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FROM GENERALIZED KÄHLER TO GENERALIZED SASAKIAN
STRUCTURES
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Communicated by Ivaïlo M. Mladenov

Abstract. This is an introductory paper that provides a first introduction to geo-

metric structures on TM ⊕T
∗
M . It contains definitions and characteristic proper-

ties (some of them new) of generalized complex, Kähler, almost contact (normal,

contact) and Sasakian manifolds.

1. Introduction

This is an expository paper. Its aim is to introduce the reader into the new subject

of generalized structures. The non-previously published results are Proposition

17 and Theorem 24, which give new characterizations of generalized, normal,

almost contact and generalized, Sasakian structures, and some remarks about non

degenerate, generalized, almost contact structures.

The word “generalized” has the following precise meaning. If M is m-dimensio-

nal, differentiable manifold, a “classical structure” on M is a reduction of the

structure group of the tangent bundle TM from the general linear group GL(m, R)
to a certain subgroup G. The “generalization” consists in replacing TM by the

big tangent bundle T bigM = TM ⊕ T ∗(M). The bundle T bigM has a natural,

neutral metric (non degenerate, signature zero) g defined by

g((X, α), (Y, β)) =
1

2
(α(Y ) + β(X)), X ∈ χ(M), α ∈ Ω1(M). (1)

Hence, the natural structure group of T bigM is the group O(m, m) that preserves

the canonical neutral metric on R
2m and the “generalized structures” will be re-

ductions of the structure group O(m, m).

Furthermore, classical integrability conditions are expressed in terms of the Lie

bracket of vector fields on M . A generalized bracket is the Courant bracket [6]

given by the formula

[(X, α), (Y, β)] = ([X, Y ], LXβ − LY α +
1

2
d(α(Y ) − β(X))). (2)
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Accordingly, generalized integrability conditions will be expressed in terms of

Courant brackets.

It is important that there are more natural bundle automorphisms of T bigM than

those induced by diffeomorphisms of M . The additional automorphisms are the

B-field transformations (X, α) �→ (X, α + i(X)B), (B ∈ Ω2(M), dB = 0)
which also preserve the metric (1) and the Courant bracket (2).

The generalization described above is natural and appealing from the differential

geometric point of view. On the other hand, the Courant bracket appeared in

the study of constrained dynamical systems and leads to important extensions

of Hamiltonian mechanics of a large interest in physics and control theory (see

[16] and its references). Furthermore, the most interesting generalized structures

that were studied until now, the generalized complex and the generalized Kähler

structures, appear in the study of supersymmetry in string theory (see [12] and its

references). The study of generalized complex structures as objects of differential

geometry was initiated by Hitchin and developed by his student Marco Gualtieri,

whose thesis [8] turned into the standard reference on the subject. Numerous

authors, who also extended the scope of the theory, have followed.

2. Generalized Complex and Kähler Structures

A generalized, almost complex structure is a reduction of the structure group of

T bigM from O(m, m) to O(m, m) ∩ GL(m, C), therefore, it is defined by an

endomorphism J of T bigM that has the properties

g(X ,JY) + g(JX ,Y) = 0, J 2 = −Id (3)

where calligraphic letters denote pairs X = (X, α), Y = (Y, β). Equivalently,

one may replace J by its i-eigenbundle, which is a maximal (i.e., rankCL = m),

g-isotropic, complex subbundle L of the complexification T bigM ⊗ C such that

L ∩ L̄ = 0 (the bar denotes complex conjugation).

Furthermore, if the Courant-Nijenhuis torsion vanishes, i.e.,

NJ (X ,Y) = [JX ,JY] − J [X ,JY] − J [JX ,Y] + J 2[X ,Y] = 0 (4)

for all X ,Y ∈ ΓT bigM (the brackets are Courant brackets and Γ denotes the

space of cross sections), the structure J is an integrable or generalized complex

structure and (M,J ) is a generalized complex manifold. It follows easily that

integrability is equivalent with the fact that ΓL is closed under Courant brackets.
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In the terminology of [6], adopted by all the authors in the field, L is a complex

Dirac structure.

Similar definitions may be given for generalized, paracomplex structures (J 2 =
Id ) and the study of the latter is similar to that of the complex case [14].

Generalized complex structures may be represented by classical tensor fields as

follows

J

(

X

α

)

=

(

A ♯π

♭σ −tA

)(

X

α

)

. (5)

Here, A ∈ End(TM), π ∈ Γ ∧2 TM, σ ∈ Ω2(M), the musical morphisms are

defined like in Riemannian geometry and the index t denotes transposition. The

first relation (3) explains the presence of −tA and the skew symmetry of π, σ.

Finally, the condition J 2 = −Id is equivalent with

A2 = −Id − ♯π ◦ ♭σ, π(α ◦A, β) = π(α, β ◦A), σ(AX, Y ) = σ(X, AY ). (6)

The second, respectively third, condition (6), are the compatibility of π, respec-

tively σ, with A.

Remark 1. As a consequence of (6), if a manifold M has a generalized, almost

complex structure, the dimension of M is even. Indeed, by the formulas in (6)

A|ker ♭σ
: ker ♭σ → ker ♭σ and A2|ker ♭σ

= −Id . Thus, dim(ker ♭σ) is even and,

since dim(im ♭σ) is even too, dimM is even.

Lengthy calculations show that the integrability of J given by (5) is equivalent

with the following four conditions [7, 14]

i) the bivector field π defines a Poisson structure on M (i.e., the bracket of

functions on M given by {f1, f2} = π(df1, df2) is a Lie algebra bracket)

ii) the Schouten concomitant

R(π, A)(α, X) = ♯π[LX(α ◦ A) − LAXα] − (L♯παA)(X)

vanishes

iii) the Nijenhuis tensor of A (defined by (4) with Lie brackets) satisfies the

condition

NA(X, Y ) = ♯π[i(Y )i(X)dσ]
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iv) the associated form

σA(X, Y ) = σ(AX, Y )

satisfies the condition

dσA(X, Y, Z) =
∑

cycl(X,Y,Z)

dσ(AX, Y, Z).

There are plenty of examples of interesting, generalized, complex manifolds and

we mention: i) classical complex manifolds (M, J), with A = J, π = 0, σ = 0;

ii) classical symplectic manifolds (M, ω), with A = 0, π = −ω−1, σ = ω (dω =
0); iii) Hitchin pairs (̟, A), where ̟ is a symplectic form, A ∈ End(TM),
̟(AX, Y ) = ̟(X, AY ), and ̟A(X, Y ) = ̟(AX, Y ) is a closed two-form,

with π defined by ♭̟ ◦ ♯π = −Id and σ = ̟ ◦ (Id + A2) (this situation includes

all the generalized, complex structures with a non degenerate bivector field π [7]);

iv) CP
n and manifolds obtained from CP

2 by blowing-up at a finite number of

points [11], v) the manifold M = 3CP
2#19CP2, which has neither a classical

complex structure nor a classical symplectic structure [5]. Notice also that any B-

field transformation sends a generalized complex structure to a new generalized

complex structure.

Now, we shall analyze the meaning of a generalized Riemannian structure on M .

Such a structure is a reduction of the structure group of T bigM from O(m, m) to

O(m) × O(m), therefore, it consists of a g-orthogonal decomposition T bigM =
V+ ⊕ V− where the terms are m-dimensional subbundles and g+ = g|V+

, g− =
g|V−

are positive and negative definite, respectively. This produces a positive

definite metric G on T bigM such that

1

2
G = g+ − g−.

The factor 1/2 was introduced in order to ensure that V± (which are G-orthogonal)

are the ±1-eigenspaces of the musical isomorphism

♯G : T ∗M ⊕ TM ≈ TM ⊕ T ∗M → TM ⊕ T ∗M

defined by

g(♯G(X, α), (Y, β)) =
1

2
G((X, α), (Y, β)). (7)

(The isomorphism ≈ switches the order of the terms in a pair.) Thus, a general-

ized, Riemannian structure may be seen as a Euclidean (positive definite) metric

G on the bundle T bigM such that ♯G satisfies the conditions

♯2G = Id , g(♯G(X, α), ♯G(Y, β)) = g((X, α), (Y, β)). (8)
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Proposition 2 ([8]) . There exists a bijective correspondence between generalized,

Riemannian metrics G and pairs (γ, ψ), where γ is a classical Riemannian metric

and ψ is a two-form on M .

Proof: We may represent G by

♯G

(

X

α

)

=

(

ϕ ♯γ

♭β
tϕ

) (

X

α

)

(9)

where ϕ ∈ End(TM) and β, γ are classical Riemannian metrics on M (use (8)

and the fact that G is positive definite). Furthermore, the first condition (8) is

equivalent to

ϕ2 = Id −♯γ◦♭β , γ(ϕX, Y )+γ(X, ϕY ) = 0, β(ϕX, Y )+β(X, ϕY ) = 0. (10)

Since γ is non degenerate, the first condition (10) yields ♭β = ♭γ ◦ (Id − ϕ2),
hence, G bijectively corresponds to the pair (γ, ϕ). But, ϕ may be replaced by the

two-form ψ given by ♭ψ = −♭γ ◦ ϕ, hence G ↔ (γ, ψ) as claimed. �

If ψ = 0, we have ϕ = 0, β = γ and the generalized metric reduces to a classical

Riemannian metric. The following result [8] is also important.

Proposition 3. The eigenbundles of the generalized, Riemannian structure de-

fined by the pair (γ, ψ) are given by the formula

V± = {(X, ♭ψ±γX) ; X ∈ TM}. (11)

Proof: The projectors associated with the decomposition T bigM = V+ ⊕ V− are

given by pr± = 1
2(Id ± ♯G) and, if we apply them to pairs (X, 0), we see that the

mappings τ± = prTM |V±
are isomorphisms. Using (9) and the definition of ψ we

get

τ−1
+ (X) = (X, ♭γ(X − ϕX)) = (X, ♭ψ+γX)

τ−1
− (X) = (X,−♭γ(X + ϕX)) = (X, ♭ψ−γX)

whence (11). �

Remark 4. The isomorphisms τ± may be used to transfer the metrics G|V±
to

metrics G± of the tangent bundle TM and the result is

G±(X, Y ) = G(τ−1
± (X), τ−1

± (Y )) = ±2g(τ−1
± (X), τ−1

± (Y )) = 2γ(X, Y ).



68 Izu Vaisman

A generalized almost complex structure J is compatible with a generalized met-

ric G if the structure group of T bigM is further reduced to U(m/2) × U(m/2).
Accordingly, this compatibility condition is

G(J (X, α), (Y, β)) + G((X, α),J (Y, β)) = 0
(3),(7)
⇐⇒ ♯G ◦ J = J ◦ ♯G (12)

and, if (12) holds, (G,J ) is a generalized, almost Hermitian structure; if J is

integrable, “almost” is dropped.

The (G,J )-compatibility implies that (G,J c = ♯G ◦ J ) is again a generalized,

almost Hermitian structure, complementary to J , such that J ◦ J c = J c ◦ J .

Conversely, if (J ,J c) is a commuting pair of generalized, almost complex struc-

tures such that G defined by ♯G = −J ◦ J c is positive definite, then, G is a gen-

eralized, Riemannian metric, which is compatible with J and J c. Many authors

prefer to define a generalized, almost Hermitian structure by the pair (J ,J c).

Proposition 5 ([8]) . A generalized, almost Hermitian structure (G,J ) is equiv-

alent with a quadruple (γ, ψ, J+, J−), where (γ, J±) are classical, almost Her-

mitian structures and ψ ∈ Ω2(M).

Proof: The pair (γ, ψ) is the one which is equivalent with G. The (G,J )-
compatibility implies that J preserves the subbundles V±, hence, it induces en-

domorphisms J± ∈ End(V±) such that J 2
± = −Id The latter can be transferred

to the almost complex structures

J± = τ± ◦ J± ◦ τ−1
±

(5)
= A + ♯π ◦ ♭ψ±γ ∈ EndTM (13)

which are compatible with γ because γ has been obtained by the similar transfer

of G|V±
. Conversely, (γ, ψ) define the subbundles V± by (11). The structures J±

are transferred by τ± to structures J± on V± and J = J+ + J− together with G
defined by (γ, ψ) is the corresponding generalized, almost Hermitian structure. �

Remark 6. The following relations between J and J± are also interesting. For-

mulas (13) yield

♯π = 1
2(J+ − J−) ◦ ♯γ

A = 1
2 [J+ ◦ (Id − ♯γ♭ψ) + J− ◦ (Id + ♯γ♭ψ)].

(14)

The remaining entry of the matrix representation of J will be obtained from the

matrix expression of (12), which yields among others

ϕ ◦A+ ♯γ ◦ ♭σ = A ◦ϕ+ ♯π ◦ ♭β ⇔ ♭σ = ♭γ ◦ (A ◦Q−Q ◦A+ ♯π ◦ ♭β). (15)



From Generalized Kähler to Generalized Sasakian Structures 69

Example 7. Assume that the structure (G,J ) has the corresponding quadruple

(γ, ψ, J+, J−). By its definition, the complementary structure J c satisfies the con-

ditions J c
± = ±J± and formula (13) shows that (G,J c) has the corresponding

quadruple (γ, ψ, J+,−J−). In the classical case, ψ = 0 and J− = −J+.

To continue our path towards generalized, Kähler manifolds, we notice that, if the

metric G reduces to a classical Riemannian metric γ and the structure J reduces

to a classical structure J , the complementary structure J c is given by the matrix

J c =

(

0 ♯π

♭σ 0

)

where σ(X, Y ) = ω(X, Y ) = γ(AX, Y ), π = ♯γσ (ω is the Kähler form of

(γ, J)). Thus, a classical Kähler structure (dω = 0, [1, 10]) is characterized by

the integrability of the two structures J and J c. Accordingly, one states [8]

Definition 8. A generalized Kähler structure is a generalized, almost Hermitian

structure (G,J ) such that the two structures J ,J c are integrable. (We may

also define a generalized, almost Kähler structure (G,J ) by requiring only the

complementary structure J c to be integrable.)

We shall prove the following theorem, which characterizes the generalized Kähler

structures.

Theorem 9 ([17]) . The generalized almost Hermitian structure (G,J ) with the

associated structures (γ, ψ, J±) is a generalized Kähler structure iff (γ, J±) are

classical Hermitian structures and

(∇XJ±)(Y ) = ±
1

2
♯γ [i(X)i(J±Y )dψ + (i(Y )i(X)dψ) ◦ J±] (16)

where ∇ is the Levi-Civita connection of the metric γ.

This theorem is the consequence of a sequence of lemmas as follows.

Lemma 10 ([8]) . The generalized, almost Hermitian structure (G,J ) is a gener-

alized Kähler structure iff the i-eigenbundles L± of J± are closed under Courant

brackets.

Proof: Consider also the i-eigenbundles Lc
± of J c

± and notice that the relations

J c = ♯G ◦ J , ♯G = −J ◦ J c imply

L = L+ ⊕ L−, L+ = L ∩ V+, L− = L ∩ V−, Lc
+ = L+

Lc
− = L̄c

+, L+ = L ∩ Lc, L− = L ∩ L̄c.
(17)
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Now, if the structure (G,J ) is generalized Kähler, the last two equalities (17)

obviously imply that L± are closed under Courant brackets. To get the converse

result, it is enough to prove that

X+ ∈ L+, Y− ∈ L− ⇒ [X+,Y−] ∈ L.

This follows from the following property of the Courant bracket [6]

(prTMZ)(g(X ,Y)) = g([Z,X ],Y) + g(X , [Z,Y])

+
1

2
(prTMX )(g(Z,Y)) +

1

2
(prTMY)(g(Z,X )).

If this equality is applied for (X ,Y,Z) �→ (Z+,Y−,X+) and (X ,Y,Z) �→
(X+,Z−,Y−), then, using the g-orthogonality relations given by the isotropy of

L, we get [X+,Y−] ⊥g Z±, whence [X+,Y−] = 0, which is more than needed

for the conclusion. �

Lemma 11. The generalized, almost Hermitian structure (G,J ) with the associ-

ated structures (γ, ψ, J±) is a generalized Kähler structure iff (γ, J±) are classi-

cal Hermitian structures and

i(X ∧ Y )dψ = ±(i(X)LY γ − LXi(Y )γ), X, Y ∈ S± (18)

where S± ⊆ TM are the i-eigenbundles of J±.

Proof: Since J± are the τ±-transfers of J±, we have

L± = {(X, ♭ψ+γX) ; X ∈ S±} = {(X, ♭ψ−iω±
X) ; X ∈ S±}

where ω± are the Kähler forms of (γ, J±). Furthermore, we can get the following

expression of the required brackets

[(X, ♭ψ±γX), (Y, ♭ψ±γY )] = ([X, Y ], ♭ψ±γ [X, Y ] + i(Y )i(X)dψ
(19)

±(LXi(Y )γ − i(X)LY γ)).

where X, Y ∈ χ1(M). This follows by evaluating the one-form component of

the bracket on a vector field Z. Formula (19) shows the equivalence between the

generalized Kähler conditions stated in Lemma 10 and Lemma 11. �

Furthermore, take two unitary connections ∇± on TM , i.e., such that ∇±γ =
0, ∇±J± = 0, and consider the difference tensors Θ±(X, Y ) = ∇±

XY −∇XY,
where ∇ is the Levi-Civita connection of the metric γ. From ∇γ = 0, we get

γ(Θ±(X, Y ), Z) + γ(Y,Θ±(X, Z)) = 0.
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On the other hand, the condition ∇±J± = 0 is equivalent with

Θ±(X, J±Y ) − J±Θ±(X, Y ) = −(∇XJ±)(Y ). (20)

Lemma 12. Let (G,J ) be a generalized Hermitian structure with the associated

structures (γ, ψ, J±) and let ∇± be unitary connections. Then, (G,J ) is a gen-

eralized Kähler structure iff (γ, J±) are classical Hermitian structures and the

equalities

γ(Θ±(Z, Y ), X) = ∓
1

2
dψ(X, Y, Z) (21)

hold for any Z ∈ χ1(M) and any X, Y ∈ S±.

Proof: By a simple computation that uses ∇±γ = 0 we get

(LXγ)(Y, Z) = γ(∇±
Y X, Z) + γ(Y,∇±

ZX)
(22)

+γ(T±(X, Y ), Z) + γ(Y, T±(X, Z))

where T± is the torsion of ∇±. Then, if we evaluate (18) on Z ∈ χ1(M) and use

(22), we get the following equivalent form of (18)

dψ(X, Y, Z) = ±[γ(X,∇±
ZY ) − γ(Y,∇±

ZX) + γ(X, T±(Y, Z))
(23)

+γ(Y, T±(Z, X)) − γ(Z, T±(X, Y ))]

where the first two terms of the right hand side vanish if X, Y ∈ S±. If we insert

T±(X, Y ) = Θ±(X, Y ) − Θ±(Y, X)

in (23), we get (21). �

Proof of Theorem 9: From (21), we get conditions with general arguments

X, Y, Z ∈ χ1(M) by replacing X, Y ∈ S± by (Id − iJ±)X, (Id − iJ±)Y .

The resulting conditions have a real and an imaginary part, which are equivalent

via the change X �→ J±X . Thus, we remain with the following characterization

of the generalized Kähler structures

γ(Θ±(Z, J±Y ),−X) + γ(Θ±(Z,−Y ), J±X)

= ∓
1

2
[dψ(J±X, J2

±Y, Z) + dψ(−X, J±Y, Z)]. (24)

Now, if we use (20) and the equality

∇J2
± = 0 = J± ◦ ∇J± + ∇J± ◦ J±
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we get the following system that is equivalent to (24)

γ(J±X, (∇ZJ±)(J±Y )) = ±
1

2
[−dψ(J±X, Y, Z) + dψ(−X, J±Y, Z)]. (25)

This result is equivalent with the required condition (16). �

Furthermore, one has

Theorem 13 ([8]) . The generalized almost Hermitian structure (G,J ) with the

associated structures (γ, ψ, J±) is a generalized Kähler structure iff (γ, J±) are

classical Hermitian structures and

dω±(J±X, J±Y, J±Z) = ±dψ(X, Y, Z) (26)

where ω± are the Kähler forms of (γ, J±).

Proof: We already know that J± are complex structures in the generalized Kähler

case. Accordingly, the following formula holds (e.g., [10])

γ((∇XJ±)(Y ), Z) =
1

2
[dω±(X, Y, Z) − dω±(X, J±Y, J ± Z)]

and (25) yields

dψ(X, Y, Z) − dψ(J±X, J±Y, Z)

= ±[dω±(J±X, Y, Z) + dω±(X, J±Y, Z)].

Now, replace X �→ J±X , then, subtract the first cyclic permutation of (X, Y, Z)
and add the second cyclic permutation. The result is

dψ(X, Y, Z) = ±
1

2
[dω±(J±X, J±Y, J±Z) + dω±(J±X, Y, Z)

(27)
+dω±(X, J±Y, Z) + dω±(X, Y, J±Z)].

Since for any Hermitian manifold ω± is of the complex type (1, 1) and dω± has

no (3, 0) and (0, 3) type components, if we use arguments in the eigenbundles of

J±, we see that (27) coincides with (26). �

The results above have analogous para-Kähler versions. On the other hand the

results were extended to generalized metric F -structures (F 3 + F = 0) [17].

Concerning examples, CP
n and CP

2 blown-up at a finite number of points were

shown to be generalized Kähler in [11]. If the two-form ψ is closed, (16) reduces



From Generalized Kähler to Generalized Sasakian Structures 73

to ∇J± = 0, i.e., (γ, J±) are classical Kähler structures. Therefore, any bi-

Hermitian manifold M is a generalized Kähler manifold (add any closed two-

form ψ to complete the structure). For instance, any hyper-Kähler manifold has

three bi-Hermitian structures. Bi-Hermitian manifolds were studied and, in some

cases, classified by several authors. The reader will find more about the existence

and non-existence of generalized Kähler structures in [2] and its references.

3. Generalized Almost Contact and Sasakian Structures

In the realm of classical structures, odd-dimensional correspondents of complex

and Kähler structures are obtained by using complex and Kähler structures on the

manifold M × R as follows.

Let J be a complex structure on M 2n+1 × R such that i) J is invariant by trans-

lation along R and ii) J(TR) ⊆ TM . Then J is said to be M -adapted. If we

denote by t the coordinate on R, J is an M -adapted structure iff

J = F + dt ⊗ Z − ξ ⊗
∂

∂t
(28)

where F ∈ End(TM), Z ∈ χ(M), ξ ∈ Ω1(M). Accordingly, the condition

J2 = −Id becomes

F 2 = −Id + ξ ⊗ Z, ξ ◦ F = 0, FZ = 0, ξ(Z) = 1

and the triple (F, Z, ξ) is called an almost contact structure on M ; it corresponds

to a reduction of the structure group of TM to GL(n, C) × {1}. If the adapted

structure J is integrable, the almost contact structure (F, Z, ξ) is normal and the

normality condition is [3]

NF + Z ⊗ dξ = 0

where NF is the Nijenhuis tensor of F .

A further reduction of the structure group of TM to U(n) × {1} is obtained by

adding a Riemannian metric γ on M such that the translation invariant, almost

complex structure J , is Hermitian with respect to the metric

Γ = exp(t)(γ + dt2)

(the factor exp(t) is needed for the Sasakian structures, which will be defined later

on).
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Then J necessarily is M -adapted and we get an almost contact metric structure

(F, Z, ξ, γ), where

γ(FX, FY ) = γ(X, Y ) − ξ(X)ξ(Y )

which also implies ξ = ♭γZ, g(Z, FX) = 0, g(Z, Z) = 1 [3].

The almost contact metric structure (F, Z, ξ, γ) has the associated fundamental

two-form Ξ(X, Y ) = g(FX, Y ), while the corresponding almost Hermitian struc-

ture J has the Kähler form ω. A simple calculation gives

ω = exp(t)(Ξ − ξ ∧ dt), dω = exp(t)[dΞ + (Ξ − dξ) ∧ dt]. (29)

The most usual definition of a Sasakian structure requires it to be a normal, con-

tact, metric structure (F, Z, ξ, γ) where the use of the term contact instead of

almost contact means the requirement Ξ = dξ. From (29), we see that a Sasakian

structure is characterized by the fact that the corresponding structure (Γ, J) is

Kähler [3].

We will give generalized versions of the classical structures recalled above.

Definition 14. A generalized, almost complex structure J on M ×R is said to be

M -adapted if it has the following three properties a) J is invariant by translation

along R, b) J (TR ⊕ 0) ⊆ 0 ⊕ T ∗M , c) J (0 ⊕ T ∗
R) ⊆ TM ⊕ 0.

The invariance of J by translations means that the Lie derivatives L∂/∂t of the

classical tensor fields of J (defined by (5)) vanish. If conditions b), c) are also

imposed, it follows that the classical tensor fields of an M -adapted, generalized,

almost complex structure are of the form

A = F, π = P + Z ∧
∂

∂t
, σ = θ + ξ ∧ dt (30)

where P ∈ Γ ∧2 TM, θ ∈ Ω2(M), Z ∈ χ(M), ξ ∈ Ω1(M) (one may use local

coordinates xi on M to see this).

Remark 15. If J only is translation invariant, the second and third formula (30)

hold but A : TM⊕R → TM⊕R also includes a vector field V = prTMA(∂/∂t),
a one-form κ(X) = prR(AX) and a function s given by prR(A(∂/∂t)) =
s(∂/∂t).

Furthermore, conditions (3) are equivalent to

F ◦ ♯P = ♯P ◦ tF, ♭θ ◦ F = tF ◦ ♭θ, i(Z)θ = 0, i(ξ)P = 0

F 2 = −Id − ♯P ◦ ♭θ + ξ ⊗ Z, F (Z) = 0, ξ ◦ F = 0, ξ(Z) = 1.
(31)
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The triple (F, P, θ) defines an endomorphism F of T bigM of matrix form

F

(

X

α

)

=

(

F ♯P

♭θ −tF

) (

X

α

)

.

The pair (Z, ξ) defines the endomorphism Z of T bigM of matrix form

Z

(

X

α

)

=

(

Z ⊗ ξ 0

0 t(Z ⊗ ξ)

) (

X

α

)

where Z ⊗ ξ : TM → TM is the evaluation of ξ and t(Z ⊗ ξ) : T ∗M → T ∗M
is the evaluation of Z. The conditions (31) are equivalent to

♭g ◦ F + tF ◦ ♭g = 0, F2 = −Id + Z, F ◦ Z = 0, ‖Z ⊕ ξ‖g = 1. (32)

(The first condition (32) ensures that P and θ are skew symmetric, and g is the

neutral metric of T bigM .) Accordingly, we define (see [13] and [17])

Definition 16. A generalized almost contact structure on M is a couple (F ∈
End(T bigM), (Z, ξ) ∈ ΓT bigM) that satisfies (32). Equivalently the structure is

a system of classical tensor fields (P, θ, F, Z, ξ) that satisfies (31).

We mention a few examples [13]. If (F, Z, ξ) is a classical almost contact struc-

ture, then, (F, P = 0, θ = 0, Z, ξ) is a generalized, almost contact structure. If ξ
(ξ∧ (dξ)n|x �= 0, for all x ∈ M ) is a contact form, if Z is the corresponding Reeb

vector field (which means that ξ(Z) = 1 and i(Z)dξ = 0) and if θ = dξ, then,

φ(X) = ♭θ(X) − ξ(X)ξ is an isomorphism TM → T ∗M , and we get a bivec-

tor field P (α, β) = θ(φ−1α, φ−1β). Then, (F = 0, P, θ, Z, ξ) is a generalized,

almost contact structure. Thus, while a contact form has no canonically associ-

ated, classical, almost contact structure, it defines a canonical generalized, almost

contact structure. A similar situation holds for an almost cosymplectic structure

(ξ ∈ Ω1(M), θ ∈ Ω2(M)) where ξ ∧ θn nowhere vanishes.

A generalized, almost contact structure will be called normal if the corresponding

M -adapted, generalized, almost complex structure on M ×R is integrable. Thus,

the normality conditions are conditions i) - iv) of Section 1 applied to the tensor

fields (30). After some technical efforts, it turns out that the normality conditions
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are

[P, P ] = 0, R(P,F ) = 0, LZP = 0, LZθ = 0, L♯P αξ = 0

NF (X, Y ) = ♯P (i(X ∧ Y )dθ) − (dξ(X, Y ))Z
(33)

dθF (X1, X2, X3) =
∑

cycl(1,2,3)

dθ(FX1, X2, X3)

LZξ = 0, LZF = 0, (LFXξ)(Y ) − (LFY ξ)(X) = 0

and, if at no point has ♯P ◦ ♭θ the eigenvalue −1, the last three conditions (33)

follow from the other conditions [15].

It is also possible to characterize normality by properties of the couple (F , (Z, ξ)).

Proposition 17. The generalized, almost contact structure (F , (Z, ξ)) is normal

iff the following conditions hold

NF ((X, α), (Y, β)) = Z([(X, α), (Y, β)])
(34)

[(Z, 0),F(X, α)] = F(LZX, LZα), [F(X, α), (0, ξ)] = F(0, LXξ)

where the brackets are Courant brackets, in the first condition (X, α), (Y, β) ∈
ΓT bigM , and in the second and third condition (X, α) ∈ imF .

Proof: Conditions (32) imply (X, α) ∈ imF iff ξ(X) = 0, α(Z) = 0, whence,

T big(M × R) = imF ⊕ span{(Z, 0)} ⊕ span{(0, ξ)}
(35)

⊕span{(
∂

∂t
, 0)} ⊕ span{(0, dt)}.

On the other hand, from (30) we get

J (X + f
∂

∂t
, α + ϕdt)

= (FX + ♯P α + α(Z)
∂

∂t
− ϕZ, ♭θ − α ◦ F + ξ(X)dt − fξ)

= F(X, α) − ϕ(Z, 0) − f(0, ξ) + (α(Z)
∂

∂t
, ξ(X)dt)

whence

J (Z, 0) = (0, dt), J (0, ξ) = (
∂

∂t
, 0)

J (X, α) = F(X, α) for all (X, α) ∈ imF .
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Now, we get the normality conditions by asking NJ to vanish for all the possible

combinations of arguments in the various terms of decomposition (35). Moreover,

since NJ is a tensor on T bigM , we do not have to consider tensorial coefficients

and just take arguments (X, α) ∈ imF and (Z, 0), (0, ξ), ( ∂
∂t , 0), (0, dt).

The arguments ( ∂
∂t , 0), (0, dt) produce the important condition LZξ = 0, which is

equivalent with the first condition (34) for the arguments (X, α) = (Z, 0), (Y, β)
= (0, ξ).

If this condition is used, the arguments (X, α) ∈ imF , (0, dt) yield the second

condition (34), the arguments (X, α) ∈ imF , ( ∂
∂t , 0) yield the third condition

and the arguments (X, α), (Y, β) ∈ imF yield the first condition (34) for this

situation.

Finally, if we consider the arguments (X, α) ∈ imF, (Z, 0), (X, α) ∈ imF, (0, ξ),
respectively, we get the first condition (34) for these cases and the supplemen-

tary equality ξ([Z, FX + ♯P α]) = 0. The latter is satisfied since from (31) and

LZξ = 0 we have

i([Z, FX + ♯P α])ξ = LZi(FX + ♯P α)ξ − i(FX + ♯P α)LZξ = 0.

Other choices of the arguments do not lead to new conditions. �

We will say that a generalized, almost contact structure is non-degenerate if the

corresponding structure J of Definition 14 is non degenerate, i.e., the bivector

field π given by (30) is non degenerate. Equivalently, this means that Z ∧P n �= 0
at every point x ∈ M , hence TM = im ♯P ⊕ span{Z}. The corresponding

Hitchin pair (see the examples of generalized, complex structures in Section 1

or [7]) is (̟, F ) with F given by (30) and

̟ = ω + ξ ∧ dt

where ω ∈ Ω2(M) is the unique two-form that satisfies the conditions

i(♯P λ)ω = −λ + λ(Z)ξ, i(Z)ω = 0.

The F -compatibility condition ̟(FX, Y ) = ̟(X, FY ) is equivalent with

ω(FX, Y ) = ω(X, FY ), ξ ◦ F = 0.

Thus, ωF (X, Y ) = ω(FX, Y ) is a two-form, and we have ξ ∧ ωn �= 0 at every

point of M . (Use (31) while checking all the above.)

Then, the structure is normal iff ̟, ̟F ∈ Ω2(M ×R) are closed, which is equiv-

alent to

dξ = 0, dω = 0, dωF = 0.
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Hence, a non degenerate, generalized, almost contact structure is equivalent with

an almost cosymplectic structure ξ ∈ Ω1(M), ω ∈ Ω2(M) (ξ ∧ ωn �= 0) comple-

mented by F ∈ End(TM), which is compatible with ω and such that ξ◦F = 0. If

these tensor fields are given, we get Z by asking i(Z)ξ = 1, i(Z)ω = 0, we get P
from ♭̟◦♯π = −Id and we get θ from the conditions (31). In the case of a normal

structure, the almost cosymplectic structure is cosymplectic, i.e., dξ = 0, dω = 0
and we also have dωF = 0.

If instead of normality we require the generalized almost complex structure J ′ on

M × R with the classical tensor fields

A = F, π = exp(t)(P + Z ∧
∂

∂t
), σ = exp(−t)(θ + ξ ∧ dt)

(obtained by a conformal change of J in the sense of [15, 18]) to be integrable,

then the generalized structure is equivalent with the complemented, almost cosym-

plectic structure (ξ, ω = dξ, F ) where ξ is a contact form on M . This observa-

tion shows that the generalized, almost contact structures with the property that

J ′ is integrable (but, need not be non degenerate) deserve to be called general-

ized contact structures. The integrability of J ′ is equivalent with the fact that

the restriction of its i-eigenbundle to t = 0 is a E1-Dirac (Dirac-Jacobi, stable

Dirac-Jacobi) structure [9, 15]. These structures are integrable, generalized, al-

most contact in the sense of [9]; however, the latter is a larger class of structures

since the corresponding structure J is only required to be translation invariant.

The corresponding integrability conditions can be derived from the integrability

conditions of a generalized, almost complex structure given in Section 1 (it is

convenient to use Proposition 3.1 of [18] as an intermediary step) and the results

are equivalent to

[P, P ] = 2Z ∧ P, R(P,F ) = 0, LZP = 0, LZθ = 0, L♯P αξ = ♭θ♯P α

NF (X, Y ) = ♯P (i(X ∧ Y )dθ) − (dξ(X, Y ) − θ(X, Y ))Z
(36)

dθF (X1, X2, X3) =
∑

cycl(1,2,3)

dθ(FX1, X2, X3)

LZξ = 0, LZF = 0, (LFXξ)(Y ) − (LFY ξ)(X) = θF (X, Y ).

In particular, the tensor fields (P, Z) define a Jacobi structure on M . By com-

paring (36) with (33) we see that a generalized contact structure in this sense is

normal iff P = 0, θ = 0 and (F, Z, ξ) is a classical, normal, almost contact struc-

ture. On the other hand, if F = 0, since Z is not in the image of ♯P , the Nijenhuis

tensor condition in (36) implies θ = dξ and the structure reduces to that associated

to a contact form and its Reeb vector field.
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A different terminology is proposed in [13] by the introduction of two other no-

tions. Namely, since a generalized, almost contact structure F satisfies F 3 +F =
0 it has the eigenvalues ±i, 0 and corresponding eigenbundles E±, S ⊆ T bigM
where S = span{(Z, 0), (0, ξ)}. Denote L = E+ ⊕ span{(Z, 0)}, L∗ = E− ⊕
span{(0, ξ)}. In [13], F is a generalized, contact structure if L is closed under

Courant brackets and a strong, generalized, contact structure if both L and L∗

are closed under Courant brackets. The names were chosen because L is bracket-

closed in the case of a contact form, while L∗ is not. On the other hand, one

has the “strong contact” situation in the case of a cosymplectic structure. It is

easy to see that the ±i-eigenbundles T± of the corresponding, generalized, almost

complex structure J of M × R are given by

T± = E± ⊕ span{(Z, 0) ∓ i(0, dt), (0, ξ) ∓ i(
∂

∂t
, 0)}.

With this formula, we can check that a generalized, almost contact structure is

normal iff it is a strong, generalized, contact structure that satisfies the condition

LZξ = 0. All the examples of strong, generalized, contact structures given in

[13] (cosymplectic manifolds, the three-dimensional Heisenberg group) satisfy

the condition LZξ = 0, hence, also are examples of normal, generalized, almost

contact structures.

The normal, generalized, almost contact manifolds (M, P, θ, F, Z, ξ) have a nice

geometric structure, which we have described in [15].

Theorem 18. A generalized, normal, almost contact structure on M is equiva-

lent with the following system of geometric objects: 1) a vector field Z whose

trajectories define a one-dimensional foliation Z, 2) a complementary subbundle

νZ of TZ (TZ ⊕ νZ = TM), 3) a transversal, projectable, generalized, complex

structure J of Z with corresponding classical tensor fields F ∈ End(νZ), P ∈
Γ ∧2 νZ, θ ∈ Γ ∧2 (annZ), such that the following properties hold: i) νZ is in-

variant by the infinitesimal transformations Z, ♯P λ (for all λ ∈ annZ), ii) the

Ehresmann curvature of νZ is invariant by F .

Proof: If we start with the tensor fields P, θ, F, Z, ξ, since ξ(Z) = 1, Z never

vanishes and defines a foliation Z. A complementary bundle is defined by νZ =
ann ξ. By restricting (F, P, θ) to νZ, ν∗Z = annZ we get a generalized, almost

complex structure J on νZ and by its being complex and projectable we under-

stand that it is projection-related with generalized, complex structures on local

transversal submanifolds of Z. This property of J and properties i), ii) follow

from the normality conditions (33). The details are lengthy and we refer the inter-

ested reader to [15], where the theorem is proven for more general structures “of
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codimension h” (i.e., with h commuting vector fields Zh). We only recall that the

Ehresmann curvature is defined by

RνZ(X, Y ) = −prTZ[prνZX, prνZY ]

and its F -invariance means

RνZ(FX, FY ) = RνZ(X, Y ).

Conversely, if we start with Z, νZ, J with the required properties, we get a one-

form ξ by asking that ξ(Z) = 1, ξ|νZ = 0, and we have Z-adapted local coordi-

nates (z, yu) (i.e., Z is yu = 0 and Z = ∂/∂z) such that ξ = dz + ξudyu and νZ

has local bases Yu = ∂/∂yu − ξu(∂/∂z). Then, the tensor fields of J will be of

the form

P =
1

2
P uv(yw)Yu ∧ Yv, θ =

1

2
θuv(y

w)dyu ∧ dyv, F (Yu) = F v
u (yw)Yv.

Again, a careful comparison between properties (i), (ii) and the normality con-

ditions (33) shows that (F, P, θ, Z, ξ) is a normal, generalized, almost contact

structure on M [15]. �

Example 19. The total space of a flat principal circle bundle over a generalized,

complex manifold is a normal, generalized, almost contact manifold. Namely,

with the notation of Theorem 18, we will take Z to be the fundamental, vertical

vector field and ξ to be the flat connection form, then, νZ will be given by ξ = 0
and P, F, θ will be the lifts of the tensor fields of the generalized, complex structure

on the basis.

Remark 20. Conditions (36) similarly show that what we called a generalized,

contact manifold also has the foliation Z, its transversal distribution νZ and the

transversal, generalized, complex structure given by the projections of (F, P, θ)
but, we do not have a nice, corresponding, characterization of the whole structure.

Now, we shall bring a metric into the picture. With the classical case in mind,

we have to endow M with a generalized Riemannian metric G, equivalently, with

a pair (γ, ψ), where γ is a classical Riemannian metric and ψ ∈ Ω2(M), and

associate to it a generalized, Riemannian metric G̃ of M × R defined by a pair

G̃ ⇔ (Γ = exp(t)(γ + dt2), Ψ = exp(t)(ψ + κ ∧ dt))

where κ ∈ Ω1(M). We skip a discussion of generalized, almost contact, met-

ric structures, which seem to be less interesting, and directly go to generalized,

Sasakian structures [17].
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Definition 21. A generalized, Sasakian manifold is a generalized Riemannian

manifold (M, G) endowed with a translation invariant, generalized, almost com-

plex structure J of M × R such that, for some κ ∈ Ω1(M), (M × R, G̃,J ) is a

generalized, Kähler manifold.

Generalized, Sasakian manifolds exist. Indeed, if we define a bi-Sasakian struc-

ture as a pair of different, classical, Sasakian structures with the same metric, we

get

Proposition 22. A bi-Sasakian structure on M , supplemented by a one-form κ ∈

Ω1(M), defines a generalized Sasakian structure.

Proof: Since a Sasakian structure on (M, γ) is equivalent with a Kähler structure

on (M × R, Γ), a given bi-Sasakian structure (F±, Z±, ξ±, γ) is equivalent with

a bi-Hermitian structure on (M × R, Γ) and, if the latter is supplemented by a

closed form Ψ = exp(t)(ψ + κ ∧ dt), a generalized Kähler structure, i.e., a

generalized Sasakian structure on M , will arise. But, dΨ = 0 is equivalent with

dψ = 0, ψ + dκ = 0, therefore, a choice of κ will fix the generalized Sasakian

structure. �

The generalized, Sasakian structures of Proposition 22 will be said to be of bi-

Sasakian type.

Corollary 23. If (M, (F±, Z±, ξ±, γ), κ) is a generalized Sasakian structure of

bi-Sasakian type, then, one of the following three situations occur: i) F− =
−F+, Z− = −Z+, ξ− = −ξ+ (i.e., M is a Sasakian manifold with the two con-

jugated Sasakian structures), ii) the structures (F±, Z±, ξ±, γ) belong to a three-

Sasakian structure, iii) the metric γ must be of constant sectional curvature 1.

Proof: These are known results for bi-Sasakian structures, e.g., Lemma 8.1.16

and Lemma 8.1.17 in [4]. �

Since three-Sasakian manifolds are abundant, the same is true for generalized,

Sasakian structures of bi-Sasakian type. For instance, the unit spheres S4n+3

have two distinct three-Sasakian structures (Example 13.2.6 in [4]).

It seems to be difficult to find examples of non-bi-Sasakian type, but, we can

formulate the required conditions in the general case (a different formulation was

given in [17]).

Theorem 24. A generalized Sasakian structure on the manifold M is equivalent

with a pair (F±, Z±, ξ±, γ) of classical, normal, almost contact, metric structures



82 Izu Vaisman

that satisfy the following conditions

LZ+
Ξ+ = −LZ−

Ξ− (37)

Ξ± − dξ± + LZ±
LZ±

Ξ± = 0 (38)

dΞ± − ξ± ∧ LZ±
Ξ± + (dLZ±

Ξ±)c = 0 (39)

supplemented by a one-form κ ∈ Ω(M).

Proof: The upper index c in (39) comes from the following notation inspired by

complex geometry: for allλ ∈ Ωk(M), λc is the form given by

λc(X1, ..., Xk) = λ(F±X1, ..., F±Xk).

Let (G̃,J ) be the corresponding, generalized Kähler structure on M × R with

the corresponding structures (Γ, Ψ, J±). The latter are equivalent with a pair of

normal, almost contact metric structures (F±, Z±, ξ±, γ) on M .

Furthermore, the Kähler forms (29) of (Γ, J±) have to satisfy the characteristic

conditions (26) of a generalized Kähler structure. These conditions are

dω±(J±(X + a
∂

∂t
), J±(Y + b

∂

∂t
), J±(U + u

∂

∂t
))

= ±dΨ(X + a
∂

∂t
, Y + b

∂

∂t
, U + u

∂

∂t
) (40)

or, equivalently (use (28), (29), (40))

dΞ±(F±X, F±Y, F±U) +
∑

cycl

u[i(Z±)dΞ±](F±X, F±Y )

−
∑

cycl

ξ±(U)(Ξ± − dξ±)(F±X + aZ±, F±Y + bZ±)

= ±{dψ(X, Y, U) +
∑

cycl

u(ψ + dκ)(X, Y )} (41)

where the cyclic permutations are on the arguments (X, a), (Y, b), (U, u).

Furthermore, (40) may be decomposed into the following two cases 1) a = 0, b =
0, u = 1, U = 0 and 2) a = b = u = 0. In case 1), (41) reduces to

[i(Z±)dΞ±](F±X, F±Y ) + {ξ± ∧ [i(Z±)(Ξ± − dξ±)] ◦ F±}(X, Y )

= ±(ψ + dκ)(X, Y )
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which, by taking into account i(Z±)Ξ± = 0, ξ±(Z±) = 1, i(Z±)dξ± = LZ±
ξ±

= 0 (because of normality), becomes

[LZ±
Ξ±](F±X, F±Y ) = ±(ψ + dκ)(X, Y ). (42)

But, Ξ±(F±X, F±Y ) = Ξ±(X, Y ) and, by normality, LZ±
F± = 0. Thus, we

see that (42) may be written under the form

ψ + dκ = LZ+
Ξ+ = −LZ−

Ξ−. (43)

Formula (43) yields (37) and defines ψ if kappa is given.

In case 2), (41) reduces to

dΞ±(F±X, F±Y, F±U) −
∑

cycl

ξ±(U)[(Ξ± − dξ±)(F±X, F±Y )]

= ±dψ(X, Y, U). (44)

Since TM = imF± ⊕ span{Z±}, (44) is equivalent with the pair of conditions

where (X, Y, U) are taken: i) (F±X, F±Y, Z±), ii) (F±X, F±Y, F±U). In case

i) (44) becomes

Ξ± − dξ± = ∓[i(Z±)dψ]c (45)

and in case ii) (44) becomes

dΞ± − ξ± ∧ (i(Z±)dΞ±) = ∓(dψ)c. (46)

Thus, the conditions that characterize the generalized Sasakian case are (43), (45)

and (46). Then, since (43) gives dψ = dLZ+
Ξ+ = −dLZ−

Ξ− we may replace

(45) and (46), respectively, by

Ξ± − dξ± = −[i(Z±)d(LZ±
Ξ±)]c

dΞ± − ξ± ∧ (i(Z±)dΞ±) = −(dLZ±
Ξ±)c.

Above, we may replace i(Z±)dΞ± = LZ±
Ξ± and i(Z±)d(LZ±

Ξ±) = LZ±
LZ±

Ξ
(because of i(Z±)Ξ± = 0), and [LZ±

LZ±
Ξ]c = LZ±

LZ±
Ξ. The results exactly

are (38) and (39). �

Remark 25. The two-form LZΞ might be called the derived fundamental form.

On the other hand, a classical, normal, almost contact, metric structure (F, Z, ξ, γ)
such that

Ξ − dξ + LZLZΞ = 0, dΞ − ξ ∧ LZΞ + (dLZΞ)c = 0 (47)
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might be called a remotely Sasakian structure. The last term of the left hand side

of the second condition (47) is also equal to LZ(dΞ)c. It follows easily that a

Sasakian structure is remotely Sasakian and a remotely Sasakian structure that

satisfies the condition LZLZΞ = 0 is Sasakian. With this terminology, a gen-

eralized Sasakian structure is equivalent with a pair (F±, Z±, ξ±, γ) of remotely

Sasakian structures, with the same metric, and with sign-opposite derived funda-

mental forms, complemented by an arbitrary one-form κ. Unfortunately, we do

not have a real understanding of the non-Sasakian, remotely Sasakian structures.

We mention the following corollaries of Theorem 24.

Corollary 26. A pair (F±, Z±, ξ±, γ) of normal, almost contact, metric struc-

tures, with vanishing derived fundamental forms (equivalently, with LZ±
γ = 0)

corresponds to a generalized, Sasakian structure iff the structures are Sasakian.

Proof: If there is a corresponding generalized, Sasakian structure, the conclusion

follows from (38). Conversely, if the structures are Sasakian, the left hand sides of

(38), (39) vanish and we get a generalized, Sasakian structure by adding ψ = −dκ

for an arbitrary one-form κ. �

Corollary 27. If the form ψ of a generalized Sasakian manifold is a closed two-

form, the corresponding structures (F±, Z±, ξ±, γ) M are classical Sasakian

structures and ψ must be an exact form.

Proof: If dψ = 0, then (43) yields dLZ±
Ξ± = 0 and the conclusion follows from

(38). �

Remark 28. There is a peculiarity in the terminology that we have chosen: a gen-

eralized Sasakian structure in the sense of Definition 21 may not be a generalized,

almost contact structure. Our terminology is motivated by the equivalence with a

pair of classical, normal, almost contact metric structures (F±, Z±, ξ±, γ) on M

(satisfying some supplementary conditions). Such a pair provides the pair J± of

translation invariant, complex structures on M × R. But, if we use (Γ, Ψ, J±) to

reconstruct the generalized structure J (using formulas (14)), we get a translation

invariant structure that may not be M -adapted.
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