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FROM GAP-EXPONENTIAL TIME HYPOTHESIS TO FIXED
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Abstract. We consider questions that arise from the intersection between the areas of polynomial-
time approximation algorithms, subexponential-time algorithms, and fixed-parameter tractable (FPT)
algorithms. The questions, which have been asked several times, are whether there is a nontriv-
ial FPT-approximation algorithm for the Maximum Clique (Clique) and Minimum Dominating Set
(DomSet) problems parameterized by the size of the optimal solution. In particular, letting OPT be
the optimum and N be the size of the input, is there an algorithm that runs in t(OPT)poly(N) time
and outputs a solution of size f(OPT) for any computable functions t and f that are independent
of N (for Clique, we want f(OPT) = \omega (1))? In this paper, we show that both Clique and DomSet
admit no nontrivial FPT-approximation algorithm, i.e., there is no o(OPT)-FPT-approximation al-
gorithm for Clique and no f(OPT)-FPT-approximation algorithm for DomSet for any function f . In
fact, our results imply something even stronger: The best way to solve Clique and DomSet, even
approximately, is to essentially enumerate all possibilities. Our results hold under the Gap Ex-
ponential Time Hypothesis [I. Dinur. ECCC, TR16-128, 2016; P. Manurangsi and P. Raghavendra,
preprint, arXiv:1607.02986, 2016], which states that no 2o(n)-time algorithm can distinguish between
a satisfiable 3 SAT formula and one which is not even (1 - \varepsilon )-satisfiable for some constant \varepsilon > 0. Be-
sides Clique and DomSet, we also rule out nontrivial FPT-approximation for the Maximum Biclique
problem, the problem of finding maximum subgraphs with hereditary properties (e.g., Maximum
Induced Planar Subgraph), and Maximum Induced Matching in bipartite graphs, and we rule out
the ko(1)-FPT-approximation algorithm for the Densest k-Subgraph problem.
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FROM GAP-ETH TO FPT-INAPPROXIMABILITY 773

1. Introduction. The fixed-parameter tractable approximation algorithm (FPT-
approximation algorithm) is a new concept emerging from a cross fertilization between
two trends in coping with NP-hard problems: approximation algorithms and FPT al-
gorithms. Roughly speaking, an FPT-approximation algorithm is similar to an FPT
algorithm in that its running time can be of the form t(\sansO \sansP \sansT ) poly(N) (called the
FPT time), where t is any computable function (possibly superexponentially grow-
ing), N is the input size, and \sansO \sansP \sansT is the value of the optimal solution.1 It is similar
to an approximation algorithm in that its output is an approximation of the opti-
mal solution; however, the approximation factor is analyzed in terms of the optimal
solution (\sansO \sansP \sansT ) and not the input size (N). Thus, an algorithm for a maximization
(respectively, minimization) problem is said to be an f(\sansO \sansP \sansT )-FPT-approximation for
some function f if it outputs a solution of size at least \sansO \sansP \sansT /f(\sansO \sansP \sansT ) (respectively,
at most \sansO \sansP \sansT \cdot f(\sansO \sansP \sansT )). For a maximization problem, such an algorithm is nontriv-
ial if f(\sansO \sansP \sansT ) is o(\sansO \sansP \sansT ), while for a minimization problem, it is nontrivial if f is a
computable function depending only on \sansO \sansP \sansT .

The notion of FPT-approximation is useful when we are interested in a small
optimal solution, and in particular its existence connects to a fundamental question
of whether there is a nontrivial approximation algorithm when the optimal solution is
small. Consider, for example, the Maximum Clique (\sansC \sansl \sansi \sansq \sansu \sanse ) problem, where the goal
is to find a clique (complete subgraph) with a maximum number of vertices in an
n-vertex graph G. By outputting any single vertex, we get a trivial polynomial-time
n-approximation algorithm. The bound can be improved to O( n

logn ) and even to

O(n(log logn)2

log3 n
) with clever ideas [41]. Observe, however, that these bounds are quite

meaningless when \sansO \sansP \sansT = O(n(log logn)2

log3 n
) since outputting a single vertex already

guarantees such bounds. In this case, a bound such as O( OPT
log logOPT ) would be more

meaningful. Unfortunately, no approximation ratio of the form o(\sansO \sansP \sansT ) is known
even when FPT-time is allowed.2 (Note that outputting a single vertex gives an
\sansO \sansP \sansT -approximation guarantee.)

Similar questions can be asked for a minimization problem. Consider for instance,
Minimum Dominating Set (\sansD \sanso \sansm \sansS \sanse \sanst ): Find the smallest set of vertices S such that
every vertex in an n-vertex input graph G has a neighbor in S. \sansD \sanso \sansm \sansS \sanse \sanst admits an
O(log n)-approximation algorithm via a basic greedy method. However, if we want
the approximation ratio to depend on \sansO \sansP \sansT and not n, no f(\sansO \sansP \sansT )-approximation

ratio is known for any function f (not even 22
OPT

).
In fact, the existence of nontrivial FPT-approximation algorithms for \sansC \sansl \sansi \sansq \sansu \sanse and

\sansD \sanso \sansm \sansS \sanse \sanst has been raised several times in the literature (e.g., [73, 46, 34]). So far,
the progress towards these questions can only rule out O(1)-FPT-approximation al-
gorithms for \sansC \sansl \sansi \sansq \sansu \sanse . This was shown independently by Hajiaghayi, Khandekar and
Kortsarz [49] and Bonnet et al. [15], assuming the exponential time hypothesis (ETH),
which asserts that no subexponential time algorithm can decide whether a given 3\sansS \sansA \sansT 
formula is satisfiable, and that a linear-size probabilistically checkable proof (PCP)
exists. Alternatively, Khot and Shinkar [61] proved this under a rather nonstandard

1There are many ways to parameterize a problem. In this paper we focus on the standard
parameterization which parameterizes the optimal solution.

2In fact, for maximization problems, it can be shown that a problem admits an f(OPT)-FPT-
approximation algorithm for some function f = o(OPT) if and only if it admits a polynomial-time
algorithm with approximation ratio f \prime (OPT) for some function f \prime = o(OPT) [48, 73] (also see [74]).
So, it does not matter whether the running time is polynomial on the size of the input or depends
on OPT.
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774 CHALERMSOOK ET AL.

assumption that solving quadratic equations over a finite field under a certain regime
of parameters is not in \sansF \sansP \sansT ; unfortunately, this assumption was later shown to be
false [56]. For \sansD \sanso \sansm \sansS \sanse \sanst , Chen and Lin [27] could rule out O(1)-FPT-approximation
algorithms assuming \sansF \sansP \sansT \not = \sansW [1]. Moreover, they improved the inapproximability

ratio to log1/4+\epsilon (\sansO \sansP \sansT ) for any constant \epsilon > 0 under ETH. Remark that ETH implies
\sansF \sansP \sansT \not = \sansW [1].

Our results and techniques. We show that there is no nontrivial FPT approx-
imation algorithm for both \sansC \sansl \sansi \sansq \sansu \sanse and \sansD \sanso \sansm \sansS \sanse \sanst . That is, there is no o(\sansO \sansP \sansT )-FPT-
approximation algorithm for \sansC \sansl \sansi \sansq \sansu \sanse and no f(\sansO \sansP \sansT )-FPT-approximation algorithm for
\sansD \sanso \sansm \sansS \sanse \sanst , for any computable function f . Our results hold under the Gap-ETH, which
states that distinguishing between a satisfiable 3-\sansS \sansA \sansT formula and one which is not
even (1 - \epsilon )-satisfiable requires exponential time for some constant \epsilon > 0 (see section
2).

Gap-ETH, first formalized in [32, 72], is a stronger version of the aforementioned
ETH. It has recently been shown to be useful in proving fine-grained hardness of an
approximation for problems such as dense constraint satisfaction problem (CSP) with
large alphabets [72] and Densest-k-Subgraph with perfect completeness [70].

Note that Gap-ETH is implied by ETH if we additionally assume that a linear-
size PCP exists. So, our result for \sansC \sansl \sansi \sansq \sansu \sanse significantly improves the results in [49, 16]
under the same (in fact, weaker) assumption. Our result for \sansD \sanso \sansm \sansS \sanse \sanst also significantly
improves the results in [27], but our assumption is stronger.

In fact, we can show even stronger results: The best way to solve \sansC \sansl \sansi \sansq \sansu \sanse and
\sansD \sanso \sansm \sansS \sanse \sanst , even approximately, is to enumerate all possibilities in the following sense.
Finding a clique of size r can be trivially done in nr poly(n) time by checking whether
any among all possible

\bigl( 
n
r

\bigr) 
= O(nr) sets of vertices forms a clique. It was known

under ETH that this is essentially the best one can do [23, 24]. We show further
that this running time is still needed, even when we know that a clique of size much
larger than r exists in the graph (e.g., \sansO \sansP \sansT \geq 22

r

), assuming Gap-ETH. Similarly,
for \sansD \sanso \sansm \sansS \sanse \sanst , we can always find a dominating set of size r in nr poly(n) time. Under
Gap-ETH, we show that there is no better way even when we just want to find a
dominating set of size q \gg r.

We now give an overview of our techniques. The main challenge in showing our
results is that we want them to hold for the case where the optimal solution is arbitrar-
ily smaller than the input size. (This is important to get the FPT-inapproximability
results.) To this end, (i) reductions cannot blow up the size of the optimal solution
by a function of the input size, and (ii) our reductions must start from problems with
a large hardness gap while having small \sansO \sansP \sansT . Fortunately, property (i) holds for the
known reductions we employ.

The challenge of (ii) is that existing gap amplifying techniques (e.g., the parallel
repetition theorem [79] or the randomized graph product [11]), while amplifying the
gap to arbitrarily large, cause the input size to be too large so that existing \sansO \sansP \sansT 
reduction techniques (e.g., [23, 77]) cannot be applied efficiently (in particular, in
subexponential time). We circumvent this by a step that amplifies the gap and reduces
\sansO \sansP \sansT at the same time. In more detail, this step takes a 3-SAT formula \phi as an input
and produces a ``label cover""3 instance J (roughly, a bipartite graph with constraints
on edges) such that for any c > 0, (i) if \phi is satisfiable, then J is satisfiable, and (ii)
if \phi is at most 0.99 satisfiable, then less than a c-fraction of constraints of J can be

3Our problem is an optimization problem on a Label Cover instance, with a slightly different
objective from the standard Label Cover. Please refer to section 4 for more detail.

D
ow

nl
oa

de
d 

10
/0

5/
20

 to
 1

30
.2

33
.2

16
.1

41
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FROM GAP-ETH TO FPT-INAPPROXIMABILITY 775

satisfied. Moreover, our reduction allows us to ``compress"" either the the left-hand
side or the right-hand side vertices to be arbitrarily small. This label cover instance
is a starting point for all our problems. To derive our result for \sansC \sansl \sansi \sansq \sansu \sanse , we would need
the left-hand side to be arbitrarily small while for \sansD \sanso \sansm \sansS \sanse \sanst , we would need a small
right-hand side.

The left-hand side vertex compression is similar to the randomized graph prod-
uct [11] and, in fact, the reduction itself has been studied before [85, 84] but in a
very different regime of parameters. For a more detailed discussion, please refer to
subsection 4.2.

Once the inapproximability results for label cover problems with small left-hand
side and right-hand side vertex sets are established, we can simply reduce it to \sansC \sansl \sansi \sansq \sansu \sanse 
and \sansD \sanso \sansm \sansS \sanse \sanst using the standard reductions from [42] and [39], respectively.

Besides the above results for \sansC \sansl \sansi \sansq \sansu \sanse and \sansD \sanso \sansm \sansS \sanse \sanst , we also show that no nontrivial
FPT-approximation algorithm exists for a few other problems, including Maximum
Biclique, the problem of finding maximum subgraphs with hereditary properties (e.g.,
maximum planar induced subgraph), and Maximum Induced Matching in bipartite
graphs. Previously only the exact versions of these problems were known to be \sansW [1]-
hard [66, 60, 75]. Additionally, we rule out the ko(1)-FPT-approximation algorithm
for Densest k-Subgraph although this ratio does not yet match the trivial O(k)-
approximation algorithm. Finally, we remark that, while our result for maximum
subgraphs with hereditary properties follows from a reduction from \sansC \sansl \sansi \sansq \sansu \sanse , the FPT
inapproximability of other problems are shown not through the label cover problems
but instead from a modification of the hardness of approximating Densest k-Subgraph
in [70].

Previous works. Our results are based on the method of compressing (or reducing
the size of) the optimal solution, which was first introduced by Chen et al. in [22]
(the journal version appears in [23]). Assuming ETH, they showed that finding both
\sansC \sansl \sansi \sansq \sansu \sanse and \sansD \sanso \sansm \sansS \sanse \sanst cannot be solved in time no(OPT), where n is the number of vertices
in an input graph. Later, P\u atras,cu and Williams [77] applied similar techniques to
sharpen the running time lower bound of \sansD \sanso \sansm \sansS \sanse \sanst to nOPT - \varepsilon for any constant \varepsilon > 0,
assuming the Strong ETH (SETH). The technique of compressing the optimal solu-
tion was also used in the hardness of approximation by Hajiaghayi, Khandekar, and
Kortsarz in [49] and by Bonnet, Lampis, and Paschos in [16]. Our techniques can be
seen as introducing gap amplification to the reductions in [23]. We emphasize that
while [23, 77, 49, 15] (and also the reductions in this paper) are all based on the tech-
nique of compressing the optimal solution, Hajiaghayi, Khandekar, and Kortsarz [49]
compress the optimal solution after reducing \sansS \sansA \sansT to the designated problems, i.e.,
\sansC \sansl \sansi \sansq \sansu \sanse and \sansD \sanso \sansm \sansS \sanse \sanst . The reductions in [23, 77, 15] and in our paper, on the other
hand, compress the optimal solution of \sansS \sansA \sansT prior to feeding it to standard reduc-
tions (with small adjustment). While this difference does not affect the reduction for
\sansC \sansl \sansi \sansq \sansu \sanse , it has a huge effect on \sansD \sanso \sansm \sansS \sanse \sanst . Specifically, compressing the optimal solution
at the postreduction step results in a huge blowup because the blowup in the first
step (i.e., from \sansS \sansA \sansT to \sansD \sanso \sansm \sansS \sanse \sanst ) becomes exponential after compressing the optimal
solution. Our proof for \sansC \sansl \sansi \sansq \sansu \sanse and the one in [49] bear a similarity in that both apply
a graph product to amplify approximation hardness. The key difference is that we
use a randomized graph product instead of the deterministic graph product used in
[49].

Very recently, Chen and Lin [27] showed that \sansD \sanso \sansm \sansS \sanse \sanst admits no constant ap-
proximation algorithm unless FPT = W[1]. Their hardness result was derived from
the seminal result of Lin [66], which shows that the Maximum k-Intersection problem
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Table 1
The summaries of previous works on Clique and DomSet. Here t denotes any computable

function t : \BbbN \rightarrow \BbbN , \epsilon denotes any constant 0 < \varepsilon < 1, \gamma denotes some constant 0 < \epsilon < 1, \rho 
denotes some nondecreasing function \rho : (0, 1) \rightarrow (0, 1), \delta denotes some constant \delta > 1. PGC and
LPCP stands for the Projection Game Conjecture [76], and the Linear-Size PCP Conjecture [15],
respectively.

Summary of works on Clique
Inapprox factor Running time lower bound Assumption References

any constant t(OPT ) \cdot no(OPT) ETH + LPCP [15]

OPT1 - \epsilon exp(OPT\rho (\epsilon )) ETH [28]

1/(1 - \epsilon ) exp(exp(OPT\rho (\epsilon )))4 ETH [49]

No \omega (OPT) t(OPT ) \cdot no(OPT) Gap-ETH This paper

Summary of works on DomSet
Inapprox Factor Running Time Lower Bound Assumption References

OPT1 - \gamma exp(OPT1 - \rho (\gamma )) ETH [28]
(logOPT)\delta exp(exp((logOPT)\delta  - 1)) ETH + PGC [49]

any constant t(OPT ) \cdot nO(1) (i.e., no FPT) W[1] \not = FPT [27]

(logOPT)1/4+\epsilon t(OPT ) \cdot no(
\surd 
OPT) ETH [27, 23]

f(OPT) t(OPT ) \cdot no(OPT) Gap-ETH This paper

(also known as \sansO \sansn \sanse -\sanss \sansi \sansd \sanse \sansG \sansa \sansp -\sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse ) has no FPT approximation algorithm. Further-
more, they showed that, when assuming ETH, their result can be strengthened to rule
out the log1/4+\epsilon (\sansO \sansP \sansT ) FPT-approximation algorithm for any constant \epsilon > 0. The
result of Chen and Lin follows from the W[1]-hardness of \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse [66] and the proof
of the ETH-hardness of \sansC \sansl \sansi \sansq \sansu \sanse [22]. Note that while Chen and Lin did not discuss the
size of the optimal solution in their paper, the method of compressing the optimal
solution was implicitly used there. This is due to the running time lower bound of
\sansC \sansl \sansi \sansq \sansu \sanse that they quoted from [22].

Our method for proving the FPT inapproximability of \sansD \sanso \sansm \sansS \sanse \sanst is similar to that in
[77]. However, the original construction in [77] does not require a ``partition system.""
This is because P\u atras,cu and Williams' reduction starts from \sansS \sansA \sansT , which can be cast
as \sansD \sanso \sansm \sansS \sanse \sanst . In our construction, the reduction starts from an instance of the CSP that
is more general than \sansS \sansA \sansT (because of the gap-amplification step) and hence requires
the construction of a partition system. (Note that the partition system has been used
in standard hardness reductions for \sansD \sanso \sansm \sansS \sanse \sanst [68, 39].)

We remark that our proof does not imply FPT-inapproximability for \sansD \sanso \sansm \sansS \sanse \sanst 
under ETH whereas Chen and Lin were able to prove the inapproximability result
under ETH because their reduction can be applied directly to \sansS \sansA \sansT via the result
in [23]. If ones introduced the Gap-ETH to the previous works, then the proofs in
[23, 49, 15] yield the constant FPT-inapproximability of \sansC \sansl \sansi \sansq \sansu \sanse , and the proof in [23]
yields the constant FPT-inapproximability of \sansD \sanso \sansm \sansS \sanse \sanst .

The summaries of previous works on \sansC \sansl \sansi \sansq \sansu \sanse and \sansD \sanso \sansm \sansS \sanse \sanst are presented in Table 1.
Follow-up works. Very recently, in the follow-up work [55] by Karthik, Laekhanukit,

and Manurangsi, the totally-FPT-inapproximability of \sansD \sanso \sansm \sansS \sanse \sanst was shown under
FPT \not = \sansW [1]. Moreover, they are able to bypass Gap-ETH and show the same
running time lower bounds as ours under ETH. They even show stronger running
time lower bounds under SETH and the k-Sum Hypothesis. We stress here that their
results apply only to \sansD \sanso \sansm \sansS \sanse \sanst but not to \sansC \sansl \sansi \sansq \sansu \sanse nor other problems in this paper (e.g.,
\sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse , Densest k-Subgraph). Their proof builds on the insights from our work; in

4Constant FPT-inapproximability of Clique under ETH is claimed in [49] (arXiv version). How-
ever, as we investigated, the Gap-ETH is assumed there.
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particular, our reduction from \sansM \sansa \sansx \sansC \sanso \sansv (via \sansM \sansi \sansn \sansL \sansa \sansb ) to \sansD \sanso \sansm \sansS \sanse \sanst (Theorem 5.4). The
contrast between our proof for \sansD \sanso \sansm \sansS \sanse \sanst and the proof in [55] is that, while we obtain
the gap of \sansM \sansa \sansx \sansC \sanso \sansv from Gap-ETH, they take a different route and arrive at such a
gap by designing specific communication protocols for certain communication prob-
lems, generalizing connections between communication complexity and fine-grained
hardness of approximation pioneered in [2].

Other related works. All problems considered in this work are also well stud-
ied in terms of hardness of approximation beyond the aforementioned parameterized
regimes; indeed many techniques used here are borrowed from or inspired by the
nonparameterized settings.

Maximum Clique. Maximum Clique is arguably the first natural combinatorial
optimization problem studied in the context of hardness of approximation; in a seminal
work of Feige et al. (henceforth FGLSS) [42], a connection was made between interac-
tive proofs and hardness of approximating \sansC \sansl \sansi \sansq \sansu \sanse . This connection paves the way for
later works on \sansC \sansl \sansi \sansq \sansu \sanse and other developments in the field of hardness of approxima-
tions; indeed, the FGLSS reduction will serve as part of our proof as well. The FGLSS
reduction, together with the PCP theorem [7, 6] and gap amplification via random-
ized graph products [11], immediately implies an n\varepsilon ratio inapproximability of \sansC \sansl \sansi \sansq \sansu \sanse 
for some constant \varepsilon > 0 under the assumption that \sansN \sansP \subseteq \sansB \sansP \sansP . Following FGLSS's
work, there had been a long line of research on approximability of \sansC \sansl \sansi \sansq \sansu \sanse [9, 43, 8, 10],
which culminated in H\r astad's work [51]. In [51], it was shown that \sansC \sansl \sansi \sansq \sansu \sanse cannot be
approximated to within a factor of n1 - \varepsilon in polynomial time unless \sansN \sansP \subseteq \sansZ \sansP \sansP ; this was
later derandomized by Zuckerman [86] via an efficient construction of dispersers with
certain parameters, thus implying n1 - \varepsilon approximation hardness under P \not = \sansN \sansP . Since
then, better inapproximability ratios are known [38, 57, 59], with the best ratio being

n/2(logn)3/4+\varepsilon 

for every \varepsilon > 0 (assuming \sansN \sansP \nsubseteq \sansB \sansP \sansT \sansI \sansM \sansE (2(logn)O(1)

)) due to Khot and
Ponnuswami [59]. We note here that the best known polynomial-time algorithm for

\sansC \sansl \sansi \sansq \sansu \sanse achieves O(n(log logn)2

(logn)3 )-approximation for the problem [41].

Set Cover. Minimum Set Cover, which is equivalent to \sansD \sanso \sansm \sansS \sanse \sanst , is also among
the first problems studied in hardness of approximation. Lund and Yannakakis proved

that, unless \sansN \sansP \subseteq \sansD \sansT \sansI \sansM \sansE (2(logn)O(1)

), \sansS \sanse \sanst \sansC \sanso \sansv cannot be efficiently approximated to
within c log n factor of the optimum for some constant c > 0 [68]. Not long after,
Feige [39] both improved the approximation ratio and weakened the assumption by
showing an (1  - \varepsilon ) lnn-ratio inapproximability for every \varepsilon > 0 assuming only that
\sansN \sansP \nsubseteq \sansD \sansT \sansI \sansM \sansE (nO(log logn)). Recently, a similar inapproximability has been achieved
under the weaker \sansN \sansP \nsubseteq \sansP assumption [76, 33]. Since a simple greedy algorithm is
known to yield (lnn+1)-approximation for \sansS \sanse \sanst \sansC \sanso \sansv [30], the aforementioned hardness
result is essentially tight. A common feature in all previous works on hardness of
\sansS \sanse \sanst \sansC \sanso \sansv [68, 39, 76] is that the constructions involve composing certain variants of
CSPs with partition systems. As touched upon briefly earlier, our construction will
also follow this approach; for the exact definition of CSPs and the partition system
used in our work, please refer to subsection 5.2.

Maximum subgraph with hereditary properties. The complexity of find-
ing and approximating maximum subgraph with hereditary properties have also been
studied since the 1980s [65, 67, 44]; specifically, Feige and Kogan showed that, for
every nontrivial property \Pi (i.e., \Pi such that infinite many subgraphs satisfy \Pi and
infinitely many subgraphs do not satisfy \Pi ), the problem is hard to approximate to
within n1 - \varepsilon factor for every \varepsilon > 0 unless \sansN \sansP \subseteq \sansZ \sansP \sansP [44]. We also note that nontrivial
approximation algorithms for the problem are known; for instance, when the prop-

D
ow

nl
oa

de
d 

10
/0

5/
20

 to
 1

30
.2

33
.2

16
.1

41
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

778 CHALERMSOOK ET AL.

erty fails for some clique or some independent set, a polynomial-time O(n(log logn)2

(logn)2 )-

approximation algorithm is known [50].
Maximum Balanced Biclique. While the Maximum Balanced Biclique prob-

lem bears a strong resemblance to the Maximum Clique Problem, inapproximabil-
ity of the latter cannot be directly translated to that of the former; in fact, de-
spite numerous attempts, not even constant factor NP-hardness of approximation
of the Maximum Balanced Biclique problem is known. Fortunately, under stronger
assumptions, hardness of approximation for the problem is known: n\varepsilon -factor hard-
ness of approximation is known under Feige's random 3\sansS \sansA \sansT hypothesis [40] or \sansN \sansP \nsubseteq \bigcap 

\varepsilon >0\sansB \sansP \sansT \sansI \sansM \sansE (2n
\varepsilon 

) [58], and n1 - \varepsilon -factor hardness of approximation is known under
strengthening of the Unique Games Conjecture [12, 71]. To the best of our knowledge,
no nontrivial approximation algorithm for the problem is known.

Densest k-Subgraph. The Densest k-Subgraph problem has received consid-
erable attention from the approximation algorithm community [63, 45, 13]; the best
known polynomial time algorithm due to Bhaskara et al. [13] achieves O(n1/4+\varepsilon )-
approximation for every \varepsilon > 0. On the other hand, similarly to \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse , NP-hardness
of approximating Densest k-Subgraph, even to some constant ratio, has so far eluded
researchers. Nevertheless, in the same works that provide the hardness results for
\sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse [40, 58], Densest k-Subgraph is shown to be hard to approximate to some
constant factor under random 3-\sansS \sansA \sansT hypothesis or \sansN \sansP \nsubseteq 

\bigcap 
\varepsilon >0\sansB \sansP \sansT \sansI \sansM \sansE (2n

\varepsilon 

). Fur-

thermore, 2\Omega (log2/3 n)-factor inapproximability is known under the planted clique hy-
pothesis [4] and, under ETH (respectively, Gap-ETH), n1/ poly log logn (respectively,
no(1)) factor inapproximabilities are known [70]. (See also [17] in which a constant
ratio ETH-hardness of approximating Densest k-Subgraph was shown.) In addition
to these hardness results, polynomial ratio integrality gaps for strong LP and SDP
relaxations of the problem are also known [14, 69, 29].

Maximum Induced Matching on Bipartite Graphs. The problem was
shown to be NP-hard independently by Stockmeyer and Vazirani [81] and Cameron
[18]. The approximability of the problem was first studied by Duckworth, Manlove,
and Zito [36] who showed that the problem is APX-hard, even on bipartite graphs
of degree three. Elbassioni et al. [37] then showed that the problem is hard to ap-
proximate to within n1/3 - \varepsilon factor for every \varepsilon > 0, unless \sansN \sansP \subseteq \sansZ \sansP \sansP . Chalermsook,
Laekhanukit, and Nanongkai [19] later improved the ratio to n1 - \varepsilon for every \varepsilon > 0.

Organization. We define basic notations in section 2. In section 3, we define the
notion of inherently enumerative, which captures the fact that nothing better than
enumerating all possibilities can be done. We show that a problem admits no nontriv-
ial FPT-approximation algorithm by showing that it is inherently enumerative. In sec-
tion 4, we define and prove results about our intermediate problems on label cover in-
stances. Finally, in section 5 we derive results for \sansC \sansl \sansi \sansq \sansu \sanse , \sansD \sanso \sansm \sansS \sanse \sanst , and other problems.

2. Preliminaries. We use standard terminology. For any graph G, we denote
by V (G) and E(G) the vertex and edge sets of G, respectively. For each vertex
u \in V (G), we denote the set of its neighbors by NG(v); when the graph G is clear
from the context, we sometimes drop it from the notation. A clique of G is a complete
subgraph of G. Sometime we refer to a clique as a subset S \subseteq V (G) such that there
is an edge joining every pair of vertices in S. A biclique of G is a balanced complete
bipartite subgraph of G. A biclique such that each partition has k vertices is called
a k-biclique and is denoted by Kk,k. An independent set of G is a subset of vertices
S \subseteq V (G) such there is no edge joining any pair of vertices in S. A dominating
set of G is a subset of vertices S \subseteq V (G) such that every vertex in G is either in
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S or has a neighbor in S. The clique number (respectively, independent number) of
G is the size of the largest clique (respectively, independent set) in G. The biclique
number of G is the largest integer k such that G contains Kk,k as a subgraph. The
domination number of G is defined similarly as the size of the smallest dominating
set in G. The clique, independent, and domination numbers of G are usually denoted
by \omega (G), \alpha (G), and \gamma (G), respectively. However, in this paper, we will refer to these
numbers by \sansC \sansl \sansi \sansq \sansu \sanse (G), \sansI \sansn \sansd \sansS \sanse \sanst (G),\sansD \sanso \sansm \sansS \sanse \sanst (G). Additionally, we denote the biclique
number of G by \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (G).

2.1. FPT-approximation. Let us start by formalizing the the notation of opti-
mization problems; here we follow the notation due to Chen, Grohe, and Gr\"uber [25].
An optimization problem \Pi is defined by three components: (1) For each input in-
stance I of \Pi , a set of valid solutions of I denoted by \sansS \sansO \sansL \Pi (I); (2) for each instance I
of \Pi and each y \in \sansS \sansO \sansL \Pi (I), the cost of y with respect to I is denoted by \sansC \sansO \sansS \sansT \Pi (I, y);
and (3) the goal of the problem by \sansG \sansO \sansA \sansL \Pi \in \{ min,max\} which specifies whether \Pi 
is a minimization or maximization problem. Throughout this work, we will assume
that \sansC \sansO \sansS \sansT \Pi (I, y) can be computed in time | I| O(1). Finally, we denote by \sansO \sansP \sansT \Pi (I)
the optimal value of each instance I, i.e., \sansO \sansP \sansT \Pi (I) = \sansG \sansO \sansA \sansL \Pi \sansC \sansO \sansS \sansT (I, y), where y is
taken over \sansS \sansO \sansL \Pi (I).

We now continue on to define parameterized approximation algorithms. While
our discussion so far has been on optimization problems, we will instead work with
``gap versions"" of these problems. Roughly speaking, for a maximization problem \Pi ,
the gap version of \Pi takes in an additional input k and the goal is to decide whether
\sansO \sansP \sansT \Pi (I) \geq k or \sansO \sansP \sansT \Pi (I) < k/f(k). As we will elaborate below, the gap versions
are weaker (i.e., easier) than the optimization versions and, hence, our impossibility
results for gap versions translate to those of optimization versions as well.

Definition 2.1 (FPT gap approximation). For any optimization problem \Pi 
and any computable function f : \BbbN \rightarrow [1,\infty ), an algorithm \BbbA , which takes as input an
instance I of \Pi and a positive integer k, is said to be an f -FPT gap approximation
algorithm for \Pi if the following conditions hold on every input (I, k):

\bullet \BbbA runs in time t(k) \cdot | I| O(1) for some computable function t : \BbbN \rightarrow \BbbN .
\bullet If \sansG \sansO \sansA \sansL \Pi = max, then the algorithm \BbbA outputs 1 if \sansO \sansP \sansT \Pi (I) \geq k and outputs
0 if \sansO \sansP \sansT \Pi (I) < k/f(k).
If \sansG \sansO \sansA \sansL \Pi = min, then the algorithm \BbbA outputs 1 if \sansO \sansP \sansT \Pi (I) \leq k and outputs
0 if \sansO \sansP \sansT \Pi (I) > k \cdot f(k).

\Pi is said to be f -FPT gap approximable if there is an f -FPT gap approximation
algorithm for \Pi .

Next, we formalize the concept of totally-FPT-inapproximable, which encapsu-
lates a nonexistence of nontrivial FPT approximations discussed earlier in the intro-
duction.

Definition 2.2. A minimization problem \Pi is said to be totally-FPT-inapprox-
imable if, for every computable function f : \BbbN \rightarrow [1,\infty ), \Pi is not f -FPT gap approx-
imable.

A maximization problem \Pi is said to be totally-FPT-inapproximable if, for every
computable function f : \BbbN \rightarrow [1,\infty ) such that f(k) = o(k) (i.e., limk\rightarrow \infty k/f(k) = \infty ),
\Pi is not f -FPT gap approximable.

With the exception of Densest k-Subgraph, every problem considered in this work
will be shown to be totally-FPT-inapproximable. To this end, we remark that totally
FPT inapproximable as defined above through gap problems imply the nonexistence
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of a nontrivial FPT-approximation algorithm that was discussed in the introduction.
These implications are stated more precisely in the two propositions below; their
proofs are given in Appendix A. Note that Propositions 2.3 and 2.4 are implied by
the results due to Chen, Grohe, and Gr\"uber [25, 26].

Proposition 2.3 (see [25, Proposition 4], [26, Proposition 5]). Let \Pi be any
minimization problem. Then (1) implies (2), where (1) and (2) are as defined below.

(1) \Pi is totally FPT-inapproximable.
(2) For all computable functions t : \BbbN \rightarrow \BbbN and f : \BbbN \rightarrow [1,\infty ), there is no

algorithm that, on every instance I of \Pi , runs in time t(\sansO \sansP \sansT \Pi (I)) \cdot | I| O(1)

and outputs a solution y \in \sansS \sansO \sansL \Pi (I) such that \sansC \sansO \sansS \sansT \Pi (I, y) \leq \sansO \sansP \sansT \Pi (I) \cdot 
f(\sansO \sansP \sansT \Pi (I)).

Proposition 2.4 (see [26, Proposition 6]). Let \Pi be any maximization problem.
Then (1) implies (2) where (1) and (2) are as defined below.

(1) \Pi is totally FPT-inapproximable.
(2) For all computable functions t : \BbbN \rightarrow \BbbN and f : \BbbN \rightarrow [1,\infty ) such that

f(k) = o(k) and k/f(k) is nondecreasing, there is no algorithm that, on ev-
ery instance I of \Pi , runs in time t(\sansO \sansP \sansT \Pi (I)) \cdot | I| O(1) and outputs a solution
y \in \sansS \sansO \sansL \Pi (I) such that \sansC \sansO \sansS \sansT \Pi (I, y) \geq \sansO \sansP \sansT \Pi (I)/f(\sansO \sansP \sansT \Pi (I)).

2.2. List of problems. We will now list the problems studied in this work.
While all the problems here can be defined in terms of optimization problems as
discussed in the previous subsection, we will omit the terms \sansS \sansO \sansL ,\sansC \sansO \sansS \sansT , and \sansG \sansO \sansA \sansL 
whenever they are clear from the context.

The Maximum Clique Problem (\sansC \sansl \sansi \sansq \sansu \sanse ). In k-\sansC \sansl \sansi \sansq \sansu \sanse , we are given a graph
G together with an integer k, and the goal is to decide whether G has a clique of size
k. The maximization version of k-\sansC \sansl \sansi \sansq \sansu \sanse , called \sansM \sansa \sansx -\sansC \sansl \sansi \sansq \sansu \sanse or simply \sansC \sansl \sansi \sansq \sansu \sanse , asks to
compute the maximum size of a clique in G.

The problem that is (computationally) equivalent to \sansC \sansl \sansi \sansq \sansu \sanse is the maximum in-
dependent set problem (\sansI \sansn \sansd \sansS \sanse \sanst ) which asks to compute the size of the maximum in-
dependent set in G. The two problems are equivalent since any clique in G is an
independent set in the complement graph \=G.

The Minimum Dominating Set Problem (\sansD \sanso \sansm \sansS \sanse \sanst ). In k-\sansD \sanso \sansm \sansS \sanse \sanst , we are
given a graph G together with an integer k, and the goal is to decide whether G has a
dominating set of size k. The minimization version of k-\sansD \sanso \sansm \sansS \sanse \sanst , called \sansM \sansi \sansn -\sansD \sanso \sansm \sansS \sanse \sanst 
or simply \sansD \sanso \sansm \sansS \sanse \sanst , asks to compute the size of the minimum dominating set in G. The
problem that is equivalent to \sansD \sanso \sansm \sansS \sanse \sanst is the minimum set cover problem (\sansS \sanse \sanst \sansC \sanso \sansv ):
Given a universe \scrU of n elements and a collection \scrS of m subsets S1, . . . , Sm \subseteq \scrU ,
the goal is to find the minimum number of subsets of \scrS whose union equals \scrU . It is a
standard fact that \sansD \sanso \sansm \sansS \sanse \sanst is equivalent to \sansS \sanse \sanst \sansC \sanso \sansv . See Appendix D for more detail.

Maximum Induced Subgraph with Hereditary Properties. A property \Pi 
is simply a subset of all graphs. We say that \Pi is a hereditary property if whenever
G \in \Pi , all induced subgraphs of G are in \Pi . The Maximum Induced Subgraph
problem with Property \Pi asks for a maximum cardinality set S \subseteq V (G) such that
G[S] \in \Pi . Here G[S] denotes the subgraph of G induced on S. Notice that both
\sansC \sansl \sansi \sansq \sansu \sanse and \sansI \sansn \sansd \sansS \sanse \sanst belong to this class of problems. For more discussions on problems
that belong to this class, see Appendix D.

Maximum Induced Matching on Bipartite Graphs. An induced matching
\scrM of a graph G = (V,E) is a subset of edges \{ (u1, v1), . . . , (u| \scrM | , v| \scrM | )\} such that
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there is no cross edge, i.e., (ui, uj), (vi, vj), (ui, vj) /\in E for all i \not = j. The induced
matching number \sansI \sansM (G) of graph G is simply the maximum value of | \scrM | among
all induced matchings \scrM 's of G. In this work, we will be interested in the problem
of approximating \sansI \sansM (G) in bipartite graphs; this is because, for general graphs, the
problem is as hard to approximate as \sansC \sansl \sansi \sansq \sansu \sanse . (See Appendix D for more details.)

Maximum Balanced Biclique (\sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse ). In k-\sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse , we are given a bipartite
graph G together with an integer k. The goal is to decide whether G contains a
complete bipartite subgraph (biclique) with k vertices on each side. In other words,
we are asked to decide whether G contains Kk,k as a subgraph. The maximization
version of \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse , called Maximum Balanced Biclique, asks to compute the maximum
size of a balanced biclique in G.

Densest k-Subgraph. In the Densest k-Subgraph problem, we are given an
integer k and a graph G = (V,E). The goal is to find a subset S \subseteq V of k vertices
that induces a maximum number of edges. For convenience, we define density of an

induced subgraph G[S] to be \sansD \sanse \sansn (G[S]) \triangleq E(G[S])

(| S| 
2 )

\in [0, 1] and we define the optimal

density of Densest k-Subgraph to be \sansD \sanse \sansn k(G) = maxS\subseteq V,| S| =k \sansD \sanse \sansn (S).

2.3. Gap-ETH. Our results are based on the Gap-ETH. Before we state the
hypothesis, let us recall the definition of 3-\sansS \sansA \sansT . In q-\sansS \sansA \sansT , we are given a CNF
formula \phi in which each clause consists of at most q literals, and the goal is to decide
whether \phi is satisfiable.

\sansM \sansa \sansx q-\sansS \sansA \sansT is a maximization version of q-\sansS \sansA \sansT which asks to compute the max-
imum number of clauses in \phi that can be simultaneously satisfied. We will abuse
q-\sansS \sansA \sansT to mean \sansM \sansa \sansx q-\sansS \sansA \sansT , and for a formula \phi , we use \sansS \sansA \sansT (\phi ) to denote the maxi-
mum number of clauses satisfied by any assignment.

The Gap-ETH can now be stated in terms of \sansS \sansA \sansT as follows.

Conjecture 2.5 ((randomized) Gap-ETH [32, 72]). For some constant \delta , \epsilon > 0,
no algorithm can, given a 3-\sansS \sansA \sansT formula \phi on n variables and m = O(n) clauses,
distinguish between the following cases correctly with probability \geq 2/3 in O(2\delta n)
time:

\bullet \sansS \sansA \sansT (\phi ) = m and
\bullet \sansS \sansA \sansT (\phi ) < (1 - \epsilon )m.

The bound m = O(n) is obtained by a random sparsification of a gap instance of
3-\sansS \sansA \sansT , which allows us to bound m to be at most (2/(1 - \epsilon )) \cdot n.

Note that the case where \epsilon = 1/m (that is, the algorithm only needs to distin-
guish between the cases that \sansS \sansA \sansT (\phi ) = m and \sansS \sansA \sansT (\phi ) < m) is known as ETH [54].
Another related conjecture is the strengthened version of ETH is called SETH [53]:
for any \epsilon > 0, there is an integer k \geq 3 such that there is no 2(1 - \epsilon )n-time algorithm
for k-SAT. Gap-ETH of course implies ETH but, to the best of our knowledge, no
formal relationship is known between Gap-ETH and SETH. While Gap-ETH may
seem strong due to the gap between the two cases, there are evidences suggesting
that it may indeed be true or, at the very least, refuting it is beyond the reach of our
current techniques. We discuss some of this evidence in Appendix F.

While Gap-ETH as stated above rules out not only deterministic but also ran-
domized algorithms, the deterministic version of Gap-ETH suffices for some of our
results, including inapproximability of \sansC \sansl \sansi \sansq \sansu \sanse and \sansD \sanso \sansm \sansS \sanse \sanst . The reduction for \sansD \sanso \sansm \sansS \sanse \sanst 
as stated below will already be deterministic, but the reduction for \sansC \sansl \sansi \sansq \sansu \sanse will be ran-
domized. However, it can be easily derandomized and we sketch the idea behind this
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in in subsection 4.2.1. Note that, on the other hand, we do not know how to deran-
domize some of our other results, including those of \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse and Densest k-Subgraph.

3. FPT inapproximability via the Concept of Inherently Enumerative.
Throughout the paper, we will prove FPT inapproximability through the concept of
inherently enumerative problems, which will be formalized shortly.

To motivate the concept, note that all problems \Pi considered in this paper admit
an exact algorithm that runs in time5 O \star (| I| OPT\Pi (I)). For instance, to find a clique of

size k in G, one can enumerate all
\bigl( | V (G)| 

k

\bigr) 
= | V (G)| O(k) possibilities.6 For many W[1]-

hard problems (e.g., \sansC \sansl \sansi \sansq \sansu \sanse ), this running time is nearly the best possible assuming
ETH: Any algorithm that finds a k-clique in time | V (G)| o(k) would break ETH. In
the light of such a result, it is natural to ask the following question. Assume that

\sansC \sansl \sansi \sansq \sansu \sanse (G) \geq 22
k

, can we find a clique of size k in time | V (G)| o(k)?
In other words, can we exploit a prior knowledge that there is a clique of size

much larger than k to help us find a k-clique faster? Roughly speaking, we will show
later that, assuming Gap-ETH, the answer of this question is also negative, even when

22
k

is replaced by a much larger constant independent of k. This is encapsulated in
the concept of inherently enumerative as defined below.

Definition 3.1 (inherently enumerative). A problem \Pi is said to be inherently
enumerative if there exist constants \delta , r0 > 0 such that, for any integers q \geq r \geq r0,
no algorithm can decide, on every input instance I of \Pi , whether (i) \sansO \sansP \sansT \Pi (I) < r or
(ii) \sansO \sansP \sansT \Pi (I) \geq q in time7 Oq,r(| I| \delta r).

While we will show that \sansC \sansl \sansi \sansq \sansu \sanse and \sansD \sanso \sansm \sansS \sanse \sanst are inherently enumerative, we cannot
do the same for some of the other problems, such as \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse . Even for the exact

version of \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse , the best running time lower bound known is only | V (G)| \Omega (
\surd 
k) [66]

assuming ETH. In order to succinctly categorize such lower bounds, we define a similar
but weaker notation of weakly inherently enumerative:

Definition 3.2 (weakly inherently enumerative). For any function \beta = \omega (1)
(i.e., limr\rightarrow \infty \beta (r) = \infty ), a problem \Pi is said to be \beta -weakly inherently enumerative if
there exists a constant r0 > 0 such that, for any integers q \geq r \geq r0, no algorithm can
decide, on every input instance I of \Pi , whether (i) \sansO \sansP \sansT \Pi (I) < r or (ii) \sansO \sansP \sansT \Pi (I) \geq q
in time Oq,r(| I| \beta (r)).

\Pi is said to be weakly inherently enumerative if it is \beta -weakly inherently enumer-
ative for some \beta = \omega (1).

It follows from the definitions that any inherently enumerative problem is also
weakly inherently enumerative. As stated earlier, we will prove total FPT inapprox-
imability through it being inherently enumerative; the proposition below formally
establishes a connection between the two.

Proposition 3.3. If \Pi is weakly inherently enumerative, then \Pi is totally FPT-
inapproximable.

Proof. We first consider maximization problems. We will prove the contraposi-
tive of the statement. Assume that a maximization problem \Pi is not totally FPT-
inapproximable, i.e., \Pi admits an f -FPT gap approximation algorithm \BbbA for some

5Recall that O \star (\cdot ) hides terms that are polynomial in the input size.
6A faster algorithm that runs in time | V (G)| \omega k/3 can be done by a reduction to matrix multi-

plication.
7Oq,r(\cdot ) here and in Definition 3.2 hides any multiplicative term that is a function of q and r.

D
ow

nl
oa

de
d 

10
/0

5/
20

 to
 1

30
.2

33
.2

16
.1

41
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FROM GAP-ETH TO FPT-INAPPROXIMABILITY 783

computable function f such that limk\rightarrow \infty k/f(k) = \infty . Suppose that the running
time of \BbbA on every input (I, k) is t(k) \cdot | I| D for some constant D and some function
t. We will show that \Pi is not weakly inherently enumerative.

Let r0 > 0 be any constant and let \beta : \BbbN \rightarrow \BbbR + be any function such that
\beta = \omega (1). Let r be the smallest integer such that r > r0 and \beta (r) \geq D and let q be the
smallest integer such that q/f(q) > r. Note that r and q exist since limr\rightarrow \infty \beta (r) = \infty 
and limq\rightarrow \infty q/f(q) = \infty .

Given any instance I of \Pi , from the definition of f -FPT gap approximation
algorithms (Definition 2.1) and from the fact that q/f(q) > r, \BbbA on the input (I, q)
can distinguish between \sansO \sansP \sansT \Pi (I) \geq q and \sansO \sansP \sansT \Pi (I) < r in t(q) \cdot | I| D \leq t(q) \cdot | I| \beta (r) =
Oq,r(| I| \beta (r)) time. Hence, \Pi is not weakly inherently enumerative, concluding our
proof for maximization problems.

For any minimization problem \Pi , assume again that \Pi is not totally FPT-
inapproximable, i.e., \Pi admits an f -FPT gap approximation algorithm \BbbA for some
computable function f . Suppose that the running time of \BbbA on every input (I, k) is
t(k) \cdot | I| D for some constant D.

Let r0 > 0 be any constant and let \beta : \BbbN \rightarrow \BbbR + be any function such that
\beta = \omega (1). Let r be the smallest integer such that r > r0 and \beta (r) \geq D and let
q = \lceil r \cdot f(r)\rceil .

Given any instance I of \Pi . From the definition of f -FPT gap approximation
algorithms and from q \geq r \cdot f(r), \BbbA on the input (I, r) can distinguish between
\sansO \sansP \sansT \Pi (I) \geq q and \sansO \sansP \sansT \Pi (I) < r in t(r) \cdot | I| D \leq t(r) \cdot | I| \beta (r) = Oq,r(| I| \beta (r)) time.
Hence, \Pi is not weakly inherently enumerative.

An important tool in almost any branch of complexity theory, including parame-
terized complexity, is a notion of reductions. For the purpose of facilitating proofs of
totally FPT inapproximability, we define the following reduction, which we call FPT
gap reductions.

Definition 3.4 (FPT gap reduction). For any functions f, g = \omega (1), a problem
\Pi 0 is said to be (f, g)-FPT gap reducible to a problem \Pi 1 if there exists an algorithm
\BbbA which takes an instance I0 of \Pi 0 and integers q, r and then produces an instance
I1 of \Pi 1 such that the following conditions hold.

\bullet \BbbA runs in time t(q, r) \cdot | I0| O(1) for some computable function t : \BbbN \times \BbbN \rightarrow \BbbN .
\bullet For every positive integer q, if \sansO \sansP \sansT \Pi 0(I0) \geq q, then \sansO \sansP \sansT \Pi 1(I1) \geq f(q).
\bullet For every positive integer r, if \sansO \sansP \sansT \Pi 0(I0) < g(r), then \sansO \sansP \sansT \Pi 1(I1) < r.

It is not hard to see that FPT gap reduction indeed preserves totally FPT inap-
proximability, as formalized in Proposition 3.5 below. The proof of the proposition
can be found in Appendix B.

Proposition 3.5. If a problem \Pi 0 is (i) (f, g)-FPT gap reducible to \Pi 1 for some
computable nondecreasing functions f, g = \omega (1), and (ii) totally FPT-inapproximable,
then \Pi 1 is also totally FPT-inapproximable.

As stated earlier, we mainly work with inherently enumerative concepts instead
of working directly with totally FPT inapproximability; indeed, we will never use
the above proposition and we alternatively use FPT gap reductions to prove that
problems are weakly inherently enumerative. For this purpose, we will need the
following proposition.

Proposition 3.6. If a problem \Pi 0 is (i) (f, g)-FPT gap reducible to \Pi 1 and (ii)
\beta -weakly inherently enumerative for some f, g, \beta = \omega (1), then \Pi 1 is \Omega (\beta \circ g)-weakly
inherently enumerative.

D
ow

nl
oa

de
d 

10
/0

5/
20

 to
 1

30
.2

33
.2

16
.1

41
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

784 CHALERMSOOK ET AL.

Proof. We assume that (i) holds, and will show that if the ``then"" part does not
hold, then (ii) also does not hold. Recall from Definition 3.4 that (i) implies that
there exist C,D > 0 such that the reduction from \Pi 0 (with parameters q and r) to \Pi 1

takes Oq,r(| I0| C) time and always output an instance I1 of size at most Oq,r(| I0| D) on
every input instance I0. Now assume that the then part does not hold, in particular,
\Pi 1 is not (\beta \circ g)/D-weakly inherently enumerative. We will show the following claim
which says that (ii) does not hold (by Definition 3.2).

Claim 3.7. For every r0 > 0, there exists q \geq r \geq r0 and an Oq,r(| I0| \beta (r))-
time algorithm \BbbB that can, on every input instance I0 of \Pi 0, distinguish between
\sansO \sansP \sansT \Pi 0

(I0) \geq q and \sansO \sansP \sansT \Pi 0
(I0) < r.

We now prove the claim. Consider any r0. Since \beta , g = \omega (1), there exists r\prime 0 such
that g(r\prime ) \geq r0 and \beta (r\prime ) \geq C for all r\prime \geq r\prime 0. From the assumption that \Pi 1 is not
(\beta \circ g)/D-weakly inherently enumerative, there exist q\prime \geq r\prime \geq r\prime 0 such that there is
an Oq\prime ,r\prime (| I1| \beta (g(r

\prime ))/D)-time algorithm \BbbA that can, on every input instance I1 of \Pi 1,
distinguish between \sansO \sansP \sansT \Pi 1(I1) \geq q\prime and \sansO \sansP \sansT \Pi 1(I1) < r\prime .

Let r = g(r\prime ), and let q be the smallest integer such that f(q) \geq q\prime and q \geq r.
Note that q exists since limq\rightarrow \infty f(q) = \infty , and that r \geq r0. We use \BbbA and the
reduction to build an algorithm \BbbB as follows. On input I0, the algorithm \BbbB runs the
reduction on I0 and the previously defined q, r. Let us call the output of the reduction
I1. The algorithm \BbbB then runs \BbbA on the input (I1, q

\prime , r\prime ) and outputs accordingly, i.e.,
if \BbbA says that \sansO \sansP \sansT \Pi 1(I1) \geq q\prime , then \BbbB outputs \sansO \sansP \sansT \Pi 0(I0) \geq q and, otherwise, if \BbbA 
says that \sansO \sansP \sansT \Pi 1(I1) < r\prime , then \BbbB outputs \sansO \sansP \sansT \Pi 0(I0) < r.

Now we show that the algorithm \BbbB can distinguish whether \sansO \sansP \sansT \Pi 0
(I0) \geq q or

\sansO \sansP \sansT \Pi 1
(I1) < r as desired by the claim: From our choice of q, if \sansO \sansP \sansT \Pi 0

(I0) \geq q, then
\sansO \sansP \sansT \Pi 1

(I1) \geq f(q) \geq q\prime . Similarly, from our choice of r = g(r\prime ), if \sansO \sansP \sansT \Pi 0
(I0) < r,

then \sansO \sansP \sansT \Pi 1(I1) < r\prime . Since \BbbA can distinguish between the two cases, \BbbB can distinguish
between the two cases as well.

The total running time of \BbbB is Oq,r(| I0| C)+Oq\prime ,r\prime (| I1| \beta (g(r
\prime ))/D) (the first term is

for running the reduction). Since I1 is of size at most Oq,r(| I0| D), \beta (r) \geq C, and q\prime 

and r\prime depend only on q and r, the running time can be bounded by Oq,r(| I0| \beta (r)) as
desired.

4. Covering problems on label cover instances. In this section, we give in-
termediate results for the lower bounds on the running time of approximating variants
of the label cover problem, which will be the source of our inapproximability results
for \sansC \sansl \sansi \sansq \sansu \sanse and \sansD \sanso \sansm \sansS \sanse \sanst .

4.1. Problems and results. First, we define a label cover instance.
Label cover instance: A label cover instance \Gamma consists of (G,\Sigma U ,\Sigma V ,\Pi ), where
\bullet G = (U, V,E) is a bipartite graph between vertex sets U and V and an edge
set E;

\bullet \Sigma U and \Sigma V are sets of alphabets to be assigned to vertices in U and V ,
respectively; and

\bullet \Pi = \{ \Pi e\} e\in E is a set of constraints \Pi e \subseteq \Sigma U \times \Sigma V .
We say that \Pi (or \Gamma ) has the projection property if for every edge uv \in E (where

u \in U and V \in v) and every \alpha \in \Sigma U , there is exactly one \beta \in \Sigma V such that
(\alpha , \beta ) \in \Pi uv.

We will define two combinatorial optimization problems on an instance of the
label cover problem. These two problems are defined on the same instance as the
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standard label cover problem. We will briefly discuss how our problems differ from
the standard one.

Max-Cover problem: A labeling of the graph is a pair of mappings \sigma U : U \rightarrow \Sigma U

and \sigma V : V \rightarrow \Sigma V . We say that a labeling (\sigma U , \sigma V ) covers edge uv if (\sigma U (u), \sigma V (v)) \in 
\Pi uv. We say that a labeling covers a vertex u if it covers every edge incident to u. For
any label cover instance \Gamma , let \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) denote the maximum number of vertices in
U that can be covered by a labeling; i.e.,

\sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) := max
\sigma U :U\rightarrow \Sigma U , \sigma V :V\rightarrow \Sigma V

| \{ u \in U | (\sigma U , \sigma V ) covers u\} | .

The goal of the Max-Cover problem is to compute \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ). We remark that
the standard label cover problem (e.g., [83]) would try to maximize the number of
covered edges, as opposed to our Max-Cover problem, which seeks to maximize the
number of covered vertices.

Min-Label Problem: A multilabeling of the graph, is a pair of mappings \sigma U : U \rightarrow 
\Sigma U and \^\sigma V : V \rightarrow 2\Sigma V . We say that (\sigma U , \^\sigma V ) covers an edge uv if there exists
\beta \in \^\sigma V (v) such that (\sigma (u), \beta ) \in \Pi uv. For any label cover instance \Gamma , let \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma )
denote the minimum number of labels needed to assign to vertices in V in order to
cover all vertices in U , i.e.,

\sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) := min
(\sigma U ,\^\sigma V )

\sum 
v\in V

| \^\sigma V (v)| ,

where the minimization is over multilabelings (\sigma U , \^\sigma V ) that cover every edge in G.
It is worth noting that, in \sansM \sansi \sansn \sansL \sansa \sansb , we are allowed to assign multiple labels to

vertices in V whereas each vertex in U must be assigned a unique label. This makes
\sansM \sansi \sansn \sansL \sansa \sansb different from the problem known in the literature as \sansM \sansi \sansn \sansR \sanse \sansp (see, e.g., [21])
since, in \sansM \sansi \sansn \sansR \sanse \sansp , we are allowed to assign multiple labels to all nodes, including those
in U .

Results. First, note that checking whether \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) < r or not, for any r \geq 1,
can be done by the following algorithms.

1. It can be done8 in O \star (
\bigl( | U | 

r

\bigr) 
(| \Sigma U | )r) = O \star ((| U | \cdot | \Sigma U | )r) time: First, enumerate

all
\bigl( | U | 

r

\bigr) 
possible subsets U \prime of U and all | \Sigma U | | U

\prime | possible labelings on vertices
in U \prime . Once we fix the labeling on U \prime , we only need polynomial time to check
whether we can label other vertices so that all vertices in U \prime are covered.

2. It can be done in O \star (| \Sigma V | | V | ) time: Enumerate all O \star (| \Sigma V | | V | ) possible label-
ings \sigma V on V . After \sigma V is fixed, we can find labeling \sigma U on U that maximizes
the number of vertices covered in U in polynomial time.

ETH can be restated as that these algorithms are the best possible when | U | =
\Theta (| V | ), | \Sigma U | , | \Sigma V | = O(1), and \Pi has the projection property. Gap-ETH asserts
further that this is the case even to distinguish between \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = | U | and
\sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) \leq (1 - \varepsilon )| U | .

Theorem 4.1. Gap-ETH (Conjecture 2.5) is equivalent to the following state-
ment. There exist constants \varepsilon , \delta > 0 such that no algorithm can take a label cover
instance \Gamma and can distinguish between the following cases in O(2\delta | U | ) time:

\bullet \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = | U | and
\bullet \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) < (1 - \varepsilon )| U | .

8Recall that we use O \star (\cdot ) to hide factors of the polynomial in the input size.
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This holds only when | \Sigma U | , | \Sigma V | = O(1), | U | = \Theta (| V | ), and \Pi has the projection
property.

The proof of Theorem 4.1 is standard. To avoid distracting the readers, we provide
the sketch of the proof in Appendix E.

We will show that Theorem 4.1 can be extended to several cases, which will be
useful later. First, consider when the first (O \star ((| U | \cdot | \Sigma U | )r)-time) algorithm is faster
than the second one. We show that, in this case, the first algorithm is essentially the
best even for r = O(1), and this holds even when we know that \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = | U | .

For convenience, in the statements of Theorems 4.2 to 4.4 below, we will use
the notation | \Gamma | to denote the size of the label cover instance; in particular, | \Gamma | =
| \Sigma U | + | \Sigma V | + | U | + | V | . Furthermore, recall that the notation Ok,r(\cdot ) denotes any
multiplicative factor that depends only on k and r.

Theorem 4.2 (\sansM \sansa \sansx \sansC \sanso \sansv with small | U | ). Assuming Gap-ETH, there exist con-
stants \delta , \rho > 0 such that, for any positive integers k \geq r \geq \rho , no algorithm can take
a label cover instance \Gamma with | U | = k and distinguish between the following cases in
Ok,r(| \Gamma | \delta r) time:

\bullet \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = k and
\bullet \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) < r.

This holds even when | \Sigma V | = O(1) and \Pi has the projection property.

We emphasize that it is important for applications in later sections that r = O(1).
In fact, the main challenge in proving the theorem above is to prove it is true for r
that is arbitrarily small compared to | U | .

Second, consider when the second (O \star (| \Sigma V | | V | )-time) algorithm is faster, i.e.,
when | V | \ll | U | . In this case, we cannot make the soundness (i.e., the parameter r in
Theorem 4.2) be arbitrarily small. (Roughly speaking, the first algorithm can become
faster otherwise.) Instead, we will show that the second algorithm is essentially the
best possible for soundness as small as \gamma | U | for any constant \gamma > 0. More importantly,
this holds for | V | = O(1) (thus independent from the input size). This is the key
property of this theorem that we will need later.

Theorem 4.3 (\sansM \sansa \sansx \sansC \sanso \sansv with small | V | ). Assuming Gap-ETH, there exist con-
stants \delta , \rho > 0 such that, for any positive integer q \geq \rho and any 1 \geq \gamma > 0, no
algorithm can take a label cover instance \Gamma with | V | = q and distinguish between the
following cases in Oq,\gamma (| \Gamma | \delta q) time:

\bullet \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = | U | and
\bullet \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) < \gamma | U | .

This holds even when | \Sigma U | \leq (1/\gamma )O(1).

We remark that the above label cover instance does not have the projection
property.

In our final result, we turn to computing \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ). Since \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = | U | if
and only if \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) = | V | , a statement similar to Theorem 4.1 intuitively holds for
distinguishing between \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) \leq | V | and \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) > (1 + \varepsilon )| V | , i.e., we need
O \star (| \Sigma V | | V | ) time. In the following theorem, we show that this gap can be substantially
amplified while maintaining the property that | V | = O(1) (thus independent from the
input size).

Theorem 4.4 (\sansM \sansi \sansn \sansL \sansa \sansb hardness). Assuming Gap-ETH, there exist constants
\delta , \rho > 0 such that, for any positive integers r \geq q \geq \rho , no algorithm can take a
label cover instance \Gamma with | V | = q and distinguish between the following cases in
Oq,r(| \Gamma | \delta q) time:
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\bullet \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) = q and
\bullet \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) > r.

This holds even when | \Sigma U | = (r/q)O(q).

The rest of this section is devoted to proving Theorems 4.2 to 4.4.

4.2. Proof of Theorem 4.2. The proof proceeds by compressing the left vertex
set U of a label cover instance from Theorem 4.1. More specifically, each new left
vertex will be a subset of left vertices in the original instance. In the construction
below, these subsets will just be random subsets of the original vertex set of a certain
size; however, the only property of random subsets we will need is that they form
a disperser. To clarify our proof, let us start by stating the definition of dispersers
here. Note that, even though dispersers are often described in terms of graphs or
distributions in literature (see, e.g., [82]), it is more convenient for us to describe it
in terms of subsets.

Definition 4.5. For any positive integers m, k, \ell , r \in \BbbN and any constant \varepsilon \in 
(0, 1), an (m, k, \ell , r, \varepsilon )-disperser is a collection \scrI of k subsets I1, . . . , Ik \subseteq [m] each
of size \ell such that the union of any r different subsets from the collection has size at
least (1 - \varepsilon )m. In other words, for any 1 \leq i1 < \cdot \cdot \cdot < ir \leq k, we have | Ii1 \cup \cdot \cdot \cdot \cup Iir | \geq 
(1 - \varepsilon )m.

The idea of using dispersers to amplify the gap in hardness of approximation
bears a strong resemblance to the classical randomized graph product technique [11].
Indeed, similar approaches have been used before, both implicitly (e.g., [8]) and ex-
plicitly (e.g., [85, 84, 86]). In fact, even the reduction we use below has been studied
before by Zuckerman [85, 84]!

What differentiates our proof from previous works is the setting of parameters.
Since the reduction size (specifically, the left alphabet size | \Sigma U | ) blows up exponen-
tially in \ell and previous results aim to prove NP-hardness of approximating \sansC \sansl \sansi \sansq \sansu \sanse , the
\ell are chosen to be small (i.e., O(logm)). On the other hand, we will choose our \ell to
be \Theta \varepsilon (m/r) since we would like to only prove a running time lower bound of the form
| \Sigma U | \Omega (r). Interestingly, dispersers for our regime of parameters are easier to construct
deterministically and we will sketch the construction in subsection 4.2.1. Note that
this construction immediately implies derandomization of our reduction.

The exact dependency of parameters can be found in the claim below, which
also states that random subsets will be a disperser for such a choice of parameters
with high probability. Here and throughout the proof, k and r should be thought of
as constants where k \gg r; these are the same k, r as the ones in the statement of
Theorem 4.2.

Claim 4.6. For any positive integers m, k, r \in \BbbN and any constant \varepsilon \in (0, 1), let
\ell = max\{ m, \lceil 3m/(\varepsilon r)\rceil \} and let I1, . . . , Ik be \ell -element subsets of [m] drawn uniformly
independently at random. If ln k \leq m/r, then \scrI = \{ I1, . . . , Ik\} is an (m, k, \ell , r, \varepsilon )-
disperser with probability at least 1 - e - m.

Proof. When \ell = m, the statement is obviously true; thus, we assume without
loss of generality (w.l.o.g.) that \ell = \lceil 3m/(\varepsilon r)\rceil . Consider any indices i1, . . . , ir such
that 1 \leq i1 < \cdot \cdot \cdot < ir \leq k. We will first compute the probability that | Ii1 \cup \cdot \cdot \cdot \cup Iir | <
(1 - \varepsilon )m and then take the union bound over all such (i1, . . . , ir)'s.

Observe that | Ii1 \cup \cdot \cdot \cdot \cup Iir | < (1 - \varepsilon )m if and only if there exists a set S \subseteq [m] of
size less than (1 - \varepsilon )m such that Ii1 , . . . , Iir \subseteq S. For a fixed set S \subseteq [m] of size less
than (1  - \varepsilon )m, since Ii1 , . . . , Iir are independently drawn random \ell -element subsets
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of [m], we have

Pr[Ii1 , . . . , Iir \subseteq S] =
\prod 
j\in [r]

Pr[Ij \subseteq S] =

\Biggl( \bigl( | S| 
\ell 

\bigr) \bigl( 
m
\ell 

\bigr) \Biggr) r

\leq 
\biggl( 
| S| 
m

\biggr) \ell r

< (1 - \varepsilon )\ell r \leq e - \varepsilon \ell r < e - 3m.

Taking the union bound over all such S's, we have

Pr[| Ii1 \cup \cdot \cdot \cdot \cup Iir | < (1 - \varepsilon )m] <
\sum 

S\subseteq [m],| S| <(1 - \varepsilon )m

e - 3m < 2m \cdot e - 3m < e - 2m.

Finally, taking the union bound over all (i1, . . . , ir)'s gives us the desired probabilistic
bound:

Pr[\scrI is not an (m, k, \ell , r, \varepsilon )-disperser] \leq 
\sum 

1\leq i1<\cdot <ir\leq k

e - 2m \leq kr \cdot e - 2m < e - m,

where the last inequality comes from our assumption that ln k \leq m/r.

With the definition of dispersers and the above claim ready, we move on to prove
Theorem 4.2.

Proof of Theorem 4.2. First, we take a label cover instance, namely,\widetilde \Gamma = ( \widetilde G = (\widetilde U, \widetilde V , \widetilde E),\Sigma \widetilde U ,\Sigma \widetilde V , \widetilde \Pi ),

as in Theorem 4.1. We may assume that | \Sigma \widetilde U | , | \Sigma \widetilde V | = O(1), and | \widetilde U | = \Theta (| \widetilde V | ).
Moreover, let m = | \widetilde U | and n = | \widetilde V | ; for convenience, we rename the vertices in \widetilde U and\widetilde V so that \widetilde U = [m] and \widetilde V = [n]. Note that it might be useful for the readers to think

of \widetilde \Gamma as a 3-\sansS \sansA \sansT instance, where \widetilde U is the set of clauses and \widetilde V is the set of variables.
We recall the parameter \varepsilon from Theorem 4.1 and the parameters k, r from the

statement of Theorem 4.2. We introduce a new parameter \ell = \lceil 3m/(\varepsilon r)\rceil .
The new label cover (\sansM \sansa \sansx \sansC \sanso \sansv ) instance \Gamma = (G = (U, V,E),\Sigma U ,\Sigma V ,\Pi ) is defined

as follows.
\bullet The right vertices and right alphabet set remain unchanged, i.e., V = \widetilde V and
\Sigma V = \Sigma \widetilde V .

\bullet There will be k vertices in U , where each vertex is a random set of \ell vertices
of \widetilde U . More specifically, we define U = \{ I1, . . . , Ik\} , where each Ii is a random
\ell -element subsets of [m] drawn independently of each other.

\bullet The left alphabet set \Sigma U is \Sigma \ell \widetilde U . For each I \in U , we view each label \alpha \in \Sigma U

as a tuple (\alpha u)u\in I \in (\Sigma \widetilde U )I ; this is a partial assignment to all vertices u \in I

in the original instance \widetilde \Gamma .
\bullet We create an edge between I \in U and v \in V in E if and only if there exists
u \in I such that uv \in \widetilde E. More formally, E = \{ Iv : I \cap N \widetilde G(v) \not = \emptyset \} .

\bullet Finally, we define the constraint \Pi Iv for each Iv \in E. As stated above, we
view each \alpha \in \Sigma U as a partial assignment (\alpha u)u\in I for I \subseteq \widetilde U . The constraint

\Pi Iv then contains all (\alpha , \beta ) such that (\alpha u, \beta ) satisfies the constraint \widetilde \Pi uv for

every u \in I that has an edge to v in \widetilde \Gamma . More precisely,

\Pi Iv = \{ (\alpha , \beta ) = ((\alpha u)u\in I , \beta ) : \forall u \in I \cap N \widetilde G(v), (\alpha u, \beta ) \in \widetilde \Pi uv\} .

Readers who prefer the 3-\sansS \sansA \sansT /CSP viewpoint of label cover may think of each Ii
as a collection of clauses in the 3-\sansS \sansA \sansT instance that are joined by an operator AND,
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i.e., the assignment must satisfy all the clauses in Ii simultaneously in order to satisfy
Ii.

We remark that, if \widetilde \Pi has the projection property, then \Pi also has the projection
property.

Completeness. Suppose there is a labeling (\sigma \widetilde U , \sigma \widetilde V ) of \widetilde \Gamma that covers all | \widetilde U | left
vertices. We take \sigma V = \sigma \widetilde V and construct \sigma U by setting \sigma U (I) = (\sigma \widetilde U (u))u\in I for each

I \in U . Since (\sigma \widetilde U , \sigma \widetilde V ) covers all the vertices of \widetilde U , (\sigma U , \sigma V ) also covers all the vertices
of U . Therefore, \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = | U | .

Soundness. To analyze the soundness of the reduction, first recall Claim 4.6
that \{ I1, . . . , Ik\} is an (m, k, \ell , r, \varepsilon )-disperser with high probability. Conditioned on

this event happening, we will prove the soundness property, i.e., that if \sansM \sansa \sansx \sansC \sanso \sansv (\widetilde \Gamma ) <
(1 - \varepsilon )| \widetilde U | , then \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) < r.

We will prove this by the contrapositive. Assume that there is a labeling (\sigma U , \sigma V )
that covers at least r left vertices Ii1 , . . . , Iir \in U . We construct a labeling (\sigma \widetilde U , \sigma \widetilde V )
as follows. First, \sigma \widetilde V is simply set to \sigma V . Moreover, for each u \in Ii1 \cup \cdot \cdot \cdot \cup Iir , let
\sigma \widetilde U (u) = (\sigma U (Iij ))u, where j \in [r] is an index such that u \in Iij ; if there are multiple
such j's, then we may pick an arbitrary one. Finally, for u \in U \setminus (Ii1 \cup \cdot \cdot \cdot \cup Iir ), we
set \sigma \widetilde U (u) arbitrarily.

We claim that every u \in Ii1 \cup \cdot \cdot \cdot \cup Iir is covered by (\sigma \widetilde U , \sigma \widetilde V ) in the original

instance \widetilde \Gamma . To see that this is the case, recall that \sigma \widetilde U (u) = (\sigma U (Iij ))u for some
j \in [r] such that u \in Iij . For every v \in V , if uv \in E, then, from how the constraint

\Pi Iij v
is defined, we have (\sigma \widetilde U (u), \sigma \widetilde V (v)) = (\sigma U (Iij )u, \sigma V (v)) \in \widetilde \Pi uv. In other words,

u is indeed covered by (\sigma \widetilde U , \sigma \widetilde V ).
Hence, (\sigma \widetilde U , \sigma \widetilde V ) covers at least | Ii1 \cup \cdot \cdot \cdot \cup Iir | \geq (1  - \varepsilon )m, where the inequal-

ity comes from the definition of dispersers. As a result, \sansM \sansa \sansx \sansC \sanso \sansv (\widetilde \Gamma ) \geq (1  - \varepsilon )| \widetilde U | ,
completing the soundness proof.

Running Time Lower Bound. Our construction gives a \sansM \sansa \sansx \sansC \sanso \sansv instance \Gamma 
with | U | = k and | \Sigma U | = | \Sigma \widetilde U | \ell = 2\Theta (m/(\varepsilon r)), whereas | V | and | \Sigma V | remain n and O(1),
respectively. Assume that Gap-ETH holds and let \delta 0 be the constant in the running
time lower bound in Theorem 4.1. Let \delta be any constant such that 0 < \delta < \delta 0\varepsilon /c,
where c is the constant such that | \Sigma U | \leq 2cm/(\varepsilon r).

Suppose for the sake of contradiction that, for some k \geq r \geq \rho , there is an al-
gorithm that distinguishes whether \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = k or \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) < r in Ok,r(| \Gamma | \delta r)
time. Observe that, in our reduction, | U | , | V | , | \Sigma V | = | \Sigma U | o(1). Hence, the running
time of the algorithm on input \Gamma is at most Ok,r(| \Sigma U | \delta r(1+o(1))) \leq Ok,r(| \Sigma U | \delta 0\varepsilon r/c) \leq 
O(2\delta 0m), where the first inequality comes from our choice of \delta and the second comes
from | \Sigma U | \leq 2cm/(\varepsilon r). Thanks to the completeness and soundness of the reduc-

tion, this algorithm can also distinguish whether \sansM \sansa \sansx \sansC \sanso \sansv (\widetilde \Gamma ) = | \widetilde U | or \sansM \sansa \sansx \sansC \sanso \sansv (\widetilde \Gamma ) <
(1 - \varepsilon )| \widetilde U | in time O(2\delta 0m). From Theorem 4.1, this is indeed a contradiction.

4.2.1. Derandomization. While the reduction in the proof of Theorem 4.2 is
a randomized reduction, it can be derandomized quite easily. We sketch the ideas
behind the derandomization below.

Ones may notice that the only property we need from the random \ell -element
subsets I1, . . . , Ik is that it forms an (m, k, \ell , r, \varepsilon )-disperser. Hence, to derandomize
the reduction, it suffices to deterministically construct such a disperser in 2o(n) time.

To do so, let us first note that Claim 4.6 implies that an (m\prime , k, \ell \prime , r, \varepsilon )-disperser
exists, where m\prime = r ln k and \ell \prime = 3m\prime /(\varepsilon r). For convenience, we assume w.l.o.g.
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that m\prime , \ell \prime are integers and that m\prime divides m. Since m\prime is now small, we can find
such a disperser by just enumerating over every possible collection of k subsets of
[m\prime ] each of size \ell \prime and checking whether it has the desired property; this takes only
(2m

\prime 
)k(k)r poly(m\prime ) = 2O(rk log k) time, which is acceptable for us since r and k are

both constants. Let the (m\prime , k, \ell \prime , r, \varepsilon )-disperser that we find be \{ I \prime 1, . . . , I \prime k\} . Finally,
to get from here to the intended (m, k, \ell , r, \varepsilon )-disperser, we only need to view [m] as
[m/m\prime ]\times [m\prime ] and let I1 = [m/m\prime ]\times I \prime 1, . . . , Ik = [m/m\prime ]\times I \prime k. It is not hard to check
that \{ I1, . . . , Ik\} is indeed an (m, k, \ell , r, \varepsilon )-disperser, which concludes our sketch.

4.3. Proof of Theorem 4.3. The proof proceeds by compressing the right ver-
tex set V of a label cover instance from Theorem 4.1 plus amplifying the hardness
gap. The gap amplification step is similar to that in the proof of Theorem 4.2 except
that, since here \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) is not required to be constant in the soundness case, we
can simply take all subsets of appropriate sizes instead of random subsets as in the
previous proof; this also means that our reduction is deterministic and thus requires
no derandomization.

Proof of Theorem 4.3. First, we take a label cover instance, namely, \widetilde \Gamma =
( \widetilde G = (\widetilde U, \widetilde V , \widetilde E),\Sigma \widetilde U ,\Sigma \widetilde V , \widetilde \Pi ), as in Theorem 4.1. We may assume that | \Sigma \widetilde U | , | \Sigma \widetilde V | =
O(1) and | \widetilde U | = \Theta (| \widetilde V | ). For convenience, we assume w.l.o.g. that \widetilde U = [m] and\widetilde V = [n]. Again, it might be useful for the readers to think of \widetilde \Gamma as a 3-\sansS \sansA \sansT instance,

where \widetilde U are the set of clauses and \widetilde V are the set of variables.
Recall the parameter \varepsilon from Theorem 4.1 and the parameters q, \gamma from Theo-

rem 4.3. Let \ell = ln(1/\gamma )/\varepsilon . We assume w.l.o.g. that \ell is an integer and that n is
divisible by q. The new label cover (\sansM \sansa \sansx \sansC \sanso \sansv ) instance \Gamma = (G = (U, V,E),\Sigma U ,\Sigma V ,\Pi )
is defined as follows.

\bullet First, we partition \widetilde V = [n] into q parts J1, . . . , Jq, each of size n/q. We then

let V = \{ J1, . . . , Jq\} . In other words, we merge n/q vertices of \widetilde V into a single
vertex in V .

\bullet Let U be
\bigl( 
[m]
\ell 

\bigr) 
, the collection of all \ell -element subsets of [m] = \widetilde U .

\bullet The left alphabet set \Sigma U is \Sigma \ell \widetilde U . For each I \in U , we view each label \alpha \in \Sigma U

as a tuple (\alpha u)u\in I \in (\Sigma \widetilde U )I ; this is a partial assignment to all vertices u \in I

in the original instance \widetilde \Gamma .
\bullet Our graph G is simply a complete bipartite graph, i.e., for every I \in U and
J \in V , IJ \in E(G).

\bullet The label set of V is \Sigma V = \Sigma 
n/q\widetilde V , and the label set of U is \Sigma U = \Sigma \ell \widetilde U . For

each I \in U , we view each label \alpha \in \Sigma U as a tuple (\alpha u)u\in I \in (\Sigma \widetilde U )I ; this is

simply a partial assignment to all vertices u \in I in the original instance \widetilde \Gamma .
Similarly, for each J \in V , we view each label \beta \in \Sigma V as (\beta v)v\in J \in (\Sigma \widetilde V )J .

\bullet Finally, we define \Pi IJ for each IJ \in E. The constraint \Pi IJ contains all
(\alpha , \beta ) such that (\alpha u, \beta v) satisfies the constraint \widetilde \Pi uv for every u \in I, v \in J

such that uv \in \widetilde E. More precisely, \Pi IJ = \{ (\alpha , \beta ) = ((\alpha u)u\in I , (\beta v)v\in J) : \forall u \in 
I, v \in J such that uv \in \widetilde E, (\alpha u, \beta v) \in \widetilde \Pi uv\} .

We remark that \Pi may not have the projection property even when \widetilde \Pi has the
property.

Completeness. Suppose that there is a labeling (\sigma \widetilde U , \sigma \widetilde V ) of \widetilde \Gamma that covers all | \widetilde U | 
left vertices. We construct (\sigma U , \sigma V ) by setting \sigma U (I) = (\sigma \widetilde U (u))u\in I for each I \in U
and \sigma V (J) = (\sigma \widetilde V (v))v\in J for each J \in V . It is easy to see that (\sigma U , \sigma V ) covers all the
vertices of U . Therefore, \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = | U | .
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Soundness. Suppose that \sansM \sansa \sansx \sansC \sanso \sansv (\widetilde \Gamma ) < (1  - \varepsilon )| \widetilde U | . Consider any labeling
(\sigma U , \sigma V ) of \Gamma ; we will show that (\sigma U , \sigma V ) covers less than \gamma | U | left vertices.

Let I1, . . . , It \in U be the vertices covered by (\sigma U , \sigma V ). Analogously to the proof
of Theorem 4.2, we define a labeling (\sigma \widetilde U , \sigma \widetilde V ) as follows. First, \sigma \widetilde V is naturally defined
from \sigma V by \sigma \widetilde V = \sigma V (J)v, where J is the partition that contains v. Moreover, for
each u \in Ii1 \cup \cdot \cdot \cdot \cup Iir , let \sigma \widetilde U (u) = (\sigma U (Iij ))u, where j \in [r] is an index such that
u \in Iij ; for u \in U \setminus (Ii1 \cup \cdot \cdot \cdot \cup Iir ), we set \sigma \widetilde U (u) arbitrarily.

Similarly to the proof of Theorem 4.2, it is not hard to see that every vertex
in I1 \cup \cdot \cdot \cdot \cup It is covered by (\sigma \widetilde U , \sigma \widetilde V ) in \widetilde \Gamma . Since \sansM \sansa \sansx \sansC \sanso \sansv (\widetilde \Gamma ) < (1  - \varepsilon )| \widetilde U | , we can

conclude that | I1 \cup \cdot \cdot \cdot \cup It| < (1  - \varepsilon )| \widetilde U | . Since each Ii is simply an \ell -size subset of
I1 \cup \cdot \cdot \cdot \cup It, we can conclude that

t <

\biggl( 
(1 - \varepsilon )| \widetilde U | 

\ell 

\biggr) 
\leq (1 - \varepsilon )\ell 

\biggl( 
| \widetilde U | 
\ell 

\biggr) 
= (1 - \varepsilon )\ell | U | \leq e - \varepsilon \ell | U | = \gamma | U | .

Hence, (\sigma U , \sigma V ) covers less than \gamma | U | left vertices as desired.

Running Time Lower Bound. Our construction gives a \sansM \sansa \sansx \sansC \sanso \sansv instance \Gamma 
with | V | = q and | \Sigma V | = | \Sigma \widetilde V | n/q = 2\Theta (n/q); note also that | U | = m\ell and | \Sigma U | =
| \Sigma \widetilde U | \ell = (1/\gamma )O(1). Assume that Gap-ETH holds and let \delta 0 be the constant from
Theorem 4.1. Moreover, let \delta be any positive constant such that \delta < \delta 0/c, where c is
the constant such that | \Sigma V | \leq 2cm/q.

Suppose for the sake of contradiction that, for some q \geq \rho and 1 \geq \gamma > 0, there
is an algorithm that distinguishes whether \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = | U | or \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) < \gamma | U | in
Oq,\gamma (| \Gamma | \delta q) time. Observe that, in our reduction, | U | , | V | , | \Sigma U | = | \Sigma V | o(1). Hence, the
running time of the algorithm on input \Gamma is Oq,\gamma (| \Sigma V | \delta q(1+o(1))) \leq Oq,\gamma (| \Sigma V | \delta 0q/c) \leq 
O(2\delta 0m), where the first inequality comes from our choice of \delta and the second comes
from | \Sigma V | \leq 2cm/q. Thanks to the completeness and soundness of the reduction, this

algorithm can also distinguish whether \sansM \sansa \sansx \sansC \sanso \sansv (\widetilde \Gamma ) = | \widetilde U | or \sansM \sansa \sansx \sansC \sanso \sansv (\widetilde \Gamma ) < (1 - \varepsilon )| \widetilde U | 
in time O(2\delta 0m). From Theorem 4.1, this is a contradiction.

4.4. Proof of Theorem 4.4. We conclude this section with the proof of The-
orem 4.4. The proof proceeds simply by showing that if an algorithm can distinguish
between the two cases in the statement of Theorem 4.4, it can also distinguish between
the two cases in Theorem 4.3 (with an appropriate value of \gamma ).

Proof of Theorem 4.4. Consider the label cover instance given by Theorem 4.3,
namely, \Gamma = (G = (U, V,E),\Sigma U ,\Sigma V ,\Pi ), when \gamma = (r/q) - q. Let us assume w.l.o.g.
that there is no isolated vertex in G.

Completeness. If \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = | U | , then there is a labeling \sigma U : U \rightarrow \Sigma U and
\sigma V : V \rightarrow \Sigma V that covers every edge; this also induces a multilabeling that covers
every edge. Hence, \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) = | V | .

Soundness. We will prove this by the contrapositive. Suppose that \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) \leq 
r. This implies that there exists a multilabeling \sigma U : U \rightarrow \Sigma U and \sigma V : V \rightarrow 2\Sigma V

such that
\sum 

v\in V | \sigma V (v)| \leq r and every vertex is covered. Since there is no isolated
vertex in G, \sigma V (v) \not = \emptyset for all v \in V .

Consider \sigma rand
V : V \rightarrow \Sigma V sampled randomly, for each v \in V , by independently

picking a random element of \sigma V (v) and letting \sigma rand
V (v) be this element. Let us

consider the expected number of u \in U that are covered by the labeling (\sigma U , \sigma 
rand
V ).
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From linearity of expectation, we can write this as

\BbbE 
\sigma rand
V

| \{ u \in U | (\sigma U , \sigma rand
V ) covers u\} | =

\sum 
u\in U

Pr
\sigma rand
V

\bigl[ 
(\sigma U , \sigma 

rand
V ) covers u

\bigr] 
=
\sum 
u\in U

\prod 
v\in N(u)

Pr
\bigl[ 
(\sigma U (u), \sigma 

rand
V (v)) \in \Pi uv

\bigr] 
\geq 
\sum 
u\in U

\prod 
v\in N(u)

| \sigma V (v)|  - 1

\geq 
\sum 
u\in U

\prod 
v\in V

| \sigma V (v)|  - 1

(From AM-GM inequality) \geq 
\sum 
u\in U

\Biggl( 
1

q

\sum 
v\in V

| \sigma V (v)| 

\Biggr)  - q

\geq 
\sum 
u\in U

(r/q) - q

= \gamma | U | ,

where the first inequality comes from the fact that there exists \beta \in \sigma V (v) such that
(\sigma U (u), \beta ) \in \Pi uv. This implies \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) \geq \gamma | U | , which concludes our proof.

5. Hardness for combinatorial problems.

5.1. Maximum clique. Recall that, for any graph G, \sansC \sansl \sansi \sansq \sansu \sanse (G) denotes the
maximum size of any clique in G. Observe that we can check if there is a clique of
size r by checking if any subset of r vertices forms a clique, and there are

\bigl( | V (G)| 
r

\bigr) 
=

O(| V (G)| r) possible such subsets. We show that this is essentially the best we can do
even when we are given a promise that a clique of size q \gg r exists.

Theorem 5.1. Assuming Gap-ETH, there exist constants \delta , r0 > 0 such that, for
any positive integers q \geq r \geq r0, no algorithm can take a graph G and distinguish
between the following cases in Oq,r(| V (G)| \delta r) time:

\bullet \sansC \sansl \sansi \sansq \sansu \sanse (G) \geq q and
\bullet \sansC \sansl \sansi \sansq \sansu \sanse (G) < r.

The above theorem simply follows from plugging the FGLSS reduction below into
Theorem 4.2.

Theorem 5.2 (see [42]). Given a label cover instance with projection property,
namely, \Gamma = (G = (U, V,E),\Sigma U ,\Sigma V ,\Pi ), as in section 4, there is a reduction that
produces a graph H\Gamma such that | V (H\Gamma )| = | U | | \Sigma U | and \sansC \sansl \sansi \sansq \sansu \sanse (H\Gamma ) = \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ). The
reduction takes O(| V (H\Gamma ))| 2| V | ) time.

For clarity, we would like to note that, while the original graph defined in [42] is
for multiprover interactive proof, analogous graphs can be constructed for CSPs and
label cover instances as well. In particular, in our case, the graph can be defined as
follows:

\bullet The vertex set V (H\Gamma ) is simply U \times \Sigma U .
\bullet There is an edge between two vertices (u, \alpha ), (u\prime , \alpha \prime ) \in V (H\Gamma ) if and only if

\Pi uv(\alpha ) = \Pi u\prime v(\alpha 
\prime ) (i.e., recall that we have a projection constraint, so we

can represent the constraint \Pi uv as a function \Pi uv : \Sigma U \rightarrow \Sigma V ).

Proof of Theorem 5.1. Assume that Gap-ETH holds and let \delta , \rho be the constants
from Theorem 4.2. Let r0 = max\{ \rho , 2/\delta \} . Suppose for the sake of contradiction that
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for some q \geq r \geq r0, there is an algorithm \BbbA that distinguishes between \sansC \sansl \sansi \sansq \sansu \sanse (G) \geq q
and \sansC \sansl \sansi \sansq \sansu \sanse (G) < r in Oq,r(| V (G)| \delta r) time.

Given a label cover instance \Gamma with projection property, we can use \BbbA to dis-
tinguish whether \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) \geq q or \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) < r as follows. First, we run the
FGLSS reduction to produce a graph H\Gamma , and we then use \BbbA to decide whether
\sansC \sansl \sansi \sansq \sansu \sanse (H\Gamma ) \geq q or \sansC \sansl \sansi \sansq \sansu \sanse (H\Gamma ) < r. From \sansC \sansl \sansi \sansq \sansu \sanse (H\Gamma ) = \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ), this indeed
correctly distinguishes between \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) \geq q and \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) < r; moreover, the
running time of the algorithm is Oq,r(| V (H\Gamma )| \delta r) + O(| V (H\Gamma ))| 2| V | ) \leq Oq,r(| \Gamma | \delta r),
where the term O(| V (H\Gamma ))| 2| V | ) comes from the running time used to produce H\Gamma .
From Theorem 4.2, this is a contradiction, which concludes our proof.

As a corollary of Theorem 5.1, we immediately arrive at FPT inapproximability
of \sansC \sansl \sansi \sansq \sansu \sanse and \sansI \sansn \sansd \sansS \sanse \sanst .

Corollary 5.3 (clique is inherently enumerative). Assuming Gap-ETH, the Max-
imum Clique and Maximum Independent Set problems are inherently enumerative and
thus FPT-inapproximable.

5.2. Set cover, dominating set, and hitting set. For convenience, we will be
working with the Set Cover problem, which is computationally equivalent to \sansD \sanso \sansm \sansS \sanse \sanst 
(see Appendix D).

Let \scrU be a ground set (or a universe). A set system \scrS over \scrU is a collection of
subsets \scrS = \{ S1, . . . , Sm\} , where Si \subseteq \scrU for all i \in [m]. We say that \scrS \prime \subseteq \scrS is a
feasible set cover of (\scrU ,\scrS ) if

\bigcup 
X\in \scrS \prime X = \scrU . In the Set Cover problem (\sansS \sanse \sanst \sansC \sanso \sansv ), we

are given a set system (\scrU ,\scrS ) and we are interested in finding a set cover \scrS \prime with
minimum cardinality | \scrS \prime | . Let \sansS \sanse \sanst \sansC \sanso \sansv (\scrU ,\scrS ) denote the value of the optimal set cover
for (\scrU ,\scrS ). \sansS \sanse \sanst \sansC \sanso \sansv has an alternative formulation called Hitting Set (\sansH \sansi \sanst \sansS \sanse \sanst ), where
the goal is to find a collection of elements with minimum cardinality that hits every
subset, i.e., each subset must contain at least one chosen element. It is not hard to
see that one may interchange the role of elements and subsets to get an instance of
\sansH \sansi \sanst \sansS \sanse \sanst from that of \sansS \sanse \sanst \sansC \sanso \sansv and vice versa.

Note that for any set cover instance (\scrU ,\scrS ), checking whether there is a set cover

of size at most q can be done in O \star (| \scrS | q) time by enumerating all
\bigl( | \scrS | 

q

\bigr) 
subsets of \scrS of

size q. We show that this is more or less the best we can do: Even when the algorithm
is promised the existence of a set cover of size q (for some constant q), it cannot find
a set cover of size f(q) for any computable function f in time Oq(| \scrS | | \scrU | )\delta q for some
constant \delta > 0 independent of q and f .

5.2.1. Results. Our main technical contribution in this section is summarized
in the following theorem.

Theorem 5.4. There is a reduction that on input \Gamma = (G = (U, V,E),\Sigma U ,\Sigma V ,\Pi )
of \sansM \sansi \sansn \sansL \sansa \sansb instance, produces a set cover instance (\scrU ,\scrS ) such that

\bullet \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) = \sansS \sanse \sanst \sansC \sanso \sansv (\scrU ,\scrS );
\bullet | \scrU | = | U | | V | | \Sigma U | and | \scrS | = | V | | \Sigma V | ;
\bullet the reductions runs in time poly(| \scrU | , | \scrS | ).

We defer the proof of this theorem to subsection 5.2.2. For now, let us demonstrate
that, by combining Theorems 4.3 and 5.4, we can derive hardness of approximating
\sansS \sanse \sanst \sansC \sanso \sansv :

Theorem 5.5. Assuming Gap-ETH, there exist universal constants \delta , q0 > 0 such
that, for any positive integers r \geq q \geq q0, no algorithm can take a set cover instance
(\scrU ,\scrS ), and distinguish between the following cases in Oq,r((| \scrS | | \scrU | )\delta q) time:
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\bullet \sansS \sanse \sanst \sansC \sanso \sansv (\scrU ,\scrS ) \leq q.
\bullet \sansS \sanse \sanst \sansC \sanso \sansv (\scrU ,\scrS ) > r.

Proof. Assume that Gap-ETH holds and let \delta , \rho be the constants from Theo-
rem 4.4. Let q0 = max\{ \rho , c/\delta \} , where c is the constant such that the running time
of the reduction in Theorem 5.4 is O((| \scrU | | \scrS | )c). Suppose for the sake of contradic-
tion that, for some r \geq q \geq q0, there is an algorithm \BbbA that distinguishes between
\sansS \sanse \sanst \sansC \sanso \sansv (\scrU ,\scrS ) \leq q and \sansS \sanse \sanst \sansC \sanso \sansv (\scrU ,\scrS ) > r in Oq,r((| \scrS | | \scrU | )\delta q) time.

Given a label cover instance \Gamma , where | V | , | \Sigma U | = Oq,r(1), we can use \BbbA to distin-
guish whether \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) \leq q or \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) > r as follows. First, we run the reduction
from Theorem 5.4 to produce a \sansS \sanse \sanst \sansC \sanso \sansv instance (\scrU ,\scrS ), and we then use \BbbA to decide
whether \sansS \sanse \sanst \sansC \sanso \sansv (\scrU ,\scrS ) \leq q or \sansS \sanse \sanst \sansC \sanso \sansv (\scrU ,\scrS ) > r. From \sansS \sanse \sanst \sansC \sanso \sansv (\scrU ,\scrS ) = \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ), this
indeed correctly distinguishes between \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) \leq q and \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) > r; moreover,
the running time of the algorithm is Oq,r((| \scrU | | \scrS | )\delta q) + O((| \scrU | | \scrS | )c) \leq Oq,r(| \Gamma | \delta q),
where the term O((| \scrU | | \scrS | )c) comes from the running time used to produce (\scrU ,\scrS ).
From Theorem 4.4, this is a contradiction, which concludes our proof.

As a corollary of Theorem 5.5, we immediately arrive at FPT inapproximability
of \sansS \sanse \sanst \sansC \sanso \sansv , \sansH \sansi \sanst \sansS \sanse \sanst , and \sansD \sanso \sansm \sansS \sanse \sanst .

Corollary 5.6. Assuming Gap-ETH, Set cover, Dominating set, and Hitting
set are inherently enumerative and thus FPT-inapproximable.

5.2.2. Proof of Theorem 5.4. Our construction is based on a standard hy-
percube set system, as used by Feige [39] in proving the hardness of the k-Maximum
Coverage problem. We explain it here for completeness.

Hypercube set system: Let z, k \in \BbbN be parameters. The hypercube set system
H(z, k) is a set system (\scrU ,\scrS ) with the ground set \scrU = [z]k. We view each element
of \scrU as a length-k vector \vec{}x, where each coordinate assumes a value in [z]. There is a
collection of canonical sets \scrS = \{ Xi,a\} i\in [z],a\in [k] defined as

Xi,a = \{ \vec{}x : \vec{}xa = i\} .

In other words, each set Xi,a contains the vectors whose ath coordinate is i. A nice
property of this set system is that it can only be covered completely if all canonical
sets corresponding to some ath coordinate are chosen.

Proposition 5.7. Consider any subcollection \scrS \prime \subseteq \scrS . We have
\bigcup 
\scrS \prime = \scrU if and

only if there is a value a \in [k] for which X1,a, X2,a, . . . , Xz,a \in \scrS \prime .

Proof. The if part is obvious. For the ``only if"" part, assume that for each a \in [k],
there is a value ia \in [z] for which Xia,a is not in \scrS \prime . Define the vector \vec{}x by \vec{}xa = ia.
Notice that \vec{}x does not belong to any set in \scrS \prime . (By definition, if Xi\prime ,a\prime contains \vec{}x,
then it must be the case that \vec{}xa\prime = i\prime = ia\prime .)

The construction: Our reduction starts from the \sansM \sansi \sansn \sansL \sansa \sansb instance, namely, \Gamma =
(G,\Sigma U ,\Sigma V ,\Pi ). We will create the set system \scrI = (\scrU ,\scrS ). We make | U | different
copies of the hypercube set system: For each vertex u \in U , we have the hypercube
set system (\scrU u,\scrS u) = H(NG(u),\Sigma U ), i.e., the ground set \scrU u is a copy of NG(u)

\Sigma U

and \scrS u contains | NG(u)| | \Sigma U | ``virtual"" sets that we call \{ Su
v,a\} v\in NG(u),a\in \Sigma U

, where
each such set corresponds to a canonical set of the hypercube. We remark that these
virtual sets are not the eligible sets in our instance \scrI . For each vertex v \in V , for each
label b \in \Sigma V , we define a set

Sv,b =
\bigcup 

u\in NG(v),(a,b)\in \Pi uv

Su
v,a.
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The set system (\scrU ,\scrS ) in our instance is simply

\scrU =
\bigcup 
u\in U

\scrU u and \scrS = \{ Sv,b : v \in V, b \in \Sigma V \} .

Notice that the number of sets is | V | | \Sigma V | , and the number of elements in the ground
set is | \scrU | = | U | | V | | \Sigma U | . This completes the description of our instance.

Analysis: We argue that the optimal value of \Gamma is equal to the optimal of (\scrU ,\scrS ).
First, we will show that \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ) \leq \sansS \sanse \sanst \sansC \sanso \sansv (\scrU ,\scrS ). Let (\sigma U , \^\sigma V ) be a feasible

\sansM \sansi \sansn \sansL \sansa \sansb cover for \Gamma (recall that \^\sigma V is a multilabeling, while \sigma U is a labeling.) For
each v \in V , the \sansS \sanse \sanst \sansC \sanso \sansv solution chooses the set Sv,b for all b \in \^\sigma V (v). Denote this
solution by \scrS \prime \subseteq \scrS . The total number of sets chosen is exactly

\sum 
v | \^\sigma (v)| , exactly

matching the cost of \sansM \sansi \sansn \sansL \sansa \sansb (\Gamma ). We argue that this is a feasible set cover: For each
u, the fact that u is covered by (\sigma U , \^\sigma V ) implies that, for all v \in NG(u), there is a
label bv \in \^\sigma V (v) such that (\sigma U (u), bv) \in \Pi uv. Notice that Su

v,\sigma U (u) \subseteq Sv,bv \in \scrS \prime for

every v \in NG(u), so we have\bigcup 
S\in \scrS \prime 

S \supseteq 
\bigcup 

v\in NG(u)

Sv,bv \supseteq 
\bigcup 

v\in NG(u)

Su
v,\sigma U (u) = \scrU u,

where the last equality comes from Proposition 5.7. In other words, \scrS \prime covers all
elements in \scrU u. Hence, \scrS \prime is indeed a valid \sansS \sanse \sanst \sansC \sanso \sansv solution for (\scrU ,\scrS ).

To prove the converse, consider a collection of sets \{ Sv,b\} (v,b)\in \Lambda that covers the
whole universe \scrU . We define the (multi)labeling \^\sigma V : V \rightarrow 2\Sigma V , where \^\sigma V (v) =
\{ b : (v, b) \in \Lambda \} for each v \in V . Clearly,

\sum 
v\in V | \^\sigma V (v)| = | \Lambda | , so the cost of \^\sigma V as

a solution for \sansM \sansi \sansn \sansL \sansa \sansb is exactly the cost of \sansS \sanse \sanst \sansC \sanso \sansv . We verify that all left vertices
u \in U of \Gamma are covered (and along the way will define \Sigma U (u) for all u \in U). Consider
each vertex u \in U . The fact that the ground elements in \scrU u are covered implies that
(from Proposition 5.7) there is a label au \in \Sigma U where all virtual sets \{ Su

v,au
\} v\in NG(u)

are included in the solution. Therefore, for each v \in NG(u), there must be a label
bv \in \^\sigma V (v) such that aubv \in \Pi uv. We simply define \sigma U (u) = au. Therefore, the
vertex u is covered by the assignment (\sigma U , \^\sigma V ).

5.3. Maximum induced subgraph with hereditary properties. In this
section, we prove the hardness of maximum induced subgraphs with hereditary prop-
erty. Let \Pi be a graph property. We say that a subset S \subseteq V (G) has property \Pi if
G[S] \in \Pi . Denote by A\Pi (G) the maximum cardinality of a set S that has property
\Pi .

Khot and Raman [60] proved a dichotomy theorem for the problem: If \Pi con-
tains all independent sets but not all cliques or if \Pi contains all cliques but not all
independent sets, then the problem is W[1]-hard. For all other \Pi 's, the problem is in
FPT. We will show that Khot and Raman's dichotomy theorem holds even for FPT
approximation as stated more precisely below.

Theorem 5.8. Let \Pi be any hereditary property.
\bullet If \Pi contains all independent sets but not all cliques or vice versa, then com-

puting A\Pi (G) is weakly inherently enumerative (and therefore totally FPT-
inapproximable).

\bullet Otherwise, A\Pi (G) can be computed exactly in FPT.

Surprisingly, the fact that there is a gap in the optimum of our starting point
helps make our reduction simpler than that of Khot and Raman. For convenience,
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let us focus only on the properties \Pi 's which contain all independent sets but not
all cliques. The other case can be proved analogously. The main technical result is
summarized in the following lemma.

Theorem 5.9. Let \Pi be any graph property that contains all independent sets but
not all cliques. Then there is a function g\Pi = \omega (1) such that the following hold:

\bullet If \sansI \sansn \sansd \sansS \sanse \sanst (G) \geq q, then A\Pi (G) \geq q.
\bullet If A\Pi (G) \geq r, then \sansI \sansn \sansd \sansS \sanse \sanst (G) \geq g\Pi (r).

Proof. Since \Pi contains all independent sets, when \sansI \sansn \sansd \sansS \sanse \sanst (G) \geq q, we always have
A\Pi (G) \geq q.

Now, to prove the converse, let g\Pi (r) denote maxH\in \Pi ,| V (H)| =r \sansI \sansn \sansd \sansS \sanse \sanst (H). If
A\Pi (G) = r, then there exists a subset S \subseteq V (G) of size r that has property \Pi ;
from the definition of g\Pi , \sansI \sansn \sansd \sansS \sanse \sanst (H) \geq g\Pi (r), which implies that \sansI \sansn \sansd \sansS \sanse \sanst (G) \geq g\Pi (r)
as well. Hence, we are only left to show that g\Pi = \omega (1).

To show that this is the case, recall the Ramsey theorem.

Theorem 5.10 (Ramsey's theorem). For any s, t \geq 1, there is an integer R(s, t)
such that every graph on R(s, t) vertices contains either an s-clique or a t-independent
set. Moreover, R(s, t) \leq 

\bigl( 
s+t - 2
s - 1

\bigr) 
.

Recall that, from our assumption of \Pi , there exists a fixed integer s\Pi such
that \Pi does not contain an s\Pi -clique. Hence, from Ramsey's theorem, g\Pi (r) \geq 
max\{ t | R(s\Pi , t) \leq r\} . In particular, this implies that g\Pi (r) \geq \Omega s\Pi (r

1/(s\Pi  - 1)). Hence,
limr\infty g\Pi (r) = \infty (i.e., g\Pi = \omega (1)) as desired.

In other words, the identical transformation G \mapsto \rightarrow G is a (q, g\Pi (r))-FPT gap
reduction from \sansC \sansl \sansi \sansq \sansu \sanse to Maximum Induced Subgraph with property \Pi . Hence, by
applying Proposition 3.6, we immediately arrive at the following corollary.

Corollary 5.11. Assuming Gap-ETH, for any property \Pi that contains all in-
dependent sets but not all cliques (or vice versa), Maximum Induced Subgraph with
property \Pi is \Omega (g\Pi )-weakly inherently enumerative, where g\Pi is the function from
Theorem 5.9.

We remark here that, for some properties, g\Pi can be much larger than the bound
given by Ramsey's theorem; for instance, if \Pi is planarity, then Ramsey's theorem
only gives g\Pi (r) = \Omega (r1/5) but it is easy to see that, for planar graphs, there always
exist an independent set of linear size and g\Pi (r) is hence as large as \Omega (r).

5.4. Maximum Balanced Biclique, Maximum Induced Matching on Bi-
partite Graphs, and Densest \bfitk -Subgraph. We next prove FPT inapproximabil-
ity for the Maximum Balanced Biclique, Maximum Induced Matching on Bipartite
Graphs, and Densest k-Subgraph. Unlike the previous proofs, we will not reduce
from any label cover problem. The starting point for the results in this section will
instead be a recent construction of Manurangsi for the ETH-hardness of Densest k-
Subgraph [70]. By interpreting this construction in a different perspective, we can
modify it in such a way that we arrive at a stronger form of inherently enumerative
hardness for \sansC \sansl \sansi \sansq \sansu \sanse . More specifically, the main theorem of this section is the following
theorem, which is a stronger form of Theorem 5.1 in that the soundness not only rules
out cliques, but also rules out bicliques as well.

Theorem 5.12. Assuming Gap-ETH, there exist constants \delta , \rho > 0 such that,
for any positive integers q \geq r \geq \rho , no algorithm can take a graph G and distinguish
between the following cases in Oq,r(| V (G)| \delta 

\surd 
r) time:
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\bullet \sansC \sansl \sansi \sansq \sansu \sanse (G) \geq q.
\bullet \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (G) < r.

The weakly inherently enumerativeness (and therefore totally FPT inapproxima-
bility) of Maximum Balanced Biclique and Maximum Induced Matching on Bipartite
Graphs follows easily from Theorem 5.12. We will show these results in the subsequent
subsections; for now, let us turn our attention to the proof of the theorem.

The main theorem of this section can be stated as follows.

Theorem 5.13. For any d, \varepsilon > 0, there is a constant \gamma = \gamma (d, \varepsilon ) > 0 such
that there exists a (randomized) reduction that takes in a parameter r and a 3-\sansS \sansA \sansT 
instance \phi with n variables and m clauses where each variable appears in at most d
constraints and produces a graph G\phi ,r = (V\phi ,r, E\phi ,r) such that, for any sufficiently
large r (depending only on d, \varepsilon but not n), the following properties hold with high
probability:

\bullet (Size) N := | V\phi ,r| \leq 2Od,\varepsilon (n/
\surd 
r).

\bullet (Completeness) if \sansS \sansA \sansT (\phi ) = m, then \sansC \sansl \sansi \sansq \sansu \sanse (G\phi ,r) \geq N\gamma /
\surd 
r.

\bullet (Soundness) if \sansS \sansA \sansT (\phi ) \leq (1 - \varepsilon )m, then \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (G\phi ,r) < r.

It is not hard to see that, in the Gap-ETH assumption, we can, w.l.o.g., assume
that each variable appears in only a bounded number of clauses (see [72, p. 21]).
Hence, Theorem 5.13 together with Gap-ETH implies Theorem 5.12.

As mentioned earlier, our result builds upon an intermediate lemma used in prov-
ing the hardness of approximating Densest k-Subgraph in [70]. Due to this, it will be
easier to describe our reduction in terms of the reduction from [70]; In this regard,
our reduction can be viewed as vertex subsampling (with appropriate Probability) of
the graph produced by the reduction from [70]. The reduction is described formally
in Figure 1. Note that the two parameters \ell and p will be chosen as \Theta d,\varepsilon (n/

\surd 
r) and

2\Theta d,\varepsilon (\ell 
2/n)/

\bigl( 
n
\ell 

\bigr) 
, respectively, where the constants in \Theta d,\varepsilon (\cdot ) will be selected based on

the parameters from the intermediate lemma in [70].
The main lemma of [70] is stated below. Roughly speaking, when \sansS \sansA \sansT (\phi ) \leq 

(1 - \varepsilon )m, the lemma gives an upper bound on the number of occurrences of Kt,t for
every t > 0. When p and t are chosen appropriately, this implies that with high
probability (w.h.p.) there is no t-biclique in our subsampled graph. Note that the
size and completeness properties are obvious from the construction while the exact
statement of the soundness can be found in the proof of Theorem 8 in [70].

Lemma 5.14 (see [70]). Let d, \varepsilon , \phi , n,m, \ell be as in Theorem 5.13 and Figure 1.
There is a constant \delta , \lambda > 0 depending only on d, \varepsilon such that, for any sufficiently large
n, the graph G\phi ,\ell = (V\phi ,\ell , E\phi ,\ell ) described in Figure 1 has the following properties:

\bullet (Size) | V\phi ,\ell | =
\bigl( 
n
\ell 

\bigr) 
2\ell .

\bullet (Completeness) If \sansS \sansA \sansT (\phi ) = m, then the graph \widetilde G\phi ,\ell contains an
\bigl( 
n
\ell 

\bigr) 
-clique.

\bullet (Soundness) If \sansS \sansA \sansT (\phi ) \leq (1  - \varepsilon )m, then the graph \widetilde G\phi ,\ell contains at most

24n(2 - \lambda \ell 2/n
\bigl( 
n
\ell 

\bigr) 
)2t occurrences9 of Kt,t for any t > 0.

Theorem 5.13 follows rather easily from the above lemma by choosing appropriate
\ell and p.

9We say that S, T \subseteq V\phi ,\ell is an occurrence of Kt,t if | S| = | T | = t, S \cap T = \emptyset , and, for every
s \in S, t \in T , there is an edge between s and t in G\phi ,\ell . The number of occurrences of Kt,t of G\phi ,\ell is
simply the number of such pairs (S, T )'s.
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798 CHALERMSOOK ET AL.

Input: a 3-\sansS \sansA \sansT instance \phi and parameters p \in (0, 1) and \ell \in \BbbN such that \ell \leq n.
Output: a graph G\phi ,\ell ,p = (V\phi ,\ell ,p, E\phi ,\ell ,p).
The graph G\phi ,\ell ,p is generated as follows.

\bullet First, we create a graph \widetilde G\phi ,\ell = (\widetilde V\phi ,\ell , \widetilde E\phi ,\ell ) as constructed in [70]. More

specifically, the vertex set \widetilde V\phi ,\ell and the edge set \widetilde E\phi ,\ell are defined as follows.

-- The vertex set \widetilde V\phi ,\ell consists of all partial assignments of \ell variables,

i.e., \widetilde V\phi ,\ell := \{ \sigma : S \rightarrow \{ 0, 1\} | S \in 
\bigl( \scrX 
\ell 

\bigr) 
\} , where \scrX is the set of all

variables in \phi .
-- There exists an edge between two vertices \sigma 1 : S1 \rightarrow \{ 0, 1\} and

\sigma 2 : S2 \rightarrow \{ 0, 1\} \in \widetilde V\phi ,\ell if and only if (1) they are consistent (i.e.,
\sigma 1(S1\cap S2) = \sigma 2(S1\cap S2)) and (2) the partial assignment induced by
\sigma 1, \sigma 2 does not violate any constraint (i.e., every constraint that lies
entirely inside S1 \cup S2 is satisfied by the partial assignment induced
by \sigma 1, \sigma 2).

\bullet Our graph G\phi ,\ell ,p = (V\phi ,\ell ,p, E\phi ,\ell ,p) can then be easily generated as follows.

-- Let V\phi ,\ell ,p be a random subset of \widetilde V\phi ,\ell such that each vertex v \in \widetilde V\phi ,\ell 
is included independently and randomly in V\phi ,\ell ,p with probability
p.

-- We connect u, v \in V\phi ,\ell ,p if and only if (u, v) \in \widetilde E\phi ,\ell .

Fig. 1. The reduction from Gap-3-SAT to Maximum Balanced Biclique.

Proof of Theorem 5.13. We let G\phi ,r = G\phi ,\ell ,p from the reduction in Figure 1 with

parameters \ell = 4n\surd 
\lambda r

and p = 2
\lambda \ell 2

2n /
\bigl( 
n
\ell 

\bigr) 
. For convenience, we assume w.l.o.g. that

\lambda < 1.
Size. Since each vertex in V\phi ,\ell is included that V\phi ,\ell ,p independently with prob-

ability p, we have \BbbE [| V\phi ,\ell ,p| ] = p| V\phi ,\ell | = 2\ell +
\lambda \ell 2

2n \leq 22\ell . Hence, from the Chernoff

bound, | V\phi ,\ell ,p| \leq 210\ell = 2\Omega d,\varepsilon (n/
\surd 
r) w.h.p.

Completeness. Suppose that \phi is satisfiable. Let C be the clique of size
\bigl( 
n
\ell 

\bigr) 
in \widetilde G\phi ,\ell , which is guaranteed to exist by Lemma 5.14. From how G\phi ,\ell ,p is defined,

C \cap V\phi ,\ell ,p induces a clique in G\phi ,\ell ,p. Moreover, \BbbE [| C \cap V\phi ,\ell ,p| ] = p| C| = 2
\lambda \ell 2

2n . Again,

from Chernoff bound, \sansC \sansl \sansi \sansq \sansu \sanse (G\phi ,\ell ,p) \geq 2
\lambda \ell 2

2n w.h.p. Combined with the above bound

on N , \sansC \sansl \sansi \sansq \sansu \sanse (G\phi ,\ell ,p) \geq N\gamma /
\surd 
r w.h.p. when \gamma :=

\surd 
\lambda /20 = Od,\varepsilon (1).

Soundness. Suppose that \sansS \sansA \sansT (\phi ) \leq (1  - \varepsilon )m. Consider any subsets S, T \subseteq \widetilde V\phi ,\ell 
that are an occurrence ofKr,r in \widetilde G\phi ,\ell . From how G\phi ,\ell ,p is defined, \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (G\phi ,\ell ,p) \geq r
if and only if, for at least one such pair (S, T ), S \cup T \subseteq V\phi ,\ell ,p. The probability of this
event is bounded above by

\sum 
S,T\subseteq \widetilde V\phi ,\ell 

S,T is an occurrence of Kr,r in \widetilde G\phi ,\ell 

Pr[S, T \subseteq V\phi ,\ell ,p] \leq 24n
\biggl( 
2 - \lambda \ell 2/n

\biggl( 
n

\ell 

\biggr) \biggr) 2r

\cdot p2r

= 24n
\Bigl( 
2 - 

\lambda \ell 2

2n

\Bigr) 2r
= o(1),
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where the first inequality comes from the bound in the soundness of Lemma 5.14 and
the fact that the sampling of each vertex is done independently.

As a result, the subsampled graph G\phi ,\ell ,p is Kr,r-free w.h.p. as desired.

5.4.1. Maximum Balanced Biclique. We now give a simple reduction from
the ``\sansC \sansl \sansi \sansq \sansu \sanse versus \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse "" problem (from Theorem 5.12) to the Maximum Balanced
Biclique problem, which yields FPT inapproximability of the latter.

Lemma 5.15. For any graph G = (V,E), let Be[G] = (VBe[G], EBe[G]) be the
bipartite graph whose vertex set is VBe[G] := V \times [2] and two vertices (u, i), (v, j) are
connected by an edge if and only if (u, v) \in E or u = v, and i \not = j. Then the following
properties hold for any graph G.

\bullet \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (Be[G]) \geq \sansC \sansl \sansi \sansq \sansu \sanse (G).
\bullet \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (Be[G]) \leq 2\sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (G) + 1.

Proof. It is easy to see that \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (Be[G]) \geq \sansC \sansl \sansi \sansq \sansu \sanse (G) since, for any C \subseteq V
that induces a clique in G, C \times [2] \subseteq VBe[G] induces a | C| -biclique in Be[G].

To see that \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (Be[G]) \leq 2\sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (G) + 1, consider any S \subseteq VBe[G] that
induces a k-biclique in Be[G]. Note that S can be partitioned into S1 = S\cap (V \times \{ 1\} )
and S2 = S \cap (V \times \{ 2\} ).

Now consider the projections of S1 and S2 into V (G), i.e., T1 = \{ v : (v, 1) \in S\} 
and T2 = \{ v : (v, 2) \in S\} . Note that | T1| = | T2| = k. Since S1 \cup S2 induces a biclique
in Be[G], we have, for every u \in T1 and v \in T2, either u = v or (u, v) \in E. Observe
that if there were no former case (i.e., T1 \cap T2 = \emptyset ), then we would have a k-biclique
in G. Even if T1 \cap T2 \not = \emptyset , we can still get back a \lfloor k/2\rfloor -biclique in G by uncrossing
the sets T1 and T2 in a natural way by assigning half of the intersection to T1 and the
other half to T2. To be formal, we partition T1 \cap T2 into roughly equal sets U1 and
U2 (i.e., | | U1|  - | U2| | \leq 1), and we then define new sets T \prime 

1 and T \prime 
2 by

T \prime 
1 = (T1 \setminus T2) \cup U1 and T \prime 

2 = (T2 \setminus T1) \cup U2.

It is not hard to see that G has an edge between every pair of vertices between T \prime 
1, T

\prime 
2

and that | T \prime 
1| , | T \prime 

2| \geq \lfloor k/2\rfloor . Thus, \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (G) \geq \lfloor k/2\rfloor \geq (k  - 1)/2. Therefore,
\sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (Be[G]) \leq 2\sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (G) + 1 as desired.

Thanks to the above lemma, we can conclude that the reduction G \mapsto \rightarrow Be[G]
is a (2q, (r + 1)/2)-FPT gap reduction from the \sansC \sansl \sansi \sansq \sansu \sanse versus \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse problem to
Maximum Balanced Biclique, although the former is not a well-defined optimization
problem. Nevertheless, it is easy to check that a proof along the line of Proposition 3.6
still works and it gives the following result.

Corollary 5.16. Assuming Gap-ETH, Maximum Balanced Biclique are \Omega (
\surd 
r)-

weakly inherently enumerative and thus FPT-inapproximable.

It is worth noting that the Maximum Edge Biclique problem, a well-studied vari-
ant of the Maximum Balanced Biclique problem where the goal is to find a (not
necessarily balanced) complete bipartite subgraph of a given bipartite graph that
contains as many edges as possible, is in FPT. This is because the optimum is at least
the maximum degree, but when the degree is bounded above by r, all bicliques can
be enumerated in 2O(r) poly(n) time.

5.4.2. Maximum induced matching on bipartite graphs. Next, we prove
the FPT hardness of approximation for the Maximum Induced Matching problem on
bipartite graphs. Again, the proof will be a simple reduction from Theorem 5.12. The
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argument below is similar to that used in Lemma IV.4 of [20]. We include it here for
completeness.

Lemma 5.17. For any graph G = (V,E), let Be[ \=G] = (VBe[ \=G], EBe[ \=G]) be the
bipartite graph whose vertex is VBe[ \=G] := V \times [2] and two vertices (u, i), (v, j) are
connected by an edge if and only if (u, v) /\in E or u = v, and i \not = j. Then, the
following properties hold for any graph G.

\bullet \sansI \sansM (Be[ \=G]) \geq \sansC \sansl \sansi \sansq \sansu \sanse (G).
\bullet \sansI \sansM (Be[ \=G]) \leq 2\sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (G) + 1.

Proof. Consider any S \subseteq V that induces a clique in G. It is obvious that S\times [2] \subseteq 
VBe[ \=G] induces a matching in Be[ \=G].

Next, consider any induced matching \{ (u1, v1), . . . , (um, vm)\} of size m. Assume
w.l.o.g. that u1, . . . , um \in V \times \{ 1\} and v1, . . . , vm \in V \times \{ 2\} . Define \pi 1 : V \times [2] \rightarrow V
to be a projection operator that projects on to the first coordinate.

Let S1 = \pi 1(\{ u1, . . . , u\lfloor m/2\rfloor \} ) and S2 = \pi 1(\{ v\lceil m/2\rceil +1, . . . , vm\} ). From the defini-
tion of Be[ \=G] and from the fact that there is no edge between (S1\times \{ 1\} ) and (S2\times \{ 2\} ),
it is easy to check that S1 \cap S2 = \emptyset and, for every u \in S1 and v \in S2, (u, v) \in E.
In other words, (S1, S2) is an occurrence of \lfloor m/2\rfloor in G. Hence, we conclude that
\sansI \sansM (Be[ \=G]) \leq 2\sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse (G) + 1.

Similarly to \sansB \sansi \sansc \sansl \sansi \sansq \sansu \sanse , it is easy to see that the above reduction implies the fol-
lowing running time lower bound and FPT inapproximability for Maximum Induced
Matching on Bipartite Graphs.

Corollary 5.18. Assuming Gap-ETH, Maximum Induced Matching on Bipar-
tite Graphs are \Omega (

\surd 
r)-weakly inherently enumerative and thus FPT-inapproximable.

5.4.3. Densest \bfitk -subgraph. Finally, we will show the FPT inapproximability
result for Densest k-Subgraph. Alas, we are not able to show an o(k)-ratio FPT
inapproximability, which would have been optimal since the trivial algorithm gives an
O(k)-approximation for the problem. Nonetheless, we will show a ko(1)-factor FPT
inapproximability for the problem. We note that below we will state the result as if
k is the parameter. This is the same as using the optimum as the parameter since (in
the nontrivial case) the optimum is always between \lfloor k/2\rfloor and

\bigl( 
k
2

\bigr) 
(inclusive).

To derive our result, we resort to a well-known result in extremal combinatorics
called the K\H ov\'ari--S\'os--Tur\'an (KST) theorem, which basically states that if a graph
contains no small bicliques, then it is sparse. The KST theorem is stated formally
below.

Theorem 5.19 (KST theorem [62]). For every positive integer n and t \leq n, every
Kt,t-free graph on n vertices has at most O(n2 - 1/t) edges (i.e., density O(n - 1/t)).

We remark that a generalization of the KST theorem was also a crucial ingre-
dient in the proof of ETH-hardness of approximating Densest k-Subgraph in [70].
The situation is simpler for us here since we can simply apply the KST theorem to
Theorem 5.12, which yields the following theorem.

Theorem 5.20. Assuming Gap-ETH, there exist a constant \delta > 0 and an integer
\rho > 0 such that, for any integer q \geq r \geq \rho , no algorithm can take a graph G = (V,E)
and distinguish between the following cases in Oq,r(| V | \delta 

\surd 
r) time:

\bullet \sansD \sanse \sansn q(G) = 1.
\bullet \sansD \sanse \sansn q(G) < O(q - 1/r).
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From the above theorem, it is easy to show the ko(1)-factor FPT inapproximability
of Densest k-Subgraph as formalized below. We note here that our result applies to
a special case of Densest k-Subgraph in which the input graph is promised to contain
a k-clique; this problem is sometimes referred to as Densest k-Subgraph with perfect
completeness [17, 70].

Lemma 5.21. Assuming Gap-ETH, for every function f = o(1) and every func-
tion t, there is no t(k) \cdot nO(1)-time algorithm such that, given an integer k and any
graph G = (V,E) on n vertices that contains at least one k-clique, always outputs
S \subseteq V of size k such that \sansD \sanse \sansn (S) \geq k - f(k).

Proof. Suppose for the sake of contradiction that there is a t(k) \cdot | V | D-time algo-
rithm \BbbA that, given an integer k and any graph G = (V,E) that contains a k-clique,
always outputs S \subseteq V of size k such that \sansD \sanse \sansn (S) \geq k - f(k) for some function f = o(1),
some function t, and some constant D > 0.

Let r = max\{ \lceil \rho \rceil , \lceil (D/\delta )2\rceil \} , where \rho is the constant from Theorem 5.20. Note
that O(q - 1/r) = qO(1)/ log q - 1/r. Now, since limq\rightarrow \infty f(q) + O(1)/ log q = 0, there
exists a sufficiently large q such that the term O(q - 1/r) is less than q - f(q). In other
words, \BbbA can distinguish between the two cases in Theorem 5.20 in time t(q) \cdot nD =
Oq,r(| V | \delta 

\surd 
r), which would break Gap-ETH.

6. Conclusion and discussions. In this paper, we prove that \sansC \sansl \sansi \sansq \sansu \sanse and \sansD \sanso \sansm \sansS \sanse \sanst 
are totally FPT-inapproximable under Gap-ETH. In fact, we show a stronger prop-
erty that they are inherently enumerative, i.e., the best way to approximate both
problems is to essentially enumerate all possibilities. Since \sansC \sansl \sansi \sansq \sansu \sanse and \sansD \sanso \sansm \sansS \sanse \sanst are
complete problems for the class \sansW [1] and \sansW [2], respectively, it might be possible
that these two problems can be sources of FPT-inapproximabilities for many other
problems that admit no FPT algorithms.

We would like to also mention that there are some problems that are known to be
totally FPT-inapproximable under weaker assumptions. Examples of such problems
are independent dominating set and induced path. The former has been shown to be
FPT-inapproximable under the assumption \sansF \sansP \sansT \not = \sansW [2] in [35]. For the induced path
problem, we show in Appendix C that it is FPT-inapproximable under the assumption
\sansF \sansP \sansT \not = \sansW [1]. It would be interesting to understand whether it is possible to also base
the total FPT-inapproximabilities of \sansC \sansl \sansi \sansq \sansu \sanse and \sansD \sanso \sansm \sansS \sanse \sanst under assumptions that are
weaker than Gap-ETH, such as \sansF \sansP \sansT \not = \sansW [1], \sansF \sansP \sansT \not = \sansW [2] or ETH. As discussed in the
introduction, it was recently shown in [55] that \sansD \sanso \sansm \sansS \sanse \sanst is totally FPT-inapproximable
under \sansF \sansP \sansT \not = \sansW [1], and the more refined running time lower bounds were also shown
under ETH and SETH. Nevertheless, we are not aware of any FPT inapproximability
result for \sansC \sansl \sansi \sansq \sansu \sanse under an assumption weaker than Gap-ETH.

Another interesting further research direction is to study the trade-off between
the running time and the approximation ratio of problems that are known to be FPT-
approximable or admit FPT (exact) algorithms. The exploration of such a trade-off
may be useful in both theory and practice.

Appendix A. Gap problems versus approximation algorithms. In this
section, we establish the connections between gap problems and the FPT approxi-
mation algorithm by proving Propositions 2.3 and 2.4. Proposition 2.3 is, in fact,
implied by a result due to Chen, Grohe, and Gr\"uber [25, Proposition 4], and Proposi-
tion 2.4 appears in the ECCC version [26, Proposition 6]. We provide the proof here
for completeness.
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Proof of Proposition 2.3. We prove this by the contrapositive. Suppose that (2) is
false, i.e., there exist computable functions t : \BbbN \rightarrow \BbbN , f : \BbbN \rightarrow [1,\infty ) and an algorithm
\BbbB such that, for every instance I of \Pi , the algorithm \BbbB runs in time t(\sansO \sansP \sansT \Pi (I)) \cdot | I| D
on the input I for some constant D > 0 and outputs y \in \sansS \sansO \sansL \Pi (I) of cost at most
\sansO \sansP \sansT \Pi (I) \cdot f(\sansO \sansP \sansT \Pi (I)).

Let t\prime : \BbbN \rightarrow \BbbN and f \prime : \BbbN \rightarrow [1,\infty ) be functions that are defined by t\prime (k) =
maxi=1,...,k t(i) and f

\prime (k) = maxi=1,...,k f(i). Since t and f are computable, t\prime and f \prime 

are also computable.
Let \BbbA be an algorithm that takes an instance I of \Pi and a positive integer k and

then works as follows. The algorithm \BbbA simulates an execution of \BbbB on I step-by-step.
If \BbbB (I) does not finish within t\prime (k) \cdot | I| D time steps, then \BbbA terminates the execution
and returns 0. Otherwise, let y be the output of \BbbB (I). Then algorithm \BbbA computes
\sansC \sansO \sansS \sansT \Pi (I, y) and then returns 1 if this value is at most k \cdot f \prime (k); otherwise, \BbbA returns 0.

We claim that \BbbA is an f \prime -FPT gap approximation algorithm of \Pi . To see that
this is the case, first notice that the running time of \BbbA is O(t\prime (k) \cdot | I| D + | I| O(1)),
where | I| O(1) denotes the time used to compute the solution cost. Moreover, if
\sansO \sansP \sansT \Pi (I) > k \cdot f \prime (k), then it is obvious to see that \BbbA always outputs 0. Finally,
if \sansO \sansP \sansT \Pi (I) \leq k, then, by our assumption on \BbbB and the definitions of t\prime and f \prime , \BbbB (I)
finishes in time t(\sansO \sansP \sansT \Pi (I)) \cdot | I| D \leq t\prime (k) \cdot | I| D and the output solution y has cost at
most \sansO \sansP \sansT \Pi (I) \cdot f(\sansO \sansP \sansT \Pi (I)) \leq k \cdot f \prime (k). Hence, \BbbA always outputs 1 in this case.

As a result, \BbbA is an f \prime -FPT gap approximation algorithm for \Pi , which concludes
our proof.

Proof of the Proposition 2.4. We again prove this by the contrapositive. Suppose
that (2) is false, i.e., there exist computable functions t : \BbbN \rightarrow \BbbN , f : \BbbN \rightarrow [1,\infty ) such
that k/f(k) is nondecreasing and limk\rightarrow \infty k/f(k) = \infty , and an algorithm \BbbB such that,
for every instance I of \Pi , \BbbB runs in time t(\sansO \sansP \sansT \Pi (I)) \cdot | I| D on the input I for some
constant D > 0 and outputs y \in \sansS \sansO \sansL \Pi (I) of cost at least \sansO \sansP \sansT \Pi (I)/f(\sansO \sansP \sansT \Pi (I)).

Let t\prime : \BbbN \rightarrow \BbbN be a function defined by t\prime (k) = maxi=1,...,k t(i). Then clearly, t\prime 

is computable.
Let \BbbA be an algorithm that takes an instance I of \Pi and a positive integer k and

then works as follows. The algorithm \BbbA simulates an execution of \BbbB on I step-by-step.
If \BbbB (I) does not finish within t\prime (k) \cdot | I| D time steps, then \BbbA terminates the execution
and returns 1. Otherwise, let y be the output of \BbbB (I). \BbbA computes \sansC \sansO \sansS \sansT \Pi (I, y). The
algorithm \BbbA then returns 1 if this value is at least k/f(k); otherwise, \BbbA returns 0.

We claim that \BbbA is an f -FPT gap approximation algorithm of \Pi . To see that this is
the case, first notice that the running time of \BbbA is O(t\prime (k)\cdot | I| D+| I| O(1)), where | I| O(1)

denotes the time used to compute the solution cost. Moreover, if \sansO \sansP \sansT \Pi (I) < k/f \prime (k),
then the running time of \BbbB (I) is at most t(\sansO \sansP \sansT \Pi (I)) \cdot | I| D \leq t\prime (k) \cdot | I| D, which implies
that \BbbA returns 0.

Suppose, on the other hand, that \sansO \sansP \sansT \Pi (I) \geq k. If \BbbB (I) finishes in time t\prime (k)\cdot | I| D,
then, from the guarantee of \BbbB , it must output y \in \sansS \sansO \sansL \Pi (I) with \sansC \sansO \sansS \sansT \Pi (I, y) \geq 
\sansO \sansP \sansT \Pi (I)/f(\sansO \sansP \sansT \Pi (I)), which is at least k/f(k) since k/f(k) is nondecreasing. Fur-
thermore, if \BbbB (I) does not finish in the specified time, then \BbbA also returns 1 as desired.

As a result, \BbbA is an f -FPT gap approximation algorithm for \Pi , which concludes
our proof.

Appendix B. Totally FPT inapproximable through FPT gap reductions
(proof of Proposition 3.5). We will only show the proof when both \Pi 0 and \Pi 1

are maximization problems. Other cases can be proved analogously and therefore
omitted.
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We assume that (i) holds and will show that if the then part does not hold,
then (ii) also does not hold. Recall from Definition 3.4 that (i) implies that there
exist C,D > 0 such that the reduction from \Pi 0 (with parameters q and r) to \Pi 1

takes Oq,r(| I0| C) time and always outputs an instance I1 of size at most Oq,r(| I0| D)
on every input instance I0. Now assume that the then part does not hold, i.e., \Pi 1

admits a (t(k)| I1| F )-time h-FPT gap approximation algorithm \BbbA for some function
h(k) = o(k) and constant F . We will show the following claim which says that (ii)
does not hold (by Definition 2.1).

Claim B.1. There exists a function k \geq g\prime (k) = \omega (1) and an algorithm \BbbB that
takes any input instance I0 of the problem \Pi 0 and an integer k, and in Ok(| I0| O(1))
time can distinguish between \sansO \sansP \sansT \Pi 0(I0) \geq k and \sansO \sansP \sansT \Pi 0(I0) < g\prime (k).

We now prove the claim by constructing an algorithm \BbbB that performs the fol-
lowing steps. Given I0 and k, \BbbB applies the reduction on the instance I0 with the

parameters k and r = f(k)
h(f(k)) . Denote by I1 the instance of \Pi 1 produced by the re-

duction, so we have that | I1| = Ok(| I0| O(1)). The following properties are immediate
from the definitions of the FPT gap reductions (Definition 3.4).

\bullet If \sansO \sansP \sansT \Pi 0(I0) \geq k, then we have \sansO \sansP \sansT \Pi 1(I1) \geq f(k).

\bullet If \sansO \sansP \sansT \Pi 0
(I0) < g\prime (k) := g( f(k)

h(f(k)) ), then we have \sansO \sansP \sansT \Pi 1
(I1) < r = f(k)

h(f(k)) .

Since \BbbA is an h-FPT gap approximation algorithm, running \BbbA on (I1, f(k)) can
distinguish between the above two cases. Consequently, one can also invoke \BbbA to
distinguish between the cases that \sansO \sansP \sansT \Pi 0(I0) \geq k and that \sansO \sansP \sansT \Pi 0(I0) < g\prime (k) =

g( f(k)
h(f(k)) ) in time Ok(| I1| F ) = Ok(| I0| DF ) = Ok(| I0| O(1)). Notice also that

g\prime (k) = g

\biggl( 
f(k)

h(f(k))

\biggr) 
\leq g(f(k)) \leq k,

where the first inequality is because f(k)/h(f(k)) \leq f(k) (recall that h(f(k)) \geq 1 by
Definition 2.1) and because g is nondecreasing, and the second inequality is by the
claim below.

Claim B.2. For any totally-FPT-inapproximable problem \Pi 0 and any functions g
and f that satisfy conditions in Definition 3.4, it holds for any integer x that g(f(x)) \leq 
x.

Proof. For any integer x, consider an instance I0 such that \sansO \sansP \sansT \Pi 0
(I0) \geq x (such

I0 exists because \sansO \sansP \sansT \Pi 0
= \omega (1); otherwise, \Pi 0 is not totally-FPT-inapproximable

(e.g., we can always output 1 if \Pi 0 is a maximization problem)). By the second
condition in Definition 3.4, \sansO \sansP \sansT \Pi 1(I1) \geq f(x). Applying the contrapositive of the
third condition with r = f(x) (thus, \sansO \sansP \sansT \Pi 1(I1) \geq r), we have \sansO \sansP \sansT \Pi 0(I0) \geq g(r) =
g(f(x)). Thus, x \geq \sansO \sansP \sansT \Pi 0

(I0) \geq g(f(x)) as claimed.

To complete the proof, one only needs to argue that g( f(k)
h(f(k)) ) = \omega (1), and this

simply follows from the fact that f(k) = \omega (1), g(k) = \omega (1), and that k/h(k) = \omega (1).

Appendix C. FTP-inapproximability under W[1]-hardness. Here we
show an example of problems whose totally FPT-inapproximable holds under \sansW [1] \not =
\sansF \sansP \sansT , namely the maximum induced path problem (\sansI \sansn \sansd \sansu \sansc \sanse \sansd \sansP \sansa \sanst \sansh ).

In \sansI \sansn \sansd \sansu \sansc \sanse \sansd \sansP \sansa \sanst \sansh , we are given a graph G, and the goal is to find a maximum size
subset of vertices S \subseteq V (G) such that S induces a path in G. We will show that
\sansI \sansn \sansd \sansu \sansc \sanse \sansd \sansP \sansa \sanst \sansh has no FPT-approximation algorithm. Implicit in our reduction is a
reduction from k-\sansC \sansl \sansi \sansq \sansu \sanse to the multicolored clique problem.
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Theorem C.1. Unless W[1]=FPT, for any positive integers q : 1 \leq q \leq n1 - \delta for
any \delta < 0, given a graph G on n vertices and for any function t : \BbbR \rightarrow \BbbR , there is no
t(k) poly(n)-time algorithm that distinguishes between the following two cases:

\bullet \sansI \sansn \sansd \sansu \sansc \sanse \sansd \sansP \sansa \sanst \sansh (G) \geq 2q \cdot k.
\bullet \sansI \sansn \sansd \sansu \sansc \sanse \sansd \sansP \sansa \sanst \sansh (G) \leq 4(k  - 1).

Proof. The reduction is as follows. Take a graph H of a k-\sansC \sansl \sansi \sansq \sansu \sanse instance. Then
we construct a graph G as follows. First, we create intermediate graphs Z1, . . . , Zq.
Each graph Zi for i \in [q] is created by making k copies of V (H), namely, Vi,1, . . . , Vi,k
and forming a clique on Vi,j for each j \in [k]. So, now, we have k disjoint cliques. For
each vertex v \in V (H), we pick a copy of v, one from each Vi,j , say vi,j , and we form
a clique on \{ vi,1, . . . , vi,k\} . Next, for each edge uv \not \in E(H), we add edges ui,jvi,j\prime for
all j, j\prime \in [k], where ui,j and vi,j\prime are the copy of u in Vi,j and the copy of v in Vi,j\prime ,
respectively. Next, we add a dummy vertex xi,j for each Vi,j and add edges joining
xi,j to every vertex of Vi,j and to every vertex of Vi,j - 1 if j \geq 2. Finally, we join
the graph Zi for all i \in [q] to be of the form (Z1, Z2, . . . , Zk). To be precise, for each
graph Zi with i \geq 2, we join the vertex xi,1 (which belongs to Zi) to every vertex of
Vi - 1,q (which belongs to Zi+1).

Completeness. Suppose that \sansC \sansl \sansi \sansq \sansu \sanse (H) \geq k. We will show that \sansI \sansn \sansd \sansu \sansc \sanse \sansd \sansP \sansa \sanst \sansh (G) \geq 
2q \cdot k. We take a subset of vertices S \subseteq V (H) that induces a clique on H. Let us name
vertices in S by v1, . . . , vk. For each j \in [k], we pick the copies vji,j of vj from Vi,j for
all i \in [q]. We then pick all the vertices xi,j for i \in [k] and j \in [q]. We denote this set

of vertices by S\prime . It is not hard to see that for any distinct vertices vj , vj
\prime \in S, their

copies vji,j and vj
\prime 

i\prime ,j\prime are not adjacent, and each vertex xi,j has exactly two neighbors:

vji,j and uj - 1
i,j - 1 (or uki - 1,k). Therefore, S

\prime induces a path in G of size 2qk.

Soundness. Suppose that \sansC \sansl \sansi \sansq \sansu \sanse (H) < k, i.e., H has no clique of size k. We
will show that \sansI \sansn \sansd \sansu \sansc \sanse \sansd \sansP \sansa \sanst \sansh (G) \leq 4(k  - 1). To see this, let S\prime \subseteq V (G) be a subset of
vertices that induces a path G[S\prime ] in G. Observe that, for i \in [q], G[S\prime ] \cap Zi must be
a path of the form (xi,a, v

a
i,a, . . . , xi,k, v

b
i,b). Moreover, v\ell i,\ell and v\ell 

\prime 

i,\ell \prime are not adjacent

in G for any \ell \not = \ell \prime , meaning that v\ell i,\ell and v
\ell \prime 

i,\ell \prime are not copies of the same vertex in H,

while the set \{ v\ell \} a\leq \ell \leq b induces a clique in H. Thus, a - b+1 < k and G[S\prime ]\cap Zi can
have at most 2(k - 1) vertices. It follows that any induced path G[S\prime ] of G can contain
vertices from at most two subgraphs, say Zi and Zi+1. Therefore, we conclude that
| S\prime | \leq 4(k  - 1).

The FPT-inapproximable of \sansI \sansn \sansd \sansu \sansc \sanse \sansd \sansP \sansa \sanst \sansh follows directly from Theorem C.1.

Corollary C.2. UnlessW [1] = FPT , there is no f(k)-approximation algorithm
for \sansI \sansn \sansd \sansu \sansc \sanse \sansd \sansP \sansa \sanst \sansh that runs in t(k) poly(n)-time for any functions f and t depending
only on k.

Appendix D. Known connections between problems. In this section, we
discuss known equivalences between problems in more detail.

Dominating Set and Set Cover: It is easy to see that \sansD \sanso \sansm \sansS \sanse \sanst is a special case of
\sansS \sanse \sanst \sansC \sanso \sansv , and the reduction from \sansS \sanse \sanst \sansC \sanso \sansv to \sansD \sanso \sansm \sansS \sanse \sanst is by phrasing \scrU and \scrS as vertices,
thereby forming a clique on \scrS , and there is an edge joining a subset Si \in \scrS and
element uj \in \scrU if and only if uj is an element in Si.

Induced Matching and Independent Set: We show that Induced Matching is at
least as hard to approximate as Independent Set. Let G be an input graph of Inde-
pendent Set. We create a graph G\prime , for each vertex v \in V (G), by creating a vertex v\prime 

and an edge vv\prime . Notice that any independent set S of G corresponds to an induced

D
ow

nl
oa

de
d 

10
/0

5/
20

 to
 1

30
.2

33
.2

16
.1

41
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FROM GAP-ETH TO FPT-INAPPROXIMABILITY 805

matching in G\prime : For each v \in S, we have an edge vv\prime in the set \scrM . Conversely, for
any induced matching \scrM of G\prime , we may assume that the matching only chooses edges
of the form vv\prime .

More hereditary properties: We discuss some more natural problems in this class.
If we define \Pi to be a set of all planar graphs, this is hereditary. The corresponding
optimization problem is that of computing a maximum induced planar graph. If we
define \Pi to be a set of all forests, this is also hereditary, and it gives the problem of
computing a maximum induced forest.

Appendix E. Proof sketch of Theorem 4.1. We will sketch the proof of
Theorem 4.1.

In the forward direction, we use a standard reduction, which is sometimes referred
to as the clause-variable game [1]. Specifically, we transform a 3-\sansS \sansA \sansT instance \psi 
on n variables x1, . . . , xn and m clauses C1, . . . , Cm into a label cover instance \Gamma =
(G = (U, V,E),\Sigma U ,\Sigma V ,\Pi ) by transforming clauses into left vertices in U and variables
into right vertices in V , and there is an edge joining a pair of vertices Ci and xj if
xj appears in Ci. We take partial assignments as the label sets \Sigma U and \Sigma V , and a
constraint on each edge asks for a pair (\alpha , \beta ) of labels that are consistent, i.e., they
assign the same value to the same variable (e.g., \alpha = (x1 : 1, x2 : 0, x3 : 1) and
\beta = (x1 : 1) are consistent whereas \alpha is not consistent with \beta \prime = (x2 : 1)), and \alpha 
causes Ci to evaluate to true (i.e., some of the literal in Ci is assigned to true by \alpha ).
We denote the evaluation of a clause Ci on a partial assignment \alpha by Ci(\alpha ).

To be precise, we have

U = \{ C1, . . . , Cm\} , V = \{ x1, . . . , xn\} ,
E = \{ Cixj : xj appears in the clause Ci\} ,
\Sigma U = \{ 0, 1\} 3, \Sigma V = \{ 0, 1\} ,
\Pi Cixj

= \{ (\alpha , \beta ) : \alpha and \beta are consistent \wedge Ci(\alpha ) = true\} .

It can be seen that \sansM \sansa \sansx \sansC \sanso \sansv (\Gamma ) = \sansS \sansA \sansT (\psi ) since the only way to cover each node
Ci \in U is to pick assignments to all vertices adjacent to Ci so that they are all
consistent with the assignment \alpha = \sigma V (Ci) (and that Ci(\alpha ) = true).

The converse direction is not straightforward. We apply H\r astad [52] reduction10

to reduce an instance \Gamma of \sansM \sansa \sansx \sansC \sanso \sansv to a 3-SAT instance of size f(| \Sigma U | + | \Sigma V | ) \cdot 
O(| U | + | V | ) with a hardness gap 1  - \varepsilon for some constant \varepsilon > 0 (the hardness gap
is different from the original \sansM \sansa \sansx \sansC \sanso \sansv instance). Note that f in H\r astad's construction
is a doubly exponential function. The equivalence between \sansM \sansa \sansx \sansC \sanso \sansv and 3-\sansS \sansA \sansT holds
only when | \Sigma U | + | \Sigma V | is constant (or at most log log(| V | + | U | )).

Appendix F. On Gap-ETH. While Gap-ETH may sound like a very strong
assumption, as pointed out in [32, 72], there are few pieces of evidence suggesting that
the conjecture may indeed be true:

\bullet In a simplified and slightly inaccurate manner, the PCP theorem [7, 6] can
be viewed as a polynomial-time reduction that takes a 3-CNF formula \Phi and
then produces another 3-CNF formula \Phi \prime such that, if \Phi is satisfiable, then
\Phi \prime is satisfiable, and, if \Phi is unsatisfiable, \Phi \prime is not only unsatisfiable but
also not even 0.99-satisfiable. To date, it is known that the size of \Phi \prime can be
made as small as npolylog(n) where n is the size of \Phi [31]. This means that,

10Here we apply only Hastad's reduction from label cover to 3-SAT, without parallel repetition.
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assuming ETH, Gap-3\sansS \sansA \sansT cannot be solved in 2o(n/ polylogn) time, which is
only a factor of polylog n away from what we need in Gap-ETH. Indeed, as
stated earlier, if a linear-size PCP exists (which implies that the size of \Phi \prime 

can be made linear in n), then Gap-ETH would follow from ETH.
\bullet No subexponential-time algorithm is known even for the following (easier)
problem, which is sometimes referred to as refutation of random 3-\sansS \sansA \sansT : for
a constant density parameter \Delta , given a 3-CNF formula \Phi with n variables
and m = \Delta n clauses, devise an algorithm that outputs either SAT or UNSAT
such that the following two conditions are satisfied:

-- If \Phi is satisfiable, then the algorithm always outputs SAT.
-- Over all possible 3-CNF formulas \Phi with n clauses and m variables, the

algorithm outputs UNSAT on at least 0.5 fraction of them.
Note that, when \Delta is a sufficiently large constant (say 1000), a random 3-
CNF formula is, w.h.p., not only unsatisfiable but also not even 0.9-satisfiable.
Hence, if Gap-ETH fails, then the algorithm that refutes Gap-ETH will also
be a subexponential time algorithm for refutation of random 3-\sansS \sansA \sansT with
density \Delta .
Refutation of random 3-\sansS \sansA \sansT and, more generally, random CSPs, is an impor-
tant question that has connections to many other fields, including hardness of
approximation, proof complexity, cryptography and learning theory. We refer
the readers to [3] for a more comprehensive survey on the problem and its ap-
plications in various areas. Despite being intensively studied for almost three
decades, no subexponential-time algorithm is known for the above regime of
parameters. In fact, it is known that the sum-of-squares hierarchies cannot
refute random 3-\sansS \sansA \sansT with constant density in subexponential time [47, 80].
Given how powerful SDP [78] and, more specifically, sum-of-squares [64],
are for solving (and approximating) CSPs, this suggests that refutation of
random 3-\sansS \sansA \sansT with constant density and, hence, Gap-3\sansS \sansA \sansT , may indeed be
exponentially hard or, at the very least, beyond our current techniques.

\bullet Dinur speculated that Gap-ETH might follow as a consequence of some cryp-
tographic assumption [32]. This was recently confirmed by Applebaum [5]
who showed that Gap-ETH follows from an existence of any exponentially
hard locally computable one-way function. In fact, he proved an even stronger
result that Gap-ETH follows from ETH for some CSPs that satisfy certain
``smoothness"" properties.

Last, we note that the assumption m = O(n) made in the conjecture can be made
without loss of generality. As pointed out in both [32] and [72], this follows from the
fact that, given a 3-\sansS \sansA \sansT formula \phi withm clauses and n variables, if we create another
3-\sansS \sansA \sansT formula \phi \prime by randomly selected m\prime = \Delta n clauses, then, with high probability,
| \sansS \sansA \sansT (\phi )/m - \sansS \sansA \sansT (\phi \prime )/m\prime | \leq O(1/\Delta ).
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