1) can be applied to a pre-fractal, i.e., a fractal-type, physical object with lower and upper cutoffs. More specifically,

Tarasov used a fractional integral to represent mass in a region W embedded in the Euclidean three-space E
3

m(W) =

∫

W

ρ(R)dVD =

∫

W

ρ(R)c3(D, R)dV3,

c3(D, R) = RD−323−DΓ(3/2)/Γ(D/2), R =
√

xixi,

(2.2)

where R is the position vector, R its magnitude, and Γ is the gamma function. Tarasov also defines the following transfor-

mation coefficients in the Riesz form

c2 (d, R) = |R|d−2 22−d

Γ (d/2)
,

c3 (D, R) = |R|D−3 23−DΓ (3/2)

Γ (D/2)
,

c (D, d, R) = c−1
3 (D, R) c2(d, R),

(2.3)

and with them, the following operators (or, generalized derivatives) are used

∇D
k f = c−1

3 (D, R)
∂

∂xk
[c2 (d, R) f ] ≡ c−1

3 (D, R)∇k [c2 (d, R) f ] ,

(

d

dt

)

D

f =
∂f

∂t
+ c (D, d, R) vk

∂f

∂xk
.

(2.4)

In (2.2) and elsewhere we employ the Einstein summation convention unless otherwise stated.

The first and second equalities in (2.2)1, respectively, involve fractional (Riesz-type) integrals and conventional integrals.

In (2.2) the coefficient c3(D, R) provides a transformation between the two. dVD is the infinitesimal volume element
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in fractal space, and dV3 is the infinitesimal volume element in E
3. Note that (2.2) expresses the idea of dimensional

regularization in theoretical physics, which has its roots in regularizing integrals in the evaluation of Feynman diagrams

[16]. For a function f(x) this procedure is represented by

∫

W

f(x)dDx =
2πD/2

Γ (D/2)

∫ ∞

0

f(x)xD−1dx. (2.5)

That is, we begin with a fractal object embedded in E
3, whose spatial dimension is not 3 but rather some real number

D < 3. The same is done with the surface of that object, which has its own fractal dimension d, with d not necessarily

equal to D − 1. The balance laws are then written in weak forms involving volume and surface integrals over the fractal

object. Converting these to conventional integrals via dimensional regularization, results, through localization, in strong

forms for fractal bodies [15]. The key role in that approach is played by the Green-Gauss theorem for fractal media

∫

∂W

fknkdSd =

∫

W

c−1
3 (D, R)∇k (c2 (d, R) fk) dVD, (2.6)

where fk is a vector field (in subscript notation) and

dSd = c2 (d, R)dS2 dVD = c3 (D, R)dV3. (2.7)

Thus, we can rewrite the fractional integrals in (2.6) as conventional ones

∫

∂W

c2 (d, R) fknkdS2 =

∫

W

∇k (c2 (d, R) fk) dV3, (2.8)

and, effectively, deal with formulas in (conventional) Euclidean setting, provided we have the coefficients c3 and c2. Indeed,

the latter are specified according to the fractional integral adopted.

Now, the above formulation has four drawbacks:

1. It involves a left-sided fractional derivative (Riemann-Liouville), which, when operating on a constant, does not

generally give zero.

2. The mechanics-type derivation of wave equations yields a different result from the variational-type derivation.

3. The 3d (three-dimensional) wave equation does not reduce to the 1d wave equation.

4. It is limited to isotropic media.

The above issues motivated us to develop another formulation, which does not have these drawbacks. We outline this

by first introducing a general anisotropic, fractal medium governed, in place of (2.1), by a more general power law relation

with respect to each coordinate [17–19] (which, in fact, had originally been recognized by Tarasov)

m(L1, L2, L3) ∼ L1
α1L2

α2L3
α3 . (2.9)

Then, the mass is specified via a product measure

m(W) =

∫

W

ρ(x1, x2, x3)dlα1
(x1)dlα2

(x2)dlα3
(x3), (2.10)

while the length measure along each coordinate is given through transformation coefficients c
(k)
1

dlαk
(xk) = c

(k)
1 (αk, xk)dxk, k = 1, 2, 3 (no sum). (2.11)

Equation (2.9) implies that the mass fractal dimension D equals α1 + α2 + α3 along the diagonals, |x1| = |x2| = |x3|,
where each αk plays the role of a fractal dimension in the direction xk. While it is noted that, in other directions the

anisotropic fractal body’s fractal dimension is not necessarily the sum of projected fractal dimensions, an observation from

an established text on mathematics of fractals is recalled here [5]: ”Many fractals encountered in practice are not actually

products, but are product-like.” In what follows, we expect the equality between D = α1 + α2 + α3 to hold for fractals

encountered in practice, whereas a rigorous proof of this property remains an open research topic.

www.zamm-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2.2 Product measure

The relation (2.11) implies that the infinitesimal fractal volume element, dVD , is

dVD = dlα1
(x1)dlα2

(x2)dlα3
(x3) = c

(1)
1 c

(2)
1 c

(3)
1 dx1dx2dx3 = c3dV3,

with c3 = c
(1)
1 c

(2)
1 c

(3)
1 .

(2.12)

For the surface transformation coefficient c
(k)
2 , we consider a cubic volume element, dV3 = dx1dx2dx3, whose surface

elements are specified by the normal vector along axes i, j, or k in Fig. 1. Therefore, c
(k)
2 associated with the surface S

(k)
d

is

c
(k)
2 = c

(i)
1 c

(j)
1 = c3/c

(k)
1 , i �= j, i, j �= k. (2.13)

The sum d(k) = αi +αj , i �= j, i, j �= k, is the fractal dimension of the surface S
(k)
d along the diagonals |xi| = |xj | in S

(k)
d .

This equality is not necessarily true elsewhere, but is expected to hold for fractals encountered in practice [5] as discussed

previously for the relationship between D and α1 + α2 + α3.

Fig. 1 Roles of the transformation coefficients c
(i)
1 , c

(k)
2 , and c3 in homogenizing a fractal body of volume dVD, surface

dSd, and lengths dlα into a Euclidean parallelpiped of volume dV3, surface dS2, and length dx.

Figure 1 illustrates the relationship among the transformation coefficients c
(k)
1 and respective surface and volume trans-

formation coefficients c
(k)
2 , and c3 which will be defined. We note that, when D → 3 with each αi → 1, the conventional

concept of mass is recovered [21].

We adopt the modified Riemann-Liouville fractional integral of Jumarie [13,22] for the transformation coefficients c
(k)
1 ,

c
(k)
1 = αk

(

lk − xk

lk0

)αk−1

, k = 1, 2, 3, (no sum), (2.14)

where lk is the total length (integral interval) along xk and lk0 is the characteristic length in the given direction, like the

mean pore size. In the product measure formulation, the resolution length scale is

R =
√

lklk. (2.15)

Let us examine c
(k)
1 in two special cases:

1. Uniform mass: The mass is distributed isotropically in a cubic region with a power law relation (2.9). Denoting the

reference mass density by ρ0 and the cubic length by l, we obtain

m(W) = ρ0l
α1 lα2 lα3/lD−3

0 = ρ0l
α1+α2+α3/lD−3

0 = ρ0l
D/lD−3

0 , (2.16)

which is consistent with the mass power law (2.1). In general, however, D �= α1 + α2 + α3.

2. Point mass: The distribution of mass is concentrated at one point, so that the mass density is denoted by the Dirac

function ρ(x1, x2, x3) = m0δ(x1)δ(x2)δ(x3). The fractional integral representing mass becomes

m(W) = α1α2α3
lα1−1lα2−1lα3−1

lD−3
0

m0 = α1α2α3

(

l

l0

)D−3

m0, (2.17)

When D → 3 (α1, α2, α3 → 1), m(W ) → m0 and the conventional concept of point mass is recovered [21]. Note that

using the Riesz fractional integral is not well defined except when D = 3 (by letting 00 = 1 in m(W ) = α1α2α30
D−3m0),

which on the other hand shows a non-smooth transition of mass with respect to its fractal dimension. This also supports our

choice of the non-Riesz type expressions for c
(k)
1 in (2.14).

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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Note that the above expression for c
(k)
1 shows that the length dimension, and hence the mass m, would involve an unusual

physical dimension if it were replaced by c
(k)
1 = αk (lk − xk)αk−1

. This behavior is understandable since, mathematically,

a fractal curve only exhibits a finite measure with respect to a fractal dimensional length unit [1]. Of course, in practice, we

prefer physical quantities to have usual dimensions, and so we work with non-dimensionalized coefficients c
(k)
1 .

2.3 Carpinteri column

A simple generic example of an anisotropic, product-like fractal is the so-called Carpinteri column [23], a parallelepiped

domain in E
3, having mathematically well defined Hausdorff dimensions in all three directions, Fig. 2. It has been proposed

as a model of concrete columns which are essentially composite structures featuring oriented fractal-type microstructures.

The square cross-section of the column is a Sierpiński carpet, which is “fractally” swept along the longitudinal direction in

conjunction with a Cantor ternary set. The Hausdorff (fractal) dimension of this body along the longitudinal direction, x3,

is that of the Cantor ternary set

D3 =
ln 2

ln 3
. (2.18)

On account of the axial and planar symmetries, the Hausdorff (fractal) dimension of the Sierpiński carpet is

Dcarpet =
ln 8

ln 3
. (2.19)

It follows that the Hausdorff (fractal) dimension for the entire column is

Dcolumn = Dcarpet + D3 = 4
ln 2

ln 3
. (2.20)

Based on this idea, many other anisotropic fractals may be constructed.

It is important to note that, for the in-plane directions x1 and x2,

D1 = D2 =
1

3

ln 18

ln 3
, (2.21)

which is different from 1
2 Dcarpet which might be superficially assumed. The inapplicability of this simple supposition stems

from the theory of products of fractal sets [5] which implies that, if a fractal set (denoted as G) is generated from the

Cartesian product of two primary fractal sets (denoted as E and F ), i.e. G = E ×F , their dimensions satisfy the following

inequality (it becomes equality for continuous and Cantor sets),

DG ≥ DE + DF . (2.22)

However, the Sierpiński carpet is not formed as the product of two independent fractal sets so that (2.22) cannot even predict

an upper limit for D1.

2.4 Fractional integral theorems and fractal derivatives

In order to develop continuum mechanics of fractal media, we introduce the notion of fractal derivatives with respect to

the coordinate xk and time t. The definitions of these derivatives follow naturally from the fractional generalization of two

basic integral theorems that are employed in continuum mechanics [14–16, 24]: Gauss theorem, which relates a volume

integral to the surface integral over its bounding surface, and the Reynolds transport theorem, which provides an expression

for the time rate of change of any volume integral in a continuous medium.

Consider the surface integral

∫

∂W

f · ndSd =

∫

∂W

fknkdSd, (2.23)

where f(= fk) is any vector field and n(= nk) is the outward normal vector field to the surface ∂W which is the boundary

surface for some volume W , and dSd is the surface element in fractal space. The notation (= Ak) is used to indicate that

the Ak are components of the vector A.

www.zamm-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



6 M. Ostoja-Starzewski et al.: From fractal media to continuum mechanics

To compute (2.23), we relate the integral element ndSd to its conventional surface element ndS2 in E
3 via the fractal

surface coefficients c
(k)
2 , k = 1, 2, 3, as shown in Fig. 2. This figure shows that the infinitesimal element ndSd can be

expressed as a linear combination of the nkc
(k)
2 dS2, k = 1, 2, 3 (no sum).

Fig. 2 The Carpinteri column with three fractal di-

mensions as explained in Sect. 2.3.

Fig. 3 Cauchy’s tetrahedron of a fractal body interpreted via product

measures.

By the conventional Gauss theorem, and noting that c
(k)
2 does not depend on the coordinate xk , (2.23) becomes

∫

∂W

f · ndSd =

∫

∂W

fknkdSd =

∫

W

[fkc
(k)
2 ],k dV3 =

∫

W

fk,k

c
(k)
1

dVD. (2.24)

In (2.24) and elsewhere, we employ the usual convention that (·),k is the partial derivative of (·) with respect to xk . Next,

based on (2.11) and the above, we define the fractal derivative (fractal gradient), ∇D
k as

∇D
k =

1

c
(k)
1

∂

∂xk
(no sum). (2.25)

With this definition, the Gauss theorem for fractal media becomes
∫

∂W

f · ndSd =

∫

W

∇D
k fkdVD =

∫

W

(

∇D · f
)

dVD. (2.26)

It is straightforward to show that the fractal operator, ∇D
k , commutes with the fractional integral operator; it is indeed its

inverse and it satisfies the product rule for differentiation (the Leibnitz property). Furthermore, the fractal derivative of

a constant is zero. This latter property shows that a fractal derivative and a fractional derivative are not the same since

the fractional derivative of a constant does not always equal zero, neither in the fractional calculus [25] nor in Tarasov’s

formulation [15].

To define the fractal material time derivative, we consider the fractional generalization of Reynolds transport theorem.

Consider any quantity, P , accompanied by a moving fractal material system, Wt, with velocity vector field v(= vk). The

time derivative of the volume integral of P over Wt is

d

dt

∫

Wt

PdVD. (2.27)

Using the Jacobian (J) of the transformation between the current configuration (xk) and the reference configuration (Xk),

the relationship between the corresponding volume elements (dVD = JdV 0
D), and the expression for the time derivative of

J , it is straightforward to show that

d

dt

∫

Wt

PdVD =

∫

Wt

[

∂P

∂t
+ (vkP ) ,k

]

dVD =

∫

Wt

[

∂P

∂t
+ c

(k)
1 ∇D

k (vkP )

]

dVD. (2.28)
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The result given by the first equality is identical to the conventional representation. Hence, the fractal material time deriva-

tive and the conventional material time derivative are the same,

(

d

dt

)

D

P =
∂P

∂t
+ vkP,k =

∂P

∂t
+ c

(k)
1 vk∇D

k P. (2.29)

Equation (2.29) is the Reynolds theorem for fractal media. While this form of the theorem is similar to the conventional

form, an alternative form [17] of the fractional Reynolds transport theorem that involves surface integrals is different from

the conventional one and rather complicated. This difference results from the fractal volume coefficient c3 depending on all

coordinates, whereas in the derivation of the fractional Gauss theorem, c
(k)
2 is independent of xk.

2.5 Vector calculus on anisotropic fractals

Motivated by the preceding developments, we have the fractal derivative (fractal gradient) operator (grad)

∇Dφ = ek∇D
k φ or ∇D

k φ =
1

c
(k)
1

∂φ

∂xk
(no sum on k), (2.30)

where ek is the base vector. Hence, the fractal divergence of a vector field

divf = ∇D · f or ∇D
k fk =

1

c
(k)
1

∂fk

∂xk
. (2.31)

This leads to a fractal curl operator of a vector field

curlf = ∇D × f or ejki∇D
k fi = ejki

1

c
(k)
1

∂fi

∂xk
. (2.32)

The four fundamental identities of the conventional vector calculus can now be shown to carry over in terms of these

new operators:

(i) The divergence of the curl of a vector field f :

div · curlf = em∇D
m · ejejki∇D

k fi =
1

c
(j)
1

∂f

∂xj

[

ejki
1

c
(k)
1

∂fi

∂xk

]

= 0, (2.33)

where eijk is the permutation tensor.

(ii) The curl of the gradient of a scalar field φ:

curl × (gradφ) = eieijk∇D
j (∇D

k φ) = eieijk
1

c
(j)
1

∂

∂xj

[

1

c
(k)
1

∂φ

∂xk

]

= 0. (2.34)

In both cases above we can pull 1/c
(k)
1 in front of the gradient because the coefficient c

(k)
1 is independent of xj .

(iii) The divergence of the gradient of a scalar field φ is written in terms of the fractal gradient as

div · (gradφ) = ∇D
j · ∇D

k φ =
1

c
(j)
1

∂

∂xj

[

1

c
(j)
1

∂φ

∂xj

]

=
1

c
(j)
1

[

∂φ,j

c
(j)
1

]

,j , (2.35)

which gives an explicit form of the fractal Laplacian.

(iv) The curl of the curl operating on a vector field f :

curl × (curlf) = epeprj∇D
r (ejki∇D

k fi) = ep∇D
r

(

∇D
p fr

)

− ep∇D
r ∇D

r fp . (2.36)

Next, the Helmholtz decomposition for fractals can be proved along the classical lines: a vector field F with known

divergence and curl, none of which equal to zero, and which is finite, uniform and vanishes at infinity, may be expressed as

the sum of a lamellar vector U and a solenoidal vector V

F = U + V (2.37)

www.zamm-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



8 M. Ostoja-Starzewski et al.: From fractal media to continuum mechanics

with the operations

curlU = 0, divV = 0 (2.38)

understood in the sense of (2.32) and (2.31), respectively.

These results have recently been used [26] to obtain Maxwell equations modified to generally anisotropic fractal media

using two independent approaches: a conceptual one (involving generalized Faraday and Ampère laws), and the one directly

based on a variational principle for electromagnetic fields. In both cases the resulting equations are the same, thereby

providing a self-consistent verification of our derivations. Just as Tarasov [15], we have found that the presence of anisotropy

in the fractal structure leads to a source/disturbance as a result of generally unequal fractal dimensions in various directions.

However, in the case of isotropy, our modified Maxwell equations do not exactly coincide with those of Tarasov.

2.6 Homogenization process for fractal media

The formula (2.10) for fractal mass expresses the mass power law using fractional integrals. From a homogenization

standpoint, this relationship allows an interpretation of the fractal medium as an intrinsically discontinuous continuum

with a fractal metric embedded in the equivalent homogenized continuum model as shown in Fig. 1. In this figure, dlαi
,

dSd, dVD represent the line, surface, and volume elements in the fractal medium, while dxi, dS2, dV3, respectively, denote

these elements in the homogenized continuum model. The coefficients c
(i)
1 , c

(k)
2 , c3 provide the relationship between the

fractal medium and the homogenized continuum model:

dlαi
= c

(i)
1 dxi, dSd = c

(k)
2 dS2, dVD = c3dV3 (no sum). (2.39)

Standard image analysis techniques (such as the “box method” or the “sausage method” [27]) allow a quantitative cali-

bration of these coefficients for every direction and every cross-sectional plane. In a non-fractal medium where all the c
coefficients in (2.39) are unity, one recovers conventional forms of the transport and balance equations of continuum me-

chanics. As discussed in Sect. 3.3 below, the presence of fractal geometric anisotropy (c
(j)
1 �= c

(k)
1 , j �= k, in general), as

reflected by differences between the α’s, leads to micropolar effects, see also [17, 18].

2.7 Discussion of calculus on fractals

The above formulations provide one choice of calculus on fractals, i.e. through fractional product integrals (2.10) to reflect

the mass scaling law (2.9) of fractal media. The advantage of our approach is that it is connected with conventional calculus

through coefficients c1, c2, c3 and therefore well suited for development of continuum mechanics and partial differential

equations on fractal media as we shall see in the next sections. Besides, the product formulation allows a decoupling of

coordinate variables, which profoundly simplifies the Gauss theorem (2.26) and many results thereafter. We now investigate

other choices of calculus on fractals to complement the proposed formulation.

To begin with, we define a mapping Pα : L → m(L) that maps the length L to its mass m in fractal media with fractal

dimension α (0 < α ≤ 1). The mass scaling law (2.9) requires the fractality property of Pα

Pα(bL) = bαPα(L), 0 < b ≤ 1. (2.40)

Note that the proposed fractional integral (2.10) is just one way to reflect this property. Now in an analogue of developing

integrals on the real line, we decompose the fractal media into pieces and “combine” them together to recover the whole.

But the fractality property does not allow a direct Riemann sum of each part. To illustrate this, considering a fractal of

length L and fractal dimension α (0 < α ≤ 1), it follows that

Pα

(

L

2

)

+ Pα

(

L

2

)

=
Pα(L)

2α
+

Pα(L)

2α
�= Pα (L) . (2.41)

We define an operator Λα on Pα satisfying the combination property:

Pα(L) = Λα [Pα(l1), P
α(l2), ..., P

α(ln)] , li > 0,

n
∑

i=1

li = L. (2.42)

Let m = Pα(L), bi = li/L. Following the fractality property (2.40), we have

m = Λα(bα
1 m, bα

2 m, ..., bα
nm), 0 < bi ≤ 1,

n
∑

i=1

bi = 1. (2.43)
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A straightforward choice of Λα is an analogue of the p-norm in the Lp space:

Λα(p1, p1, ..., p1) =
(

p
1/α
1 + p

1/α
2 + ... + p1/α

n

)α

=
(

n
∑

i=1

p
1/α
i

)α

. (2.44)

In the limit n → ∞, (2.44) induces another choice of Pα

Pα(L) = m =

[∫

ρ(x)1/αdx

]α

, (2.45)

where m is the mass of fractal media with length L and fractal dimension α (0 < α ≤ 1), and ρ(x) is the local mass

density; (2.45) is consistent with the fractality property (2.40). A generalization to 3d fractals follows similarly through

product formulations. While we note that (2.45) cannot be transformed to conventional linear integrals through coefficients

c1, c2, c3 and the corresponding Gauss theorem is much more complicated.

The combination operator (2.44) suggests but one way to construct global forms based on established local formula-

tions. To this end, we note that the proposed product measure is suitable for local properties of fractal media. The global

formulation requires a nonlinear assembly of local forms through (2.44). To write it formally as

Pα =

[∫

(dP α)1/α

]α

. (2.46)

It is challenging to obtain analytical forms of global formulations, although we note that the discrete form can more easily

be formulated in finite element implementations, where the assembly of elements is replaced by (2.46). In the following

we shall discuss continuum mechanics based on the proposed local fractional integral (2.10). The assembly procedure and

finite element implementations are not pursued further beyond this point.

Fig. 4 Illustration of the two-level homogenization processes:

fractal effects are present between the resolutions l and L in a

fractal RVE with an Apollonian packing porous microstructure.

3 Continuum mechanics of fractal media

In the preceding section we discussed product measures and fractional integrals, generalized the Gauss and Reynolds

theorems to fractal media, and introduced fractal derivatives. We now have the framework to develop continuum mechanics

in a fractal setting. Here, the field equations for fractal media will be formulated analogously to the field equations of

classical continuum mechanics, but will be based on fractional integrals and expressed in terms of fractal derivatives.

In light of the discussion in 2.6 between fractal media and classical continuum mechanics, the definitions of stress and

strain are to be modified appropriately. First, we specify the relationship between surface force, FS (= FS
k ), and the Cauchy
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10 M. Ostoja-Starzewski et al.: From fractal media to continuum mechanics

stress tensor, σkl, using fractional integrals as

FS
k =

∫

S

σlknldSd, (3.1)

where nl are the components of the outward normal n to S. On account of (2.39)2, this force becomes

FS
k =

∫

S

σlknldSd =

∫

S

σlknlc
(l)
2 dS2. (3.2)

To specify the strain, we observe, using (2.39)1 and the definition of a fractal derivative (2.25), that

∂

∂lαk

=
∂xk

∂lαk

∂

∂xk
=

1

c
(k)
1

∂

∂xk
= ∇D

k . (3.3)

Thus, for small deformations, we define the strain, εij , in terms of the displacement uk as

εij =
1

2

(

∇D
j ui + ∇D

i uj

)

=
1

2

[

1

c
(j)
1

ui,j +
1

c
(i)
1

uj,i

]

(no sum). (3.4)

As shown in [17], this definition of strain results in the same equations governing wave motion in linear elastic materials

when derived by a variational approach as when derived by a mechanical approach, see Sect. 4.

In the following we apply the balance laws for mass, linear and angular momenta, energy, and entropy production to the

fractal medium in order to derive the corresponding continuity equations.

3.1 Fractal continuity equation

Consider the equation for conservation of mass for W

d

dt

∫

W

ρdVD = 0, (3.5)

where ρ is the density of the medium. Using the fractional Reynolds transport theorem (2.29), since W is arbitrary, we find

∂ρ

∂t
+ (vkρ) ,k =

dρ

dt
+ ρvk,k = 0. (3.6)

The fractal continuity equation follows when (3.6) is expressed in terms of the fractal derivative (3.3):

dρ

dt
+ ρc

(k)
1 ∇D

k vk = 0. (3.7)

3.2 Fractal linear momentum equation

Consider the balance law of linear momentum for W ,

d

dt

∫

W

ρvdVD = FB + FS , (3.8)

where FB is the body force, and FS is the surface force given by (3.2). In terms of the components of velocity, vk, and

body force density, Xk, (3.8) can be written as

d

dt

∫

W

ρvkdVD =

∫

W

XkdVD +

∫

∂W

σlknldSd. (3.9)

Using the Reynolds transport theorem and the continuity equation (3.7), the left hand side is changed to

d

dt

∫

W

ρvkdVD =

∫

W

[

∂ρvk

∂t
+ (vkvlρ) ,l

]

dVD =

∫

W

ρ

[

∂vk

∂t
+ vlvk,l

]

dVD =

∫

W

ρ
dvk

dt
dVD. (3.10)

Next, by the Gauss Theorem (2.26) and localization, we obtain the fractal linear momentum equation

ρv̇k = Xk + ∇D
l σlk. (3.11)
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3.3 Fractal angular momentum equation

The conservation of angular momentum in a fractal medium is stated as

d

dt

∫

W

ρeijkxjvkdVD =

∫

W

eijkxjXkdVD +

∫

∂W

eijkxjσlknldSd. (3.12)

Using (3.11) and the Gauss theorem (2.26) yields

eijk
σjk

c
(j)
1

= 0. (3.13)

It was shown in [18, 19] that the presence of an anisotropic fractal structure is reflected by differences in the fractal dimen-

sions αi in different directions, which implies that c
(j)
1 �= c

(k)
1 , j �= k, in general. Therefore, the Cauchy stress is generally

asymmetric in fractal media, suggesting that the micropolar effects should be accounted for and (3.12) should be augmented

by the presence of couple-stresses. It is important to note here that a material may have anisotropic fractal structure, yet be

isotropic in terms of its constitutive laws. This scenario will be pursued in Sect. 4.

Focusing now on physical fractals (so-called pre-fractals), we consider a body that obeys a fractal mass power law

(2.4) between the lower and upper cutoffs. The choice of the continuum approximation is specified by the resolution R.

Choosing the upper cut-off, we arrive at the fractal representative volume element (RVE) involving a region up to the upper

cutoff, which is mapped onto a homogenized continuum element in the whole body. The micropolar point homogenizes the

very fine microstructures into a rigid body (with 6 degrees of freedom) at the lower cutoff. The two-level homogenization

processes are illustrated in Fig. 4.

To determine the inertia tensor I at any micropolar point, we consider a rigid particle p having a volume P , whose

angular momentum is

σA =

∫

P

(x − xA) × v(x, t)dμ(x). (3.14)

Taking v(x, t) as a helicoidal vector field (for some vector ω ∈ R
3),

v(x, t) = v(xA, t) + ω × (x − xA), (3.15)

we have found [19] all (diagonal and off-diagonal) components of Ikl as

Ikl =

∫

P

[xmxmδkl − xkxl]ρ(x)dVD. (3.16)

Here we use Ikl (Eringen uses ikl) in the current state so as to distinguish it from IKL in the reference state, the relation

between both being given by [69]

Ikl = IKLχkKχlL, (3.17)

where χkK is a microdeformation tensor, or deformable director. For the entire fractal particle P we have

d

dt

∫

P

ρIKLdVD = 0, (3.18)

which, in view of (2.29), results in the fractal conservation of microinertia

d

dt
Ikl = Ikrvlr + Ilrvkr . (3.19)

In micropolar continuum mechanics [69], one needs a couple-stress tensor μ and a rotation vector ϕ augmenting, respec-

tively, the Cauchy stress tensor τ (thus denoted so as to distinguish it from the symmetric σ) and the deformation vector u.

The surface force and surface couple in the fractal setting can be specified by fractional integrals of τ and μ, respectively,

as

T S
k =

∫

∂W

τiknidSd, MS
k =

∫

∂W

μiknidSd. (3.20)
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12 M. Ostoja-Starzewski et al.: From fractal media to continuum mechanics

The above is consistent with the relation of force tractions and couple tractions to the force stresses and couple stresses on

any surface element dSd

tk = τikni, mk = μikni. (3.21)

Now, proceeding in a fashion similar as before, we obtain (3.11) plus the fractal angular momentum equation

eijk

c
(j)
1

τjk + ∇D
j μji + Yi = Iijẇj . (3.22)

In the above, Yi is the body force couple, while vk (= u̇k) and wk (= ϕ̇k) are the deformation and rotation velocities,

respectively.

3.4 Fractal energy equation

Globally, the conservation of energy has the following form

d

dt

∫

W

(e + k)dVD =

∫

W

(Xivi + Yiwi) dVD +

∫

∂W

(tivi + miwi − qini) dSd, (3.23)

where k = 1
2

(

ρvivi + Iijwiwj

)

is the kinetic energy density, e the internal energy density, and q (= qi) heat flux through

the boundary ofW . As an aside we note that, just like in conventional (non-fractal media) continuum mechanics, the balance

equations of linear momentum (3.11) and angular momentum (3.21) can be consistently derived from the invariance of

energy (3.22) with respect to rigid body translations (vi → vi + bi, wi → wi and rotations (vi → vi + eijkxjωk,
wi → wi + ωi), respectively.

To obtain the expression for the rate of change of internal energy, we start from

∫

W

(ė + ρ viv̇i + Iijwiẇi)dVD =

∫

W

[

Xivi + Yiwi + ∇D
j (τjivj + μjiwj)

]

dVD −
∫

W

∇D
i qidVD, (3.24)

and note (3.11) and (3.21), to find

ė = τji

(

∇D
j vi − ekjiwk

)

+ μji∇D
j wi −∇D

i qi. (3.25)

Next, introducing the infinitesimal strain tensor and the curvature tensor in fractal media

γji = ∇D
j ui − ekjiϕk, κji = ∇D

j ϕi, (3.26)

we find that the energy balance (3.25) can be written as

ė = τij γ̇ij + μij κ̇ij . (3.27)

Assuming e to be a state function of γij and κij only and assuming τij and μij not to be explicitly dependent on the

temporal derivatives of γij and κij , we find

τij =
∂e

∂γij
, μij =

∂e

∂κij
, (3.28)

which shows that, just like in non-fractal continuum mechanics, also in the fractal setting
(

τij , γij

)

and
(

μij , κij

)

are

conjugate pairs.

3.5 Fractal second law of thermodynamics

To derive the field equation of the second law of thermodynamics in a fractal medium B (ω), we begin with the global form

of that law in the volume VD , having a Euclidean boundary ∂W , that is

Ṡ = Ṡ(r) + Ṡ(i) with Ṡ(r) =
Q̇

T
, Ṡ(i) ≥ 0,

(3.29)
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where Ṡ, Ṡ(r), and Ṡ(i) stand, respectively, for the total, reversible, and irreversible entropy production rates in VD . Equiv-

alently,

Ṡ ≥ Ṡ(r). (3.30)

Thus, we can write (3.30) as

d

dt

∫

W

ρs dVD = Ṡ ≥ Ṡ(r) = −
∫

∂W

qknk

T
dSd, (3.31)

which, on account of (2.29), may be re-written as

∫

W

ρ
d

dt
s dVD ≥ −

∫

W

∇D
k

( qk

T

)

dVD, (3.32)

so as to result in a local form of the second law

ρ
ds

dt
≥ −∇D

k

( qk

T

)

, (3.33)

or, more explicitly,

ρ
ds

dt
≥ −∇D

k qk,k
T

+
qk∇D

k T

T 2
. (3.34)

Just like in thermomechanics of non-fractal bodies [28], we now introduce the rate of irreversible entropy production

ρṡ(i) which, in view of (3.34), gives

0 ≤ ρṡ(i) = ρṡ +
∇D

k qk,k
T

− qk∇D
k T

T 2
+ ρh. (3.35)

Here with s we denote specific entropies (i.e. per unit mass). Next, we recall the classical relation between the free energy

density ψ, the internal energy density e, the entropy s, and the absolute temperature T : ψ = e−Ts. This allows us to write

for time rates of these quantities

ψ̇ = ė − sṪ − T ṡ. (3.36)

On the other hand, with ψ being a function of the strain γji and curvature-torsion κji tensors, the internal variables αij

(strain type) and ζij (curvature-torsion type), and temperature T , we have

ρψ̇ = ρ
∂ψ

∂γij
γ̇ij + ρ

∂ψ

∂αij
α̇ij + ρ

∂ψ

∂κij
κ̇ij + ρ

∂ψ

∂ζij
ζ̇ij + ρ

∂ψ

∂T
Ṫ . (3.37)

In the above we shall adopt the conventional relations giving the (external and internal) quasi-conservative Cauchy and

Cosserat (couple) stresses as well as the entropy density as gradients of ψ

τ
(q)
ij = ρ

∂ψ

∂εij
, β

(q)
ij = ρ

∂ψ

∂αij
, μ

(q)
ij = ρ

∂ψ

∂κij
, η

(q)
ij = ρ

∂ψ

∂ζij
, s = − ∂ψ

∂T
. (3.38)

This is accompanied by a split of total Cauchy and micropolar stresses into their quasi-conservative and dissipative parts

τij = τ
(q)
ij + τ

(d)
ij , μij = μ

(q)
ij + μ

(d)
ij , (3.39)

along with relations between the internal quasi-conservative and dissipative stresses

β
(q)
ij = −β

(d)
ij , η

(q)
ij = −η

(d)
ij . (3.40)

In view of (3.36-38), we obtain

ρ
(

ψ̇ + sṪ
)

= ρ (ė − T ṡ) = τ
(q)
ij γ̇ij + β

(q)
ij αij + μ

(q)
ij κ̇ij + η

(q)
ij ζ̇ij + ρh. (3.41)
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On account of the energy balance, this is equivalent to

Tρṡ = τ
(d)
ij γ̇ij + β

(d)
ij α̇ij + μ

(d)
ij κ̇ij + η

(d)
ij ζ̇ij −∇D

k qk + ρh. (3.42)

Recalling (3.35), we find the local form of the second law in terms of time rates of strains and internal parameters

0 ≤ Tρṡ(i) = τ
(d)
ij γ̇ij + β

(d)
ij α̇ij + μ

(d)
ij κ̇ij + η

(d)
ij ζ̇ij −

qk∇D
k T

T
+ ρh. (3.43)

The above is a generalization of the Clausius-Duhem inequality to fractal dissipative media with internal parameters. Upon

dropping the internal parameters (which may well be the case for a number of materials), the terms β
(d)
ij α̇ij and η

(d)
ij ζ̇ij

drop out, whereas, upon neglecting the micropolar effects, the terms μ
(d)
ij κ̇ij and η

(d)
ij ζ̇ij drop out.

For non-fractal bodies, the stress tensor τij reverts back to σij , and (3.43) reduces to the simple well-known form [28]

0 ≤ Tρṡ(i) = σ
(d)
ij γ̇ij −

T,k qk

T
+ ρh. (3.44)

It is most interesting that the fractal derivative of (2.25) appears only in the thermal dissipation term. In fact, this derivative

arises in processes of heat transfer in a fractal rigid conductor and coupled thermoelasticity of fractal deformable media [20].

4 Fractal wave equations

Just like in conventional continuum mechanics, the basic continuum equations for fractal media presented above have to be

augmented by constitutive relations. At this point, we expect that the fractal geometry influences configurations of physical

quantities like stress and strain, but does not affect the physical laws (like conservation principles) and constitutive relations

that are inherently due to material properties. This expectation is supported in two ways:

• a study of scale effects of material strength and stress from the standpoint of fractal geometry which is confirmed by

experiments involving both brittle and plastic materials [29];

• derivations of wave equations through mechanical and variational approaches, respectively [24], as shown below.

4.1 1d wave motion

The 1d plane wave motion [u ≡ u1 (x1) , φi ≡ 0] involves one spatial variable only: x ≡ x1. First, using the mechanical

approach, we begin from the balance of linear momentum (3.11), along with Hooke’s law σ = Eε (E being Young’s

modulus) to get

ρü = E∇Dε. (4.1)

Following the conventional strain definition, ε = ∇u, gives (c1 ≡ c
(1)
1 )

ρü = E∇D∇u ≡ Ec−1
1 (u,x ) ,x (4.2)

whereas, following our fractal definition of strain (3.4) simplified to 1d, ε = ∇Du, yields

ρü = E∇D∇Du ≡ Ec−1
1

(

c−1
1 u,x

)

,x . (4.3)

Now, using the variational approach we begin from Hamilton’s principle that involves the Lagrangian function L =
K − E , where (with dlD = c1dx)

K =
1

2
ρ

∫

u̇2dlD =
1

2
ρ

∫

u̇2c1dx, E =
1

2
E

∫

u2dlD =
1

2
E

∫

u2c1dx. (4.4)

Following the conventional strain definition, ε = ∇u, gives

ρü = Ec−1
1 (c1u,x ) ,x (4.5)

whereas, following our definition (3.4) simplified to 1d, ε = ∇Du, yields

ρü = Ec−1
1

(

c−1
1 u,x

)

,x . (4.6)
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A comparison of the results among the mechanical and variational approaches, we find that (4.6) agrees with (4.3), while

(4.5) contradicts (4.2), showing that our definitions of fractal stress and strain are self-consistent [17]. Precisely the same

type of results have also been obtained for 2d anti-plane waves, 3d waves, as well as the Timoshenko beam elastodynamics

(discussed below).

Upon considering harmonic motions u (x, t) = U (x) ejωt, (4.6) leads to a 1d fractal Helmholtz equation

0 = k2U + ∇D∇DU ≡ k2U + c−1
1

(

c−1
1 U,x

)

,x (4.7)

where k = ω/ϑ is the wavenumber, ϑ =
√

E/ρ being the wave speed. Assuming the motion to occur on the interval [0, L],
results in

−
(

U ′

c1

)′

= c1k
2U or

(L − x)
2
U ′′ (x) + (D − 1) (L − x) U ′ (x) + k2D2 (L − x)

2D
U (x) = 0.

(4.8)

This modal equation admits the general solutions in terms of fractal harmonics (Fig. 5)

f1 (x, k) = cos
[

k (L − x)D
]

, f2 (x, k) = sin
[

k (L − x)D
]

, (4.9a)

so that the modal function for a given boundary value problem (BVP) can be expressed as

Un (x) = C1f1 (x, kn) + C2f2 (x, kn) , (4.10)

where the constants C1 and C2 are determined from the appropriate boundary conditions (BC).

(a) (b)

(c)

Fig. 5 (online colour at: www.zamm-journal.org) Mode shapes in lon-

gitudinal (axial vibration), corresponding to solutions of the 1d fractal

Helmholtz equation for (a,b) two fractal rods (D = 1
3

ln 18/ ln 3 and

D = ln 2/ ln 3, resp.) and (c) the conventional continuum rod (D = 1).

Dirichlet boundary conditions are applied at at both ends.

4.2 3d wave motion

Assuming a micropolar material of linear elastic and centrosymmetric type, its energy density is given by a scalar product

e =
1

2
γijC

(1)
ijklγkl +

1

2
κijC

(2)
ijklκkl, (4.11)
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so that the pertinent Hooke law is

τij = C
(1)
ijklγkl, μij = C

(2)
ijklκkl. (4.12)

Here C
(1)
ijkl and C

(2)
ijkl are two micropolar stiffness tensors. Note that, due to the existence of e, we have the basic symmetry

of both stiffness (and hence, compliance) tensors

C
(1)
ijkl = C

(1)
klij , C

(2)
ijkl = C

(2)
klij . (4.13)

Focusing henceforth on the centrosymmetric case, for an elastically isotropic material, the tensors C
(1)
ijkl and C

(2)
ijkl

become

C
(1)
ijkl = (μ − α) δjkδil + (μ + α) δjlδik + λδijδkl,

(4.14)

C
(2)
ijkl = (γ − ε) δjkδil + (γ + ε) δjlδik + βδijδkl.

Here λ and μ are the Lamé constants of classical elasticity, while α, β, γ, and ε are the micropolar constants. Note that

this nomenclature is consistent with that employed by Nowacki [30], whereas μ, γ, and β were denoted, respectively, by

β, ψ, and η in [31]. With with the mass moment of inertia Iij = δijI , it follows that the equations of elastodynamics in

displacements and rotations are

ρüi = (μ + α)

[

∇D
j ∇D

j ui −∇D
j

(

ekji
φk

c
(j)
1

)]

+ (μ − α + λ)∇D
i ∇D

j uj + (μ − α)∇D
j

(

ekij
φk

c
(i)
1

)

,

Iφ̈i = (γ + ǫ)∇D
j ∇D

j φi + (ψ − ǫ + β)∇D
i ∇D

j φj (4.15)

− (μ + α)

⎡

⎣φi

∑

j �=i

1

c
(j)
1 c

(j)
1

+ eijk

∇D
j uk

c
(j)
1

⎤

⎦ + (μ − α) eijk
∇D

k uj

c
(j)
1

+ 2 (μ − α)
φiui

c3
.

In [31, 32] we have explored the elastodynamics in micropolar fractal solids from both analytical and computational

perspectives. The analytical approach is feasible only for some particular problems discussed below, and classified in vein

of [30].

4.2.1 3d dilatational wave motion

As a very special case, it is possible for the above model to involve no rotational degrees of freedom with the couple stress μ
being identically zero everywhere, while simultaneously satisfying the angular momentum balance. This occurs by setting

all the shear components of the stress tensor σ to be identically zero i.e. σij ≡ 0 for i �= j and prescribing the motion such

that the displacement in a given direction depends only on the coordinate of that direction

ui ≡ ui(xi) i = 1, ..., 3. (4.16)

The wave motion is then of dilatational or primary type [33]. Now, the incorporation of isotropic Hooke’s law σij =
λǫkkδij + 2μǫij into the linear momentum balance produces the fractal Navier equation, characterized by three generally

different fractal dimensions,

ρüi =
λ + μ

c3

(

c3uj,i

c
(i)
1 c

(j)
1

)

,j

+
μ

c3

(

c3ui,j

c
(j)
1 c

(j)
1

)

,j

. (4.17)

In contradistinction to the continuum case, Eq. (4.17) is only meaningful to study dilatational wave propagation problems.

On account of (4.17), we have a set of three decoupled equations, the first being

ρü1

λ + 2μ
=

u1,11

c2
1

− c1,1 u1,1

c3
1

, (4.18)

with the next two obtained by cyclic permutations 1 → 2 → 3; note that the above is identical to (4.6). The decoupling of

wave motions in three orthogonal directions allows the solution of a 3d problem via three similar problems of 1d type. This

significantly simplifies the computational analysis.
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With reference to the 1d fractal Helmholtz equation, in the case of homogeneous BC, the Sturm-Liouville problem (4.8)

admits the following modal orthonormality property

∫ L

0

Um (x)Un (x) c1 (x) dx = δmn. (4.19)

Next, three BVP have been studied in detail in [32]: Dirichlet, first mixed, and second mixed. Also, a finite element

method (FEM) has been shown to be robust in handling mechanics problems in fractal solids. Indeed, in the 1d case, using

admissible functions û ∈ H1 (Ω), Ω = [0, L], from (4.18) we obtain the weak form

∫

Ω

ρcüûdΩ +

∫

Ω

(λ + 2μ)
u,xû,x

c
dΩ = 0. (4.20)

Upon partitioning the domain Ω into a countable union of finite elements Ωe (where
⋃

e Ωe = Ω), we obtain a discrete

formulation

M· Ü + K·U = 0, (4.21)

where, on the elemental level, the inertia and stiffness matrices are evaluated as

Me
ij =

∫

Ωe

ρchihjdx, Ke
ij =

∫

Ωe

(λ + 2μ)
hi,xhj,x

c
dx. (4.22)

The governing matrices are symmetric; they can be evaluated exactly without performing any numerical integration (e.g.

Gaussian quadrature rule). The trapezoidal time stepping method is implemented to determine the transient solution [34].

This time march scheme is implicit, unconditionally stable and second-order accurate.

4.2.2 Torsional wave problem

Consider the problem where the displacement is suppressed to zero and the microrotation is permitted in such a way that

every rotation solely depends on the direction about which it occurs. Mathematically, we have

ui ≡ 0, φi ≡ φi(xi). (4.23)

Here the shear components of the curvature and couple-stress tensors are all identically zero. The axial components of the

strain and stress tensors are zero too (rendering the deformation equivoluminal), but not the shear components. As a result,

the elastodynamic equations for the rotation field cannot be solved exactly unless certain restrictions on the elastic moduli

are enforced. For example, considering the governing equation for φ1, we have

Iφ̈1 = (2γ + β)∇D
1 (∇D

1 φ1) + φ1

⎡

⎢

⎣
2

μ − α

c
(2)
1 c

(3)
1

− (μ + α)

⎛

⎜

⎝

1
[

c
(2)
1

]2 +
1

[

c
(3)
1

]2

⎞

⎟

⎠

⎤

⎥

⎦
. (4.24)

The general solution can be given in terms of the fractal harmonics introduced earlier.

4.2.3 In-plane problem

This is a generalization of the in-plane elasticity where the displacement and the rotation fields are prescribed as

u1 ≡ u1(x1), u2 ≡ u2(xi), u3 ≡ 0,
(4.25)

φ1 ≡ 0, φ2 ≡ 0, φ3 ≡ φ3(x1, x2).
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By examining the strain and curvature tensors and, in turn, the constitutive relations, we find the linear momentum

equations for u1 and u2 along with the angular momentum equation for φ3

ρü1 = (2μ + λ)∇D
1 ∇D

1 u1 + (μ − α)∇D
2

(

−φ3

c
(1)
1

)

+ (μ + α)∇D
2

(

φ3

c
(2)
1

)

,

ρü2 = (2μ + λ)∇D
2 ∇D

2 u2 + (μ − α)∇D
1

(

φ3

c
(2)
1

)

+ (μ + α)∇D
1

(

−φ3

c
(1)
1

)

, (4.26)

Iφ̈3 = (γ + ǫ)
[

∇D
1 ∇D

1 φ3 + ∇D
2 ∇D

2 φ3

]

− (μ + α)

⎡

⎢

⎣

1
[

c
(2)
1

]2 +
1

[

c
(2)
1

]2

⎤

⎥

⎦
φ3 + (μ − α)

φ3

c
(1)
1 c

(2)
1

.

Upon setting α = μ = 0, the displacements are found to be governed by the 1d fractal wave equations, while φ3 by a

2d fractal wave equation

Iφ̈3 = (γ + ǫ)
[

∇D
1 ∇D

1 φ3 + ∇D
2 ∇D

2 φ3

]

. (4.27)

Turning to harmonic wave motions (φ3 (x, t) = Φ3(x1, x2)e
jωt), we arrive at a 2d fractal Helmholtz equation

0 = k2Φ3 + ∇D
1 ∇D

1 Φ3 + ∇D
2 ∇D

2 Φ3, (4.28)

where k = ω/ϑ is the wavenumber, ϑ =
√

(γ + β) /I. Figure 6 displays contour plots for the first few modes of Φ3 on

the Sierpiński carpet under the Dirichlet BC on its entire boundary. Again, solutions of the BVP can be given in terms of

fractal harmonics.

(a) (b) (c)

Fig. 6 (online colour at: www.zamm-journal.org) Some basic mode shapes corresponding to solutions of the 2d fractal Helmholtz

equation where L1 = L2 = 1 and D1 = D2 = ln 18/(3 ln 3). (a) n1 = 1, n2 = 1. (b) n1 = 2, n2 = 1. (c) n1 = 2, n2 = 2.

4.2.4 Out-of-plane problem

In this second planar problem − actually, a generalization of the out-of-plane elasticity − the in-plane rotations depend on

the in-plane coordinates while the out-of-plane displacement on x3:

u1 ≡ 0, u2 ≡ 0, u3 ≡ u1(x1, x2, x3),
(4.29)

φ1 ≡ φ1(x1, x2), φ2 ≡ φ1(x1, x2), φ3 ≡ 0.

By following a route analogous to those outlined above, and assuming γ− ǫ+β = 0, we arrive at a system of decoupled

equations for φ1 and φ2

ρü3 = λ∇D
3 ∇D

3 u3,

Iφ̈1 = (β + 2γ)
[

∇D
1 ∇D

1 φ1 + ∇D
2 ∇D

2 φ1

]

, (4.30)

Iφ̈2 = (β + 2γ)
[

∇D
2 ∇D

2 φ2 + ∇D
1 ∇D

1 φ2

]

.

Modal solutions of any BVP follow from the 1d and 2d fractal Helmholtz equations introduced above.
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4.3 Elastodynamics of a fractal Timoshenko beam

Analogous results, also exhibiting self-consistency, were obtained in elastodynamics of a fractally structured Timoshenko

beam [12]. First recall that such a beam model has two degrees of freedom (q1, q2) at each point: the transverse displacement

q1 = w and the rotation q2 = ϕ. In the mechanical approach the beam equation can be derived from the force and moment

balance analysis. Thus, beginning with the expressions of shear force (V ) and bending moment (M )

V = κμA
(

∇D
x w − ϕ

)

, M = −EI∇D
x ϕ, (4.31)

we find

ρAẅ = ∇D
x V, ρIϕ̈ = V −∇D

x M, (4.32)

which lead to

ρAẅ = ∇D
x

[

κμA
(

∇D
x w − ϕ

)]

,
(4.33)

ρIϕ̈ = ∇D
x

(

EI∇D
x ϕ

)

+ κμA
(

∇D
x w − ϕ

)

.

The kinetic energy is

T =
1

2
ρ

∫ l

0

[

I (ϕ̇)
2

+ A (ẇ)
2
]

dlD, (4.34)

while the potential energy is

U =
1

2

∫ l

0

[

EI

(

∂ϕ

∂lD

)2

+ κμA

(

∂w

∂lD
− ϕ

)2
]

dlD

=
1

2

∫ l

0

[

EIc−2
1 (ϕ,x )

2
+ κμA

(

c−1
1 w,x −ϕ

)2
]

c1dx. (4.35)

Now, the Euler-Lagrange equations

∂

∂t

[

∂L

∂q̇i

]

+

3
∑

j=1

∂

∂xj

[

∂L

∂
(

qi,j

)

]

− ∂L

∂qi
= 0 (4.36)

result in the same as above.

In the case of elastostatics and when the rotational degree of freedom ceases to be independent (ϕ = ∂w/∂lD = ∇D
x w),

we find the equation of a fractal Euler-Bernoulli beam

∇D
x ∇D

x

(

EI∇D
x ∇D

x w
)

= 0, (4.37)

which shows that

M = EI∇D
x ∇D

x w. (4.38)

The relationship between the bending moment (M ) and the curvature (∇D
x ∇D

x w) still holds, while c1 enters the determina-

tion of curvature (∇D
x ∇D

x w = c−1
1

(

c−1
1 w,x

)

,x).

In a nutshell, the fractional power law of mass implies a fractal dimension of scale measure, so the derivatives involving

spatial scales should be modified to incorporate such effect by postulating c1, c2, c3 coefficients, according to the material

body being embedded in a 1d, 2d, or 3d Euclidean space.
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4.4 Fractal elastic solid under finite strains

To obtain the equations of motion for a fractal elastic solid under finite strains, we begin with Hamilton’s Principle for the

Lagrangian L = K − E of a fractal solid W isolated from external interactions,

δI = δ

∫ t2

t1

[K − E ]dt = 0, (4.39)

where K and E are the kinetic and internal energies

K =
1

2

∫

W

ρvividVD E =

∫

W

ρedVD. (4.40)

Thus, we have a functional, which can be rewritten in fractal space-time (e being the specific, per unit mass, internal energy

density) as

0 = δI = δ

∫ t2

t1

∫

W

[

1

2
ρv2

k − ρe

]

dVDdt = δ

∫ t2

t1

∫

W

[

ρ
1

2
v2

k − ρe

]

dVDdt. (4.41)

Analogous to the strain of (3.4), the deformation gradient is

FkI =
1

c
(I)
1

xk,I = ∇D
I xk. (4.42)

Assuming that the specific energy density e depends only on the deformation gradient, and that ρ has no explicit dependence

on time, leads to:

(i) the boundary conditions on

∂Wρ
∂e

∂FkI
NI = 0 or δxk = 0 on ∂W , (4.43)

(ii) the kinematic constraints, δxk = 0 at t = t1 and t = t2, which imply the equation governing motion in a fractal

solid under finite strains

∇D
I

[

ρ
∂e

∂FkI

]

− ρ
dvk

dt
= 0 or

1

c
(I)
1

∂

∂XI

[

ρ
∂e

∂FkI

]

− ρ
dvk

dt
= 0. (4.44)

Next, in fractal bodies without internal dissipation, e plays the role of a potential

TkI = ρ
∂e

∂FkI
, (4.45)

where TkI is the first Piola-Kirchhoff stress tensor, and (4.44) becomes

∇D
I TkI − ρ

dvk

dt
= 0 or

1

c
(I)
1

TkI ,I −ρ
dvk

dt
= 0. (4.46)

Restricting the motion to small deformation gradients, TkI becomes the Cauchy stress tensor and we recover the linear

momentum equation (3.11). Generalizing this to the situation of W interacting with the environment (i.e., subject to body

forces) [35],

δ (I + W − P) = 0, (4.47)

we obtain

∇D
I TkI + ρ

(

bk − dvk

dt

)

= 0 or
1

c
(I)
1

TkI ,I +ρ

(

bk − dvk

dt

)

= 0. (4.48)

In [24] we also considered one-dimensional models and obtained equations governing the nonlinear waves in such a

solid. We showed that the equations can be solved by the method of characteristics in fractal space-time. We also studied

shock fronts in linear viscoelastic solids under small strains. We showed that the discontinuity in stress across a shock front

in a fractal medium is identical to the classical result.
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5 Related topics

5.1 Extremum and variational principles in fractal bodies

Just like in preceding sections, the dimensional regularization approach can also be applied to other statements in contin-

uum/solid mechanics involving integral relations. For example, the Maxwell-Betti reciprocity relation of linear elasticity
∫

∂W t∗i uidS2 =
∫

∂W tiu
∗
i dS2 is generalized for fractal media to

∫

∂W

t∗i uidSd +

∫

∂W

m∗
i ϕidSd =

∫

∂W

tiu
∗
i dSd +

∫

∂W

miϕ
∗
i dSd, (5.1)

so as to read in E
3:

∫

∂W

t∗i uic2dS2 +

∫

∂W

m∗
i ϕic2dS2 =

∫

∂W

tiu
∗
i c2dS2 +

∫

∂W

m∗
i ϕic2dS2. (5.2)

The reciprocity relation (5.1) is proved by appealing to the Green-Gauss theorem and the Hooke law (σij = Cijklεkl), and

proceeding just like in the conventional continuum elasticity. As an application, consider the classical problem of calculation

of the reduction in volume ∆V of a linear elastic isotropic body (of bulk modulus κ) due to two equal, collinear, opposite

forces F , separated by a distance L. Clearly, in the classical case, one does not need the micropolar term and, as discussed

in [12], finds ∆V = FL/3κ. On the other hand, for a fractal body, given the loading τij = −pδij and μij = 0, the integrals

involving scalar products of couple traction with rotation vanish, and we obtain

p ∆V c3 = p
FL

3κ
c1. (5.3)

Recalling (2.13) and assuming that the opposite forces are applied parallel to one of the axes of the coordinate system (say,

xk), yields ∆V = FLc1/3κc3. This can be evaluated numerically for a specific material according to (2.13).

Next, suppose we focus on situations where couple-stress effects are negligible. Then, we recall the concept of a statically

admissible field as a tensor function σij(x), such that σij = σji and (Fk = ρfk)

Fk + ∇D
l σkl = 0 (5.4)

in W and the boundary conditions

σklnl = tk (5.5)

on ∂Wt. Similarly, we recall a kinematically admissible displacement field as a vector function u(x) satisfying the boundary

conditions

ui = fi (5.6)

on ∂Wu. We can now consider the Principle of Virtual Work: ”The virtual work of the internal forces equals the virtual

work of the external forces.” Let σ(x) be a statically admissible stress field, u(x) a kinematically admissible displacement

field. Define εij(u) = u(i,j). Then

∫

W

σijεijdVD =

∫

W

FiuidVD +

∫

∂Wt

tiuidSd +

∫

∂Wu

σijnjfidSd. (5.7)

The proof follows by substitution from the fractional equation of static equilibrium and boundary conditions after integrat-

ing by parts, and using the Gauss theorem, all conducted over the fractal domain W . Of course, the above can be rewritten

in terms of conventional integrals:

∫

W

σijεijc3dV3 =

∫

W

Fiuic3dV3 +

∫

∂Wt

c2tiuic2dS2 +

∫

∂Wt

σijnjfic2dS2. (5.8)

In a similar way, we can adapt to fractal elastic bodies the Principle of Virtual Displacement, Principle of Virtual Stresses,

Principle of Minimum Potential Energy, Principle of Minimum Complementary Energy, and related principles for elastic-

plastic or rigid bodies.

Relation to other studies of complex systems: While the dimensional regularization has been employed for fractal

porous media, the approach can potentially be extended to microscopically heterogeneous physical systems (made up
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Fig. 7 (online colour at: www.zamm-journal.org) (a) A fractal body subjected to two equal, collinear, opposite forces F ,

and (b) its homogenized equivalent via dimensional regularization.

of many different micromechanical systems, having different physical properties, and interacting under the influence of

different kinds of phenomena). In particular, it seems possible to generalize the foregoing developments in two ways:

(i) By taking as the starting point the ”microscopic models” for interactions between the fluid flow and a deformable

porous matrix [70–73] so as to obtain higher gradient fractal models.

(ii) By looking for physical systems which can be modelled at a microscopic level as first gradient continua and become

higher gradient models after the dimensional regularization procedure has been applied [74–76].

Once higher gradient fractal models are obtained, it should be possible to generalize the results of [77–80] for second

gradient nematic fluids (for which a clear micro-macro identification procedure seems not already clarified sufficiently), or

for the equilibrium of liquid films and drops in [80] (which accounted for phase equilibrium in liquid films) or for liquid

drops on walls, or, yet, for wave propagation phenomena [82].

5.2 Fracture in elastic-brittle fractal solids

5.2.1 General considerations

According to Griffith’s theory of elastic-brittle solids, the strain energy release rate G is given by [36]

G =
∂W

∂A
− ∂Ee

∂A
= 2γ, (5.9)

where A is the crack surface area formed, W is the work performed by the applied loads, Ee is the elastic strain energy,

and γ is the energy required to form a unit of new material surface. The material parameter γ is conventionally taken as

constant, but, given the presence of a randomly microheterogeneous material structure, its random field nature is sometimes

considered explicitly [37, 38]. Recognizing that the random material structure also affects the elastic moduli (such as E),

the computation of Ee and G in (5.9) needs to be re-examined [38]; see also [39] in the context of paper mechanics. With

reference to Fig. 7, we consider a 3d material body described by D and d, and having a crack of depth a and a fractal

dimension DF .

Focusing on a fractal porous material, we have

Ue =

∫

W

ρ u dVD =

∫

W

ρ u c3 dV3. (5.10)

By revising Griffith’s derivation for a fractal elastic material, we then obtain

Ue =
πa2c2

1σ
2

8μ
(K + 1)c3, (5.11)

with ν being the Poisson ratio, and

K =

⎧

⎪

⎨

⎪

⎩

3 − 4ν for plane strain

3 − ν

1 + ν
for plane stress

(5.12)

the Kolosov constant.
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Dead-load conditions. Equation (5.9) becomes

G =
∂Ue

∂A
= 2γ. (5.13)

If A = 2a × 1, this gives the critical stress

σc =

√

2γE

(1 − ν2)πa c3 c2
1

. (5.14)

However, if the fracture surface is fractal of a dimension α, then we should use ∂/∂lDF instead of ∂/∂a. Now, since we

have (note Fig. 8) dlDF = c1da, the new partial derivative becomes

∂

∂lDF
=

∂

c1∂a
, (5.15)

so that

σc =

√

2γE

(1 − ν2)πa c3 c1
. (5.16)

Fixed-grip conditions. We consider the case of a crack of depth a and width B in plane strain. In this case the displace-

ment is constant (i.e., non-random), and the load is random. Now, only the second term in (5.9) remains, so that

G = − ∂Ee (a)

B∂lDF
= − ∂Ee (a)

Bc1∂a
. (5.17)

5.2.2 Peeling a layer off a substrate

Dead-load conditions. As a specific case we take an Euler-Bernoulli beam, so that the strain energy is

E(a) =

∫ a

0

M2

2IE
dx, (5.18)

where a is crack length, M is bending moment, and I is beam’s moment of inertia. Henceforth, we simply work with

a = A/B, where B is the constant beam (and crack) width. In view of Clapeyron’s theorem, the strain energy release rate

may be written as

G =
∂E

B∂a
. (5.19)

For a layer modeled as a fractal Euler-Bernoulli beam (Sect. 4.3), we have

E(a) =

∫ a

0

M2

2IE
dlD =

∫ a

0

M2

2IE
c1dx, (5.20)

so that

G =
∂E

c1B∂a
. (5.21)

Fig. 8 (online colour at: www.zamm-journal.org) Fracture and peeling of a

microbeam of thickness L off a substrate. A representative volume element

dV3 imposed by the pre-fractal structure characterized by upper cutoff scale

L is shown. Thus, the beam is homogeneous above the length scale L. By

introducing random variability in that structure, one obtains a random beam,

see (5.22).
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5.2.3 Generalization to a statistical ensemble

Now, if the beam’s material is random, E is a random field parametrized by x, which we can write as a sum of a constant

mean 〈E〉 and a zero-mean fluctuation E′(x)

E(ω, x) = 〈E〉 + E′(ω, x) ω ∈ Ω, (5.22)

where ω is an elementary event in Ω, a sample space. Clearly, E is a random integral, such that, for each and every realization

ω ∈ Ω, we should consider

E(a, E (ω)) =

∫ a

0

M2c1dx

2IE(ω, x)
. (5.23)

Upon ensemble averaging, this leads to an average energy

〈E(a, E)〉 =

〈∫ a

0

M2c1dx

2I [〈E〉 + E′(ω, x)]

〉

. (5.24)

In the conventional formulation of deterministic fracture mechanics, random microscale heterogeneities E′(x, ω) are

disregarded, and (5.23) is evaluated by simply replacing the denominator by 〈E〉, so that

E(a, 〈E〉) =

∫ a

0

M2c1dx

2I 〈E〉 . (5.25)

Clearly, this amounts to postulating that the response of an idealized homogeneous material is equal to that of a random

one on average. To make a statement about 〈E(a, E)〉 versus E(a, 〈E〉), and about 〈G(E)〉 versus G(〈E〉), first, note the

random field E is positive-valued almost surely. Then, Jensen’s inequality yields a relation between harmonic and arithmetic

averages of the random variable E (ω)

1

〈E〉 ≤
〈

1

E

〉

, (5.26)

whereby the x-dependence is immaterial in view of the assumed wide-sense stationary of field E. With (5.24) and (5.25),

and assuming that the conditions required by Fubini’s theorem are met, this implies that

E(a, 〈E〉) =

∫ a

0

M2c1dx

2I 〈E〉 ≤
∫ a

0

M2c1

2I

〈

1

E

〉

dx =

〈∫ a

0

M2c1dx

2IE(ω, x)

〉

= 〈E(a, E)〉 . (5.27)

Now, defining the strain energy release rate G(a, 〈E〉) in a reference material specified by 〈E〉, and the strain energy

release rate 〈G(a, E)〉 properly ensemble averaged in the random material {E(ω, x); ω ∈ Ω, x ∈ [0, a]}

G(a, 〈E〉) =
∂E(a, 〈E〉)

Bc1∂a
, 〈G(a, E)〉 =

∂ 〈E(a, E)〉
Bc1∂a

, (5.28)

and noting that the side condition is the same in both cases

E(a, 〈E〉) |a=0= 0, 〈E(a, E)〉 |a=0= 0, (5.29)

we find

G(a, 〈E〉) ≤ 〈G(a, E)〉 . (5.30)

This provides a formula for the ensemble average G under dead-load conditions using deterministic fracture mechanics for

Euler-Bernoulli beams made of fractal random materials.

Just like in the case of non-fractal materials [38], the inequality (5.30) shows that G computed under the assumption that

the random material is directly replaced by a homogeneous material (E(x, ω) = 〈E〉), is lower than G computed with E
taken explicitly as a spatially varying material property.
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Fixed-grip conditions. On account of (2.11), assuming that there is loading by a force P at the tip, we obtain

G = − u

2Bc1

∂P

∂a
. (5.31)

Take now a cantilever beam problem implying P = 3uEI/(c1a)3. Then, we find

〈G〉 = − u

2Bc1

〈

∂P

∂a

〉

= − u

2Bc1

∂ 〈P 〉
∂a

=
9u2I 〈E〉
2B(c1a)4

. (5.32)

Since the load – be it a force and/or a moment – is always proportional to E, this indicates that G can be computed by

direct ensemble averaging of E under fixed-grip loading, and, indeed, the same conclusion carries over to Timoshenko

beams. This analysis may be extended to mixed-loading conditions and stochastic crack stability by generalizing the study

of non-fractal, random beams carried out in [12].

5.2.4 Studies of cracks with fractal profiles

A separate line of studies has – indeed, a spate of works – originated from the 1984 observation that cracks (i.e. crack

profiles) in many materials display fractality [40]. Of many studies that have aimed to generalize fracture mechanics we

list [41–45]. One particularly promising line of research on fractal cracks in non-fractal materials is due to Wnuk & Yavari

[46,50,57–59]: the basic idea has been to adapt the existing solutions for the singular stress field in the vicinity of a fractal

crack tip: a smooth crack is embedded in a singular stress field for which the order of singularity is adjusted to match exactly

the one obtained from the analyses pertaining to the fractal crack. The embedded crack model is based on the fact that the

order of singularity for near-tip stresses changes from r−1/2 for a smooth cracks to r−α for a rough crack. Therefore, the

exponent α can be used as a measure of degree of roughness and it is related to the crack’s fractal dimension D [∈ (1, 2)]
by α = (2 − D)/2. Additionally, the material ductility is measured by another index (ρ) which can be related either to the

microstructural parameters by ρ = Rinit/∆ (where Rinit is the length of the cohesive zone at the onset of crack growth

while ∆ is the size of the process zone adjacent to the crack front) or to the macro material parameters by ρ = 1 + εf
pl/εY ,

where εY is the yield strain and εf
pl is the plastic component of the strain at fracture.

5.3 Turbulence in fractal porous media

Here we examine the basic equations governing turbulent flow in fractal porous media. Following the classical approach,

we begin by assuming a split of the velocity, stress, energy density and heat flux fields into their mean and fluctuating parts

such as expressed for velocity by

vi = 〈vi〉 + v′i,
〈

v′i
〉

= 0. (5.33)

Recalling that the classical case of flows in Euclidean media involves three corrections [11]

σ∗
kl = σkl − ρ

〈

v′kv′l
〉

,

u∗ = 〈u〉 + 1
2 〈v′iv′i〉 ,

q∗l = ql −
〈

v′kσ′
kl

〉

+ ρ
〈

u′v′l
〉

+ ρ
〈

v′kv′kv′l
〉

/2,

(5.34)

the most famous being the Reynolds stress σ∗
ij , we inquire whether turbulence in fractal porous media will have the same

expressions as (5.36). To this end, introducing (5.35) into (5.36), and carrying out the averaging, we obtain

∇D
k 〈vk〉 = 0, (5.35)

showing that the secular part of the velocity field is subject to the same continuity equation.

Next, the integral form of the balance of linear momentum in any medium of Euclidean structure, with respect to an

observer at rest, is known to have this form [28]

∫

W

ρvk,0 dV3 =

∫

∂W

[σkl − ρvkvl]nldS2, (5.36)
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where ,0 stands for the partial time derivative ∂/∂t. Now, considering a fractal medium, we have

∫

W

ρvk,0 dVD =

∫

∂W

[σkl − ρvkvl]nldSd. (5.37)

Assuming the velocity field (5.33) and an analogous split of the stress field, upon averaging, we obtain

∫

W

ρ 〈vk〉 ,0 dVD =

∫

∂W

[〈σkl〉 − ρ
(

〈vk〉 〈vl〉 +
〈

v′kv′l
〉)

]nldSd, (5.38)

which shows that (5.37) retains its form for the secular parts of velocity and stress fields, providing we take σ∗
kl in place of

the mean stress 〈σkl〉

σ∗
kl = 〈σkl〉 − ρ

〈

v′kv′l
〉

. (5.39)

Thus, apparently, −ρ
〈

v′kv′l
〉

is the Reynolds stress correction just as in the classical theories for non-fractal geometries.

To verify that conclusion, we will now transform (3.4) to a local (differential) form. To this end, by using the Green-Gauss

theorem for fractals (2.26), (5.38) transforms to

∫

W

ρ 〈vk〉 ,0 dVD =

∫

W

∇D
l {[〈σkl〉 − ρ

(

〈vk〉 〈vl〉 +
〈

v′kv′l
〉)

]}dVD, (5.40)

which leads to

ρ[〈v〉k ,0 + 〈v〉l ∇D
l 〈v〉k] = ∇D

l

[

〈σkl〉 − ρ
〈

v′kv′l

〉]

, (5.41)

instead of the conventional relation

ρ
[

〈v〉k ,0 + 〈v〉l 〈v〉k ,
]

l
=

[

〈σkl〉 − ρ
〈

v′kv′l

〉]

,l . (5.42)

This confirms that the Reynolds stress (σ∗
kl) can be simply written as σ∗

kl = 〈σkl〉− ρ
〈

v′kv′l
〉

, providing the spatial gradient

is interpreted as ∇D
l . This result is not obtained with the original calculus of Tarasov, thus showing that the calculus based

on product measures is more consistent. This remark is amplified by considering the energy conservation equation which

gives, just like in the case of non-fractal media,

u∗ = 〈u〉 −
〈

v′kv′k
〉

/2,
(5.43)

q∗l = 〈ql〉 −
〈

v′kσ′
kl

〉

+ ρ
〈

u′v′l
〉

+ ρ
〈

v′kv′kv′l
〉

/2.

5.4 Balankin’s formulation

In two recent papers [51,52] a formulation of fluid flow in fractal porous media, similar to ours, yet claimed to be superior,

has been suggested. The key points to note are:

(i) Those authors adopted c1 in this form: c1 = (x/l0 + 1)
ζ−1

, where l0 is the lower cut-off. However, there is no

essential difference from our c1 = [(L − x) /L]ζ−1 = (1 − x/L)ζ−1
, since both formulas reflect the same power scaling

of mass. In effect, the product measure framework does not change.

(ii) Their dVD has been postulated in the form: dVD = c1dx1c2dS2, which refers c2 (and, hence, the surface fractal

dimension d2) to a specific fractal plane. Furthermore, for a surface S
(k)
2 orthogonal to xk , having a fractal dimension d

(k)
2

(k �= i, j), they set c2 = c1(d
(k)
2 /2, xi) c1(d

(k)
2 /2, xj). However, this implies ambiguity and, hence, non-uniqueness of the

specification of c3 since c3 = c1(d
(k)
1 , xk)c1(d

(k)
2 /2, xi)c1(d

(k)
2 /2, xj) = c1(d

(j)
1 , xj)c1(d

(j)
2 /2, xi)c1(d

(j)
2 /2, xk) while

d
(j)
1 �= d

(k)
2 /2. On the other hand, our product measure formulation provides a unique and consistent expression of the c1,

c2, and c3 coefficients.

(iii) Employing a Hausdorff derivative introduced in [53], they have adopted:

dHf

dxζ
= lim

x→x′

f(x′) − f(x)

x′ζ − xζ
. (5.44)
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This can actually be shown to lead to

∇H =
dHf

dxζ
=

1

c1

df

dx
, (5.45)

with c1 = (x/l0 + 1)
ζ−1

as given in (i) above. On account of (2.25), this is a re-writing of our derivative ∇D.

(iv) A consideration of angular momentum balance leading to a loss of symmetry of stress tensor in an equivalent

continuum has not been undertaken. Indeed, in view of our Sect. 3.3, the governing equations of flow in fractal porous

media studied by Balankin & Elizarraraz as well as that in Sect. 5.3 will have to be augmented by micropolar quantities.

5.5 Other fractal and fractional calculus mechanics models

In a series of works [54–56] a new approach to self-similar harmonic interparticle interactions has been advanced. First,

starting with a linear chain model, this has led to a self-similar Laplacian which, in the continuum limit, takes the form of a

combination of fractional integrals. Then the Hooke law becomes a non-local convolution with the elastic modulus function

being a power-law kernel. The authors identify an anomalous behavior of the elastic modulus function reflecting a regime

of critically slowly decreasing interactions. As another application, this Laplacian was employed to study a self-similar

diffusion, where solutions have been found to be Lévy-stable distributions with infinite variances [57].

Development of a mechanical theory of fractals (and non-smooth bodies in general) on the basis of differential spaces

of Sikorski has been undertaken in [58]. First a configuration space has been identified and then an extended form of the

principle of virtual work has been formulated, which, in turn, allowed a definition of generalized force and stress for fractal

objects, leading to a numerical determination of stiffness matrices of some common fractals. This approach has led to a

study of structural self-similarity [59, 60], its most interesting feature being that the stabilized properties are obtained only

after a finite number of iterations.

The past two decades have seen a marked output of works on fractional calculus in continuum mechanics. The typical

motivation is the interest in generalizing the constitutive equation for viscoelasticity or diffusion (e.g. heat conduction) via

fractional derivatives or integrals in place of Newtonian ones; of the vast literature in this area we only cite [62–68]. All

these studies, however, are characterized by the lack of (any clear) connection to the actual material microstructure, be it

fractal or non-fractal, a remark which is not meant as a criticism but a statement of an outstanding challenge in mechanics.

6 Closure

Fractals are abundant in nature. Since the mechanics of fractal media is still in its infancy, it is important to develop methods

to model fractal media. In this paper, we showed how fundamental balance laws for fractals can be developed using a

homogenization method called dimensional regularization. The basis of this method is to express the balance laws for

fractal media in terms of fractional integrals and, then, convert them to integer-order integrals in conventional (Euclidean)

space. Dimensional regularization produces balance laws that are expressed in continuous form, thereby simplifying their

mathematical manipulation. Of particular importance are the definitions of fractal space and time derivatives required

to preserve mathematical consistency. Following an account of this method, we showed how to develop balance laws

of fractal media (continuity, linear and angular momenta, first and second law of thermodynamics) and discussed wave

equations in several settings (1d and 3d wave motions, fractal Timoshenko beam, and elastodynamics under finite strains).

We also showed that angular momentum balance cannot be satisfied unless the stress tensor is asymmetric. Therefore,

the introduction of fractal effects into anisotropic problems requires the adoption of a non-classical elastic constitutive

model, the Cosserat model, for the balance laws to be satisfied. We discussed extremum and variational principles, fracture

mechanics, and equations of turbulence in fractal media. In all the cases, the derived equations for fractal media depend

explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon

setting the dimensions to integers. The fractal model discussed is useful for solving complex mechanics problems involving

fractal materials composed of microstructures of inherent length scale, generalizing the universally applied classical theory

of elastodynamics for continuous bodies. This model is a solid foundation upon which we can study (thermo)mechanical

phenomena involving fractals analytically and computationally.
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