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Natural selection is a mechanism for generating an exceedingly high degree of improbability. 

~ Ronald A. Fisher, 

Reported by Julian S. Huxley in Evolution in Action, 1953.
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Summary 

Summary 
 

Parasites represent one of the most notable ecological forces acting in both natural and sexual 

selection. Their detrimental effects on host condition and reproductive success can have 

strong consequences on ecological and evolutionary dynamics. Particularly, host-parasite 

coevolution can lead to local adaptation which in turn can drive the evolution of reproductive 

barriers between populations and fuel speciation. As hosts are engaged in an arms race against 

ever-changing parasites, they rely on effective and consistent ways to transmit defenses to 

their progeny. The work of my thesis examines these two aspects from the host perspective. 

In my first two chapters I focused on the evolution of reproductive barriers in incipient 

ecological speciation in the three-spined stickleback (Gasterosteus aculeatus). I particularly 

examined the role of ecology and parasites in limiting gene flow and maintaining 

differentiation between lake and river stickleback populations. Following previous work in 

this system showing local adaptation and assortative mating preferences based on differences 

at the Major Histocompatibility Complex (MHC), I investigated further mechanisms of 

reproductive isolation:  

First, I tested if post-copulatory pre-zygotic reproductive barriers (e.g. gametic isolation) 

occurred during incipient ecological speciation between lakes and rivers. Using replicated 

populations and in vitro fertilization assays in a full-factorial design, I could demonstrate 

ecotype-specific differences in sperm concentration and velocity. Even though these 

differences did not translate into ecotypic gamete preference, the results suggest an increased 

developmental failure of the eggs fertilized by heterospecific males. This implies that genetic 

incompatibilities may arise early on during ecological speciation. 

In my second chapter I examined the role of immune local adaptation to parasites in selection 

against maladapted migrants. Using a field transplant experiment with wild-caught juvenile 

sticklebacks, I found strong costs of migration between habitats in terms of survival and 

condition. I could also show that differences in parasites between lake and river were linked 

to maladapted responses on the innate and the adaptive immune. Furthermore, evidence for 

habitat-specific associations between local parasite species and locally selected MHC alleles 

provided insight into the maintenance of MHC diversity at the metapopulation level. 
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Summary 

In my final chapter I examined another aspect of the role of parasites, namely the role of 

paternal non-genetic effects of infection on life-history traits, resistance and tolerance. Until 

recently, non-genetic transgenerational effects mostly focused on mothers, whereas this 

experiment demonstrated that infected fathers could also contribute to variation in offspring 

phenotype. I showed paternal effects of experimental parasite infection mediated through 

sperm deficiency. By testing and revealing costs and benefits associated with paternal 

infection and controlling for genetic factors, I provided evidence for the adaptive value of 

non-genetic transgenerational effects of infection. Furthermore, I showed that resistance and 

tolerance to parasites can be shaped by both genetic and non-genetic effects. I discuss that the 

existence of non-genetic effects increasing offspring tolerance but not resistance can have 

strong consequences on host-parasite dynamics at ecological and evolutionary scales. 

This thesis reveals the role of parasites in promoting and maintaining diversity in their hosts, 

from the level of the sperm phenotype to the species level. While gametic isolation plays a 

minor role in ongoing ecological speciation, local adaptation to different parasite communities 

leads to high costs of migration. My work additionally reveals that parasites can affect 

phenotypic variation not only within but also across generations.  

 

 
4 



Zusammenfassung 

Zusammenfassung 

 

Parasiten sind eine der wichtigsten ökologischen Faktoren, die sowohl in die natürliche als 

auch sexuelle Selektion eingreifen. Ihre schädlichen Wirkung auf den Gesundheitszustand 

und den Fortpflanzungserfolg ihres Wirts können sich auf ökologische und evolutionäre 

Dynamiken auswirken. Vor allem die Coevolution von Wirten und Parasiten kann zur lokalen 

Adaptation führen, die wiederum zur Ausbildung von Fortpflanzungsbarrieren zwischen 

Populationen führt und Artspaltung antreibt. Während Wirte sich in einem Wettrüsten mit 

ständig verändernden Parasiten befinden, brauchen sie auch effektive und zuverlässige 

Methoden zur Weitergabe von Abwehrmechanismen an ihre Nachkommen. In meiner 

Doktorarbeit habe ich diese beiden Aspekte näher untersucht. 

In den ersten beiden Kapiteln habe ich mich auf die Evolution der Fortpflanzungsbarrieren in 

den frühen Stadien ökologischer Artbildung in Dreistachligen Stichlingen (Gasterosteus 

aculeatus) konzentriert. Ich habe ins Besondere die Rolle ökologischer Faktoren und von 

Parasiten auf die Einschränkung von Genfluss zwischen See- und Fluss-Populationen und 

deren Differenzierung untersucht. Frühere Arbeiten haben lokale Anpassungen und 

assortative Paarung nachgewiesen, die durch Unterschiede im 

Haupthistokompatibilitätskomplex (Major Histocompatibility Complex, MHC) in Stichlingen 

hervorgerufen wurden, woraufhin ich weitere Mechanismen der reproduktiven Isolation in 

diesem System untersucht habe:  

Als erstes habe ich überprüft, ob postkopulative, präzygote Fortpflanzungsbarrieren (z.B. 

gametische Isolation) zwischen See- und Fluss-Populationen bei einsetzender ökologische 

Artspaltung existieren. Mit replizierten Populationen und in vitro-Tests konnte ich Ökotyp-

spezifische Unterschiede in Spermienkonzentration und -geschwindigkeit nachweisen. Diese 

Unterschiede haben sich nicht in der Gameten-Präferenz innerhalb Ökotypen widergespiegelt 

aber dafür deuten die Ergebnisse dieses vollfaktoriellen Experiments auf einen erhöhten 

Ausfall von Eiern während der Entwicklung hin, die durch heterospezifische Männchen 

befruchtet wurden. Dies bedeutet, dass genetische Unverträglichkeiten schon früh in der 

ökologischen Artbildung auftreten können. 

In meinem zweiten Kapitel habe ich die Rolle von lokaler Immunoanpassung an Parasiten 

während der Selektion gegen schlecht angepassten Migranten untersucht. Mit einem 
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Zusammenfassung 

Feldversuch mit wild gefangenen, juvenilen Stichlingen fand ich große Fitnessnachteile 

vonMigration zwischen Lebensräumen in Bezug auf Überleben und Gesundheitszustand. Ich 

konnte Unterschiede zwischen Parasiten in See und Fluss mit schlecht angepassten Antworten 

des angeborenen und adaptiven Immunesystems in Verbindung bringen. Darüber hinaus 

gaben die Ergebnis zur Habitat-spezifischen Zuordnungen von lokalen Parasitenarten zu lokal 

selektierten MHC-Allelen einen Einblick in die Aufrechterhaltung von MHC-Diversität auf 

der Ebene von Metapopulationen. 

In meinem letzten Kapitel habe ich einen weiteren Aspekt der durch Parasiten vermittelten 

Selektion untersucht: die Rolle von paternalen, nicht-genetischen Effekten von Infektionen 

auf Life-History-Merkmale, Resistenz und Toleranz. Bisher wurden hauptsächlich nicht-

genetische, generationsübergreifend Effekte von Müttern untersucht. Das hier beschriebene 

Experiment hat jedoch gezeigt, dass infizierten Väter auch zur Variation des Phänotyps der 

Nachkommen beitragen können. Ich konnte zeigen, dass diese paternalen Effekte bei 

experimenteller parasitärer Infektion durch Spermiendefizite vermittelt wurden. Durch 

Untersuchung und Aufdeckung der Kosten und Nutzen paternaler Infektion, unter 

Berücksichtigung genetischer Faktoren, konnte ich Beweise liefern für den adaptiven Nutzen 

von nicht-genetischen, generationsübergreifenden Effekten parasitärer Infektionen. Darüber 

hinaus habe ich gezeigt, dass Resistenz und Toleranz gegen Parasiten sowohl durch 

genetische als auch nicht-genetische Effekte geformt werden können. Ich habe erörtert wie 

nicht-genetische Effekte, die die Toleranz aber nicht die Resistenz der Nachkommen erhöht, 

starke Auswirkungen auf die Wirt-Parasit-Dynamik im ökologischen und evolutionären 

Ausmaß haben können. 

Diese Doktorarbeit offenbart die Rolle von Parasiten bei der Förderung und 

Aufrechterhaltung der Diversität in ihren Wirten, von der Ebene Spermien-Phänotyps bis zur 

Artenebene. Während gametische Isolation nur eine untergeordnete Rolle bei der andauernden 

ökologischen Artbildung spielt, führt die lokale Adaptation an verschiedene 

Parasitengemeinschaften zu hohen Kosten bei Migration. Meine Arbeit zeigt darüber hinaus, 

dass Parasiten phänotypische Variation nicht nur innerhalb einer Generation sondern auch 

generationsübergreifend beieinflussen können. 
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Introduction 

Introduction 

Understanding the origin and the maintenance of biodiversity lies at the root of all questions 

in evolutionary biology. Evolutionary biologists have strived to understand the proximal and 

ultimate causes for variation within and between species. Particularly, among the still 

unanswered questions lies the role of ecological forces on the evolution of adaptive traits and 

on the formation of species. Parasites could be a key to solve these questions as they represent 

a strong selective force, ultimately driving the evolution of host traits and maintaining 

polymorphism through reciprocal adaptation. 

In the general introduction of my Ph.D. thesis, I will first explain how parasites represent one 

of the most notable ecological and evolutionary forces in both natural and sexual selection. By 

describing the state-of-the-art of research on parasite-mediated selection, I will provide the 

motivations underlying my studies. I will then focus on the role of parasites in the evolution 

of reproductive barriers leading to ecological speciation.  

 

1.1. Parasite-mediated selection  
 

A parasite is defined as an organism living in or on another living organism, obtaining 

resources from its host (e.g. nutrients) and causing various degrees of damage (Poulin 2006). 

Parasites are remarkable agents of selection as they increase their own fitness at the expense 

of the host’s resources and reproductive success (Maynard Smith, 1978). Parasitism is a very 

successful strategy, as it has been suggested that parasites greatly outnumber free living 

organisms (Windsor 1998; Kuris et al. 2008) and that there are probably no parasite-free 

organism (Poulin 1996).  

The constant coevolutionary struggle between hosts and parasites can help explain a great 

mystery: the maintenance of sexual reproduction (Hamilton 1980; Hamilton et al. 1990). 

Although asexuals have a two-fold reproductive advantage - they reproduce at twice the rate 

of sexuals - sex is widespread throughout plant and animal kingdoms (Maynard Smith 1978). 

The maintenance of sexual reproduction can be explained by an advantage linked to 

recombination during the dynamic race between hosts and parasites. The Red Queen 

hypothesis suggests that “for an evolutionary system, continuing development is needed just 
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in order to maintain its fitness relative to the systems it is coevolving with” (Van Valen 1973). 

Sex can thus provide a benefit in a changing environment (Jaenike 1978; Moritz 1991; Becks 

& Agrawal 2012). 

 

1.1.1. Host-parasite dynamics 

Hosts and parasites are engaged in an arms race for survival. The selection that each 

antagonistic actor imposes on the other thus causes strong reciprocal adaptation. This is 

illustrated by complex dynamics of allele frequency changes, for alleles coding for host 

resistance and parasite infectivity (Ebert & Hamilton 1996; Little 2002; Jokela et al. 2009). 

These dynamics can take different forms: (i) recurrent adaptation, where advantageous alleles 

sweep through host and parasite populations, leading to the repeated fixation of virulence and 

defense traits (e.g. Poullain et al. 2008); (ii) Red Queen dynamics sensu stricto, characterized 

by negative-frequency-dependent selection (e.g. Koskella & Lively 2009). In the latter, host 

and parasites adapt to common antagonistic genotypes, leading to out-of-phase fluctuations in 

allele frequencies. These adaptive changes rely on standing genetic variation and the recycling 

of alleles. Notably, allele frequencies can increase from both rare or frequent advantageous 

alleles (Lively & Dybdahl 2000; Bernatchez & Landry 2003; Jokela et al. 2009; Eizaguirre et 

al. 2012a). 

Although demonstrating such patterns of ongoing selection is not straightforward, the recent 

use of experimental (co)evolution experiments has permitted to empirically test the Red 

Queen hypothesis. In addition to the seminal work of Curtis Lively (1987) that showed 

correlation between rates of sexual reproduction and parasite resistance in Potamopyrgus 

snails (Lively 1987), recent experimental work has confirmed that rapid antagonistic 

coevolution leads to both an advantage of sex and an increase in genetic diversity: Using the 

host nematode Caenorhabditis elegans and its parasite the bacteria Bacillus thuringiensis, 

Schulte and colleagues (2010) experimentally showed that antagonistic coevolution followed 

rapid temporal genetic fluctuation. There, Red Queen dynamics increased host resistance and 

parasite virulence and ultimately led to high genetic diversity. In an experiment “resurrecting” 

dormant stages of Daphnia and their bacterial endoparasites, Decaestecker and colleagues 

(2007) could reproduce the patterns of evolution and reciprocal adaptation across time, see 

also (Gandon et al. 2008). Lastly, a recent selection experiment has shown that one generation 
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is sufficient to select for increased parasite species-specific resistance via adaptive change in 

immunogenetic allele frequency (Eizaguirre et al. 2012a). Those fascinating examples 

represent only a fraction of the efforts to reveal the role of parasites in the maintenance of sex 

(Morran et al. 2011), of genetic diversity (Koskella & Lively 2009; Paterson et al. 2010; 

Schulte et al. 2013) and in coevolutionary dynamics of both host and parasite traits (Dybdahl 

& Lively 1998; Jokela et al. 2009; King et al. 2011). As the Red Queen hypothesis relies on 

variation in host defenses, I will present the diversity of adaptive defenses against parasites 

and their mode of inheritance in the next two sections. 

 

1.1.2. Defenses against parasites  

The diversity of parasites that hosts can encounter has led to the evolution of a diverse range 

of defenses. These include behavioral avoidance as well as physical, cellular or molecular 

barriers (Janeway 2001; Moore 2002; Schulenburg et al. 2009). Particularly, complex 

immune systems have evolved to limit both (i) levels of infection via resistance and (ii) 

associated damages via tolerance.  

Resistance and tolerance are two alternative but complementary strategies. Until recently, the 

subtle semantic distinction has led to misunderstandings in parasitology and evolutionary 

ecology (Medzhitov et al. 2012). Resistance is defined as the protection of the host to avoid 

reaching high levels of parasite infection, by limiting parasite contact, entry and establishment 

in or on the host. Tolerance reduces the deleterious consequences of parasite infection - the 

host withstands infection but suffers limited fitness consequences (Svensson & Råberg 2010). 

Resistance and tolerance can be disentangled by looking at (i) differences in infection rates 

(i.e. standardized parasite burden) and (ii) differences in fitness with similar parasite burden 

respectively (Fig. 1). Thus, increased Darwinian fitness can theoretically be achieved by 

higher resistance associated with lower parasite burden and/or by higher tolerance associated 

with higher costs’ mitigations. Recently, Råberg and colleagues (2007)established a statistical 

framework, derived from plant-pathogen research, to identify differences in resistance and 

tolerance between groups (e.g. strains, experimental treatments, populations or species) 

(Råberg et al. 2007). There, parasite resistance is estimated as the inverse of parasite burden 

and tolerance as the rate of change in fitness as parasite burden increases (see Figure 1) 

(Ayres & Schneider 2012; Vale et al. 2014).  
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(c) (d)
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Figure 1: Disentangling parasite tolerance and parasite resistance: Tolerance is defined as the 
reaction norm of health over the level of infection (i.e. slopes), whereas resistance is defined as the 
average parasite burden. The green and orange colors represent two different groups (e.g. genotypes, 
populations, species). Thus, differences in slopes between groups indicate differences in tolerance 
whereas differences in mean parasite burdens indicate differences in resistance. (a): same tolerance, 
difference in resistance (Rorange>Rgreen); (b): difference in tolerance (Torange>Tgreen), same resistance ; (c) 
differences in both tolerance and resistance (higher tolerance for green, higher resistance for orange); 
(d) no differences in either tolerance or resistance but a discrepancy in vigor (higher mean health for 
orange). Figure adapted from Råberg 2007. 

 

On one hand, resistance involves surface, cellular and extracellular barriers. On the other 

hand, tolerance involves tissue repair (Playfair et al. 1990), the limitation or control of “overly 

exuberant immune responses” or immunopathology (i.e. pathology associated with immune 

responses against the pathogen) (Råberg et al. 2009; Sorci 2013). For example, high levels of 

tolerance can be achieved by the production of anti-inflammatory cytokines by regulatory 

lymphocytes, leading to the resolution of a costly inflammatory response and a return to a 

healthy homeostatic state (Long et al. 2008a; b; Belloni et al. 2010). 

When studying evolution of host defenses, it is important to distinguish between these two 

processes as they can have different consequences on pathogen and host phenotypes as well 

as ecological and evolutionary dynamics (Roy & Kirchner 2000). Host-parasite interactions 
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involving resistance lead to antagonistic coevolution, as an increase in resistance, by 

definition, reduces the reproductive success of non-adapted parasites and thus parasite 

population size (Svensson & Råberg 2010). However, increase in tolerance does not limit the 

establishment of parasites but mainly reduces their impact on the host fitness and thus, 

theoretically, has no negative effect on parasite population size and reproductive success 

(Miller et al. 2005). Models even showed that, by imposing mild selective pressure on 

pathogens, tolerant hosts can potentially act as pathogen reservoirs, increasing the overall 

transmission and ultimately the fitness of the pathogen (Roy & Kirchner 2000; Miller et al. 

2005; Best et al. 2014).  

Immune systems 

Immune defenses play a central role against parasite infection and consequent pathologies. 

The immune system is commonly defined as the biological processes recognizing non-self 

from self, leading to the protection against diseases. The vertebrate immune system can be 

seen as two independent albeit intertwined parts: the innate and the adaptive immune system, 

based on both humoral and cell-mediated immunity.  

The innate immune system incorporates rapid but rather unspecific responses against all 

pathogens. These first barriers to infection include surface and cellular barriers, inflammatory 

responses characterized by the recruitment of immune cells and biochemical cascades such as 

the activation of the complement system (Janeway 2001). The immune cells involved in this 

immediate response to infections include granulocytes (basophils, eosinophils and 

neutrophils), macrophages, dendritic cells and natural killer cells. The innate immune system 

reacts in an antigen-independent manner, meaning that responses are thought to be rather 

unspecific and can induce immunopathological costs (e.g. inflammation) at each infection. 

Immunopathology represents host damage following immune activation. Noteworthy, recent 

studies show a certain level of pathogen-specificity of the innate immune system relying for 

example on germline-encoded pattern-recognition receptors (Kurtz & Franz 2003; Schmid-

Hempel & Ebert 2003). 

The adaptive immune system, found only in jawed vertebrates, is characterized by a delayed 

response to infection and a high specificity due to being antigen-dependent. It is based on 

recognition of antigens (antibody generators) by immune cells and immunological memory 

after exposure to pathogens. Non-self antigens can be foreign molecules that stem from 

foreign bodies (e.g. viruses, bacteria, and macroparasites). After binding to immune receptors 
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which are present on most cells, antigens are presented to T-lymphocytes (Box 1). Thereafter, 

a variety of responses are initiated to eliminate the identified pathogens or pathogen-infected 

cells: proliferation of T-lymphocytes, recruitment of granulocytes, cytotoxicity by CD8+ T 

lymphocytes, production of memory B cells and antibodies. These responses provide an 

extremely efficient way to fight specific pathogens. Amongst others, Major 

Histocompatibility Complex (MHC) molecules play a central role in specific immunological 

responses (Janeway et al. 2001). 

The proximate and ultimate roles of MHC 

MHC surface molecules present peptide antigens to T-lymphocytes, inducing immunological 

recognition between self and non-self (see Box 1). MHC Class I molecules bind specifically 

intracellular pathogens (e.g. viruses) and MHC Class II bind extracellular pathogens (e.g. 

macroparasites). Responses of the adaptive immune system (cell death, macrophage 

activation, B cell activation) are thus highly dependent on the variability of MHC genes 

coding for these molecules. It is not surprising that MHC genes are amongst the most diverse 

genes in the genome in terms of copy number variation (e.g. Chain et al. 2014), allelic 

diversity (Tennessen et al. 2012) and sequence divergence (Kelley et al. 2005). In humans for 

example, over 9200 alleles were found at MHC class I loci and 3000 at MHC class II 

(Robinson et al. 2013). This rare level of polymorphism is thought to be maintained by 

balancing selection on MHC genes as a result of parasite-mediated selection.  

Several hypotheses have been proposed to explain the maintenance of such polymorphism, 

such as heterozygote advantage (Doherty & Zinkernagel 1975), negative-frequency dependent 

selection (Clarke & Kirby 1966; Borghans et al. 2004; Eizaguirre et al. 2012a) and fluctuating 

selection (Hill 1991). Although these hypotheses are not mutually exclusive (Apanius et al. 

1997; Milinski 2006; Eizaguirre et al. 2009b; Lenz et al. 2009b), the relative contribution of 

each in the maintenance of MHC polymorphism is still under debate (Slade 1992; Potts & 

Slev 1995; Edwards & Hedrick 1998). Specific MHC alleles or an optimal diversity can be (i) 

naturally selected through a direct selective advantage in resistance to pathogens (Wegner et 

al. 2003a) and (ii) sexually selected by female preference for males carrying specific alleles 

(“good genes”) or an optimal number of alleles (Milinski et al. 2005; Eizaguirre et al. 2009b; 

Kamiya et al. 2014). 
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Box 1: The MHC II pathway 

Antigen Presenting 

Cell

Extracellular

pathogen

MH genes

MHC II 

+ antigen peptide

Immature CD4+ T-cell

TCR

 

Genes of the Major Histocompatibility Complex class II code for surface molecules involved in 

antigen presentation to immature helper T lymphocytes. MHC class II proteins (green) are expressed 

on the surface of antigen presenting cells (e.g. macrophages, B cells or immature dendritic cells). 

Contrary to MHC class I, MHC class II molecules are specialized in the presentation of protein-

derived peptides from extracellular pathogens (bacteria, macroparasites; red). After a protein is 

endocytosed and degraded, derived peptides will be bound by MHC class II molecules and displayed 

on the cell surface. The antigen-binding sites located in the peptide-binding groove (orange) are 

responsible for binding the antigenic peptides. MHC class II proteins present this peptide to the T-cell 

receptor (TCR, purple) of immature CD4+ helper T lymphocytes. This ultimately triggers T-cell 

proliferation, cytokine secretion, macrophage activation and antibody production, thus regulating and 

assisting in the active immune response to extracellular pathogens. The MHC genes coding for the 

peptide binding region exhibit a high degree of polymorphism, increasing the variety of peptides that 

can be presented to T cells.  
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1.1.3. The inheritance of defenses against parasites 

The theory of host-parasite coevolution is mostly based on host resistance and pathogen 

virulence (Anderson & May 1982). To be adaptive, these traits need to provide an advantage 

but must also be variable and heritable. Heredity is defined as the transmission 

of characteristics from parents to offspring. Since the Modern Synthesis, evolutionary 

biologists almost unanimously agreed that heredity relies on vertically transmitted genetic 

material (Fisher, 1930 chapter I; Jablonka & Lamb, 1995). As we have seen, coevolutionary 

dynamics rely on reciprocal changes in allele frequencies and therefore on both standing 

genetic variation and strong genetic basis for host defenses (Malo & Skamene 1994; Sorci et 

al. 1997; Hill 1998) Although host-parasite coevolution theory has been mostly established on 

a genetic basis of inheritance, it has now been acknowledged that non-genetic components 

can also play a role in short- and long-term effects.  

Non-genetic transmission of host defenses 

The recent regain of interest for nongenetic transgenerational effects (i.e. epigenetics, 

maternal effects) provides a perspective for extending and developing theories in evolutionary 

ecology of host-parasite coevolution and evolutionary biology in general (Wolf et al. 1998; 

Jablonka 2009; Day & Bonduriansky 2011; Bonduriansky 2012) see Box 2). Under this 

theory, phenotypic variation -i.e. the target of selection- is not only depending on genes or on 

the environment but also on influences from the parental phenotype and life history that can 

be transferred across generations. 

The effect of parasite infections can cross transgenerational barriers and affect offspring 

immunity and fitness drastically (Poulin & Thomas 2008). Several mechanisms can shape an 

individual’s resistance or tolerance against pathogens depending on its parents’ parasitic 

experience. Although transgenerational phenotypic plasticity cannot be defined as inheritance 

sensu stricto, it represents an additive component in the variation of offspring phenotype and 

defenses (Bonduriansky & Day 2009). Prenatal and postnatal maternal effects of parasite 

infection can take many forms, such as adjustment of parental care (Mousseau & Fox 1998).  
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Non-genetic 

factors
G0 G1

Alleles

Environment

 

Box 2: Inheritance revisited: A pluralistic model of heredity 

One of the pillars of evolution by natural selection is that traits conferring a fitness advantage are 

heritable (Darwin 1859). After the development of the Modern Synthesis of Evolutionary 

Biology, heritability was mainly characterized by a universal mechanism, the vertical transmission 

of genetic material. Although some scientists discussed alternative models of heredity, most 20th 

century evolutionary theories were established on vertical transmission of DNA or “hard” 

inheritance. Soft inheritance (for instance Lamarckian inheritance) based on the transgenerational 

transmission of other components than DNA influenced by parental phenotype and/or 

environment, was not strongly considered at the time. Robust evidence is now accumulating for 

mechanisms of non-genetic inheritance, such as maternal effects (Mousseau & Fox 1998), 

epigenetic marks affecting gene expression (Goldberg et al. 2007), somatic inheritance (Skinner et 

al. 2012) or social/cultural inheritance (Laland et al. 2010). These mechanisms that contribute to 

phenotypic variation across generations, have the potential to be adaptive (Marshall & Uller 2007; 

Burgess & Marshall 2014) and could affect evolutionary dynamics (Klironomos et al. 2013a). An 

emerging extended model of inheritance has been developed to recognize both soft and hard 

inheritance (Danchin & Charmantier 2011; Bonduriansky 2012). This synthetic theory 

acknowledges that other factors (green arrow; i.e. information, molecules, resources, territories) 

are transmitted across generations alongside alleles (blue arrow), while appreciating the fact that 

the latter are essential. This model represents an exciting new development for ideas in 

evolutionary biology and provides the potential to revisit previously established theories from a 

more comprehensive perspective.  

Figure adapted from (Bonduriansky 2012). 
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When infected or immunologically-challenged, mothers can transfer various molecules 

through placental, milk, egg yolk or albumen such as nutrients, antibodies (Buechler et al. 

2002; Hasselquist & Nilsson 2009), hormones (Hayward & Wingfield 2004; Postma et al. 

2014) or lysozymes (Saino & Dall’Ara 2002). 

Transmission of maternal immunity is not a new finding, as it was initially discovered in 

vertebrates over 120 years ago (Ehrlich 1892). Maternal transfer of antibodies or antibody-

like structures is particularly interesting, as it leads to trans-generational immune priming (i.e. 

trans-generational vaccination effects). This increases offspring defenses during their early 

life-stages, when the adaptive immune system is naïve and the offspring most vulnerable. 

Circulating antibodies are transferred as a result of maternal infection or immune activation 

(Grindstaff et al. 2003; Hasselquist & Nilsson 2009). Transgenerational immune priming can 

increase humoral activity (Lemke et al. 2004) and can enhance immune responses from 

months to years after exposure (Reid et al. 2006; Ramos et al. 2014). 

Research on parental effects focused previously on mothers due to their close physical and 

physiological link to their offspring. However, the fact that epigenetic marks (e.g. 

methylation, acetylation patterns) can be inherited allow to go beyond the effect of the sole 

mother and integrate paternal life-history in shaping offspring phenotype (Morgan et al. 1999; 

Jablonka 2009). Fathers can thus also contribute to variation in offspring immune defenses 

through paternal effects (Curley et al. 2011; Rando 2012). However, discussions on the direct 

or indirect nature of paternal effect just recently started, making the study of the underlying 

mechanisms of paternal immune priming a new axis of investigation (Crean & Bonduriansky 

2014). The exact nature of the factors involved still represent a mystery, but sperm (i.e. 

spermatozoa and associated proteins) is an ideal candidate for mediating paternal effects 

(Crean et al. 2012; Rando 2012, Bromfield et al. 2014). In pipefishes, the evolution of 

paternal immune priming has been proposed to be associated with the evolution of sex-role 

reversal (Roth et al. 2012). However, this effect can also occur in “classic” sex-roles species. 

For example, paternal priming has also been found in the red flour beetle where mechanisms 

might involve sperm and sperm-associated proteins (Roth et al. 2010; Eggert 2014). These 

studies however focus on the role of immune activation on transgenerational priming by using 

heat-shock killed bacteria rather than live pathogens. Consequently, the mechanisms of 

paternal effects of pathogen infection per se, as well as the costs and consequences of this 

effect are still largely unknown. 

 
18 



Introduction 

 

Evolutionary implications of non-genetic transgenerational effects 

Transgenerational effects can prepare offspring for a parasite-rich environment and can thus 

be extremely advantageous when parasite presence is predictable. However, acknowledging 

such effects as possible adaptive evolutionary responses is quite recent (Marshall & Uller 

2007). At this point it is important to clarify the distinction between transgenerational effects 

that have the potential to be adaptive (i.e. the mechanism of transmitting information or 

resources) from the information or resources itself. Notably, in many cases, parental infection 

can induce only costs on offspring fitness and these transgenerational effects do not always 

represent the product of selection but could only the consequence of physiological or 

developmental constraints (Gould & Lewontin 1979; Linder & Promislow 2009). Nongenetic 

transgenerational effects, together with transgenerational changes in allele frequencies 

(Eizaguirre et al. 2012a), can represent a fast response to selection (Marshall 2008). These 

transgenerational effects can efficiently influence offspring phenotypes in response to 

prevailing environmental stress. They can thus complement fast changes in allele frequencies, 

by providing adaptive plasticity to individuals carrying non-advantageous genetic material 

(Mousseau et al. 2009). Adaptive parental effects are expected to have evolved under 

predictable and reliable environments across generations so that parents have reliable cues to 

future conditions (Marshall & Uller 2007; Burgess & Marshall 2014). The strict context-

dependence of such effects as well as the high direct costs (due to the presence of the stressor) 

can explain why not all individuals in a population can express parental effects (Marshall 

2008; Uller 2008). Overall, evidence for adaptive parental effects is extremely weak and 

virtually absent for parasite infections (Uller et al. 2013).  

Clearly parasites represent a selective pressure that varies and, within the time frame of 

successive generations, is to some extent predictable. Indeed, even if not vertically 

transmitted, parasite infections during the parental generation increase the likelihood that 

offspring get exposed to the same parasite species and/or genotype. The presence of a parasite 

in a given generation is thus more likely to predict parasite presence in the next generation 

than to predict parasite absence in the next generation. 

Although non-genetic transgenerational effects are transitory and short-timed, recent models 

showed that they can ultimately play a significant role in selection and the speed of evolution 

(Klironomos et al. 2013a; McGlothlin & Galloway 2013). Theoretical studies have shown 
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that transgenerational immune priming, while beneficial in the short term, might increase 

parasite prevalence in the long term (Mostowy 2012; Tidbury et al. 2012). Mostowy and 

coworkers (2012) suggested theoretically that non-genetic transgenerational effects can 

completely eliminate coevolutionary oscillations and bring Red Queen dynamics to a stop. 

Also, by maintaining non-selected alleles in the population through the survival and 

reproduction of genetically non-resistant individuals, non-genetic transgenerational effects 

can maintain a high level of immunogenetic diversity. Further theoretical but mostly empirical 

work is therefore needed to understand the complex interplay between genetic and non-

genetic transmission of host defenses and the relative role of non-genetic effects. 

 

 
20 



Introduction 

 

1.2. Speciation  

 

1.2.1. On the origin of speciation 

Understanding the origin of species is the “mystery of mysteries” of evolutionary biology 

(Darwin 1859). To understand the conditions and the mechanisms of speciation, we first have 

to define “species”. The working definition used by most evolutionary biologists is the 

biological species concept: “groups of interbreeding natural populations that are 

reproductively isolated from other such groups” (Mayr 1942).  

This central focus of early speciation research was allopatric speciation, where physically 

isolated populations undergo genotypic divergence. Upon secondary contact, individuals from 

respective populations have become unable to interbreed and thus reproductively isolated 

(Dobzhansky 1940; Mayr 1963). There are multiple mechanisms of reproductive isolation, 

including premating isolation, postmating prezygotic barriers (i.e. gametic isolation) and 

postzygotic barriers (Coyne & Orr. 2004). 

Although Mayr recognized the role of ecological divergence in speciation (Mayr 1947), 

divergence between populations was mostly attributed to neutral processes reducing gene 

flow (i.e. genetic drift between allopatric populations). Divergence with gene flow- in 

sympatric and parapatric systems- is what distinguishes recent models from previous models 

of speciation (Butlin et al. 2008; e.g. Niemiller et al. 2008). More than 150 years after 

Darwin, substantial attention is again being paid to the role of natural selection in speciation. 

Recently, research on ecological speciation has focused on the role of divergent natural 

selection among different ecological habitats (Schluter & Conte 2009).  

 

1.2.2. Ecological speciation  

Ecological speciation occurs when the evolution of reproductive isolation results from 

divergent selection on ecologically-linked traits in different ecological niches (Schluter 2001; 

Rundle & Nosil 2005). This leads to the formation of locally adapted and genetically-discrete 

demes, named ecotypes or ecomorphs, which can be preliminary steps of speciation. 
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Association between ecological divergence and population differentiation can stem from a 

linkage of the genes under ecological selection with the ones contributing to reproductive 

isolation (Hawthorne & Via 2001; Rundle & Nosil 2005; Kronforst et al. 2006). 

Alternatively, this can be achieved by “magic traits” with pleiotropic effects on both natural 

selection based on ecological contrasts and reproductive compatibility between ecotypes 

(Eizaguirre et al. 2009a; Servedio et al. 2011; Servedio & Kopp 2012). 

Gene flow between ecotypes continues to decrease as drift and reinforcement contribute to 

differentiation, potentially resulting in complete reproductive isolation and species formation. 

Reinforcement is the evolution of additional barriers due to selection against hybridization 

(Coyne & Orr. 2004). Although much attention has been given to examples where ecological 

divergence drove sympatric speciation, ecological speciation can occur also in allopatry (fully 

geographically isolated populations) and parapatry (adjacent populations, with potential gene 

flow) (Mayr 1947; Wu & Ting 2004). It is interesting to note that finding evidence for 

ecological speciation in sympatric systems provides support for ecological speciation in any 

of these contexts. Overall, finding evidence of reproductive barriers in sympatric and 

parapatric system is particularly interesting, as potential gene flow in these systems is 

predicted to impede adaptation (Garant et al. 2007).  

Although many reviews of ecological speciation have been written (Rundle & Nosil 2005; 

Schluter 2009; Nosil et al. 2009; Hendry 2009; Boughman 2013), comprehensive empirical 

studies are surprisingly rare. Hendry (2009) suggested that studied systems do not always 

show signatures of ecological speciation because adaptive divergence is not always associated 

with reproductive barriers. Ecological speciation is a continuum with overlapping following 

stages of adaptive variation, adaptive divergence and various levels of reproductive isolation 

(Hendry 2009; Theis et al. 2014). Systems with strongest evidence for adaptive radiation 

based on ecological factors include fishes (Schluter 1996; McKinnon & Rundle 2002; 

Barluenga et al. 2006; Eizaguirre & Lenz 2010), phytophagous insects (e.g. Via et al. 2000) 

and species restricted to islands (e.g. Losos & Ricklefs 2009; Losos & Mahler 2010). 

There has been substantial recent progress in understanding the genetics mechanisms 

underlying ecological speciation. Investigating genome-wide patterns of genetic variation 

associated with ecological speciation revealed (i) loci under divergent selection showing high 

levels of differentiation between ecotypes (Hawthorne & Via 2001; Renaut et al. 2012; 

Feulner et al. 2015) and (ii) the genetic architecture of the phenotypes involved (Peichel et al. 
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2001; Rogers & Bernatchez 2007; Arnegard et al. 2014). Cases of repeated evolution between 

ecotypes highlight the potential importance of recurrent evolution based on standing genetic 

variation. For example, Jones and colleagues (2012) show the repeated use of the same loci 

and chromosomal inversions in differentiation between marine and freshwater stickleback 

population pairs across the Northern Hemisphere.  

Despite recent theoretical and empirical advances on the role of ecology in population 

differentiation and speciation, we still lack understanding of the mechanisms responsible for 

the evolution of reproductive isolation (Gavrilets 2003; Butlin et al. 2012). Particularly in 

cases of divergence with gene flow, research is needed to explain when and how barriers form 

and how different barriers work in concert. Functional links must be made between genotype, 

phenotype, fitness and reproductive isolation (Smadja & Butlin 2011; Butlin et al. 2012). 

Although genomic tools might help us understand the underlying genetic basis of ecological 

speciation, identifying which ecological factors are responsible for adaptive divergence 

among populations remains of primary importance. 

1.2.3. Parasite-mediated speciation  

Parasites and pathogens represent ubiquitous ecological pressure strongly acting on host 

natural and sexual selection. Due to high specificity between host and parasite genotypes, it 

has been suggested that parasites can play a major role in initiating or reinforcing 

reproductive barriers in hosts throughout the speciation process (Price et al. 1986; Haldane 

1992). In the following section, I will explain how host-parasite coevolution can fuel 

speciation processes.  

Parasite-mediated speciation requires (i) differences in parasite communities between habitats 

and (ii) local adaptation of the host within habitats (Eizaguirre et al. 2009a; Eizaguirre & 

Lenz 2010; Karvonen & Seehausen 2012). Discrepancies in parasites distribution between 

ecotypes has been reported in a number of taxa (reviewed in Karvonen & Seehausen 2012). 

These differences can result from various factors, such as abiotic factors or the presence of 

intermediate hosts (Poulin 2006). The differences in parasite abundance or communities 

between habitats are likely to generate genetically locally adapted host populations 

(Eizaguirre & Lenz 2010; Eizaguirre et al. 2012b). Notably, although habitat differences in 

the abundance of one parasite species might cause population differentiation (De Roij et al. 
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2011), the joint effect of multiple parasites is more likely to drive speciation (Eizaguirre et al. 

2011).  

Parasite-mediated natural selection in ecological speciation 

Higher parasite loads in migrants and hybrids as a result of local adaptation can impose strong 

costs on condition and survival, which ultimately reduce fitness of migrants and hybrids 

(Kaltz & Shykoff 1998; Thompson 2002; Nosil et al. 2005). Evidence for parasite-mediated 

natural selection acting against maladapted hosts in the context of speciation is mostly 

correlative and largely inconclusive. Some studies have shown higher parasite loads in 

hybrids, and other lower parasite loads (Sage et al. 1986; Fritz et al. 1999; MacDougall-

Shackleton et al. 2002). However, a few transplant experiments between subpopulations from 

different ecotypes have shown that local adaptation can result in reduced condition of 

migrants or hybrids (MacColl & Chapman 2010; Eizaguirre et al. 2012b; Räsänen & Hendry 

2014). These costs can be mediated by divergence in adaptive immune genes and divergence 

in the expression of innate and adaptive immune responses (Rauch et al. 2006; Scharsack et 

al. 2007; Eizaguirre et al. 2012b).  

 

Parasite-mediated sexual selection in ecological speciation 

Parasite-mediated sexual selection can also play a role in species divergence. Parasites affect 

sexually selected traits (i.e. ornaments), and females have evolved preference towards 

resistant males characterized by “flamboyant” ornaments (Darwin 1871; Zahavi 1975; 

Hamilton & Zuk 1982; Milinski & Bakker 1990). In the context of local adaptation, mate 

preference for highly resistant and tolerant individuals selects against locally maladapted 

hosts with higher parasite load and low condition. Parasite-mediated sexual selection can thus 

directly contribute to the maintenance and acceleration of habitat-specific population 

differentiation and play a role in reinforcement of local adaptation (Ritchie 2007; Eizaguirre 

et al. 2009a, 2012b; Maan & Seehausen 2011). Correlative studies have shown associations 

between the level of parasite infection and variation in sexually selected traits (i.e. coloration) 

within populations (Moller et al. 1999; Maan 2006; Maan et al. 2008). Causal evidence for 

the role of parasite-mediated sexual selection in ecological speciation is though still limited. 
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MHC - a magic trait driving ecological speciation 

It is clear that immunogenes enabling rapid evolution of parasite resistance can play a major 

role in local adaptation and ecological speciation (Eizaguirre et al. 2009a). MHC genes are 

strong candidates for magic traits – they are highly diverse and specific, and show pleiotropic 

effects on natural and sexual selected traits. It has thus been proposed that MHC genes encode 

a magic trait involved in population differentiation and ultimately speciation (Eizaguirre et al. 

2009a; Eizaguirre & Lenz 2010).  

First, the specificity between MHC genotypes and parasites leads to locally adapted MHC 

genotypes (Sommer 2005; Piertney & Oliver 2006; Wegner 2008). Such associations result in 

habitat-specific MHC repertoires. There, contrasting immunogenetic allele pools provide the 

fuel for population differentiation and ecological speciation. MHC divergence between 

habitats has been shown mostly in fishes (e.g. Matthews et al. 2010; Eizaguirre et al. 2011; 

McCairns et al. 2011; Natsopoulou et al. 2012) but thanks to the development of genetic tools 

it is extending to other taxa (e.g. (Babik et al. 2008; Radwan et al. 2014). A recent long-term 

reciprocal transplant experiment revealed that MHC differences between these ecotypes 

indeed represented local adaptation to local parasites (Eizaguirre et al. 2012b). This 

experiment exposed laboratory-bred individuals to natural parasite communities, highlighting 

the importance of long periods of selection to identify patterns of local adaptation in semi-

natural conditions.  

Second, MHC is known to be involved in mate choice, hence facilitating local adaptation 

(Milinski 2006). Indeed, theory predicts that females will prefer males with specific MHC 

alleles or genotypes providing resistance against common local parasites. This selection for 

“good genes” can eventually lead to MHC-dependent assortative mating and to ecotype-

specific mating preference (Milinski 2006; Eizaguirre et al. 2009a; b, 2011; Lenz et al. 

2009b). 

What are the conditions for parasites to drive reproductive isolation and cause speciation is 

still an open question. Although MHC-mediated mate choice is recognized throughout jawed 

vertebrates, the role of MHC-based mate preference as a reproductive barrier has only indirect 

support (but see (Blais et al. 2007; Eizaguirre & Lenz 2010; Raeymaekers et al. 2010; 

McCairns et al. 2011; Eizaguirre et al. 2011). Differences in parasite communities between 

populations do not necessarily lead to differences in MHC allele pools, even if MHC diversity 

and parasite load are correlated (Tobler et al. 2014, see Wegner 2008). In fact, balancing 

selection could then maintain genetic diversity at MHC loci while diversity on the rest of the 

 
25 



Introduction 

genome decreases, hence counteracting population differentiation and impeding the speciation 

process (Ricklefs 2010; Tobler et al. 2014). It results that, to understand the condition under 

which parasites promote or prevent speciation, it is necessary to investigate the strength of 

local parasite-mediated selection and the specificity of host-parasite interactions. Particularly, 

the role of MHC mediated natural selection against natural migrants is still to be determined.  

 

1.2.4. Can gametic isolation play a role in ecological speciation? 

Speciation often involves a combination of different reproductive barriers (Coyne & Orr. 

2004). Post-mating pre-zygotic isolation includes processes that prevent fertilization after 

mating and the formation of hybrids (Howard 1999). These processes comprise limited 

transfer of viable sperm in heterospecific female tract, differential storage or use of 

heterospecific male sperm as well as incompatibilities between spermatozoa and eggs, 

preventing gamete binding or fusion (Coyne & Orr. 2004). These reproductive barriers can 

play an important role in population differentiation, particularly during reinforcement (Lorch 

& Servedio 2007; Lorch et al. 2011). There, genetic differentiation between isolated 

populations is expected to facilitate the evolution of further reproductive barriers (Servedio 

2001; Ortiz-Barrientos et al. 2009). Indeed, post-mating barriers can contribute to 

reinforcement in concert with pre-mating barriers that are not absolute, particularly as 

occasional mating between ecotypes is possible. In cases of ecological speciation, natural and 

sexual isolation against migrants and hybrids represent commonly described fast-evolving 

barriers. However, the costs of producing unfit hybrids has the potential to promote pre-

zygotic barriers limiting the production and development of hybrids (Ludlow & Magurran 

2006; Immler et al. 2011). 

Due to their cryptic nature, post-mating pre-zygotic barriers are challenging to investigate, 

hence the relatively low number of studies published to date (Eady 2001; Birkhead & Brillard 

2007; Martín-Coello et al. 2009). The high level of species divergence in egg-sperm 

recognition proteins suggests gamete phenotypes play important roles in reproductive 

isolation (Turner & Hoekstra 2008). Sequence divergence in fertilization proteins is 

associated with assortative gamete preference at the species level. Genetic drift and ecological 

phenotypic divergence on gametic traits can therefore initiate and reinforce reproductive 

barriers during ecological speciation. The underlying mechanisms can involve neutral or 

adaptive divergence in molecules implicated in attraction and recognition between gametes or 
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in reproductive physiology (Palumbi 1994; Vacquier 1998; Swanson & Vacquier 2002; Geyer 

& Palumbi 2005).  

Also between ecotypes, divergence in gamete and reproductive tract phenotypes might result 

in post-copulatory reproductive barriers. In the case of ecological speciation, divergent 

selection on sperm and egg characteristics due to differences in the environment (particularly 

in species with external fertilization) can theoretically lead to gametic isolation. 

Environmentally-mediated changes in sperm morphology have been suggested to contribute 

to differential fertilization success between species and thus to speciation (Immler et al. 

2011). In addition to gamete divergence and gametic isolation sensu strico, local adaptation to 

parasite communities can result in reduced fertility as immune variation linked to parasite 

infection is expected to detrimentally affect sperm production and phenotype (Folstad & 

Karter 1992; Kurtz et al. 2007). As fertilization success can be related to infection and high 

infection rates, migrants would fertilize fewer eggs, leading to reduced gene flow (Liljedal et 

al. 1999; Kekäläinen et al. 2014). 

One type of gametic barrier is conspecific sperm precedence (CSP) - preferential fertilization 

of eggs by sperm of conspecific males when occurs when females mate with both conspecific 

and heterospecific males (Servedio 2001; Coyne & Orr. 2004). CSP represents the gametic 

equivalent of assortative mating and conspecific mating preference across populations (or 

ecotypes). There, eggs from a local female are more likely to be fertilized by sperm from a 

local male than the sperm of a migrant male, when in competition. CSP seems to be a 

prevalent mechanism across species to reduce the production of hybrids (Hewitt et al. 1989; 

Wade et al. 1994; Price et al. 2000; Martín-Coello et al. 2009; Immler et al. 2011). CSP has 

also recently been shown between guppy populations separated for two million years (Ludlow 

& Magurran 2006) but not between recently isolated allopatric mice populations (Firman & 

Simmons 2014). Further investigation is therefore needed, particularly in the context of 

incipient ecological speciation. 
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1.3. Three spined stickleback: a model to study evolution in 

action 

 

The three-spined stickleback (Gasterosteus aculeatus L.) is a small teleost fish, inhabiting 

marine, brackish and freshwater habitats in the Northern Hemisphere. Since Tinbergen in the 

mid-20th century (Tinbergen 1952), this established model system has provided much insight 

in many research fields such as spatial ecology (Milinski 1979), evolution of cooperation 

(Milinski 1987), sexual selection (Milinski & Bakker 1990; Reusch et al. 2001), host-parasite 

coevolution (Barber 2013) and speciation (McKinnon & Rundle 2002). Sticklebacks represent 

one of the rare vertebrate species which can be easily controlled in both laboratory and field 

experiments. The relatively short generation time allows following (parasite-mediated) 

selection at different life stages and conducting experiments across several generations to 

study trans-generational genetic and non-genetic effects (Figure 2). 

Sticklebacks take at most one year to mature and usually undergo one breeding period during 

their lifespan. The male builds a nest out of plant material, attracts gravid females through a 

set sequence of behaviors and after the female lays her eggs in the nest, the male creeps 

trough the nest and spawns over the eggs (Wootton 1976). During sneaking events, another 

male can fertilize part of the clutch by opportunistically spawning before (or after) the nest 

owner spawns on the eggs (Wootton 1976). In this context, sticklebacks can experience sperm 

competition, therefore providing the theoretical basis for the evolution of sperm phenotypes 

(Gimenez-Bonafe 2000; Bakker et al. 2006; Elofsson et al. 2006; Pike et al. 2010) and 

associated outcomes of sperm competition (Zbinden et al. 2001).  

 

Figure 2: The development of the three-spined stickleback: Parasite-mediated selection and 

reproductive barriers can occur at any developmental stage: gamete, zygote, juveniles or adults. From 

left to right : spermatozoa, developing eggs, juveniles from 3 days to 5 months post-fertilization, male 

and female stickleback and juveniles and red-throated adult male stickleback captured in the river. 

Picture credits: J. Kaufmann 
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Sticklebacks are ideal for studying sperm traits and sperm competition, as experimental in 

vitro fertilization is made convenient by external fertilization and because contrary to most 

teleosts, stickleback sperm does not require priming (Stockley et al. 1997; Elofsson et al. 

2003). Computer Assisted Sperm Analysis (CASA) provides the opportunity to quickly and 

reliably estimate sperm concentration and motility (Kime et al. 1996, 2001). Ultimately such 

experiments can help to draw conclusions on post-copulatory mechanisms involved in 

transgenerational effects and reproductive barriers. 

Freshwater populations of sticklebacks originated from marine colonization events following 

glacial retreat at the end of the Pleistocene (McKinnon & Rundle 2002). Most interestingly, 

the three-spined stickleback species complex includes replicated pairs of sympatric (and 

parapatric) divergent populations in diverse freshwater habitats (e.g. lake/streams; 

benthic/limnetic). These ecotypes show striking phenotypic differences, including feeding 

behavior, morphology and other life-history traits (e.g. Schluter 1995; Boughman et al. 2005; 

Berner et al. 2008; Hendry et al. 2009; Raeymaekers et al. 2010; Eizaguirre et al. 2011b). 

This provides the rare opportunity to study evolution in action during early stages of 

ecological speciation between diverging ecotypes. Recently, considerable advances have been 

made in identifying the phenotypes under divergent selection and the genetic bases for this 

phenotypic divergence between freshwater ecotypes (e.g. Berner et al. 2011; Roesti et al. 

2014; Arnegard et al. 2014). Although parallel patterns of phenotypic divergence seems 

global across multiple ecotype pairs, genomic and transcriptomic analyses suggest very local 

selective pressures (but see Colosimo et al. 2005; Chain et al. 2014). 

The system of lakes and rivers in northern Germany (i.e. my study populations) is intriguing 

for several reasons: (i) lake and river stickleback ecotypes can be found in independent 

drainage systems. (ii) these ecotypes show extremely limited gene flow, at both neutral and 

adaptive markers. (iii) lakes and rivers differ consistently in the composition of 

macroparasites fauna, with higher taxonomic diversity and parasite load in lakes (Reusch et 

al. 2001; Kalbe et al. 2002; Eizaguirre et al. 2011). Most probably as a result of parasite-

mediated selection, the immune gene make-up in each ecotype is optimal to cope with the 

local parasite fauna. Divergent MHC allele pools and immunogenetic diversity between 

ecotypes provide specific defenses against local parasites (Kalbe & Kurtz 2006; Jäger et al. 

2007; Eizaguirre et al. 2011, 2012a). In addition, ecotypes show habitat-specific innate 

immune responses at the transcriptomic and cellular level (Kalbe & Kurtz 2006; Scharsack et 

al. 2007; Lenz et al. 2013). Previous work has shown several reproductive barriers: by testing 
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female preference for conspecific males, Eizaguirre et al. (2011) found that lake and river 

females prefer conspecific males based on odors. In another experiment, Eizaguirre and 

colleagues (2012b) showed that local adaptation favored locally selected MHC alleles. These 

two mechanisms (i.e. assortative mating and local adaptation) can explain the low gene flow 

observed between lake and river populations. However insight is still lacking on other 

reproductive barriers which could play a major role prior to between-habitat encounters (i.e. 

migrant inviability) and act as post-copulatory reinforcement in a system where the costs of 

local maladaptation to parasites are high.  

The toolbox available for this species makes three-spined sticklebacks a great model system 

to study parasite-mediated selection and speciation: Molecular tools allow the conduction of 

highly controlled experiments with the use of microsatellites markers in double-blind 

experiments or in identifying the outcome of sperm competition in an experimental context 

(Kalbe et al. 2009; Eizaguirre et al. 2009b; Lenz et al. 2009b). Moreover, high-throughput 

MHC genotyping trough Reference Strain Conformation Analysis (RSCA : Lenz et al. 2009a) 

allows rapid and reliable identification of MHC alleles and quantification of MHC diversity 

(Eizaguirre et al. 2009b; Lenz et al. 2009b). 

Finally, a fascinating macroparasite taxonomic diversity can be found on and in three-spined 

sticklebacks (Figure 3, (Jakobsen 2011; Eizaguirre et al. 2011; Barber 2013). Moreover, the 

life cycles of some naturally-occurring parasites can be controlled in the laboratory and 

provide the rare opportunity of testing hypotheses of parasite mediated selection with 

experimental exposure in a vertebrate. Whereas most studies focus on one parasite or parasite 

taxa in the field, screening a wide range of macroparasites species allows for a more 

comprehensive understanding the complex selective pressures at play in parasite-mediated 

selection and parasite-mediated speciation.  
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Figure 3: The great taxonomic diversity in macroparasites in three-spined sticklebacks: Species tree illustrating the diversity of macroparasites found 
in freshwater populations of three-spined sticklebacks. Many of these parasite taxa have been identified as major ecological selective pressure : The nematodes 
Camallanus lacustris and Anguillicoloides crassus have been shown to trigger rapid and adaptive evolution of MHC genes (Eizaguirre et al. 2012a). The tapeworm 
Schistocephalus solidus is developing as a model system for studying parasite local adaptation and the evolution of virulence (Heins & Baker 2008b; Henrich et al. 
2013). Local adaptation to the eye fluke Diplostomum sp. has been shown to be mediated by innate and adaptive immune responses (Kalbe & Kurtz 2006; Scharsack 
& Kalbe 2014). The nodes show the higher taxa groups. Data from the NCBI Taxonomy database. Pictures credits: J. Kaufmann, except Trichodina (A.D.M. Dove), 
Gyrodactylus and Diplostomum (M. Kalbe). 
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Thesis outline 

Thesis outline 
 

The aim of my doctoral work was to investigate the role of parasites in the evolution of host 

defenses and reproductive barriers. I first tested how ecology and specifically parasite-

mediated selection could contribute to population differentiation and speciation in three-

spined stickleback ecotypes. I then worked on assessing how paternal effects of parasite 

infection could evolve and be expressed. This thesis is organized in three chapters, presented 

in the form of independent manuscripts. These manuscripts represent three major projects of 

my PhD work and illustrate the development of my PhD research. Chapter I has been 

published in Biology Letters in 2015, Chapter III has been published in Ecology Letters in 

2014 and chapter II will be submitted shortly. All projects have been conducted in 

cooperation with colleagues. The table provided at the end of this section shows a detailed 

overview of the authors’ contribution.  

 

Chapter I: The contribution of post-copulatory mechanisms to incipient ecological 

speciation in sticklebacks 

In chapter I, I evaluated whether gametic isolation could evolve during early ecological 

speciation. Specifically, I tested for the first time the existence of assortative gamete 

preference between individuals from different ecotypes. Using replicated populations, I 

assessed ecotype-specific differences in sperm phenotypes between lake and river males and 

tested the outcome of in vitro sperm competition within and between individuals originating 

from lakes and rivers. Testing the relative paternity of sympatric males and evaluating 

developmental defects allowed a comprehensive evaluation of pre- and post-zygotic 

reproductive barriers (i.e. gamete preference and gametic incompatibilities). 

 

Chapter II: Costs of migration in diverging three-spined sticklebacks and insights into 

the maintenance of immunogenetic polymorphism.  

In the second chapter of my thesis, I tested for the existence of selection against migrants 

between lake and river stickleback ecotypes in this early phase of ecological speciation. Using 

a full-factorial field transplant experiment, I documented how migration affected 

macroparasite communities and condition- and immune- related traits (e.g. growth, spleen 

size). I also tested for associations between habitat-specific MHC haplotypes and the burden 
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of local and foreign parasites as it could explain the maintenance of immunogenetic diversity 

through fluctuating selection. By simulating dispersal between habitats, I could test for the 

role of local adaptation in maintaining low level of gene flow during early population 

differentiation. Particularly, using juveniles that already experienced parasite exposure in their 

native habitat prior to translocation permitted to test realistically for costs of migration in 

diverging three-spined sticklebacks. 

 

Chapter III: Experimental parasite infection reveals costs and benefits of paternal 

effects 

In the third chapter of my thesis, I examined the adaptive value of non-genetic 

transgenerational effects of infection. I first tested the consequences of infection on sperm 

phenotype and function using Computer Assisted Sperm Analysis and sperm competition 

trials. With a split-clutch design controlling for genetic variation and maternal effects, I could 

also evaluate costs and benefits in the offspring upon infection. By using in vitro fertilization 

and managing to limit the effect of other contributors to variation in offspring phenotype, 

these experiments pinpointed the influence of paternal effects in shaping offspring life history, 

resistance and tolerance against parasites. 
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Summary 

Ecology can play a major role in species diversification. As individuals are adapting to 

contrasting habitats, reproductive barriers may evolve at multiple levels. While pre-mating 

barriers have been extensively studied, the evolution of post-mating reproductive isolation 

during early stages of ecological speciation remains poorly understood. In diverging three-

spined stickleback ecotypes from two lakes and two rivers, we observed differences in sperm 

traits between lake and river males. Interestingly, these differences did not translate into 

ecotype-specific gamete precedence for sympatric males in competitive in vitro fertilization 

experiments, potentially due to antagonistic compensatory effects. However, we observed 

indirect evidence for impeded development of inter-ecotype zygotes, possibly suggesting an 

early stage of genetic incompatibility between ecotypes. Our results show that prezygotic 

post-copulatory mechanisms play a minor role during this first stage of ecotype divergence, 

but suggest that genetic incompatibilities may arise at early stages of ecological speciation. 
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Introduction 

Studying recently diverged species has provided important insights into the processes and 

mechanisms of speciation (Coyne & Orr. 2004). Ecological speciation defines the evolution 

of reproductive barriers caused by divergent natural selection in different ecological niches or 

habitat types (Rundle & Nosil 2005), leading to the formation of ecological demes (ecotypes). 

Distinct mechanisms can generate and maintain reproductive isolation between ecotypes such 

as local adaptation, selection against hybrids or preference for conspecific mates (Rundle & 

Nosil 2005; Maan & Seehausen 2011; Eizaguirre et al. 2012b). Surprisingly, to date only a 

limited number of studies have examined the importance of post-copulatory processes in the 

context of incipient ecological speciation even though post-copulatory traits can initiate, 

reinforce and maintain reproductive isolation (Eady 2001; Lorch & Servedio 2007). Under 

divergent ecological selection regimes, males may for instance evolve different sperm 

characteristics (i.e. morphology, velocity) which may facilitate conspecific female 

fertilization or increase sperm competitiveness in the local environment (Elofsson et al. 

2006). Furthermore, gametic incompatibilities could occur, based on allelic or genotypic 

differences, between partners from different populations (Eady 2001).  

Three-spined sticklebacks (Gasterosteus aculeatus spp., L.) have become a model organism 

in ecological speciation (McKinnon & Rundle 2002). Ecological contrasts between habitats 

have led to divergent selection on various traits such as morphology, feeding behavior and 

mating systems (Boughman et al. 2005; Raeymaekers et al. 2010; Maan & Seehausen 2011). 

Sticklebacks are external fertilizers that experience sperm competition in the context of 

alternative male mating strategies, such as sneaking, and thus facilitate the investigation of 

post-copulatory reproductive barriers (Wootton 1976). Particularly, externally ejaculated 

spermatozoa are directly confronted with habitat-specific ecological conditions during 

spawning which provides the potential to evolve different sperm traits in contrasting habitats 

(Elofsson et al. 2006).  

The system of lakes and rivers in northern Germany is a young post-glacial system where 

different stickleback ecotypes can be found (Reusch et al. 2001). In this system, local 

adaptation (Eizaguirre et al. 2012b) and female preference for sympatric males (Eizaguirre et 

al. 2011) contribute to pre-copulatory reproductive barriers. Here, we i) evaluate sperm traits 

in replicated populations and ii) experimentally test for ecotype-specific gamete precedence 

between lake and river stickleback ecotypes.  
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Material and methods 

Study system 

Three-spined sticklebacks were caught from two independent pairs of geographically 

connected lake and river populations, representing two drainage systems in northern Germany 

(Electronic supplementary material S1). After 20 weeks under standardized winter-like 

conditions (8h day:16h night; 6°C) and six weeks in spring-like conditions (12h:12h; 12°C), 

fish were isolated singly into 16 L tanks under summer conditions (16h:8h; 18°C). There, to 

build a nest, males were provided with artificial nesting material (Sommerfeld et al. 2008).  

Experimental design 

We performed in vitro sperm competition trials following a full-factorial design involving a 

female, a sympatric male, and a ‘competing’ male. This competing male was either from the 

same ecotype as the female or from a different ecotype. Three to six such triads were 

conducted for each of the 16 possible population combinations (Electronic supplementary 

material S2). This resulted in 64 independent sperm competition trials (33 within-ecotype and 

31 between-ecotype). In trials with two sympatric males, we randomly declared one male as 

the focal male. Individuals were used once only. 

 

Sperm measurements and competition trials 

All males were presented with a ripe female within 24 hours prior to dissection and showed 

active reproductive behavior, e.g. nest gluing (Sommerfeld et al. 2008). Fish were sacrificed 

by an incision in the brainstem prior to dissection. After dissection, sperm was isolated by 

mashing the entire testes in 900 µl of HBSS solution. We measured sperm concentration as 

well as curvilinear, straight-line and average-path velocities using computer assisted sperm 

analysis (Electronic supplementary material Methods). Each egg clutch was carefully stripped 

into a dry Petri dish and fertilized by a mixture containing 20 µl of sperm solution from each 

male in 5 ml of fresh water. Differences in ejaculate traits thus reflect natural conditions. 

Fertilized eggs were reared under controlled conditions with oxygenated water. Five days 

after fertilization, eggs were counted and categorized into unfertilized (no visible zygote), 

undeveloped (dead zygote) and developed eggs (Swarup 1958). An insufficient number of 

fertilized eggs in seven clutches (four within-ecotype, three between-ecotype) led to a total of 
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57 independent trials. We genotyped all fertilized eggs (Ntotal eggs=2508) and parents 

(Nadults=171) at 5 microsatellite loci and identified the most likely sire using CERVUS v3.0.3 

(Field Genetics Ltd; (Kalinowski et al. 2007); Electronic supplementary material Methods).  

 

Statistical analyses  

Relative paternity and the proportion of undeveloped eggs were normalized using arc-sinus 

and log transformation, respectively. First, we analyzed differences in sperm traits 

(concentration and sperm velocity) between ecotypes using ANCOVAs with ecotype, 

drainage system and their interaction as cofactors and testes mass as covariate (lm function in 

R). Second, we performed an analysis of covariance (lm function in R) on the proportion of 

eggs sired by the sympatric male (relative paternity). The full model included female ecotype 

and the type of competition (within-ecotype vs. between-ecotype) as factors, and relative 

spermatozoa concentration, relative velocity (sympatric/competing) and their two-way 

interaction as co-variables. Due to multi-colinearity, we corrected the explanatory co-

variables using the residuals of sperm concentration on testes mass and ecotype identity and 

the residuals of sperm velocity (PC1 values, Electronic supplementary material Methods) on 

testes mass, total sperm concentration and ecotype identity. The best fitting model was 

selected using an AIC-based backward selection procedure (stepAIC function in R). We 

similarly tested for variation in the proportion of undeveloped eggs in relation to paternity and 

the type of competition. All statistical tests were conducted in R v. 3.0.3 (R Development 

Core Team 2014).  

 
39 



Chapter I 

 

Results  

We found that sperm velocity was significantly higher for lake males than river males 

(F1,141=9.07, p=0.003, Electronic supplementary material S3, Fig. 1a) while river fish showed 

higher sperm concentration (F1,141=9.52, p=0.002, Electronic supplementary material S3, 

Fig.1b). These differences suggest ecotype-specific sperm characteristics even though their 

extent varied between the population pairs as indicated by significant interactions between 

ecotype and drainage system (Electronic supplementary material S3).  
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Figure 1: Shown are means (± 1 S.E.M.) of (a) sperm velocity (standardized residuals) and (b) total 

spermatozoa concentration (in 1.5 µL/mg of testes) of river and lake males. 

 

These sperm characteristics did not translate into significant sperm precedence for sympatric 

males (F1,57=0.11, p=0.744, Table 1). Our sample size provided sufficient statistical power to 

detect sperm precedence of magnitudes similar to those reported in other species pairs 

(h=0.835, power>0.99, Electronic supplementary material S4). Both relative velocity and 

relative spermatozoa concentration between competing males were strong predictors of 

paternity (velocity: F1,57=10.91, p=0.002; concentration: F1,57=10.12, p=0.003). 

Interestingly, we found that the origin of the competing male significantly affected the 

proportion of undeveloped eggs in interaction with the relative paternity of the sympatric male 
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(F2,57 =4.160, p=0.021): the relationship between paternity and the proportion of undeveloped 

eggs was significant only when sperm competition involved males from different ecotypes 

(between-ecotype: r=0.442, 95%CI=0.09-0.69, p=0.016; within-ecotype: r=0.183, 95%CI=-

0.18-0.51, p=0.32, Fig. 2).  

 

 

 

Figure 2: Relationship between paternity of the sympatric male and the proportion of undeveloped 

eggs. Filled circles and solid regression line (significant) correspond to between-ecotype trials and 

open circles and dashed line (non-significant) to within-ecotype trials. 
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Table 1: Effects of sperm characteristics and ecotype origin on (a) paternity of sympatric male and (b) 

proportion of undeveloped eggs. Statistical table showing results of linear models. Only variables 

included in the best fitted model are shown. (d.f.: degrees of freedom, S.S.: sum of squares). 

Significant effects are printed in bold. 

(a) Paternity of sympatric male 

 

d.f. S.S. F-value p-value 

Relative sperm speed 1 0.771 10.91 0.002 

Relative sperm concentration 1 0.715 10.12 0.003 

Origin of the competing male 1 0.008 0.11 0.744 

Proportion of undeveloped eggs 1 0.605 8.56 0.005 

Origin of competing male : 

Relative sperm concentration 
1 0.329 4.66 0.035 

Residuals 52 3.673 

       (b) Proportion of undeveloped eggs 

 

d.f. S.S. F-value p-value 

Paternity of sympatric male : 

origin of the competing male 2 0.071 4.16 0.021 

Residuals 57 0.484 

   

Discussion  

Investigating post-copulatory reproductive isolation between three-spined stickleback 

ecotypes, we found differences in sperm traits between males from lake and river. 

Particularly, river males showed higher sperm concentration and slower spermatozoa speed 

than lake males. Differences in these sperm traits may stem either from neutral processes or 

from contrasting abiotic and biotic ecological pressures between habitats known to affect such 

phenotypes (e.g. temperature (Breckels & Neff 2014), parasites (Kaufmann et al. 2014)). 

However, despite variation in the extent of sperm trait differentiation between two 

independent drainage systems, the fact that we found a parallel pattern suggests an ecological 

origin of these differences. 
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Our experiment confirmed that sperm number and sperm velocity are major predictors of 

paternity in fishes, particularly during sperm competition (Stockley et al. 1997). Although 

sperm traits diverged between ecotypes, these differences did not lead to biased paternity for 

sympatric males in between-ecotype competition trials and thus did not translate into post-

copulatory pre-zygotic reproductive isolation. We can hypothesize that high sperm 

concentration in lake males and high sperm speed in river males might act in a compensatory 

manner in competitive situations, leading to balanced paternity. Also, pre-copulatory 

reproductive isolation is relatively strong in this system, which may decrease selection for 

sympatric sperm precedence as a reproductive barrier (Eady 2001; Eizaguirre et al. 2011). 

Interestingly, however, we found a positive correlation between the proportion of 

undeveloped eggs and paternity of the sympatric male in clutches where males from different 

ecotypes competed for fertilization. In other words, with more eggs failing to develop, the 

remaining developing eggs were more likely to have been sired by the sympatric male. The 

fact that this correlation could not be observed in competition trials between ecologically-

equivalent (same ecotype) males suggests that the developmental failure could be due to 

emerging Dobzhansky-Muller-type genetic incompatibilities between the diverging 

stickleback ecotypes (Stelkens et al. 2010; Crespi & Nosil 2013). Such reproductive barriers 

at the zygote stage have been shown in many taxa, but so far mostly between distinct species 

with no gene flow (Rundle 2002; Immler et al. 2011). Unfortunately, genotyping of the 

undeveloped eggs, which would be necessary to confirm the above hypothesis, was 

impossible due to the low DNA concentration and quality. Therefore, further investigation is 

required to confirm this observation.  

Altogether, our results show that reproductive isolation in response to ecological adaptation 

does not necessarily arise at all levels simultaneously. The suggested genetic incompatibility 

in turn may have arisen as a by-product of reduced gene flow, driven by forces such as mate 

choice and local adaptation, in an otherwise open system (Lorch & Servedio 2007). If 

confirmed by further experimental effort, this would suggest a role for genetic 

incompatibilities in reproductive isolation between contrasting ecological habitats already at 

an early stage of speciation. 
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Abstract 

Local adaptation is often key to the process of speciation. Theory suggests that reduced fitness 

of migrants due to local maladaptation could be sufficient to reduce gene flow and ultimately 

lead to speciation. Here, we experimentally investigated the relative fitness of migrants in 

foreign habitats, focusing on diverging lake and river ecotypes of three-spined sticklebacks. A 

reciprocal transplant experiment performed in the field revealed asymmetric costs of 

migration: while mortality of river migrants was increased under lake conditions, lake 

migrants suffered from reduced growth relative to river residents. Focusing particularly on the 

parasitic environments, we found that macroparasite communities did not only differ between 

lake and river residents but also between the reciprocal migrants. This pattern of differential 

parasitisation had consequences for both the innate and the adaptive immune system, where 

multiple habitat-specific associations between parasite species and locally selected alleles of 

major histocompatibility immunogenes could be detected. Altogether, these experimental 

results highlight the role of selection against migrants in the early stages of ecological 

speciation and reveal complex resistance patterns leading to immunogenetic diversity at the 

meta-population level. 
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Introduction 

 

Understanding the mechanisms contributing to reproductive isolation during the onset of 

speciation is a fundamental question in evolutionary biology (Coyne & Orr. 2004). It is now 

accepted that ecological factors play a major role in the process of population differentiation, 

reproductive isolation and ultimately speciation (Rundle & Nosil 2005; de León et al. 2010; 

Rosenblum & Harmon 2011). Throughout ecological speciation, reproductive barriers can 

evolve between parapatric or sympatric populations due to adaptive divergence to different 

habitats (Schluter 2000; McKinnon et al. 2004). Although both pre- and post-copulatory 

processes have now been reported, the role of ecology in the formation and maintenance of 

reproductive barriers is still incompletely understood (Boughman 2001; Coyne & Orr. 2004; 

Maan & Seehausen 2011). Particularly, local adaptation to ecological conditions acting and 

the potentially resulting maladaptation of migrants (and hybrids) is a powerful process 

limiting gene flow between sympatric or parapatric populations, providing high ecological 

selective pressure (Hendry 2004; Nosil et al. 2005; Eizaguirre et al. 2012b; Peterson et al. 

2014). Costs limiting gene flow between locally adapted demes (i.e. ecotypes) can be 

manifold and include reduced survival, body condition but also suffering from inadequate 

gene regulation (Nagy & Rice 1997; Hendry 2004; Eizaguirre et al. 2012b; Lenz et al. 2013).  

Among the variety of environmental variables, parasites are an ubiquitous, diverse and strong 

ecological selective pressure, affecting immune characteristics, host condition, and ultimately 

Darwinian fitness (Hamilton & Zuk 1982; Lively 1999; Poulin 2006; Kalbe et al. 2009). As 

such, they can act against locally maladapted migrants and ultimately reinforce speciation 

between ecologically contrasting habitats. Under local adaptation, hosts can become better 

adapted to local parasites, providing the selection parasites exert is spatially constrained and 

host gene flow limited (Kawecki 1998; Lajeunesse & Forbes 2002; Kalbe & Kurtz 2006). 

Here we will define local adaptation from the host point of view, where hosts ultimately 

perform better in their own environment compared to a foreign environment (Kawecki & 

Ebert 2004). Differences in parasite communities due to abiotic or biotic factors between 

habitats are likely to arise (MacDougall-Shackleton et al. 2002; Eizaguirre et al. 2011, 2012b; 

Raeymaekers et al. 2013; Lenz et al. 2013). Ultimately, local adaptation is expected to induce 

high costs on migrants (Kawecki 1998; Eizaguirre et al. 2012b). Local adaptation to different 

parasite species and communities is mostly mediated by host immunocompetence, via 
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inherited differences in both innate and adaptive immune defenses (Ebert & Hamilton 1996; 

Poulin et al. 2011). 

As part of the specific adaptive immune system acting against macroparasites, the major 

histocompatibility complex class II (MHC II) has the potential for a strong role in local 

adaptation (Eizaguirre et al. 2009a, 2011, 2012b; Eizaguirre & Lenz 2010). MHC class II 

genes code for surface molecules, which present antigens derived from extracellular 

pathogens to T-cells. This leads to the activation of adaptive immunity (e.g. immune cell 

proliferation, antibody production). This specific association and the unparalleled diversity at 

the MHC explain why so far almost no other genes have shown similar signatures (but see 

Tschirren et al. 2013 for other immune genes). MHC allele pools diverge rapidly between 

populations from habitats with contrasting parasite communities most likely as a result of 

associations between habitat-specific MHC alleles and parasite species (birds: Loiseau 2011; 

voles: Tollenaere et al. 2008; salmonids: Landry and Bernatchez 2001, Dionne et al. 2009; 

newts: Babik et al. 2008). Parasite-mediated selection can lead to immunogenetic local 

adaptation where hosts carrying maladapted MHC genotypes in a foreign habitat will suffer 

from increased susceptibility to local parasites (Summers et al. 2003; Blais et al. 2007; 

Eizaguirre et al. 2009a, 2011, 2012b; Eizaguirre & Lenz 2010).  

Similarly, habitat-specific differences in the expression of innate immune genes upon parasite 

exposure show that those genes can also contribute to the evolution of local adaptation (Lenz 

et al. 2013). It is therefore important to investigate both adaptive and innate immune 

parameters when looking at potential parasite-related costs in an ecological context. The 

activation of the immune system can be estimated by examining the phenotypes of immune 

cell proliferation (granulocytes representing mainly the innate immune system and 

lymphocytes representing mainly the adaptive system) and of spleen weight - which 

significantly increases upon infection (Lefebvre & Mounaix 2004; Kalbe & Kurtz 2006). To 

date, only a small number of experimental studies involving exposure to natural parasite 

communities have shown a disadvantage of migrants facing foreign parasites (MacColl & 

Chapman 2010; Eizaguirre et al. 2012b). This is likely due to the challenge of simulating 

migration under controlled conditions, while allowing for natural selection by parasites to take 

place. The use of reciprocal transplant experiments in natura overcomes the shortcut of 

cultivating a low number of parasites in the and also allows to consider parasite communities 

in their natural environment (Rauch et al. 2006; Eizaguirre et al. 2012b). 
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Three-spined sticklebacks (Gasterosteus aculeatus L.) represent an ideal study system to 

experimentally test for costs of migration in relation to parasite infections and immunogenetic 

diversity (Barber 2013). Inhabiting marine as well as diverse freshwater habitats across the 

Northern hemisphere, sticklebacks are recognized for their rapid adaptive potential to 

colonize contrasting habitats (reviewed in (McKinnon & Rundle 2002). Recent studies have 

shown the importance of local adaptation to contrasting parasite communities in the adaptive 

differentiation between stickleback populations (Kalbe & Kurtz 2006; MacColl 2009; 

Eizaguirre et al. 2012b; Konijnendijk et al. 2013; Feulner et al. 2015). Sticklebacks from 

lakes and rivers in Northern Germany show very limited gene flow, although both migration 

in nature and interbreeding in the laboratory are possible (Reusch et al. 2001; Kalbe & Kurtz 

2006, Eizaguirre et al. 2011). In this system, MHC allele pools differ between populations 

from different habitats and there exists costs on hybrids (Eizaguirre et al. 2011, 2012b). In 

addition, habitat-specific adaptation of the innate immune system might play a significant role 

in selection against migrants as individuals can evolve higher levels of innate immune 

responses when challenged with a relatively more diverse and virulent parasite community 

(Kalbe & Kurtz 2006; Scharsack et al. 2007; Lenz et al. 2013; Scharsack & Kalbe 2014).  

In this study, we specifically focus on the possible costs of migration between lake and river 

habitats in fish survival, growth and parasite infection using a reciprocal common garden field 

experiment (Table 1). This design further enabled us to evaluate the impact of simulated 

dispersal on innate and adaptive immunity (Eizaguirre et al., 2012a; Tollenaere et al., 2008). 

Given the system and following the theory of local adaptation, we predict a local competitive 

advantage for individuals (and genotypes) in their own environment (i.e. residents) against 

individuals immigrating from a foreign environment (i.e. migrants) (Kawecki & Ebert 2004). 

To reveal the underlying mechanisms of parasite-mediate selection against migrants, we 

explicitly investigated the relative role of the innate and the adaptive immune responses.  
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Table 1: Experimental design of the common garden field experiment, showing the used terminology 

and the number of fish used per treatment. 

 

  Habitat of exposure 

  Lake River 

Ecotype of origin 

Lake Lake resident 

(n=50) 

Lake migrant 

(n=50) 

River Lake migrant 

(n=50) 

River resident 

(n=50) 

 

Materials and Methods 

Fish collection 

Young-of-the-year three-spined sticklebacks were collected in October 2009 from the 

“Grosser Plöner See” lake (54°9’21.16” N, 10°25’50.14” E, Germany) and the “Malenter Au” 

river (54°12'15.08" N, 10°33'41.90" E, Germany) using minnow traps and hand nets. The two 

sites are ca. 12 kilometers apart and belong to the same drainage system (Reusch et al. 2001; 

Eizaguirre et al. 2011). After capture, individuals were kept in the laboratory in 190 L 

aquarium per population with constant freshwater and oxygen supply under standardized 

winter conditions (8 h. day: 16 h. night; 6°C). Individuals were weighed (± 0.1 mg), measured 

(± 1 mm) and a spine was clipped for DNA fingerprinting and sex identification using sex-

linked genetic markers (Griffiths 2000). 

 

Experimental set-up 

The fish were transferred to experimental mesocosms (1 m x 0.25 m x 0.6 m; length x height 

x width) in March 2010 at the original sampling locations (Eizaguirre et al. 2012b). We 

placed five mesocosms in each habitat for a total of 200 experimental fishes (100 per habitat). 

Each mesocosm contained 10 randomly chosen individuals (5 males and 5 females) from each 

ecotype (i.e. N=20 per mesocosm). Mesocosms were positioned at intervals of 10m and at an 
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approximate depth of 1 meter in the middle of the river and similarly along the shoreline in 

the lake. The 5mm mesh of the mesocosm allowed food items and intermediate hosts of 

various parasite species to pass through, while preventing fish from escaping. In addition, 

another partition inside the mesocosms separated males and females in order to prevent 

mating. Weekly and during 15 weeks, each mesocosm was inspected for dead fish, which 

were removed and sampled for later DNA fingerprinting. At the end of the experimental 

period we dissected all remaining live fish (n=133, July 2010). Forty fish (10 from 4 different 

mesocosms) were collected and dissected each day.  

 

Dissections 

Fish were measured, weighed and euthanized by an overdose of tricaine methane sulphonate 

(MS-222; 1.5 g/L). We calculated the splenosomatic index (relative spleen mass, weighed to 

the nearest 0.01 mg) to estimate immune response to parasite infections (Lefebvre and 

Mounaix 2004). We also calculated an individual condition factor based on the residuals of 

the log-log regression between total mass and standard length. Each individual was 

systematically screened for presence and number of macroparasites. To this end, fish were 

inspected for both external and internal parasites on the skin, fins, gills, eyes, body kidney, 

liver, gut, urinary bladder, swim bladder, gall bladder and muscles. Details on parasite 

screening can be found in Kalbe et al. (2002). The number of parasite taxa per individual (S), 

the Shannon diversity index (H’), (Clarke 1993; Kalbe et al. 2002) and an individual parasite 

index combining species-specific parasite load and community diversity (Kalbe et al. 2002) 

were used to describe parasite infection. 

 

Immunological measurements 

We performed flow cytometric analyses of head kidney leucocytes following protocols 

developed for three-spined sticklebacks described in Scharsack et al. (2004). In short, after 

isolating head kidney leucocytes in a cell suspension, the number of live granulocytes and 

lymphocytes were counted using a flow cytometer (FACSCalibur, Becton and Dickinson, 

USA) and the CELLQUEST PRO v. 4.02 software. This allowed for the calculation of 

individual granulocytes to lymphocytes (G/L) ratios, where, for example, a relative lower G/L 

ratio signifies higher levels of activation of the adaptive immune system in relation to the 

innate immune system.  
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DNA fingerprinting 

Genomic DNA from spine samples (from initial measurements) and caudal fin samples (from 

dead and dissected fish) was extracted using the DNAeasy Blood and Tissue kit (Qiagen, 

Sussex, UK) following the manufacturer’s protocol. All samples were genotyped for twelve 

polymorphic microsatellite loci combined into three multiplex PCR protocols (see Kalbe et al. 

2009) to identify the fish at the end of the experiment. Furthermore we calculated a specific 

growth rate (SGR=100*ln(final mass)/ln(initial mass)) corrected for mass at the beginning of 

the experiment (following Scharsack et al. 2007). 

 

MHC IIB genotyping 

To identify individual MHC class IIB genotypes, we used reference strand-mediated 

conformation analysis (RSCA) optimized for sticklebacks as described in (Lenz et al. 2009a). 

We amplified the exon 2 of the MHC IIB gene, which encodes for the peptide-binding region 

of the MHC molecule. Duplication of MHC loci in the G. aculeateus genome leads to strong 

linkage disequilibrium, creating sequence variant combinations segregating in stable 

haplotype blocks (Reusch et al. 2004; Lenz et al. 2009a). We therefore later refer to MHC 

variants as MHC haplotypes. This MHC genotyping protocol has been used extensively in 

these populations (Lenz et al. 2009b; Eizaguirre et al. 2011, 2012a), allowing us to reliably 

obtain haplotype identity and sequence information for each individual. Also, higher levels of 

MHC diversity in term of allele numbers or higher intra-individual allelic divergence can be 

selected to provide resistance to a more diverse parasite community (Wegner et al. 2003b; 

Milinski 2006; Lenz 2011; Eizaguirre et al. 2012b).We used allele number and the mean 

MHC genetic distance within an individual as measures of MHC diversity. The latter was 

calculated as the average pair-wise amino acid p-distance between all sequence variants 

within an individual (see Lenz et al. 2009b).  
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Statistical analyses 

Statistical analyses were conducted using R statistical package (R Development Core Team 

2014). Normality and variance homoscedasticity of model residuals were verified and tests 

were conducted accordingly. Splenosomatic index and GL ratio were log-transformed to fit a 

normal distribution of residuals.  

a) Mortality 

We assessed mortality between experimental groups using a generalized linear mixed effect 

model with mortality as dependent variable (coded as 0: live and 1: dead), migration treatment 

(Resident vs. Migrant), habitat of exposure (lake vs. river), sex and initial mass as fixed 

predictors. The replicated mesocosms were set as a random factor. The significance of each 

variable as well as the interaction between habitat of exposure and migration treatment was 

tested with type II Chi-square based likelihood-ratio tests (based on a binomial distribution 

with logit function; glmer and Anova functions in R). To test differences in mortality rates 

within each habitat, we additionally performed Pearson's Chi-square tests with a p-value 

based on a Monte Carlo simulation (n=9999).  

 

b) Effects of migration on fish condition and immune system 

We tested for the effect of migration on growth, body condition and immune relevant traits 

(splenosomatic index and G/L ratio) using linear mixed effect models. The fixed predictors 

were migration treatment, habitat of exposure, sex and individual parasite load. Standard 

length was included only in the models on immune traits as calculations of growth and body 

condition already include individual standard length. Experimental mesocosm identity was set 

as a random factor. The 2nd and 3rd order interactions including migration treatment, habitat, 

and parasite load were implemented in the models as we were particularly interested in trait 

differences between migrants and residents in each habitat and the role of parasite load in 

these phenotypic differences. As the aim of the study was to focus on fitness-related traits 

between residents and migrants within each habitat, the effect of ecotype of origin is not 

included but confounded in the interaction between habitat of exposure and migration 

treatment. However, the pairwise differences tested with Tukey’s honest significant 

differences method provide us with informative quantitative differences and allows us to 

disentangle within-habitat effect from overall differences based on the ecotype of origin. 
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c) Differences in parasite communities between residents and migrants  

To test whether parasite communities differed between migrant and resident individuals 

within and between habitats, we used a multivariate permutation analysis (Permanova, adonis 

function in R) on a Bray–Curtis dissimilarity matrix based on log transformed parasite 

abundance. This nonparametric MANOVA allows partitioning the variation in distance 

matrices among multiple variables. The model included habitat of exposure and migration 

treatment as fixed predictors and experimental mesocosm as a random factor. We identified 

the parasites contributing most to the difference between treatments using a similarity 

percentage test (simper function in R). We tested for the effect of simulated migration on 

individual parasite diversity (Shannon index) and parasite load using linear mixed effect 

models with migration treatment, habitat of exposure and MHC genetic distance (or 

individual allele number) as fixed predictors and experimental mesocosm as random factor.  

 

d) Linking MHC and macroparasite infection 

Similarly we investigated whether MHC IIB haplotype pools differed between individuals of 

lake and river origin using an analysis of similarity (anosim function in R) on a Jaccard 

dissimilarity matrix based on the presence/absence matrix regrouping all haplotypes for all 

individuals (Gower & Legendre 1986). We identified the haplotypes contributing most to the 

difference between lake and river ecotypes using a similarity percentage test (simper function 

in R), allowing us to specifically single out haplotypes involved in local adaptation 

(Eizaguirre et al. 2011, 2012a). We examined whether selection at MHC IIB genes occurred 

by testing differences in MHC allele number, allelic divergence as well as in the MHC 

haplotype pool between dead and live fish in each habitat. We used permutation analyses on 

the MHC dissimilarity matrix with migration treatment and mortality (alive vs. dead) as fixed 

predictors and experimental mesocosm as a random factor. In order to test whether MHC 

diversity and parasite diversity were associated, we used a Mantel test with 9999 permutations 

correlating two distance matrices based on MHC IIB haplotype matrix and the parasite 

abundance community matrix (mantel function in R). Mesocosm was included as a random 

factor. Finally, to test for specific patterns of MHC-dependent resistance or susceptibility in a 

given habitat of exposure, we used generalized linear models with the number of parasites in 

infected fish as dependent variable (based on a Poisson distribution with log function), the 

absence/presence of the most common and divergent haplotypes (identified with the similarity 

analysis) and the habitat of exposure as fixed predictors. Due to non-independent testing, we 
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adjusted p-values for multiple comparisons using the false discovery rate (p.adjust function in 

R). Nine non-independent tests were performed: three parasites were each tested in 

association with three haplotypes. We report the outcome of each statistical model with type 

II ANOVAs with Kenward-Roger correction for F-statistics and d.f. in linear mixed models 

(lmer or glmer, Anova and pbkrtest functions in R). Multiple comparisons were performed 

using Tukey’s honest significant differences method (lsmeans function). 
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Results 

Costs of migration on survival and fitness-related traits 

We collected 133 living and 67 dead individuals out of the 200 individuals initially introduced 

in the mesocosms. Mortality rate was higher in the lake (64%) than in the river (3%). 

Mortality rate was explained by the interaction between habitat of exposure and migration 

treatment (i.e. resident vs. migrant, χ2
df=1=4.522, p=0.03, Table 2, Fig.1). Specifically, the 

mortality rate of river migrants in lake was significantly higher than the mortality rate of lake 

residents, whereas migration treatment did not significantly explain mortality rates in the 

river. 

 

Table 2: Generalized mixed linear model of mortality for lake and river stickleback ecotype 

transferred in lake or river habitat (df : degree of freedom, residuals df=192). Habitat refers to the 

habitat of exposure (lake or river) and migration to the experimental treatment (resident vs. migrant). 

Significant terms are highlighted in bold. 

Effect Df χ2 P 

Habitat 1 23.78 <0.001 

Migration 1 9.353 0.002 

Sex 1 1.449 0.229 

Initial mass 1 1.739 0.187 

Habitat: Migration 1 4.522 0.034 
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Figure 1: Mortality (expressed as the average proportion of dead fish +/- CI 95%) in lake and river 

stickleback ecotype in lake and river habitats. The mortality rate of river migrants was significantly 

higher than the mortality rate of lake residents (χ2=12.97, p=0.0001). The solid line represents a 

significant difference between migrants and residents in the lake. 

 

Fish growth during the experiment was associated with fish sex and showed an interaction 

between habitat of exposure and migration treatment (Table 3): while in the lake, river 

migrants grew faster than lake residents, in the river, lake migrants grew slower than river 

residents (interaction: F1,123.47=29.71, p<0.001, post-hoc tests: All p<0.0001, Table S1, Fig 

2a). Overall, females grew faster than males (F1,122.2=57.94, p<0.001).  

Body condition was influenced by fish sex, habitat of exposure and migration treatment. Fish 

exposed to the lake habitat had a lower body condition than fish exposed to the river habitat 

(interaction: F1,18.49=19.49, p=0.0003, Table 3, Fig. 2b). Overall, residents had higher body 

condition than migrants (F1,123.92=4.9, p=0.029, Table 2, Fig. 2b).  
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Figure 2: Differences in individual traits in lake and river sticklebacks transferred in lake and river 

habitats. Lines connecting means within habitat represent significant differences between residents and 

migrants (Tukey’s HSD, p<0.05). Shown are least square means of the full models +/-0.95 CI for (a) 

relative mass change, (b) relative body condition, (c) Splenosomatic index and (d) Granulocyte to 

lymphocyte ratio. Solid lines represent significant differences between migrants and residents. 
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(a) Relative mass 

change  
(b) Body condition 

 

(c) Splenosomatic 

index  
(d) GL ratio 

 

F p-value 

 

F p-value 

 

F p-value 

 

F p-value 

Habitat 36.579 <0.001   19.491 <0.001   1.491 0.237   0.431 0.517 

Migration 13.757 0.0003   4.903 0.029   26.869 <0.001   0.355 0.553 

Parasite load 0.317 0.574   0.443 0.507   0.225 0.636   6.459 0.013 

Standard length (final) 

  

  

  

  
  

  3.889 0.051 

Sex 57.939 <0.001   25.703 <0.001   4.424 0.038   0.299 0.585 

Habitat:Migration 29.713 <0.001   2.639 0.107   4.063 0.046   6.256 0.014 

Habitat: Parasite load 1.558 0.214   0.965 0.328   0.022 0.883   0.154 0.695 

Migration: Parasite load 1.968 0.163   0.957 0.329   0.068 0.796   0.099 0.754 

Habitat:Migration: Parasite load 7.708 0.006   0.356 0.552   0.011 0.916   1.76 0.187 

 

Table 3: Analyses of variance tables of mixed effect models on condition related traits: (a) relative mass change (growth), (b) relative body condition and immune 

related traits: (c) splenosomatic index and (d) granulocyte to lymphocyte ratio. F-statistic were corrected with the Kenward-Roger approximation for mixed linear 

models. 
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Differences in parasite community between migrants and residents 

 

We identified 19 different parasite taxa. The average number of parasite species per fish was 

5.93 (range: 1-11, Table S2 and Fig. S2). Consistent with previous studies, individual parasite 

diversity and burden differed significantly between fish exposed to the two different habitat 

types, with higher diversity and burden in fish exposed to lake conditions compared to fish 

exposed to river conditions (diversity F1,13.5=40.84, p<0.001; burden F1,9.06=12.73, p<0.01, 

Table S3). Parasite diversity (i.e. Shannon index) was explained by the interaction between 

habitat of exposure and the migration treatment (F1,110.6=5.198, p=0.025, Table S3, Fig.S3), 

indicating that differences in parasite diversity between residents and migrants were not the 

same between habitats of exposure. Parasite communities did not only differ between lake and 

river residents but also between lake and river migrants (multivariate permutational analysis, 

p=0.001; difference between lake and river residents R=0.656, p=0.0001; difference between 

lake and river migrants R=0.573, p=0.0001, Table S4, Fig. 3). In addition, experimental 

migrants differed from residents for both ecotypes (lake ecotype: R=0.357, p=0.0001, river 

ecotype: R=0.701, p=0.0001, Table S4, Fig. 4). The difference in parasites communities 

between migrants and residents was driven by three common parasites: the digeneans 

Cyathocotyle prussica and Diplostomum sp., common in the lake, and the monogenean 

Gyrodactylus sp., a common river parasite. These species respectively contributed 12.9 %, 

10.8 % and 8.3%, respectively, to the dissimilarity between parasite communities in migrants 

and residents. 

 

Contrasting immune responses between migrants and residents 

Relative spleen mass was associated with the interaction between habitat of exposure and 

migration treatment (F1,121.5=4.06, p=0.046 ; Table 3). Migrants in the river habitat had 

heavier spleens (post-hoc test: p<0.0001, Table S1, Fig. 2b), while no significant difference 

was found between migrants and residents in the lake habitat (post-hoc test: p=0.987, Table 

S1, Fig. 2b).  

The granulocyte to lymphocyte (G/L) ratio was associated with the interaction between 

habitat of exposure and migration treatment (F1,119.8=6.26, p=0.014, Table 2). Migrants in the 

lake habitat had a lower granulocyte to lymphocyte ratio than lake residents (post-hoc test: 

p=0.029, Table S1, Fig. 2c), while no significant difference was found between migrants and 
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residents in the river habitat (post-hoc test: p=0.931, Table S1, Fig. 2c). In addition, the 

relative proportion of granulocytes to lymphocytes, the G/L ratio decreased with parasite load 

over all experimental treatments (F1,105.1=6.46, p=0.013, Fig S1). 

 

 

Figure 3:Non-metric multi-dimensional scaling plot based on community matrices of parasite 

abundances. Represented are lake and river three-spined sticklebacks transferred in their own habitat 

or in a different habitat. The distance between two points represents the difference in the overall 

parasite community between two individuals. (NDMS: non-metric multi-dimensional scaling axes). 

The length of the bold lines illustrates the extent of differences in macroparasite communities between 

lake and river residents and migrants. 

 

The role of MHC genes 

We detected 21 MHC haplotypes: 11 lake-specific, 7 river-specific and 3 shared by fish from 

both ecotypes (Table S10). The shared haplotypes displayed differences in prevalence 

between ecotypes (Fig. S4). The number of alleles per haplotype varied between one and 

three. Fish’s MHC IIB differed significantly between ecotypes in terms of haplotype pools 

(ANOSIM, R=0.417, p=0.001), individual allele numbers (χ2
df=1=4.091, p=0.043) and allelic 
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divergence (t=2.55, p=0.012), with significantly higher allelic divergence and allele numbers 

in lake fish compared to river fish (see Fig. S4). An analysis of similarity identified the three 

haplotypes that contributed most to the difference between ecotypes in MHC IIB diversity: 

Haplotype G (16.1% contribution, So05.So11.SCX03, GenBank Accession Numbers 

DQ016402, DQ016404, and AJ230191), haplotype A (13.8% contribution, No13.No18, 

GenBank Accession Numbers AF395711 and AY687846) and haplotype F (11.9% 

contribution, No05, GenBank Accession Number AY687829). Even though both G and F 

haplotypes were shared between both fish ecotypes they differed in frequency between river 

and lake (G lake: 5.4%, river: 55.3%; F lake: 39.4%, river: 17.7%). The haplotype A was 

found only in the lake ecotype (prevalence: 48.4,%).  

We found no significant differences in MHC diversity (allele number and allelic divergence) 

between experimental resident and migrant from each ecotype at the beginning of the 

experiment (all p>0.28, Table S6). Similarly, we did not find significant differences in MHC 

diversity or haplotype pools between dead and surviving residents and migrants in the lake 

(Permanova, p=0.708) or in the river (Permanova, p=0.273, Table S5 and S6). 

 

Linking MHC IIB haplotypes and macroparasite infection 

Overall, variation at the MHC IIB was tightly associated with the variation in parasites 

communities (Mantel r=0.162 p<0.001). MHC allelic divergence positively correlated to 

parasite diversity across treatments (Spearman’s rho=0.214; p=0.019). However, this was 

likely due to differences in MHC and parasite diversity between treatments as we did not find 

significant associations between parasite diversity/burden and MHC diversity within habitats 

or treatments (all p>0.05, Table S3) We then tested associations between the three most 

divergent MHC IIB haplotypes and the three parasite species contributing most to differences 

between. We predicted associations between local haplotypes and the load of local parasites 

to change signs depending on the habitat of exposure. Infection load of the eye fluke 

Diplostomum sp. and the digenean Cyathocotyle prussica depended on the interaction 

between the presence of common lake haplotypes (A and F) and the habitat of exposure 

(Diplostomum : χ2=35.376, p<0.0001 ; Cyathocotyle : χ2= 59.903; p<0.0001 Fig. 4, Table S7). 

Fish carrying the haplotype A were both more resistant to these two parasite species in the 

lake and more susceptible in the river habitat (all post-hoc tests p<0.005, Table S8). 

Furthermore, fish carrying the haplotype F were found to have lower levels of infections with 
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Cyathocotyle prussica in the lake environment (χ2=12.026, p=0.0005; Table S7 and S8, Fig. 

4). These two parasite species were shown to be particularly virulent, as higher infection was 

significantly associated with reduced condition (e.g. Spearman correlation between growth 

rate and Cyathocotyle prussica: Rho=-0.27, p=0.003 or Diplostomum sp: Rho=-0.29, 

p=0.003; Table S9). Remarkably, we found that the infection load of Diplostomum sp. 

depended also on the interaction between the presence of the common river haplotype G and 

habitat of exposure, where the presence of this haplotype was associated with resistance in the 

river and susceptibility in the lake environment (χ2=26.99, p<0.0001; Table S7 and S8, Fig.4). 

This suggests different host-parasite dynamics going on in the different habitat types. 

Interestingly, this river haplotype was also associated with susceptibility with the river 

monogenean Gyrodactylus sp., whereas the lake haplotype A was associated with resistance 

to this parasite (Fig.4, Table S8). 
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Figure 4: Parasite load of three parasites (circles: Gyrodactylus sp., squares: Diplostomum sp., 

triangles: Cyathocotyle prussica) in the lake or river habitat for individuals carrying common 

divergent MHCIIB haplotypes (a) haplotype G, (b) haplotype A, (c) haplotype F. Shown are means of 

linear models (± standard errors). Solid lines highlight combinations with significant interaction terms 

(Post-hoc odds ratio, p<0.05) 
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Discussion 

The general goal of this study was to test for costs of migration as a potential reproductive 

barrier reinforcing incipient ecological speciation. Using a reciprocal transplant field 

experiment with wild-caught juvenile sticklebacks, we revealed strong selection against 

migrants in both river and lake habitats. We found strong asymmetric divergent selection 

between habitat types: while river migrants survived less in lake conditions, lake migrant 

grew much less than river residents under river conditions. Not only do we present differences 

in the functional innate immune responses between residents and migrants but also in the 

genetic basis of the adaptive immunity with direct evidence for habitat-specific patterns of 

resistance between common parasites and selected MHC haplotypes.  

Costs of migration on survival and fitness-related traits 

We show strong asymmetric effects of migration on fitness-related traits: While high 

immigrant mortality was found in the lake habitat (over 75% mortality rates for river 

migrants), in the river, both experimental migrants and residents experienced high survival 

rates. Using estimates of individual vigor, however, we also show a general cost for migrants 

on body condition under river conditions. Lake migrants had, compared to local river 

residents, both reduced growth and body condition. These results are consistent with a “local 

vs. foreign” pattern of local adaptation (Kawecki & Ebert 2004), where local fish would have 

a competitive advantage over migrants in their habitats. Particularly, relative lower body 

condition and smaller size would lead to reduced selectivity and attractiveness in mate choice 

for both male and female migrants (Wootton 1976; Milinski & Bakker 1990). It is then 

obvious that selection on those predictors of Darwinian reproductive success will prevent 

gene flow (Chellappa et al. 1995; Kalbe et al. 2009; Eizaguirre et al. 2012b). It is interesting 

to note that the effect on growth was only observed in the river habitat, while in the lake, 

migrants experimentally translocated from the river performed better than local fish residents. 

This discrepancy can be partially explained by the inherent differences between ecotypes, 

where river fish generally grow faster. Another possibility is that the selection that occurred 

favored the fastest growing individuals under lake conditions.  

Our results are partly consistent with recent findings showing that migrant mortality was 

either asymmetric or absent in a lake–stream stickleback system in Canada (Räsänen & 

Hendry 2014). This suggests that even though parallel divergence is observed in multiple 
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lake-stream systems, the underlying pressures seem to be very local (Chain et al. 2014; 

Feulner et al. 2015). Although we cannot rule out that differences in growth between lake and 

river fish originates from multiple causes, the negative correlation found with parasite load 

suggests a cost of and therefore a role for parasite-mediated selection.  

Habitat-specific parasite communities lead to asymmetric infection levels 

between reciprocal migrants 

Local adaptation to parasites can contribute to the formation and maintenance of reproductive 

barriers during incipient ecological speciation (Summers et al. 2003; Eizaguirre et al. 2009a; 

Karvonen & Seehausen 2012), however the conditions under which it exists still remain 

elusive. By performing a reciprocal transplant experiment exposing wild-caught juvenile fish 

to different habitat types, we followed a realistic scenario where individuals dispersing most 

likely carry a habitat-specific parasite burden before dispersal. The two types of migrants 

(lake fish in river and river fish in lake) were harboring a combination of lake and river 

parasites, while being infected by different parasite communities. This potentially reflects 

seasonal differences in parasite abundance where migrants were exposed to different parasites 

early and late during their lifespan (Kalbe et al. 2002). In line with previous studies, exposure 

to the lake habitat increased the diversity of macroparasite infections, (e.g. Kalbe et al. 2002; 

Eizaguirre et al. 2011). Consequently, early infections in the lake and infections with foreign 

parasites in the river did not provide a complete release from parasite pressure for lake 

migrants. River fish migrating in the lake habitat experienced high levels of infections when 

compared to river residents, potentially leading to the observed costs. These high costs 

suffered by locally maladapted migrants facing foreign parasite communities could promote 

the evolution of reproductive barriers limiting dispersal to a different habitat and further 

reduce gene flow between habitats. This also reinforces the theory of local adaptation, as 

contrasting selective pressures in different habitats will improve fitness for residents relative 

to migrants. As migrants experience different selective pressures depending on their habitat of 

origin and of their new habitat, asymmetric gene flow could be reinforced between these 

habitats. There, the chance of finding healthy migrants is different in the lake and in the river 

habitat and might asymmetrically affect population structure between habitats (e.g. source-

sink populations). Asymmetric gene flow, and resulting asymmetric introgression, between 

habitats would eventually lead to variation in the strength of selection for post-migration 

reproductive barriers between ecotypes and in the evolution of these barriers (Ryan & Wagner 

1987; Hendry 2004; Nosil et al. 2005; Rafferty & Boughman 2006; Sobel & Chen 2014).  
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Experimental migration affects immune responses 

Contrasting parasite communities exert divergent selection on the immune system, 

contributing to habitat-specific local adaptation and potentially to parasite-mediated 

speciation processes (Kalbe & Kurtz 2006; Eizaguirre et al. 2009a, 2011, 2012b; Karvonen & 

Seehausen 2012; Lenz et al. 2013; Scharsack & Kalbe 2014). In our system, local host 

maladaptation to parasites led to a complex interplay of innate and adaptive immune 

responses in migrants. We reveal that lake migrants showed an increased activation of the 

immune system, associated with higher levels of parasite infections as suggested by the 

negative relationship between the granulocyte to lymphocyte ratio and individual parasite 

load. We also found a lower proportion of granulocytes over lymphocytes in surviving river 

migrants. Again this might be due to selection for river fish with a relatively low level of 

innate immune response, as we showed that the cost of mounting an immune response 

induces associated fitness-costs (see also Bonneaud et al. 2003; Graham et al. 2011).  

Maintenance of between-ecotype polymorphism at the MHC 

Genes of the MHC provide the potential for local host adaptation to contrasting parasite 

communities (Eizaguirre et al. 2009a, 2012b; Eizaguirre & Lenz 2010). As a result of host-

parasite coevolution, locally adapted MHC allele pools can lead to an optimal immune genetic 

makeup within each ecotype (Lenz et al. 2009b; Eizaguirre et al. 2011, 2012b). Habitat 

heterogeneity, together with host-parasite co-evolution, can favor specific resistance alleles in 

one habitat that ought to be linked to neutral or higher susceptibility in another with a 

contrasting parasite fauna (Hedrick 2002; Eizaguirre et al. 2011). We first confirmed with our 

study that lake fish harbor a higher mean number of MHC alleles than river fish. We also 

show that lake and river sticklebacks carry distinct MHC haplotype pools which correlate 

with parasite community across all treatments. More importantly, using translocation of 

individuals carrying habitat-specific haplotypes in contrasting environments, we show habitat-

specific MHC haplotypes associated with resistance to local parasite, whereas the presence of 

the same haplotype is associated with susceptibility in the other habitat. We show this pattern 

for three common MHC haplotypes and two common virulent parasite species. Local 

adaptation to parasite communities via the rapid evolution of immunogenes (Eizaguirre et al. 

2012a) can contribute to selection against migrants and can also lead to reproductive isolation.  
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Rapid selection of MHC allele pools is consistent with mechanisms of balancing selection 

maintaining MHC polymorphism within-population: Coevolutionary dynamics (such as Red 

Queen dynamics) can promote the maintenance of multiple variants (alleles, haplotypes) at 

variable frequencies within a given population and thus allows for the recycling of alleles by 

parasite-mediated selection (Woolhouse & Webster 2002; Bernatchez & Landry 2003; 

Milinski 2006; Eizaguirre & Lenz 2010; Eizaguirre et al. 2012a). Interestingly, some MHC 

haplotypes were associated with prevalence of several parasite species. Habitat-specific 

resistance to different generalist parasite species indicates that the exact same MHC haplotype 

can bind different parasite-derived antigens. This is likely to reduce selection for higher copy 

number of MHC loci, thus 1) avoiding costs of negative T-cell selection (Nowak et al. 1992; 

Woelfing et al. 2009) but 2) maintaining high levels of sequence divergence between alleles 

(Wakeland et al. 1990). Also, spatial variation in pathogen communities between habitats also 

contribute to the maintenance of MHC diversity at the species level (Hill 1991). Interestingly, 

previous studies have found different haplotypes associated with resistance to Gyrodactylus 

spp., supporting the ideas of Red Queen dynamics acting on ecological time scale 

(Decaestecker et al. 2007; Eizaguirre et al. 2009b, 2011). In summary, we show that both 

within-habitat balancing selection and between-habitat fluctuating selection help maintain 

MHC diversity.  

Costs against migrants has the potential to evolve when populations adapt locally to 

contrasting environments, and can thus represent a strong inherent barrier to gene flow before 

other pre-copulatory reproductive barriers arise in the context of ecological speciation. 

Barriers against migrants involved different traits (condition, survival) with different strengths 

of selection and this is likely to affect the evolution of further reproductive barriers. We show 

that parasites, via the activation of the innate immune system and contrasting patterns of 

resistance between habitats, are playing a key role in reproductive isolation in the early stages 

of ecological speciation. 
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Abstract 

Forces shaping an individual’s phenotype are complex and include trans-generational effects. 

Despite low investment into reproduction, a father’s environment and phenotype can shape its 

offspring's phenotype. Whether and when such paternal effects are adaptive, however, 

remains elusive. Using three-spined sticklebacks in controlled infection experiments, we show 

that sperm deficiencies in exposed males compared to their unexposed brothers functionally 

translated into reduced reproductive success in sperm competition trials. In non-competitive 

fertilizations, offspring of exposed males suffered significant costs of reduced hatching 

success and survival but they reached a higher body condition than their counterparts from 

unexposed fathers after experimental infection. Interestingly, those benefits of paternal 

infection did not result from increased resistance but from increased tolerance to the parasite. 

Altogether, these results demonstrate that parasite resistance and tolerance are shaped by 

processes involving both genetic and non-genetic inheritance and suggest a context-dependent 

adaptive value of paternal effects. 

 
72 



Chapter III 

 

Introduction  

Understanding non-Mendelian modes of inheritance, such as parental effects, has become an 

important theme in evolutionary biology (Bonduriansky 2012; Rando 2012). Parental effects 

are defined as the influence of parental phenotypes on their offspring’s phenotype beyond the 

direct effects of genetic inheritance (Mousseau et al. 2009; Wolf & Wade 2009). While 

increasingly acknowledged as an important factor, there is still controversy over the general 

adaptive value of parental effects (Marshall & Uller 2007). To be selected for, parental effects 

have to be on average at least slightly beneficial, however, on a short time scale, they can be 

beneficial to the parents, the offspring, both or neither of them (Marshall & Uller 2007). The 

adaptive value of a parental effect is expected to depend on the distribution of costs and 

benefits across parental and offspring generations and more importantly depends on the 

ecological context (Mousseau & Fox 1998; Marshall 2008). Adaptive parental effects are 

expected to evolve when the selective pressures are both variable and predictable (Burgess & 

Marshall 2014). Despite significant progress, the context-dependence nature of adaptive 

parental effects is still poorly understood. Furthermore, even though studies have mainly 

focused on maternal effects, there is growing evidence for variation in offspring phenotypes 

that may be attributed specifically to paternal effects (Mousseau & Fox 1998; Curley et al. 

2011; Rando 2012). Studying paternal effects practically facilitates the experimental testing of 

adaptive non-genetic transmission, because, in contrast to the mother (e.g. through placenta, 

egg yolk, milk), the physiological links between father and offspring are generally very 

limited and can be more easily controlled (Curley et al. 2011; Rando 2012).  

To assess the adaptive value and context-dependence of a paternal effect experimentally, it is 

necessary to manipulate exactly the same selective pressure in both parental and offspring 

generations. To this end, experimental exposure to parasites is ideal, given i) their ubiquitous 

presence in nature (Moore 2002) ii) their known fluctuating dynamics (Decaestecker et al. 

2007), and iii) their detrimental effects on host condition and reproductive success 

(Schulenburg et al. 2009; Kalbe et al. 2009). Genes responding to parasite mediated-selection 

increase immunological resistance against the parasite and reduce the likelihood of infection 

(Sorci et al. 1997; Eizaguirre & Lenz 2010; Eizaguirre et al. 2012a). On the other hand, 

selection can also lead to increased tolerance of infection (Råberg et al. 2007; Sorci 2013). 

While some recent studies have shown that trans-generational immune priming can affect 
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survival, growth and immune responses during parasite or immune challenge (Gallizzi et al. 

2008; Linder & Promislow 2009; Sadd & Schmid-hempel 2009; Roth et al. 2010, 2012), our 

understanding of the context-dependence of adaptive paternal effects and their consequences 

on resistance, tolerance and more broadly on host-parasite interactions are still poorly 

understood.  

The three-spined stickleback (Gasterosteus aculeatus L.) is an established model species for 

studying the genetic basis of parasite resistance (Wegner et al. 2003a; Barber 2013) and its 

Mendelian inheritance (e.g. Eizaguirre et al. 2012). Here, we used this model species to 

investigate whether paternal effects can be expressed under experimental parasite pressure. 

Specifically, we estimated the effect of parasite exposure across two generations of three-

spined sticklebacks, exposed to a standardized dose of a common stickleback parasite, the 

nematode Camallanus lacustris. We produced maternal half-sibships, each sired by one 

exposed and one unexposed male. The two sires of each half-sibship pair were brothers in 

order to reduce the well documented variation due to classical genetic inheritance. We then 

studied how paternal infection affected early life history traits and parasite resistance in the 

offspring generation. As males mainly contribute semen to the next generation, sperm 

represents the best candidate for functionally mediating paternal effects (Crean et al. 2012; 

Rando 2012, Bromfield et al. 2014). For this, we estimated variability of sperm traits under 

parasite infection and their consequences in competitive and non-competitive in vitro 

fertilization experiments.  

 

Materials and Methods 

Parasite exposure of lab-bred fathers  

We dissected larvae of the nematode Camallanus lacustris from gravid female parasites 

collected from intestines of adult perches Perca fluviatilis from the vicinity of the stickleback 

population (Dieksee, 54° 9' 32.82", 10° 29' 47.63", Germany). This parasite is highly 

prevalent in the stickleback fish population (Kalbe et al. 2002; Eizaguirre et al. 2011), 

negatively affects their growth (Eizaguirre et al. 2012a), and is known to activate their 

immune system (Krobbach et al. 2007) as well as to select for resistance alleles at major 

histocompatibility complex genes (Eizaguirre et al. 2012a). As this parasite is trophically 

transmitted, we used copepods (Macrocyclops albidus) from a parasite-free laboratory culture 
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as intermediate hosts (van der Ven et al. 2000). We exposed groups of 100 copepods to 400 

and 500 C. lacustris larvae for the paternal exposure and the offspring exposure, respectively. 

The number of larvae in the body cavity of each copepod was counted under a microscope to 

standardize the number of parasites each fish was exposed to. This manipulation guaranteed 

that the observed infection was directly linked to the immunocompetence of the fish and not 

confounded by the number of parasites the fish were exposed to (Eizaguirre et al. 2012a).  

We bred ten full-sib families of three-spined sticklebacks, subsequently referred to as the G1 

generation, by randomly pairing males and females from a natural lake population (Grosser 

Plöner See, 54° 9’21.16” N, 10°25’50.14” E, Germany). The fish from those families were 

kept under controlled laboratory conditions and were parasite-free at the beginning of the 

experiment. Male juveniles of each G1 family were randomly assigned to one of two 

treatments: parasite exposure or control (i.e. no exposure). We exposed males from the 

“exposure” treatment group twice to exactly six C. lacustris larvae (in copepods) whereas 

control males only received uninfected copepods. All G1 fish were transferred through 

artificial fall, winter and spring conditions in the lab in order to induce sexual maturation. 

Sixteen weeks after exposure, the G1 males (exposed and unexposed) were separated in single 

16L aquaria with nesting material, while the G1 females were maintained in group aquaria 

(Sommerfeld et al. 2008). All individuals were fed ad libitum with frozen and live chironomid 

larvae. Males were inspected daily and nest quality of all males was evaluated following Jäger 

et al (2007). Only pairs (i.e. brothers) of reproductively active males (courting behaviour, 

each maintaining a nest of high quality for at least 2 days) were used in the experiments. For 

each trial, the selected males were sacrificed by a cut in the brain. After sperm collection (see 

below), the entire intestinal tract of each male was screened for C. lacustris under a dissection 

microscope (Kalbe et al. 2002). All exposed males were infected with at least one worm. 

The parasite exposure treatment in the G1 generation could potentially result in an unintended 

and confounding selection bias in male quality between the treatment groups. This is because 

parasite exposure is known to affect mortality and reproductive behaviour. In order to control 

for this unintended bias, we tested whether more exposed than unexposed G1 males were 

excluded during the course of the experiment, for instance due to low nest quality. However, 

we did not find significant differences between exposed and unexposed G1 males in 

mortality, nest building behaviour, or the manifestation of courtship behaviour (all p>0.49; 

see supplementary table S1 in Supporting Information). 
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Sperm isolation and measurements 

For both types of in vitro fertilization experiments, testes of G1 males were freshly dissected, 

weighed and transferred to a 40 μm micro-cell strainer sieve with 300 μl HBSS solution 

(Hank’s Balanced Salt Solution, Sigma-Aldrich, Munich, Germany). Sperm suspension was 

prepared by gently mashing each testes through a cell strainer using a plastic stamp and 

rinsing the sieve twice with 300 μl HBSS solution. Three microliters of the resulting 

suspension were transferred to a counting chamber (standard count 4 chamber slide, 20 μm 

depth, Leja Nieuw Vennep, Nederlands) under an Olympus CX41 microscope at 100x 

magnification. To quantify spermatozoa concentration and velocity, we used computer 

assisted sperm analysis using a Hamilton-Thorne CEROS camera set-up and the Animal 

Mobility software (Hamilton Thorne Biosciences, Beverly, MA, USA). We recorded the total 

number of sperm, motile sperm number and the following sperm motion parameters: Beat-

cross frequency (BCF) as well as curvilinear (VCL), straight-line (VSL) and average-path 

velocity (VAP) (Kime et al. 2001). We recorded 6 measurements of each sperm characteristic 

per individual (3 separate areas from each of two slide chambers) and used the average value 

in subsequent analyses.  

 

In vitro sperm competition experiments 

To test for the consequences of parasite exposure on the functional variation of fertilization, 

we prepared 15 sperm competition assays between sperm extracted from one exposed and one 

unexposed male of the same lab-bred G1 family. Using brothers for these experiments 

reduces the effect of genetic variation on sperm phenotypes, sperm competition outcome and 

offspring phenotype. For each test, we fertilized the eggs of a random female (taken from the 

same lab-bred G1 generation but not from the males' family) with 50 µl of sperm solution 

from each of the two brothers in 5ml of fresh water. Using the same individuals, we also 

performed matched sperm competition assays where total sperm concentration was adjusted 

to the lowest concentration of the two males. Five days after fertilization, the eggs were 

sampled for DNA analysis. DNA extraction was performed using the Invisorb® DNA Tissue 

HTS 96 Kit (Invitek, Berlin, Germany) on a TECAN FreedomEvo robot platform. All eggs 

were genotyped at 15 microsatellite loci (Kalbe et al. 2009) for paternity analysis (n=1157, 

mean of eggs per test 39±14 S.D.). We performed genotyping using GeneMarker 1.85 
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(Softgenetics LLC, State College, PA, USA) and individual parentage analysis using 

CERVUS v3.0.3 (Field Genetics Ltd, Kalinowski 2007). The most likely father was 

determined based on exclusion probabilities and LOD score ratios between the two putative 

sires (mean paternal assignment of 93.38 %).  

 

Production of offspring generation 

In order to test for the impact of parasite exposure on fertilization success and for paternal 

effects per se, we also performed in vitro fertilizations in a non-competitive split-clutch 

design. Each maternal half-sibship pair was mothered by one G1 female and sired by two G1 

brothers, one exposed and one unexposed. To control for potential family effects, the parents 

originated from a total of 10 different G1 laboratory-bred families. In total, we produced 53 

maternal half-sibship pairs (range: 2 to 9; average: 5 per G1 family), subsequently referred to 

as the G2 generation. For this we randomly selected a G1 gravid female (not the same family 

as the males') and two reproductively active brothers. The females’ eggs were stripped 

carefully into a dry sterile Petri dish (90x15mm). We divided each clutch evenly into two 

halves: One half was fertilized with 100 µl of sperm solution from the G1 male exposed to the 

parasite and the other half was fertilized with 100 µl of sperm solution from the unexposed 

male. Eggs and sperm were left for 20 minutes at 18°C to assure complete fertilization. Five 

days after fertilization, we counted the number of developing, unfertilized and undeveloped 

eggs under a laboratory microscope. We characterized unfertilized eggs by the sole presence 

of lipid droplets and undeveloped eggs by a delayed developmental stage as well as the 

absence of a heartbeat five days post-fertilization (supplementary figure S1). 

 

Offspring care and exposure 

To estimate juvenile mortality in the G2 generation, we monitored the presence of dead 

juveniles at least three times a week for 6 months. After this period, we randomly selected 15 

maternal half-sib G2 families (representing 5 out of the 10 initially produced G1 families) to 

challenge them with the same nematode parasite as the G1 fathers. For this, we randomly 

assigned fish of both sexes from each G2 family either to the parasite exposure treatment (9-

10 fish per family) or to the control treatment (5-6 fish per family). The total number of fish 

was 475. Prior to the experimental treatment, fish were measured, weighed and a spine was 

clipped for later identification. The methods of G2 parasite exposure and fish dissections were 
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strictly the same as in the parental G1 generation except that G2 offspring from the 

“exposure” treatment were exposed to exactly seven C. lacustris larvae each. We then 

transferred them in groups of 26 fish to 16L tanks, mixed by paternal treatment, experimental 

treatment and family to avoid confounding tank effects. We used DNA fingerprinting based 

on 11 microsatellite loci (Kalbe et al. 2009) on spine and fin samples (before and after 

treatment, respectively) to identify G2 individuals with their respective treatments at the end 

of this double-blind experimental set-up. All G1 and G2 fish were laboratory-bred and thus 

parasite-free before exposure to C. lacustris. 

Statistical analysis 

 

Effect of parasite exposure on sperm phenotype and functional competitiveness 

All statistical tests were conducted in R v 3.0.3 (R Development Core Team 2014). We tested 

differences in testes mass and sperm characteristics (velocities and concentration) between 

exposed and unexposed males using a linear model with treatment and testes mass as fixed 

effects. We estimated the paternity of the unexposed G1 male in each of the 15 sperm 

competition trials and tested this value against 50 % (representing random fertilization) using 

one sample t-tests.  

Cost of paternal exposure on offspring early life history traits 

The proportion of unfertilized and undeveloped eggs was calculated over the total clutch size. 

Juvenile mortality was calculated based on the total number of dead G2 juveniles over the 

initial number of developed eggs per clutch. We tested differences in the proportion of 

unfertilized eggs, undeveloped eggs and juvenile mortality between clutches sired by exposed 

or unexposed G1 males using non-parametric Wilcoxon signed-rank tests (wilcox.test 

function in R).  

Effect of paternal exposure on offspring resistance 

Resistance is defined as the ability of hosts to supress the establishment of parasites and thus 

limit parasite load (Råberg et al. 2009; Sorci 2013). We tested the effects of paternal G1 

exposure on the likelihood of infection (infected vs. uninfected, nexposed=223) and on infection 

intensity (number of worms in infected individuals) in the G2 fish using generalized linear 

mixed effect models (glmer function in R). The full model included sex, G2 size before 

exposure and paternal G1 treatment (exposed vs. control) as fixed effects, and maternal G2 
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half-sibship identity as random effect to account for non-independence between the two 

paired maternal half-sibships. Infection probability was fitted with a binomial (log-odds link 

function) distribution and infection intensity fitted with a Poisson distribution (log link 

function). The significance of the paternal effect was tested by comparing models with or 

without the paternal G1 treatment variable using likelihood ratio tests (using anova function 

in R). We did not find evidence for over-dispersion in our models (supplementary table S2).  

Effect of paternal exposure on offspring tolerance  

Tolerance is defined as the ability of hosts to limit the physiological costs caused by a given 

parasite burden or, sensu stricto, as the reaction norm of host fitness and condition over 

parasite burden (Råberg et al. 2009; Sorci 2013). In our experiment, parasite-related paternal 

effects could not only be expressed through resistance but also through increased tolerance, 

where G2 fish sired by exposed G1 males would suffer less from parasite-induced fitness 

consequences than their counterparts sired by unexposed G1 males. We thus tested whether 

infection with C. lacustris affected body condition in G2 fish differently with respect to the 

paternal G1 treatment. Body condition of the G2 fish, an estimate of fish health and a 

predictor of energy reserves and reproductive success, was calculated using the residuals from 

the regression of body mass on body length (Chellappa et al. 1995). The linear mixed effect 

model (nlme function in R) included G2 body condition as dependent variable, sex, G2 

treatment (exposed vs. control), paternal G1 treatment (exposed vs. control), and their 

interactions as fixed effects as well as maternal G2 half-sibship identity as a random effect. 

Fish dissection showed that approximately half of the exposed G2 fish did not harbour any 

parasite at the end of the experiment. Since the actual moment of infection and the continuing 

interaction with an established parasite are two inherently different processes, we 

hypothesized that the cost of parasite infection might be very different between infected and 

exposed-but-uninfected G2 individuals. Hence, we tested the effect of paternal G1 exposure 

on tolerance only in exposed G2 offspring, split for exposed-uninfected and exposed-infected 

offspring. For this we ran the same linear mixed effect model on G2 body condition as above, 

but focusing only on exposed G2 fish (exposed-uninfected vs. exposed-infected) instead of all 

fish. 

To investigate in which way paternal G1 exposure affected offspring tolerance, we tested how 

the relationship between G2 body condition and infection intensity was affected by paternal 

G1 exposure. This was tested in a linear mixed model on G2 body condition with paternal G1 
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treatment and the interaction between paternal G1 treatment and G2 infection intensity as 

fixed effects. Maternal half-sibship identity was set as a random effect. 

 

Results 

Effect of parasite exposure on sperm phenotype and functional competitiveness 

All exposed G1 males were infected with at least one parasitic worm. We did not find 

significant differences in testes mass, total sperm concentration or measures of sperm velocity 

between exposed and unexposed males (testes mass: p=0.13; total sperm concentration: 

p=0.07; all velocities: p>0.2). However, motile sperm concentration was found to be 

significantly lower in exposed males than in unexposed males (F1,122=4.595, p=0.034; Fig. 1). 

This difference translated into an advantage for the unexposed G1 males, which fertilized on 

average 65.65% of the eggs. This value was significantly higher than an evenly shared 

paternity (tdf=14=2.181, p=0.023), but not so when total sperm concentration was 

experimentally matched between brothers (tdf=13=1.003, p=0.167). These results suggest a 

reduction in the concentration of motile sperm in response to infection (Pearson’s correlation 

between total and motile sperm concentration: r=0.908, p<0.001).  

 

Figure 1: Parasite infection induces sperm deficiency. Concentration of motile spermatozoa per μL in 

male sticklebacks experimentally infected with the nematode Camallanus lacustris and in uninfected 

(unexposed) males. Error bars represent ±1 SE 
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Cost of paternal exposure on offspring early life history traits 

In non-competitive fertilization trials we did not observe significant differences in fertilization 

rates between clutches sired by exposed or unexposed males (Wilcoxon signed-rank test: 

n=53, T=181, Z=0.192, p=0.848). However, eggs fertilized by G1 males that were exposed to 

parasites suffered higher rates of developmental failures than the ones fertilized by unexposed 

G1 males, resulting in lower hatching success (Wilcoxon signed-rank test: nclutches=53, 

neggs=4316, T=157, Z=2.765, p=0.006; Fig.2a). Furthermore, larvae of exposed G1 males also 

showed a higher mortality rate (Wilcoxon signed-rank test: nclutches=50, ndeveloped eggs=3602, 

T=158.5, Z=2.912, p=0.004; Fig.2b). Motile sperm concentration, zygote and juvenile 

mortality were not significantly correlated among each other (see supplementary table S3). 

 

 

 

Figure 2: Transgenerational effects of paternal parasite infection on (a) the proportion of undeveloped 

eggs and (b) the proportion of dead juveniles in maternal half-sibships sired by exposed or unexposed 

fathers. Error bars represent ±1 SE. 

 

Effect of paternal exposure on offspring resistance 

We found no significant differences between surviving G2 individuals sired by exposed or 

unexposed G1-males in their probability to become infected when exposed to the same 

parasite as the paternal generation (likelihood ratio test [LRT], nexposed=223, χ2
1=3.599, 

p=0.165, supplementary table S4 and supplementary figure S2) or in infection intensity (the 

number of parasites when infected, LRT, ninfected=113, χ2
1=0.061, p=0.97, supplementary table 
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S5). Notably, 43% of the variation in the likelihood of being infected was attributable to 

maternal half-sibship origin.  

 

Effect of paternal exposure on offspring tolerance  

Prior to experimental treatment, offspring sired by unexposed males had higher body 

condition than offspring sired by exposed males (F1,358=4.32, p=0.038). After the 

experimental exposure period, we found significant effects of paternal G1 treatment and G2 

treatment on G2 body condition. On the one hand, offspring sired by exposed G1 males 

achieved a higher body condition than their counterparts sired by unexposed G1 males 

(F1,471=8.74, p=0.003; supplementary table S5 and supplementary figure S3). On the other 

hand, experimental parasite exposure significantly reduced body condition in G2 fish 

(F1,471=6.42, p=0.012; supplementary table S6, Fig. 3). Noteworthy, 38% of the variation in 

body condition at the end of the experiment was attributable to maternal half-sibship identity. 
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Figure 3: Trans-generational effects of paternal parasite exposure on body condition at the end of the 

experiment. Body condition is an estimate of fish health and is calculated using the residuals from the 

regression of body mass on body length. Shown are means of body condition in control, uninfected 

(i.e. exposed but non-infected) and infected offspring, sired by either exposed or unexposed fathers. 

Error bars represent ±1 SE. The shaded data indicates the comparison of exposed-uninfected and 

exposed-infected fish. Symbols represent significant differences between experimental groups based 

on Tukey post-hoc tests (* : p=0.048; ** : p=0.003).  
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As exposed G2 fish encompassed both infected and uninfected individuals in approximately 

equal proportions, we additionally focused on the variation in G2 body condition in response 

to G1 paternal effects between exposed-infected and exposed-uninfected individuals. Here we 

found a significant interaction between paternal G1 treatment and G2 infection status on G2 

body condition (F1,282=4.14, p=0.043; Table 1, grey shades in Fig. 3): G2 fish sired by 

unexposed males suffered significantly from the cost of parasite infection (Tukey post-hoc 

test, z=2.58, p=0.048), whereas G2 fish sired by exposed males did not (Tukey post-hoc test, 

z=-0.25, p=0.995). This result seemed to be mainly driven by infected G2 fish sired by 

unexposed G1 males, which showed a significantly lower body condition than their 

counterparts from exposed G1 males (Tukey post-hoc test, z=-3.47, p=0.003, Fig. 3), while 

paternal G1 exposure did not significantly affect body condition in uninfected individuals 

(Tukey post-hoc test, z=-0.71, p=0.894). This suggests that beneficial effects of paternal 

exposure are only expressed in offspring upon challenge by the selective parasite.  

 

Table 1: Effects of paternal exposure, offspring infection status (infected vs. exposed but uninfected) 

and sex on individual body condition. The statistical table shows the outcome of a linear mixed model 

on individual body condition at the end of the experiment. The variation imputed to the random effect 

was estimated based on the ratio of the variance due to this effect over the total variance (d.f..: degrees 

of freedom)  

 

Effect d.f. F value P  

Paternal exposure 1, 282 8.161 0.005  

Offspring infection 1, 282 2.551 0.111  

Offspring sex 1, 282 0.505 0.478  

Paternal exp. x Offspring infection 1, 282 4.144 0.043  

Maternal half sibship (random effect) Variance = 36.44%  
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To further dissect this effect, we investigated tolerance as the relationship between offspring 

body condition and infection intensity, with respect to paternal exposure. We found a 

significant interaction between paternal G1 exposure treatment and the number of established 

parasites in G2 fish on body condition (F2,281=4.11, p=0.017, Table 2, Fig. 4): G2 fish sired by 

unexposed G1 males showed a decrease in body condition with increasing number of 

parasites (estimated slope=-8.39; 95% CI=-14.6 to -2.2; t=-2.84, p=0.005) whilst body 

condition of fish sired by exposed G1 males appeared relatively unaffected by parasite 

infection (estimated slope=0.15; 95% CI=-5.1 to 5.4; t=-0.53, p=0.59). 

 

 

 

 

Figure 4: Trans-generational effects of paternal parasite exposure on the relation between offspring 

body condition and infection intensity (i.e. tolerance). The black circles and the solid linear regression 

line represent exposed fish sired by exposed fathers and the white circles and the dashed linear 

regression line represent exposed fish sired by unexposed fathers.  
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Table 2: Effects of paternal exposure and offspring infection intensity (number of established 

parasites) on individual body condition. The statistical table shows the outcome of a linear mixed 

model on individual body condition at the end of the experiment. The variation imputed to the random 

effect was estimated based on the ratio of the variance due to this effect over the total variance (d.f..: 

degrees of freedom) 

Effect d.f. F value P  

Paternal exposure 1, 281 9.292 0.003  

Paternal exp. x Offspring infection intensity 2, 281 4.116 0.017  

Maternal half sibship (random effect) Variance=36.88%  

 

Deciphering selection from increased parasite tolerance 

The difference in tolerance of G2 fish with respect to paternal treatment indicates the 

existence of mechanisms induced by paternal infection. It could, however, also result from 

selection against low quality G2 individuals during early life. Such a selection scenario could 

have resulted in an elevated average quality of the surviving G2 fish sired by exposed G1 

males, and could in turn explain their elevated tolerance to parasite infection. In order to 

control for this scenario, we repeated the same statistical model as presented in Table 1, but 

we simulated selection by excluding G2 offspring sired by unexposed fathers across a range 

of selection strengths varying from 5 to 34.8 % (the latter corresponding to twice the relative 

difference in overall survival between offspring from exposed and unexposed fathers, i.e. 

17.4%). With these sensitive analyses, we simulated scenarios postulating (i) selection against 

weaker G2 offspring sired by infected father (supplementary table S7a) and (ii) random 

selection independently of infection (supplementary table S7b, S7c) to account for the effect 

that selection may not have exclusively removed the most susceptible individuals. In each 

case, based on 999 simulated subsets, we estimated the mean p-value and 95% confidence 

interval of the paternal effect and the interaction between paternal exposure and offspring 

infection on offspring body condition. Paternal G1 treatment on offspring body condition 

remained significant, even at high levels of simulated random and infection-dependent 

selection (p<0.047, supplementary table S7). The interaction (G1 exposure x G2 infection) 

was supported by a statistical trend up to 20% contribution of selection (maximal mean p-

value=0.08, Supplementary table S7). Altogether, these analyses support the conclusion that 
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selection in offspring of exposed fathers at the juvenile stage was not the only source for 

differences in offspring condition in our experiment, as well as corroborate a potential 

context-dependence for the benefits of this paternal effect. Lastly, we show that infection cost 

(i.e. mean difference in body condition between infected and uninfected individuals per 

family) did not significantly correlate with offspring mortality (see supplementary table S3).  

 

Discussion 

In addition to traditional genetic inheritance, parental effects are potent processes than can 

alter offspring phenotypes (Marshall & Uller 2007; Bonduriansky 2012; Burgess & Marshall 

2014). Here, we present compelling experimental evidence for trans-generational effects of 

paternal parasite exposure on juvenile survival and offspring condition. While offspring of 

exposed sires generally suffered from reduced juvenile survival, suggesting parasite-mediated 

selection, the surviving offspring showed a significantly higher body condition than their 

counterparts from unexposed fathers. Interestingly, our in depth analyses revealed that a fine-

tuned interaction between selection and parental effects may result in a context-dependent 

advantage of this trans-generational effect where effects are strongest when both parental and 

offspring generations are exposed to similar selective pressures. 

Firstly, not only had exposed males lower motile sperm concentration than unexposed males, 

but this also resulted in a lower rate of paternity in competitive situations. When both total 

sperm concentration and, as a result, the concentration of motile sperms were adjusted, 

differential fertilization success was not observed anymore, demonstrating that this trait is 

condition-dependent and represents a key functional link between infection and reproductive 

success during sperm competition. Secondly, in non-competitive in vitro experiments, male 

infection resulted in increased reproductive failures and lower probability for the offspring to 

reach adulthood. This result demonstrates that parasite exposure affects fertilization and post-

fertilization development and although poor quality sperm can fertilize eggs in a non-

competitive interaction, carry-over effects can then exist. Altogether, we demonstrate strong 

sperm-mediated trans-generational costs of parasite infection on reproductive success. These 

results are consistent with i) studies showing that the activation of the immune system upon 

stimulation decreases sperm velocity and fertilization success (Chargé et al. 2010; Losdat et 

al. 2011), ii) the sick sperm hypothesis, where paternal stress can alter sperm phenotype and 
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affect post-zygotic development and performance (Crean et al. 2012, 2013; Rando 2012; 

Zajitschek 2014; Bromfield et al. 2014). Furthermore, zygote and juvenile mortality did not 

correlate among families. Whether this suggests several independent mechanisms or an 

interaction between genetic background and the expression of trans-generational costs on 

reproductive success remains an open question. Even though the direct mechanisms of sperm 

mediated effects here are not clear, they may be associated with the release of reactive oxygen 

and nitrogen radicals which can damage proteins, lipids, DNA and can disrupt mitochondrial 

function (Sorci & Faivre 2009). 

Using male siblings in our experimental design, we minimized the potential effects of 

classical genetics, e.g. through the inheritance of resistance alleles (Eizaguirre et al. 2012a) 

and demonstrate that a large proportion of the observed costs originated from non-genetic 

paternal effects. To control for the possibility that treatment-induced selective mortality may 

have acted specifically against weaker offspring sired by exposed fathers and thus biased their 

mean intrinsic quality independent of paternal effects, we simulated varying levels of 

selection. While selection prior to parasite exposure of the offspring has probably acted in our 

experiment, our analyses also support the observation that increased body condition is 

associated with infection-induced paternal effects. Moreover, increased tolerance was not 

associated to high levels of mortality at the family level. Thus, both parasite resistance and 

tolerance are likely shaped by processes involving both genetic and non-genetic trans-

generational effects.  

Whether and when paternal effects are adaptive remain open questions in the literature (e.g. 

(Uller et al. 2013). For paternal effects to be adaptive and thus get selected for, the benefits 

would have to outweigh the associated costs. In this study, we show that paternal infection 

can have significant costs ranging from deficient sperm to juvenile mortality, but paternal 

infection can also have clear beneficial effects on offspring condition, leading to a 

compensatory increase in Darwinian fitness of exposed fathers. The significant cost of 

infection in offspring sired by non-infected males is likely to lead to their competitive 

disadvantage against offspring sired by infected males, particularly as body condition is an 

accurate measurement of energy reserves and mate quality in sticklebacks (Milinski & Bakker 

1990; Chellappa et al. 1995; Jakob et al. 1996). With our experimental design we could also 

test the hypothesis that adaptive paternal effects are context-dependent, i.e. expressed when 

both the paternal and offspring generations are predictably exposed to the same selective 

pressure. Burgess and Marshall (2014) recently stressed the importance of environmental 
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predictability in the study of adaptive paternal effects. At least in our stickleback populations, 

the presence of a parasite in a given generation is more likely to predict parasite presence in 

the next generation than to predict parasite absence in the next generation (Kalbe et al. 2002; 

unpublished data). The fact that paternal effects are only observed in actually infected 

offspring may be due to the favourable lab conditions under which fish were kept and where 

costs associated to solely mounting an immune response (without the continuous costs of 

parasite infection) may be compensated for (Jäger et al. 2007). Nonetheless, our study 

suggests that under predictable selective pressures that impact both parental and offspring 

generations (such as parasite infection), trans-generational effects can be adaptive.  

Interestingly, the paternal effects were not expressed as increased resistance to the parasite, 

but rather as a difference in body condition, resulting from increased tolerance (Råberg et al. 

2007; Sorci 2013). In our experiments, offspring body condition had both a genetic and non-

genetic trans-generational component, while the probability of infection and the level of 

infection strongly depended on the family background (i.e. classical genetics). Although our 

experimental design significantly reduced genetic variation, we still show that this variation 

played a major role in the individuals’ response to parasite infection. 

There is substantial evidence for mechanisms of non-genetic inheritance, such as the 

inheritance of epigenetic alterations or the transmission of proteins or molecules from the 

parent to the offspring (Bonduriansky & Day 2009; Kappeler & Meaney 2010; Jiang et al. 

2013). As males are more limited in their possibility to transmit information and resources 

than females (Curley et al., 2011), we expect trans-generational paternal effects to be mainly 

mediated through epigenetic changes in the germ line. Ultimately, epigenetic changes can also 

affect selection, e.g. by allowing for a more plastic and more immediate response to selection 

than classical genetic mechanisms of inheritance (Klironomos et al. 2013a). Furthermore, 

parental effects may buffer selection at the genetic level. This can allow for the short-term 

maintenance of otherwise neutral or even slightly deleterious alleles, potentially promoting 

allelic diversity at genes involved in the response to fluctuating selective pressures, alongside 

traditional processes of long-term balancing selection. This can influence many processes 

such as population extinction, speciation and specifically host-parasite co-evolutionary 

dynamics (Bernardo 1996; Wolf et al. 1998).  
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In this thesis I outlined the role of parasites in adaptive evolution and particularly explained 

how parasite-mediated selection contributes to the evolution of host defenses and reproductive 

barriers. My PhD projects focused on (i) exploring the role of gametic isolation in ecological 

speciation, (ii) testing the role of local adaptation to parasites in ecological speciation and (iii) 

unravelling the role of paternal non-genetic effects of infection.  

I will now briefly present the outcomes of my PhD work and how they improve our 

understanding of parasite-mediated selection and parasite-mediated speciation. I will also 

suggest how these findings could be complemented further.  

The first part of my Ph.D. work addressed the importance of specific reproductive barriers 

during the early stages of ecological speciation. Previous work already suggested the role of 

parasites limiting gene flow between lake and river populations in Northern Germany (Kalbe 

et al. 2002). Specifically, differences in macroparasite communities between these ecological 

demes, or ecotypes, lead to habitat-specific MHC class II allele pools (Eizaguirre et al. 2011). 

MHC-mediated local adaptation to parasites, reinforced by MHC-mediated assortative 

mating, keeps gene flow reduced between these populations (Eizaguirre et al. 2009a, 2011, 

2012b). To broaden our understanding of the system, I tested for the existence of 

postcopulatory barriers in the form of conspecific gamete preference and gametic 

incompatibilities and for parasite-mediated costs of migration as a precopulatory barrier. 

In chapter I, I examined post-copulatory reproductive barriers and specifically sperm 

phenotypes and assortative gamete precedence between ecotypes. There I demonstrated that 

sperm phenotypes consistently differed between lakes and rivers but that these differences did 

not lead to ecotype-specific sperm precedence in sperm competition experiments. However, 

the link between zygote mortality and paternity under these conditions suggests that genetic 

incompatibilities might have arisen between lake and river populations and contribute to 

reinforce the onset of speciation.  

Interestingly, the pleiotropic role of MHC on parasite resistance and mate choice can also be 

applied to gametic processes. Indeed, MHC-mediated cryptic female choice is theoretically 

 
91 



Conclusion 

possible, although support for this idea is extremely scarce and so far inconclusive (Wedekind 

et al. 1996; Yeates et al. 2009; Alcaide et al. 2012; Løvlie et al. 2013). Therefore, local 

adaptation to different habitats characterized by different parasites might also be accelerated 

by cryptic female choice for MHC alleles conferring resistance to local parasite fauna. Future 

studies on gametic processes involved in speciation could therefore focus on MHC-mediated 

cryptic female choice. 

In chapter II, I showed that migrants between habitats suffer from lower survival rates or 

reduced condition. The strong effects of experimental migration on 1) the parasite 

communities harbored by lake and river fish and 2) the balance between adaptive and innate 

immune systems suggest that parasites are a major ecological factor for maintaining 

reproductive isolation between lakes and rivers. This was further supported by the fact that I 

found habitat-specific patterns of associations between local/foreign MHC haplotypes and 

local/foreign parasites. This also indicates that MHC diversity can be preserved through 

fluctuating selection where different allelic variants are maintained due to spatial variation in 

parasites. Strong selection against migrants, too often overlooked, can represent a primary 

reproductive barrier as the consequences of local adaptation can be drastic (Hendry 2004; 

Nosil 2004). One of these consequences is that selection against migrants can affect and 

potentially even prevent selection on post-dispersal reproductive barriers and the evolution of 

conspecific mate preference.  

Further analyses should include comprehensive studies of the contribution of each barrier to 

attempt to reconstruct which barriers evolved when and the conditions under which 

reproductive barriers evolve in the case of parasite-mediated ecological speciation. Another 

related question remaining to be answered in this context is under which conditions parasites 

can drive reproductive isolation and cause speciation (Eizaguirre & Lenz 2010; Karvonen & 

Seehausen 2012). Indeed, differences in parasite communities between populations do not 

necessarily lead to differences in MHC pools even if MHC diversity and parasite load 

correlate (Tobler et al. 2014). To understand the condition under which parasites promote or 

prevent speciation, it is capital to acknowledge the strength of parasite-mediated selection and 

the specificity of host-parasite interactions. To answer this question, it is necessary to 

generalize these findings in other systems and examine genotypic and phenotypic variation 

associated with reproductive barriers along a continuum of speciation (Feulner et al. 2015). 

This will provide a complete understanding of the general conditions under which parasites 

can drive ecological speciation. 
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In the third chapter of my thesis I tested and successfully demonstrated the existence of 

sperm-mediated paternal effects of parasite infection. This study exemplifies the role of 

transgenerational effects of paternal infection on offspring life-history and phenotype. 

Although experimental paternal infection led to high costs, these costs could be compensated 

by an increased parasite tolerance in the surviving offspring. These results imply that, beyond 

the role of genes, non-genetic mechanisms can also play a role in host-parasite interactions at 

ecological time scales. Importantly, these short-time effects can also affect evolutionary 

dynamics and buffer selection at the genetic level (Mostowy 2012; Tidbury et al. 2012). For 

example, paternal effects granting heightened parasite tolerance to infected offspring will 

increase the fitness of these primed individuals, even if they are bearing suboptimal immune 

genotypes. One consequence of such a scenario is the preservation of neutral alleles or alleles 

associated with susceptibility to parasites at the population level and the maintenance of 

immunogenetic diversity. As immunogenetic diversity is of major importance for processes in 

natural and sexual selection (Wegner et al. 2003a; Milinski 2006) and even in speciation 

(Eizaguirre et al. 2009a), it is capital to understand how and when parental effects evolve and 

affect phenotypic and genetic variation in host defenses. I would like to emphasize that this 

logic is not restricted to host-parasite interactions as acknowledging the relative share of non-

genetic transgenerational effects in adaptive evolution provides an exciting addition to the 

current paradigm in evolutionary theory (e.g. Helanterä & Uller 2010; Klironomos et al. 

2013b). Further studies should therefore expand this aspect theoretically and empirically, for 

example by developing mathematical models and experiments exploring the role of non-

genetic effects in the maintenance of (immuno)genetic diversity at the population and 

metapopulation level. 

When experimentally infected, males could trigger increased tolerance in their offspring but 

resistance was mostly genetically determined. This is particularly interesting as resistance is 

likely to be more pathogen-specific than tolerance which regulates damage control in the host. 

Interestingly, the concept of tolerance does not necessarily fit in the classic perspective on 

antagonistic coevolution between host and parasite. This is because increased host tolerance 

does not necessarily have deleterious effects on parasite fitness. From a historical perspective, 

theories on host-parasite coevolution assume only the reciprocal evolution of host resistance 

and parasite virulence (e.g. Paterson et al. 2010). Therefore, incorporating the concept of 

tolerance - as well as causes and consequences of such behavior both for host and parasite 
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fitness holds a promising future (see Vale et al. 2011; Best et al. 2014). Noteworthy is that the 

outcome of evolution of tolerance on parasite virulence is still extensively debated by some 

authors suggesting that it can lead to a state of “apparent commensalism”, multiple stable 

states or to higher virulence or transmission (Vale 2013). The mechanisms underlying sperm-

mediated paternal effects are yet unknown and further studies are also needed here. It would 

be particularly interesting to understand if epigenetic marks carried across generations lead to 

context-dependent changes in the offspring’s expression of genes involved in damage control 

of parasitic infection. 

Overall, my doctoral research aspired to improve our understanding of the role of parasites in 

promoting and maintaining diversity in their hosts. To tackle questions attached to this very 

large and complex problem, I undertook a multivariate approach considering different 

timepoints in the life history of the stickleback. I also procured a comprehensive view on how 

parasites can affect traits not only within but also across generations. I illuminated the role of 

parasites in maintaining genetic and phenotypic diversity, from the level of the sperm 

phenotype to the population level.  

To conclude, the presented work supports the strong role that parasites play in driving host 

phenotypic and genetic polymorphism and potentially even speciation. I particularly showed 

that with a deeper understanding of the role of tolerance and non-genetic transmission on 

host-parasite interactions our theoretical understanding of host-parasite coevolution can and 

will expand. 
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Appendix Chapter I 

 

Electronic supplementary material: Methods 

Detailed methods for sperm extraction and analysis 

Sperm suspension was prepared by gently mashing both testes through a 40 μm micro-cell 

strainer sieve (brand) and rinsing the sieve with three times 300 μl Hank’s Balanced Salt 

Solution (Sigma-Aldrich Company, Germany). 300 μl of this solution was collected in a 0.5 

mL eppendorf tube. After a 1:2 dilution in well water, 3μl of the resulting suspension was 

introduced in a counting chamber (standard count 4 chamber slide, 20 μm depth, Leja Nieuw 

Vennep, Nederlands) under a Olympus CX41 microscope at 100x magnification. To quantify 

spermatozoa concentration and velocity, we used computer assisted sperm analysis (C.A.S.A.) 

using a Hamilton-Thorne CEROS camera set-up and the Animal Mobility software (Hamilton 

Thorne Biosciences, Beverly, MA, USA).We recorded total number of sperm and multiple 

sperm motion parameters : Curvilinear, straight-line and average-path velocity, beat-cross 

frequency and lateral head displacement (VCL, VSL, VAP, BCF ALH;(Kime et al. 2001)). 

Sperm characteristics were recorded on five separate areas twice in two slide chambers for 

each individual (20 measurements per individual, 34-36 per population, n=142). A principal 

component analysis (PCA) on three sperm motility variables (VSL, VCL, and VAP) was used 

to obtain an overall measure of sperm velocity. We used the first factor score, which 

explained 69.5 % of the variance and was strongly correlated with the three velocity 

parameters (Correlation coefficients: rVSL=0.96, rVCL=0.88, rVAP=0.96). Both sperm 

concentration and sperm velocity (PC1) correlated significantly with log-transformed testes 

mass (Pearson’s correlation sperm concentration: r (95%CI)=0.746 (0.662-0.811), p<0.0001; 

sperm velocity: r (95%CI)= 0.199 (0.036-0.353), p=0.017). 
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Detailed methods for egg genotyping and parentage analysis 

For the adult fish, DNA extractions from tail fin were performed using the DNAeasy 

purification kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. DNA 

extractions from eggs were performed using the Invisorb® DNA Tissue HTS 96 Kit/ Teckit 

from Invitek on a Tecan FreedomEvo robot platform. All samples were genotyped for 5 

microsatellite loci combined into one multiplex PCR protocol for paternity analysis (Kalbe et 

al. 2009). Allele calls were performed using Genemarker 1.85 (www.softgenetics.com) and 

parentage analysis using CERVUS v3.0.3 (Field Genetics Ltd; S3 (Kalinowski et al. 2007)). 

The most likely father was estimated based on LOD score ratios between the two putative 

sires. 

Electronic supplementary material S1:  

Geographic coordinates of populations of origin 

 

Population name Habitat Coordinates 

Grosser Plöner lake Lake 54° 9'21.61"N, 10°25'48.52"E 

Malenter Au  River 54°12'15.08"N, 10°33'41.90"E 

Westen lake Lake 54°17'1.92"N, 9°56'55.71"E 

Eider river  River 54°15'49.02"N, 10° 2'24.47"E 
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Electronic supplementary material S2 

Detailed table representing the full-factorial experimental design for sperm competition trials 

within- and between- populations and ecotypes. Each replicate consists of a sympatric mating 

pair (female + sympatric male) and a competing male. All individuals were used only once to 

avoid pseudo-replication and sequence effects. (L : Lake, R:River, L1: Grosser Plöner lake, 

L2: Westen lake, R1: Malenter Au, R2: Eider river). 

 

Female and 

sympatric male 

origin 

Competing male 

origin 

Competition 

type 

Sample 

size 

Sample 

size per 

population 

Sample 

size 

per 

ecotype 

L1 L1 Within-ecotype 5 

17 

32 

L1 L2 Within-ecotype 4 

L1 R1 Between-ecotype 4 

L1 R2 Between-ecotype 4 

L2 L1 Within-ecotype 3 

15 
L2 L2 Within-ecotype 4 

L2 R1 Between-ecotype 4 

L2 R2 Between-ecotype 4 

R1 L1 Between-ecotype 4 

15 

32 

R1 L2 Between-ecotype 3 

R1 R1 Within-ecotype 4 

R1 R2 Within-ecotype 4 

R2 L1 Between-ecotype 4  

17 
R2 L2 Between-ecotype 6 

R2 R1 Within-ecotype 4 

R2 R2 Within-ecotype 3 
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Electronic supplementary material S3 

Effects of ecotype (lake vs. river) and drainage system on (a) sperm velocity and (b) total 

sperm concentration. (d.f. : degrees of freedom).  

 

(a) Sperm velocity 

   

 

d.f. F value p-value 

Ecotype 1,141 9.07 0.003 

System 1,141 0.26 0.613 

Testes mass (log) 1,141 3.88 0.051 

Ecotype : System 1,141 4.46 0.037 

 

(b) Sperm concentration 

   

 

d.f. F value p-value 

Ecotype 1,141 9.52 0.002 

System 1,141 0.08 0.778 

Testes mass (log) 1,141 162.14 <0.001 

Ecotype : System 1,141 9.12 0.003 
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Electronic supplementary material S4 

We conducted retrospective power analysis so that we could evaluate whether the number of 

replicates was adequate to detect biases in paternity if biases existed. Calculating an effect 

size for a thorough power analysis of the linear model presented in Table 1 was not possible 

based on the information available in the literature. We thus performed a more 

straightforward power analysis showing that the number of replicates was sufficiently high to 

have had detected differences in paternity within and between treatments. To this end, we 

calculated the effect size for a simple proportion test (i.e. chi-square test for equality of 

proportions) based on relevant studies. We used five representative vertebrate studies where 

sperm competition assays were performed between males from different populations or 

species (Ludlow & Magurran 2006; Mendelson et al. 2007; Martín-Coello et al. 2009; Immler 

et al. 2011; Yeates et al. 2013). For each treatment within those studies (i.e. each cross-type, 

N=15), we estimated the number of experimental replicates (mean=8.93, sd=5.9), the average 

sample size of eggs or ova (mean=18.71, sd=6.74) and the advantage of the conspecific male 

(mean=0.706, sd=0.27). For each treatment where a significant advantage for the 

‘conspecific’ male (i.e. same population or species as the female, n=10) was reported, we 

estimated the effect size for a proportion test. The null hypothesis of this test is that the 

paternity of the conspecific male did not deviate from a random expectation of 50/50. Using 

h=2*asin(sqrt(conspecific advantage))-2* asin(sqrt (0.5)) (Cohen 1988), we estimated a mean 

effect size of h=0.835. Using this effect size, we simulated the power provided for a series of 

simulated number of replicates using the pwr.p.test function in R (pwr package). This showed 

that, assuming a similar effect size (h=0.835), a power (1-β) of 0.99 can be reached if the 

replicate number is greater than 25. Our replicate number of 28 and 29 sperm competition 

trials ought therefore to be sufficient to detect differences from a random expectation of 50/50 

at α=0.05 with a probability of power=0.994 and power =0.993, respectively. Furthermore, 

these experiments have reported significant differences to random expectation between-

population or between-species sperm competition trials with smaller replicate number and 

sample sizes of eggs. We found that no significant deviation from equally shared paternity in 

both within-ecotype and between-ecotype trials (respectively, χ2=0.037, df=1, p=0.848 and 

χ2=1.049, df=1, p=0.306). The mean proportion of eggs fertilized by the sympatric male did 

not differ significantly between within-ecotype and between-ecotype trials (χ2=1.743, df = 1, 

p-value = 0.187, h=0.037). Overall, this analysis shows that our sample size provided 
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sufficient power to detect a conspecific sperm precedence effect as large as those reported in 

the literature. 

 

Figure showing the power of a proportion test assuming an effect size of h=0.835 according to 

simulated total of sample sizes ranging from 6 to 40.  

 
124 



Appendices 

Appendix Chapter II 

Table S1 :  

Multiple pairwise comparisons (Tukey HSD post-hocs tests) of relative mass change and 

immune related traits between experimental groups. Shown are the estimate differences and 

their standard error, each pairwise t-test and the associated degrees of freedom and p-values. 

 

Contrast est. SE df t.ratio p.value 

R
el

at
iv

e 
m

as
s 

ch
an

ge
 

Lake resident-River 

resident -18.128 2.345 20.14 -7.730 <.0001 

Lake resident-Lake 

migrant -9.841 2.335 19.72 -4.215 0.002 

Lake resident-River 

migrant -17.983 4.025 121.12 -4.468 <.0001 

River resident-Lake 

migrant 8.287 1.513 118.65 5.479 <.0001 

River resident-River migrant 0.145 3.942 65.17 0.037 1.000 

Lake migrant-River migrant -8.142 3.952 65.46 -2.060 0.177 

 

  

    

  

S
pl

en
os

om
at

ic
 in

de
x 

Lake resident-River resident 0.169 0.079 40.10 2.126 0.162 

Lake resident-Lake migrant -0.159 0.079 39.08 -2.012 0.201 

Lake resident-River migrant -0.052 0.155 119.85 -0.331 0.987 

River resident-Lake 

migrant -0.327 0.061 120.37 -5.379 <.0001 

River resident-River migrant -0.220 0.146 92.70 -1.513 0.434 

Lake migrant-River migrant 0.107 0.146 92.91 0.734 0.883 

 

  

    

  

G
ra

nu
lo

cy
te

 / 
L

ym
ph

oc
yt

e 

ra
ti

o 

Lake resident-River resident 0.115 0.053 43.66 2.163 0.150 

Lake resident-Lake migrant 0.092 0.052 41.97 1.770 0.302 

Lake resident-River 

migrant 0.276 0.098 117.32 2.811 0.029 

River resident-Lake migrant -0.023 0.038 119.69 -0.604 0.931 

River resident-River migrant 0.160 0.092 95.02 1.740 0.309 

Lake migrant-River migrant 0.184 0.092 94.45 1.992 0.198 
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Figure S1: 

Effect of individual parasite load on Granulocyte to lymphocyte ratio for fish from lake ecotype (black 

dots and lines) and river ecotype (red dots and lines). 
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Table S2:  

(a) Parasite prevalence (proportion of fish infected) and (b) mean infection intensity (mean number of 

parasites in infected fish) in sticklebacks from lake and river ecotype transferred in lake or river 

habitat. 

(a) PREVALENCE 
Lake 

residents 

Lake 

migrants 

River 

migrants 

River 

residents 

Protozoa 

    Trichodina sp. 0.96 0.86 1.00 0.94 

Apiosoma sp. 0.25 0.71 0.33 0.90 

Monogenea 
    

Gyrodactylus sp. 0.39 0.31 0.78 0.44 

Digenea 
    

Diplostomum sp. 1.00 0.90 1.00 0.48 

Apatemon cobitis 0.75 0.67 0.11 0.06 

 Cyathocotyle prussica 0.96 0.98 0.78 0.92 

 Echinochasmus sp. 0.50 0.51 0.44 0.25 

Tylodelphis clavata 0.07 0.02 0.22 0.00 

Cestoda 
    

Valipora campylancristrota 0.00 0.02 0.00 0.00 

 Paradilepis scolecina 0.00 0.04 0.00 0.00 

 Proteocephalus filicollis 0.36 0.02 0.11 0.02 

Nematoda 
    

Camallanus lacustris 0.79 0.24 0.33 0.00 

Anguillicoloides crassus 0.04 0.02 0.11 0.17 

Contracaecum sp. 0.36 0.33 0.22 0.00 

Raphidascaris acus 0.00 0.08 0.11 0.38 

Crustacea 
    

Argulus foliaceus 0.32 0.00 0.78 0.00 

Ergasilus sp. 0.04 0.00 0.00 0.02 

Acanthocephala 
    

Acanthocephalus sp. 0.00 0.04 0.00 0.10 

Mollusca 
    

Glochidia sp. 0.82 0.04 0.67 0.00 
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(b) INTENSITY 

Lake 

residents 

Lake 

migrants 

River 

migrants 

River 

residents 

Protozoa 

    Trichodina sp. NA NA NA NA 

Apiosoma sp. NA NA NA NA 

Monogenea 
    

Gyrodactylus sp. 2.36 2.93 9.43 12.14 

Digenea 
    

Diplostomum sp. 7.54 3.95 16.00 1.43 

Apatemon cobitis 4.52 5.67 1.00 2.67 

 Cyathocotyle prussica 7.33 8.46 3.00 3.00 

 Echinochasmus sp. 3.43 6.44 5.50 5.00 

Tylodelphis clavata 3.00 1.00 1.00 - 

Cestoda 
    

Valipora campylancristrota - 1.00 - - 

 Paradilepis scolecina - 1.00 - - 

 Proteocephalus filicollis 1.20 1.00 1.00 1.00 

Nematoda 
    

Camallanus lacustris 3.91 2.75 1.67 - 

Anguillicoloides crassus 1.00 1.00 2.00 1.13 

Contracaecum sp. 1.80 1.19 1.00 - 

Raphidascaris acus - 1.00 1.00 1.22 

Crustacea 
    

Argulus foliaceus 1.78 - 3.71 - 

Ergasilus sp. 1.00 - - 1.00 

Acanthocephala 
    

Acanthocephalus sp. - 1.00 - 1.00 

Mollusca 
    

Glochidia sp. 4.96 1.50 6.17 - 
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Fig. S2 : 

Differences in parasite prevalence (proportion of fish infected) and mean infection intensity (mean 

number of parasites in infected fish) in sticklebacks from lake and river ecotype transferred in lake or 

river habitat. 
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Table S3:  

Analyses of variance tables of models on the effects of MHC diversity (a:intraindividual allelic 

divergence, b:individual allele number), habitat of exposure and migration treatment on parasite 

diversity and individual parasite load. F-statistic and denominator df values associated were corrected 

with the Kenward-Roger approximation. 

 

(a) 

 

Shannon Index 

 

Parasite load 

  

F Pr(>F) 

 

F Pr(>F) 

MHC p-distance  
2.260 0.136 

 
0.053 0.818 

Habitat 
 

40.842 <0.001 
 

12.732 0.006 

Migration 
 

1.593 0.209 
 

0.008 0.931 

Habitat: p-distance  
0.007 0.932 

 
0.321 0.572 

Migration:p-distance  
1.036 0.311 

 
0.436 0.511 

Habitat: Migration  
5.198 0.025 

 
0.009 0.921 

Migration: Habitat:p-distance  
0.004 0.948 

 
0.492 0.484 

(b) 

 

Shannon Index 

 

Parasite load 

  

F Pr(>F) 

 

F Pr(>F) 

MHC allele number  
0.442 0.778 

 
0.743 0.565 

Habitat 
 

28.628 0.0004 
 

1.663 0.200 

Migration 
 

0.682 0.411 
 

2.212 0.141 

Habitat: allele number  
1.107 0.349 

 
0.095 0.963 

Migration: allele number   
1.139 0.337 

 
1.539 0.209 

Habitat: Migration  
9.869 0.002 

 
12.149 0.006 

Migration: Habitat: allele 

number  
0.664 0.517 

 
1.205 0.304 
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Fig. S3 : 

Differences in parasite diversity (Shannon’s diversity index) (means +-0.95 CI) in sticklebacks from 

lake and river ecotype transferred in lake or river habitat 

 

Table S4: 

Results from the multivariate permutational analysis (PERMANOVA) of differences in log 

transformed parasite abundance between treatments. 

 

 

 

Df F Pr(>F) 

Habitat 1 34.501 0.001 

Migration 1 15.895 0.001 

Habitat:Migration 1 16.075 0.001 

residuals 122 

  
 

131 



Appendices 

Table S5 : 

Results from the multivariate permutational analysis (PERMANOVA) of differences in MHC IIB 

haplotype pools between live and dead migrants and residents from lake and river ecotypes. 

 

Lake ecotype Df SS F R2 P(>F) 

Migration 1.00 8.98 32.45 0.26 0.001 

Survival 1.00 0.28 1.01 0.01 0.42 

Migration:Survival 1.00 0.16 0.58 0.004 0.71 

residuals 89.00 24.63 

 

0.72 
 

Total 

 
92.00 34.05 

   

      River ecotype Df SS F R2 P(>F) 

Migration 1.00 9.83 37.55 0.29 0.01 

Survival 1.00 0.39 1.01 0.01 0.17 

Migration:Survival 1.00 0.37 0.58 0.01 0.27 

residuals 90.00 23.55 

 

0.72 

 total 93.00 34.14 
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Figure S4 :  

MHC class IIB haplotype frequency estimates in lake and river sticklebacks. We detected 21 

haplotypes in total (11 lake-specific, 7 river-specific and 3 shared by both fish ecotypes). The shared 

haplotypes displayed obvious ecotype differences in frequencies. MHC IIB differed significantly 

between ecotypes in term of allele numbers, allelic divergence and haplotype pools (ANOSIM, 

R=0.417, p=0.001), with significantly higher allelic divergence and allele numbers in lake fish 

compared to river fish (respectively, t=2.55, p=0.012 and χ2=4.091, p=0.043).  
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Table S6:  

Differences in allelic diversity (MHC p-distance and allele number) between experimental groups 

within ecotype. Differences were tested with generalized linear models based on a Poisson distribution 

(log function) with type II Chi-square based likelihood-ratio tests. 

 Lake fish River fish 

  MHC p-distance MHC p-distance 

  F p F p 

Migration (resident/migrant) 0.626 0.431 0.774 0.381 

Survival (yes/no) 1.158 0.285 0.299 0.586 

Migration : Survival 1.146 0.287 0.131 0.719 

   Allele number Allele number 

  χ2 p χ2 p 

Migration (resident/migrant) 0.559 0.455 0.287 0.592 

Survival (yes/no) 0.032 0.858 0.053 0.817 

Migration : Survival 0.158 0.691 0.596 0.440 
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Table S7 : 

 Type II analyses of variance tables of linear generalized models on the effects of MHC haplotype and habitat of exposure on infection intensity of three major 

parasites (Cyathocotyle prussica, Diplostomum sp. and Gyrodactylus sp.). Chi-square values based on likelihood-ratio tests. 

  Haplotype A   Haplotype F   Haplotype G 

    χ2
 p     χ2

 p     χ2
 p 

Cyathocotyle 

prussica 

Haplotype A 48.27 <0.001   Haplotype F 7.43 0.01   Haplotype G 1.27 0.26 

Habitat 6.65 0.01   Habitat 3.98 0.05   Habitat 2.79 0.10 
Haplotype A:Habitat 59.90 <0.001   Haplotype F:Habitat 12.03 <0.001   Haplotype G:Habitat 2.61 0.11 

                        

    χ2
 p     χ2

 p     χ2
 p 

Diplostomum 

sp. 

Haplotype A 2.45 0.12   Haplotype F 1.64 0.20   Haplotype G 3.27 0.07 

Habitat 157.29 <0.001   Habitat 159.41 <0.001   Habitat 159.21 <0.001 
Haplotype A:Habitat 35.38 <0.001   Haplotype F:Habitat 2.54 0.11   Haplotype G:Habitat 26.99 0.00 

                        

    χ2
 p     χ2

 p     χ2
 p 

Gyrodactylus 

sp. 

Haplotype A 85.20 <0.001   Haplotype F 3.23 0.07   Haplotype G 51.24 <0.001 

Habitat 15.69 <0.001   Habitat 12.28 <0.005   Habitat 9.96 <0.005 

Haplotype A:Habitat 3.78 0.05   Haplotype F:Habitat 6.72 0.01   Haplotype G:Habitat 0.34 0.56 
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Table S8:  

Pairwise post-hocs tests for generalized models on the effects of MHC haplotype and habitat of 

exposure on infection intensity of two major parasites (Cyathocotyle prussica and Diplostomum sp.). 

Odds ratios tests as post-hoc tests. R signifies a relation of resistance between parasite intensity and 

haplotype and S susceptibility. 

 

  Cyathocotyle prussica and A   Cyathocotyle prussica and F 

  z ratio p 
  

z ratio p   

Lake 2.867 0.022 R 
 

4.131 0.0002 R 

River -5.233 <.0001 S 
 

-1.919 0.22 S 

  
      

  

  Diplostomum sp. and A   Diplostomum sp. and G 

  z ratio p 
  

z ratio p   

Lake 3.19 0.008 R 
 

-4.686 <.0001 S 

River -9.851 <.0001 S   2.946 0.017 R 

 

Table S9:  

Correlation matrix between the abundance of two major parasites (Cyathocotyle prussica, 

Diplostomum sp.) and condition-related traits. Shown are Spearman’s ρ and the p-value associated 

with the spearman correlation test. 

 

 
  H.S.I. Growth Condition 

Cyathocotyle 
Rho -0.198 -0.266 -0.072 

  p=0.027 p=0.003 p=0.42 

Diplostomum 
Rho -0.324 -0.287 -0.205 

  p<0.001 p=0.003 p=0.037 
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Table S10: List of MHC II B haplotypes found in this study, including alleles composing the 

haplotype and known accessions numbers.in GenBank 

Haplotype 

name 

Allele 

1 

accession 

number 1 

Allele 

2 

accession 

number 2 

Allele 

3 

accession 

number 3 

A No13 AF395711 No18  AY687846     

B No01 DQ016399 No12  DQ016400     

C No15 DQ016410 No16  DQ016417     

D No08 AY687842 SCX15  EU541449     

E No07 AF395718 No31  GQ277654     

F No05 AY687829         

G So05 DQ016402 So11  DQ016404 SCX03  AJ230191 

H.DrD S022 NA   SCX15 EU541449     

H.V No39 NA   No40  NA   No41 NA   

H.X  No10 AF395722    No11  AY687843     

H.Y So01 FJ360535* So10 FJ360534*     

Neu51.SCX20 Neu51 AY687833 SCX20 FJ360541*     

No25No27  No25 NA   No27  NA       

No36.No54  No36 NA    No54 NA       

No42No43 No42 FJ360536* No43 FJ360532*     

No50No51  No50 NA   No51  NA       

No55  No55  NA           

So02 So02 DQ016426         

So06 So06 FJ360531*         

So07 So07  NA           

So10 So10 FJ360534*         

No45 No45 FJ360537*         

No46 No46 FJ360538*         

No48 No48 FJ360539*         

No49 No49 FJ360540*         

 
137 



Appendices 

 

Appendix Chapter III 

 

Supplementary figure S1:  

Stickleback eggs at day 5 post fertilization: fully developed embryos, one dead undeveloped 

zygote and an unfertilized oocyte. 
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Supplementary figure S2:  

Trans-generational effects of paternal parasite exposure on infection probability in G2 fish 

generation (mean probability of being infected when exposed). Shown are means of infection 

probability (no significant differences) in G2 offspring sired by either exposed or unexposed 

fathers. Error bars represent ±1 SE. 
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Supplementary figure S3: 

 Trans-generational effects of paternal parasite exposure on body condition at the end of the 

experiment. Bars are means (±1 SE) of body condition (residuals from the regression of body 

mass on body length) for offspring sired by either exposed or unexposed fathers. As offspring 

body condition is normalized around zero, the boxes represent the differences from the mean 

body condition in all offspring. 
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Supplementary table S1: Differences in male mortality or reproductive behavior.  

Because parasite exposure is known to affect mortality and reproductive behaviour, our 

parasite exposure treatment in the G1 generation may be associated with unintended selection 

bias in male quality between the treatment groups. In order to test for this unintended bias, we 

tested for differences between exposed and unexposed G1 males in mortality, nest building 

behaviours, or the manifestation of courtship behaviour. Parasite exposure did not 

significantly affect the time needed to build a high quality nest (exposed males: 15.6 days ± 

SD 1.02, unexposed males: 15.2 days ± SD 1.10, t1,121=0.263, p=0.79). Given an effect size of 

d=1.372 (derived from Rushbrook & Barber (2006)), our sample size of 121 individuals ought 

to be sufficient to detect differences in nesting behaviour at α=0.05 with a probability of 

β=0.999 if it had existed. Furthermore, comparable experiments have reported significant 

effects on nest building behaviour with smaller sample sizes (Rushbrook & Barber 2006; 

Jäger et al. 2007; Macnab et al. 2009). Overall, 8 of the 71 exposed G1 males and 6 of the 62 

unexposed G1 males were excluded or died over the course of the experiment (χ2=0.09, 

p=0.77), suggesting very limited (if any) bias in overall paternal quality resulting from the 

parasite treatment. Shown in table are the relative frequencies, the odds ratio for each 

category and the p-value associated with a Fisher exact test. Numbers in brackets represent 

the number of males that were not used in the experiment over the number of males affected 

in each treatment. 

 

 

Exposed males Unexposed males Odds ratio p-value 

No nest building 2.9 % (2/67) 1.8 % (1/57) 1.723 1 

No courtship behaviour 3.1 % (2/65) 0 % (0/56) Inf. 0.499 

Died 5.6 % (4/71) 8.1 % (5/62) 0.681 0.733 
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Supplementary table S2: Test for over-dispersion in Generalized Linear Mixed 

Models 

Because of the intrinsic distribution of parasites in a population, we tested for over-dispersion 

(excess of residual variance) in our two models including non-normal data (binomial and 

count) and mixed effects (maternal half-sibship effect). We did not find a significant 

difference between the models reported and the same models with an additional observation-

level random effect (Infection probability: χ1=0, p=0.999, Infection intensity: χ 1=0.001, 

p=0.975). In addition, we report in the following table the residual degrees of freedom (rdf), 

the sum of squared Pearson residuals (SS residuals), the ratio of SS residuals to rdf and the p-

value based on the χ2 distribution. For each model, the ratio was close to 1 and no significant 

excess of variance was found. 

  

 rdf SS residuals Ratio p-value 

Infection rate model 217 199.11 0.918 0.803 

Infection intensity model 107 97.454 0.911 0.735 
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Supplementary table S3:  

Correlation between life history traits: cost of infection in exposed individuals, juvenile 

mortality, zygote mortality, motile spermatozoa [spz] concentration. Shown are Spearman 

Rho estimate (below the diagonal) and the associated p-value (above the diagonal). Motile 

sperm concentration was estimated at the father level and early life history traits were 

estimated at the family level (n=96-100 families). The cost of infection was calculated as the 

mean difference in body condition between infected and uninfected individuals per family 

(n=27 families). 

 

 

Infection cost 
Juvenile 

mortality 

Zygote 

mortality 

Motile spz 

concentration 

Infection cost   0.311 0.463 0.520 

Juvenile mortality -0.24   0.084 0.128 

Zygote mortality -0.15 0.17   0.511 

Motile spz concentration -0.13 0.13 0.07   
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Supplementary table S4: Effects of paternal exposure on the likelihood of being 

infected. 

Statistical table showing results of the likelihood ratio test between two generalized linear 

models with or without paternal infection as fixed factor. (d.f. : degrees of freedom, AIC : 

Akaike information criterion, BIC: Bayesian information criterion) 

 

 
d.f. AIC BIC logLik χ2 P(>χ) 

Without paternal infection 4 303.1 316.8 -147.6 
  

With paternal infection 6 303.5 323.9 -145.8 3.599 0.165 

 

Variation due to maternal half sibship identity : 42.92%  

n=223 groups=15 
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Supplementary table S5: Effects of paternal exposure on parasite load. 

Statistical table showing results of the likelihood ratio test between two generalized linear 

models with or without paternal infection as fixed factor. (d.f. : degrees of freedom, AIC : 

Akaike information criterion, BIC: Bayesian information criterion) 

 

 
d.f. AIC BIC logLik χ2 P(>χ) 

Without paternal infection 4 110.3 121.21 -51.15 
  

With paternal infection 6 114.2 130.6 -51.12 0.061 0.970 

 

Variation due to maternal half sibship identity : 19.07%  

n=113 groups=15 
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Supplementary table S6:  

Effects of paternal exposure, offspring exposure (exposed vs. control) and sex on individual 

body condition. The table shows the outcome of a linear mixed effect model on individual 

body condition at the end of the experiment. The variation attributed to the random effect was 

estimated based on the ratio of the variance due to this effect over the total variance (d.f.: 

degrees of freedom). 

 

Effect d.f. F value P 

Paternal exposure 1, 471 8.737 0.003 

Offspring exposure 1, 471 6.418 0.012 

Offspring sex 1, 471 0.267 0.606 

Paternal exposure x Offspring exposure  1, 471 0.342 0.559 

Maternal half sibship (random effect) 38.41%   
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Supplementary table S7: Effect of various selection strengths on statistical 

evidence for paternal effects. 

Linear mixed effect models on offspring body condition included the paternal exposure, 

offspring infection (exposed-infected vs. exposed-non-infected), sex and the interaction 

between paternal exposure and offspring infection. We simulated selection by excluding a 

percentage of G2 offspring sired by unexposed fathers to evaluate the strength of selection 

associated with early life mortality in offspring sired by exposed fathers. This percentage (i.e. 

selection levels) varied from 5 to 34.8 %, the latter representing twice the relative difference 

in overall survival between offspring from exposed and unexposed fathers (17.4%). 

Accordingly, each model was based on a subset of data after in silico mortality simulation.  

In (a), we removed a proportion of the most infected offspring (based on infection rate) of 

unexposed fathers, conservatively postulating that selection could have removed the most 

susceptible offspring sired by exposed fathers. P-value estimates were based on the result of 

all possible subsets, as individuals with equal infection rates were also randomly excluded. In 

(b) and (c), we randomly excluded between 5 and 34.8% of either exposed (b) or infected (c) 

offspring sired by unexposed fathers. Mean p-values and 95% confidence intervals were 

calculated for each selection level and each scenario, based on 999 models for randomly 

produced subsets. We report p-values for the main paternal effect and for condition-

dependence (interaction effect). Significant effects are highlighted in bold.  

Results show that the main paternal effect was statistically robust, even at high levels of 

selection in every case scenario. The interaction effect was supported by statistical trends 

even at high levels of selection (up to 20%), showing a complex interplay between selection 

and paternal effects on the expression of parasite tolerance.
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(a) Selection based on high infection 

rate 

(b) Random selection amongst 

exposed 

(c) Random selection amongst 

infected 

Selection level (%) Main effect Interaction Main effect Interaction Main effect Interaction 

0 0.005 0.043 n/a n/a n/a n/a 

5 0.007 0.055 0.007 ± 0 0.054 ± 0.001 0.006 ± 0 0.046 ± 0.001 

10 

0.010 ± 

0.001 0.068 ± 0.011 0.009 ± 0 0.062 ± 0.002 0.007 ± 0 0.049 ± 0.001 

15 

0.008 ± 

0.001 0.061 ± 0.005 

0.012 ± 

0.001 0.073 ± 0.003 0.009 ± 0 0.052 ± 0.001 

17.4*  0.010 ± 0 0.071 ± 0.003 

0.014 ± 

0.001 0.080 ± 0.004 0.012 ± 0 0.059 ± 0.002 

20 0.012 ± 0 0.081 ± 0.002 

0.014 ± 

0.001 0.082 ± 0.004 

0.014 ± 

0.001 0.063 ± 0.002 

34.8§ 

0.047 ± 

0.004 0.187 ± 0.014 

0.030 ± 

0.003 0.126 ± 0.008 

0.023 ± 

0.001 0.078 ± 0.003 

*: Equivalent selection ; §: Double selection
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