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Abstract

Evidence is mounting that ConvNets are the best repre-
sentation learning method for recognition. In the common
scenario, a ConvNet is trained on a large labeled dataset
and the feed-forward units activation, at a certain layer of
the network, is used as a generic representation of an in-
put image. Recent studies have shown this form of repre-
sentation to be astoundingly effective for a wide range of
recognition tasks. This paper thoroughly investigates the
transferability of such representations w.r.t. several factors.
It includes parameters for training the network such as its
architecture and parameters of feature extraction. We fur-
ther show that different visual recognition tasks can be cat-
egorically ordered based on their distance from the source
task. We then show interesting results indicating a clear
correlation between the performance of tasks and their dis-
tance from the source task conditioned on proposed factors.
Furthermore, by optimizing these factors, we achieve state-
of-the-art performances on 16 visual recognition tasks.

1. Introduction

The history of convolutional networks (ConvNets) traces
back to early work on digit and character recognition [ 1,

]. Prior to 2012, though, in computer vision field, neural
networks were more renowned for their propensity to overfit
than for solving difficult visual recognition problems. And
within the computer vision community it would have been
considered ludicrous, given the overfitting problem, to think
that they could be used to train image representations for
transfer learning.

However, these perceptions have had to be radically al-
tered by the experimental findings of the last three years.
First, deep networks [19, 13], trained using large labelled
datasets such as ImageNet [1], produce by a huge margin
the best results on the most challenging image classification
[1] and detection datasets [9]. Second, these deep ConvNets
learn powerful generic image representations [32, 8, 24, 44]
which can be used off-the-shelf to solve many visual recog-
nition problems [32]. In fact the performance of these rep-
resentations is so good that at this juncture in computer vi-
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Figure 2: The improvements achieved by optimizing the transfer-
ability factors are significant. This optimization boosted the performance
by up to 50% relative error reduction. The violet bars show the perfor-
mance of non-ConvNet state of the art systems on different datasets. The
pink stacked bars shows the improvement when using off-the-shelf Con-
vNet features with standard settings and a linear SVM classifier. The burnt
orange stacked bars show the boost gained by finding the best transferabil-
ity factors for each task. Detailed results can be found in Table 6. The
accuracy is measured using the standard evaluation criteria of each task,
see the references in Table 2.

sion, a deep ConvNet image representation combined with
a simple classifier [32, 13] should be the first alternative to
try for solving a visual recognition task.

Following this advice you may ask, if I use ImageNet to
train a deep ConvNet representation: How can I then maxi-
mize the performance of the resulting representation for my
particular target task? The question becomes especially
pertinent if you only have a limited amount of labelled train-
ing data, time and computational resources because training
a specialized deep ConvNet from scratch is not an option.
The question rephrased in more technical terminology is:
how should a deep ConvNet representation be learned and
adjusted to allow better transfer learning from a source task
producing a generic representation to a specific target task?
In this paper we identify the relevant factors and demon-
strate, from experimentally evidence, how they should be
set given the categorization of the target task.

The first set of factors that effect the transferability of
a ConvNet representation are those defining the architec-
ture and training of the initial deep ConvNet. These include
the source task (encoded in the labelled training data), net-
work width and depth, optimization parameters and whether
you fine-tune the network using labelled data from the target
task. The next set, after learning the “raw” representation,
are what we term post-learning parameters. These include
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Figure 1: Transferring a ConvNet Representation ConvNet representations are effective for visual recognition. The picture above shows the pipeline

of transferring a source ConvNet representation to a target task of interest. We define several factors which control the transferability of such representations

to different tasks (questions with blue arrow). These factors come into play at different stages of transfer. Optimizing these factors is crucial if one wants to

maximize the performance of the transferred representation (see Figure 2).

the network layer from which the representation is extracted
and whether the representation should be post-processed by
dimensionality reduction.

Figure 1 gives an graphical overview of how we transfer
a ConvNet representation trained for a source task to target
task and the factors we consider that affect its transferabil-
ity and at what stage in the process the factors are applied.
While figure 2 shows how big a difference an optimal con-
figuration for these factors can make for 17 different target
tasks.

How should you set these factors? Excitingly we observe
that there is an interesting pattern for these factors. Their
optimal settings are clearly correlated with the distance of
the target task’s distance from the source task. When oc-
casionally there is an exception to the general pattern there
is a plausible explanation. Table 1 lists some of our find-
ings', driven by our quantitative results, and shows the best
settings for the factors we consider and illustrates the corre-
lations we mention.

To summarize deep ConvNet representation are very
amenable to transfer learning. The concrete evidence we
present for this assessment is that in 16 out of 17 diverse
standard computer vision databases the approach just de-
scribed, based on a deep ConvNet representation trained
with ImageNet and optimal settings of the transferabil-
ity settings, outperforms all published non-ConvNet based
methods, see Table 6.

Contributions of the paper

e We systematically identify and list the factors that af-
fect the transferability of ConvNet representation for
visual recognition tasks (Table 1, Section 3).

e We provide exhaustive experimental evidence showing
how these factors should be set (Table 1, Section 3).

e We show these settings follow an interesting pattern
which is correlated with the distance between the
source and target task, (Figures 3-7 in Section 3).

Unterestingly Yosinski et al.[43] just before submission reported on
observing similar correlations for the choice of representation layer

2In general the network should be as deep as possible but in the final
experiments a couple of the instance retrieval tasks defied this advice!

Target task
Fine-
Source task Grained Instance
Factor ImageNet s recognition s retrieval
Early stopping Don’t do it

Network depth As deep as possible?
Network width Wider Moderately wide
Fine-tuning = Yes, more improvement with more labelled data ==

Dim. reduction = Original dim Reduced dim

Rep. layer Later layers Earlier layers ==

Table 1: Best practices to transfer a ConvNet representation trained for
the source task of ImageNet to a target tasks summarizing some of our find-
ings. The target tasks above are listed from left to right according to their
increased distance from the source task (ImageNet image classification).
The table summarizes qualitatively the best setting for each factor affect-
ing a ConvNet’s transferability given the target task. Although the optimal
setting for some factors is similar for all tasks we considered, for other
factors their optimal settings depend on the target task’s distance from the
source task. Table 2 shows the ordering of all tasks. For more detailed
analysis please refer to section 3.

e By optimizing the transferability factors we signifi-
cantly improve (up to 50% error reduction) state-of-
the-art on 16 popular visual recognition datasets (Ta-
ble 6) using a linear SVM for classification tasks and
euclidean distance for instance retrieval.

Related Works

The concept of learning from related tasks using neural net-
works and ConvNets has appeared earlier in the literature
see [28, 3, 14, 21] for a few examples. We describe two
very recent papers which are the most relevant to our find-
ings in this paper.

In [2] the authors investigate experimentally issues re-
lated to the training of ConvNets for the tasks of image
classification (SUN image classification dataset) and object
detection (PASCAL VOC 2007 & 2012). The result of two
of their investigations are especially relevant to us. The first
is that they show fine-tuning a network, pre-trained with the
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Increasing distance from ImageNet
—_

Image Classification Attribute Detection

Fine-grained Recognition

PASCAL VOC Object [9]
MIT 67 Indoor Scenes [29]
SUN 397 Scene [41]

H3D human attributes [6]
Object attributes [10]
SUN scene attributes [26]

Cat&Dog breeds [25]
Bird subordinate [39]
102 Flowers [23]

VOC Human Action [9]
Stanford 40 Actions [42]
Visual Phrases [30]

Holiday scenes [16]
Paris buildings [27]
Sculptures [4]

Table 2: Range of the 15 visual recognition tasks sorted categorically by their similarity to ILSVRC12 object image classification task.

ImageNet dataset, towards a target task, image classifica-
tion and object detection, has a positive effect and this ef-
fect increases when more data is used for fine-tuning. They
also show that when training a network with ImageNet one
should not perform early stopping even if one intends to
transfer the resulting representation to a new task. These
findings are consistent with a subset of ours though our con-
clusions are supported by a larger and wider set of experi-
ments including more factors.

Yosinski et al. [43] interestingly show that the transfer-
ability of a network trained to perform one source task to
solve another task is correlated with the distance between
the source and target tasks. Yosinski et al.’s source and
target tasks are defined as the classification of different sub-
sets of the object categories in ImageNet. Their definition of
transferability comes from their training set-up. First a Con-
vNet is trained to solve the source task. Then the weights
from the first n layers of this source network are transferred
to a new ConvNet that will be trained to solve the target
task. The rest of the target ConvNet’s weights are initialized
randomly. Then the random weights are updated via fine-
tuning while the transferred weights are kept fixed. They
show that for larger n the final target ConvNet, learned in
this fashion, performs worse and the drop in performance
is bigger for the target tasks most distant from the source
task. This result corresponds to our finding that the per-
formance of the layer used for the ConvNet representation
is correlated to the distance between the source and target
task. Yosinki et al. also re-confirm that there are perfor-
mance gains to be made by fine-tuning a pre-trained net-
work towards a target task. However, once again our results
are drawn from a wide range of target tasks which are being
used in the field of computer vision. Furthermore, we have
investigated many more factors than just the representation
layer as listed in Table 1.

2. Range of target tasks examined

To evaluate the transferability of the ConvNet represen-
tation we use a wide range of 17 visual recognition tasks.
The tasks are chosen from 5 different subfields of visual
recognition: object/scene image classification, visual at-
tribute detection, fine-grained classification, compositional
semantic recognition, instance retrieval (see Table 2). There
are multiple ways one could order these target tasks based

on their similarity to the source task of object image classifi-
cation as defined by ILSVRC12. Table 2 gives our ordering
and we now give the rationale for the ranking.

The group of tasks we consider furthest from the source
task is instance retrieval. Each task in this set has no explicit
category information and is solved by explicit matching to
exemplars. While all the other group of tasks involve clas-
sification problems and require an explicit learning phases.

We place attribute detection earlier than fine-grained
recognition because these visual attributes® are usually
the explanatory factors which separate the original object
classes in ILSVRC and are thus expected to be naturally se-
lected/highlighted by the ConvNet. Also, some attributes
(e.g. four-legged) are defined as a superset of object classes
(e.g. cat, dog, etc.). Another aspect of this pairwise or-
dering is that fine-grained recognition involves sometimes
very subtle differences between members of a visual cate-
gory. We suspect that a network trained for higher levels
of object taxonomy (e.g. flowers in general) would not be
sensitive to micro-scale visual elements necessary for fine-
grained recognition.

Next comes perhaps the most interesting and challenging
set of category tasks — the compositional recognition tasks.
These tasks include classes where the type of interactions
between objects is the key indicator and thus requires more
sophistication to recognize than the other category recogni-
tion tasks.

There are other elements which determine the closeness
of a target task to the source task. One is the distribution of
the semantic classes and images used within each category.
For example the Pet dataset [25] is the closest of the fine-
grained tasks because the ILSVRC classes include many
different dog breeds. While, sometimes the task just boils
down to the co-occurrence of multiple ILSVRC classes like
the MIT indoor scenes. However, compositional recogni-
tion tasks usually encode higher level semantic concepts to
be inferred from the object interactions, for instance a per-
son holding violin is not considered a positive sample for
playing the violin in [9] nor is a person standing beside a
horse considered as the action “riding horse”.

3 As an aside, depending on the definition of an attribute, the placement
of an attribute detection task could be anywhere in the spectrum. For in-
stance, one could define a fine-grained, local and compositional attribute
which would then fall furthest from all other tasks (e.g. “wearing glasses”
in H3D dataset).
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Figure 3: Network Width: Over-parametrized networks (OverFeat)
can be effective when the target task is close to the labelled data. However,
the performance on more distant tasks can suffer from over-specialization
when the number of network parameters is increased. But overall under-
parametrized networks (Tiny) are unable to generalize as well. Since the
Tiny network has 10 times fewer parameters than OverFeatwhile pre-
serving most of the performance, it could be useful for scenarios where
real-time computation is an issue.

3. Experiments

Now, we analyze the effect of each individual factor on
the transferability of the learnt representation. We divide
the factors into those which should be considered before
learning a representation (learning factors) and those which
should be considered when using an off-the-shelf network
model (post-learning factors).

3.1. Learning Factors

3.1.1 Network Width

The ConvNet AlexNet[19], the first very large network
successfully applied to the ImageNet challenge, has
around 60 million parameters consisting of ~5 million
parameters in the convolution layers and ~55 million
parameters in its fully connected layers. Although this
appears to be an unfeasibly large parameter space the
network was successfully trained using the ImageNet
dataset of 1.2 million images labelled with 1000 semantic
classes. More recently, networks larger than AlexNet
have been trained, in particular OverFeat[31]. Which
of these networks produces the best generic image rep-
resentation and how important is its size to its performance?

Here we examine the impact of the network’s size (keep-
ing its depth fixed) on different tasks including the original
ImageNet image-level object classification. We trained 3
networks of different sizes using the ILSVRC 2012 dataset
and also included the OverFeat network in our experi-
ments as the large network. Each network has roughly twice
as many parameters as we progress from the smallest to the
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Figure 4: Network Depth: Over-parametrizing networks by the num-
ber of convolutional layers is effective for nearly all the target tasks. While
a saturation can be observed in some tasks there is no significant perfor-
mance drop as opposed to the trend observed when over-parametrizing by
increasing its width. The number on the x-axis indicates the number of
convolutional layers of the network. The representation is taken from the
first fully connected layer right after the last convolutional layer.

largest network. For all the networks we kept the number
of units in the 6th layer, the first fully connected layer, to
4096. It is this layer that we use for the experiments where
we directly compare networks. The number of parameters
is changed mainly by halving the number of kernels and the
number of fully connected neurons (except the fixed one).

Figure 3 displays the effect of changing the network size
on different visual recognition tasks/datasets. The largest
network works best for Pascal VOC object image classi-
fication, MIT 67 indoor scene image classification, UITUC
object attribute, and Oxford pets dataset. On the other
hand, for all the retrieval tasks the performance of the over-
parametrized OverFeat network consistently suffers be-
cause it appears the generality of its representation is less
than those of the smaller networks. Another interesting ob-
servation is that, if the computational efficiency at test time
is critical, one can decrease the number of network param-
eters by orders of 2 (Small or Tiny network) for different
tasks but the degradation of the final performance is sublin-
ear in some cases.

3.1.2 Network Depth

Increasing the network width (number of parameters at each
layer) is not the only way of over-parameterizing a Con-
vNet. In fact, [36, 34] have shown that deeper convo-
lutional networks with more layers achieve better perfor-
mance on the ILSVRC14 challenge. In a similar spirit, we
over-parametrize the network by increasing the number of
convolutional layers before the fully connected layer from
which we extract the representation. Figure 4 shows the
results by incrementally increasing the number of convolu-
tional layers from 5 to 13. As this number is increased, the
performance on nearly all the datasets increases.
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Figure 5: Early Stopping: Plotted above is the performance of the
representation extracted from layer 6 of the AlexNet ConvNet versus the
number of iterations of SGD used to train the initial network. It can be
seen that early stopping, which can act as a regularizer, does not help to
produce a more transferable representation.

The only tasks for which the results degrade are the re-
trieval tasks of UKB and Holidays. Interestingly, these two
tasks involve measuring the visual similarity between spe-
cific instances of classes strongly presented in ImageNet
(e.g. a specific book, bottle or musical instrument in UKB,
and wine bottle, Japanese food in Holidays dataset). It is,
thus, expected that the representation becomes more invari-
ant to instance level differences as we increase the complex-
ity of the representation with more layers.

If we compare the effect of increasing network depth
to network width on the final representation’s performance,
we clearly see that increasing depth is a much more stable
over-parametrization of the network. Both increasing width
and depth improve the performance on tasks close to the
source task. However, increasing the width seems to harm
the transferability of features to distant target tasks more
than increasing depth does. This could be attributed to the
fact that increasing depth is a more efficient (in terms of the
number of parameters) way of representing more complex
patterns. Finally, more layers means more sequential pro-
cessing which hurts the parallelization. We have observed
the computational complexity for learning and using deep
ConvNets increases super-linearly with the number of lay-
ers. So, learning a very wide network is computationally
cheaper than learning a very deep network. These issues
means the practitioner must decide on the trade-off between
speed and performance.

3.1.3 Early Stopping

Early stopping is used as a way of controlling the general-
ization of a model. It is enforced by stopping the learning
before it has converged to a local minima as measured by
monitoring the validation loss. This approach has also been
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Figure 6: Representation Layer: Efficacy of representations extracted
from AlexNet’s different layers for different visual recognition tasks. A
distinct pattern can be observed: the further the task moves from object
image classification, the earlier layers are more effective. For instance,
layer 8 works best for PASCAL VOC image classification which is very
similar to ImageNet while the best performance for all retrieval tasks is at
layer 6.

used to improve the generalization of over-parametrized
networks [5]. It is plausible to expect that the transferability
increases with generalization. Therefore, we investigate the
effect of early stopping on the transferability of learnt repre-
sentation. Figure 5 shows the evolution of the performance
for various target tasks at different training iterations. The
performance of all tasks saturates at 200K iterations for all
the layers and even earlier for some tasks. Surprisingly, it
can be seen that early stopping does not improve the trans-
ferability of the features whatsoever.

3.1.4 Source Task

As discussed earlier, the most important factor for a learnt
representation to be generic is the properties of the source
task and its distance from the target task. The recent de-
velopment of another large scale dataset called the Places
Dataset [47] labelled with scene classes enabled us to an-
alyze this factor. Table 3 shows the results for different
source tasks of ImageNet, Places, and a hybrid network.
The hybrid network is made by combining the ImageNet
images with those of the Places dataset. The label set is in-
creased accordingly [47]. It can be observed that results for
the tasks very close to the source tasks are improved with
the corresponding models (MIT, SUN for Places network).
Another interesting observation is that ImageNet features
seem to achieve a higher level of generalization for further
away tasks. One explanation is that the set of labels is more
diverse. Since the number of images in ImageNet is smaller,
it shows the importance of diversity of labels as opposed to
the number of annotated images when the objective is to
achieve a more transferable representation.
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Image Classification Attribute Detection

Fine-grained Recognition

Source task VOC07 MIT SUN H3D UIUC Pet CUB Flower Stanf. Act40 Oxf. Scul. UKB
ImageNet 71.6 64.9 49.6 73.8 90.4 78.4 62.7 90.5 58.9 71.2 52.0 93.0
Places 68.5 69.3 55.7 68.0 88.8 49.9 422 82.4 53.0 70.0 442 88.7
Hybrid 72.7 69.6 56.0 72.6 90.2 72.4 58.3 89.4 58.2 72.3 52.3 922
Concat 73.8 70.8 56.2 74.2 90.4 75.6 60.3 90.2 59.6 72.1 54.0 93.2

Table 3: Source Task: Results on all tasks using representations optimized for different source tasks. ImageNet is the representation used for all

experiments of this paper. Places is a new ConvNet trained on 3.5M images labeled with scene categories [

]. Hybrid is a model proposed by Zhou et al.

[47] which combines the ImageNet and Places datasets and train a single network for the combination. Concat indicates results of concatenating the feature
obtained from ImageNet ConvNet and Places ConvNet for each input image. All results are for first fully connected layer (FC6).

The Hybrid model boosts the transferability of the Places
network but still falls behind the ImageNet network for
more distant tasks. This could be again due to the fact that
the number of images from the Places dataset dominates
those of the ImageNet dataset in training the Hybrid model
and as a consequence it is more biased toward the Places
Network. In order to avoid this bias, in another experiment,
we combined the features obtained from the ImageNet net-
work and the Places network as opposed to Hybrid network,
and interestingly this late fusion works better than Hybrid
model (the Hybrid model where the number of dimensions
of the representation is increased to 8192 works worse [7]).

3.2. Post-learning Factors
3.2.1 Network Layer

Different layers of a ConvNet potentially encode different
levels of abstraction. The first convolutional layer is usu-
ally a collection of Gabor like gray-scale and RGB filters.
On the other hand the output layer is directly activated by
the semantic labels used for training. It is expected that the
intermediate layers span the levels of abstraction between
these two extremes. Therefore, we used the output of differ-
ent layers as the representation for our tasks’ training/test-
ing procedures. The performance of different layers of the
pre-trained ConvNet (size: Medium) on ImageNet is shown
in Figure 6 for multiple tasks.

Observe the same pattern as for the effect of network
size. The last layer (1000-way output) is only effective for
the PASCAL VOC classification task. In the VOC task
the semantic labels are a subset of those in ILSVRCI12,
the same is true for the Pet dataset classes. The second
fully connected layer (Layer 7) is most effective for the
UIUC attributes (disjoint groups of ILSVRC12),and MIT
indoor scenes (simple composition of ILSVRC12 classes).
The first fully connected layer (Layer 6) works best for the
rest of the datasets which have semantic labels further away
from those used for optimizing the ConvNet representation.
An interesting observation is that the first fully connected
layer demonstrates a good trade-off when the final task is
unknown and thus is the most generic layer within the scope

of our tasks/datasets.

Although the last layer units act as probabilities for Im-
ageNet classes, note that results using the last layer with
1000 outputs are surprisingly effective for almost all the
tasks. This shows that a high order of image-level infor-
mation lingers even to the very last layer of the network.
It should be mentioned that obtaining results of instance
retrieval on convolutional layers is computationally pro-
hibitive and thus they are not included. However, in a sim-
plified scenario, the retrieval results showed a drastic de-
crease from layer 6 to 5.

3.2.2 Dimensionality Reduction

We use principal component analysis (PCA) to reduce the
dimensionality of the transferred representation for each
task. We observed that dimensionality reduction helps all
the instance retrieval tasks (most of the time insignificantly
though). The main difference between the retrieval task and
other ones is that in retrieval we are interested in the Eu-
clidean distances between samples in the ConvNet repre-
sentational space. In that respect, PCA can decrease the
curse of dimensionality for L2 distance. However, one
could expect that dimensionality reduction would decrease
the level of noise (and avoid potential over-fitting to irrel-
evant features for each specific task). Figure 8 in the sup-
plementary paper shows the results for different tasks as we
reduce the dimensionality of ConvNet representations. The
results show that the relative performance boost gained by
additional dimensions is correlated with the distance of the
target task to the original task. We see that saturations ap-
pear earlier for the tasks closer to ImageNet. It is amazing
to know that effective dimensionality of the ConvNet repre-
sentations (with 4096 dims) used in these experiments is at
most 500 for all visual recognition tasks from different do-
mains. Another interesting observation is that many of the
tasks work reasonably well with very low number of dimen-
sions (5-50 dimensions). Remember that these features are
obtained by a linear transformation of the original ConvNet
representation. This can indicate the capability of ConvNets
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Representation MIT CUB  Flower
Medium FC7 659 629 90.4

Medium FT 66.3 66.4 914

Table 4: Fine-tuning: The first row shows the original ConvNet results.
The second row shows the results when we fine-tune the ConvNet toward
the target task and specialize the learnt representation. Fine-tuning is con-
sistently effective. The proportional improvement is higher for the more
distant tasks from ImageNet.

in linear factorization of the underlying generating factors
of semantic visual concepts.

3.2.3 Fine-tuning

Frequently the goal is to maximize the performance of a
recognition system for a specific task or a set of tasks. In
this case intuitively specializing the ConvNet to solve the
task of interest would be the most sensible path to take.
Here we focus on the issue of fine-tuning the ConvNet’s
representation with labelled data similar to those we expect
to see at test time.

[13, 7] have shown that fine-tuning the network on a tar-
get task helps the performance. Fine-tuning is done by ini-
tializing a network with weights optimized for ILSVRC12.
Then, using the target task training set, the weights are up-
dated. The learning rate used for fine-tuning is typically
set to be less than the initial learning rate used to optimize
the ConvNet for ILSVRC12. This ensures that the features
learnt from the larger dataset are not forgotten. The step
used to shrink the learning rate schedule is also decreased
to avoid over-fitting. We have conducted fine-tuning on the
tasks for which labels are mutually exclusive. The table in
Figure 4 shows the results. The gains made by fine-tuning
increase as we move further away from the original image-
level object classification task. Fine-tuning on a relatively
small target dataset is a fast procedure. With careful selec-
tion of parameters it is always at least marginally helpful.

3.2.4 Increasing training data

Zhu et al.[48] suggest that increasing data is less effective
than increasing the complexity of models or richness of rep-
resentation and the former is prone to early performance sat-
uration. Those observations are made using HOG features
to perform object detection. Here, we want to investigate
whether we are close to saturation point with ConvNet rep-
resentations.

To measure the effect of adding more data to learn the
representation we consider the challenging task of PASCAL
VOC 2007 object detection. We follow the procedure of
Girshick et al.[ 1 3] by fine-tuning the A1exNet network us-
ing samples from the Oxford Pet and Caltech-UCSD birds

Representation bird cat dog
ConvNet [13] 385 514 460
ConvNet-FT VOC [13] 50.0 60.7 56.1

ConvNet-FT VOC+CUB+Pet  51.3  63.0  57.2

Table 5: Additional data (fine-tuning): The table presents the mAP
accuracy of a sliding window detector based on different ConvNet repre-
sentations for 3 object classes from VOC 2007. ImageNet contains more
than 100,000 dog images and Pascal VOC has 510 dog instances. For the
representation in the second row, image patches extracted from the VOC
training set are used to fine-tune the ConvNet representation[!3]. It re-
sults in a big jump in performance. But including cat, dog and bird images
from the Oxford Pet and Caltech bird datasets boosts the performance even
further.

datasets. We show that although there exists a large num-
ber of samples for those classes in ImageNet (more than
100,000 dogs) adding around ~3000 dogs from the Oxford
Pet dataset helps the detection performance significantly.
The same improvement is observed for cat and bird, see
the table in Figure 4. This further adds to the evidence that
specializing a ConvNet representation by fine-tuning, even
when the original task contained the same labels, is helpful.

Furthermore, we investigate how important it is to in-
crease training data for the original ConvNet training. We
train two networks, one using SUN397 [41] with 130K im-
ages and the other using the Places dataset [47] with 2.5M
images. Then we test the representations on the MIT Indoor
Scenes dataset. The representation trained from SUN397
(62.6%) works significantly worse than that of the Places
dataset (69.3%). The same trend is observed for other
datasets (refer to Table 7 in supplementary material). Since
ConvNet representations can model very rich representa-
tions by increasing its parameters, we believe we are still
far from saturation in its richness.

4. Optimized Results

In the previous section, we listed a set of factors which
can affect the efficacy of the transformed representation
from a generic ConvNet. We studied how best values of
these factors are related to the distance of the target task
to the ConvNet source task. Using the know-hows ob-
tained from these studies, now we transfer the ConvNet
representations using “Optimized” factors and compare the
”Standard” ConvNet representation used in the field. The
”Standard” ConvNet representation refers to a ConvNet of
medium size and depth 8 (AlexNet) trained on 1.3M im-
ages of ImageNet, with the representation taken from first
fully connected layer (FC6). As can be seen in Table 6 the
remaining error of the ”Standard” representation can be de-
creased by a factor of up to 50% by optimizing its transfer-
ability factors.
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Image Classification Attribute Detection Fine-grained Recognition

VOC07 MIT SUN SunAtt UIUC H3D Pet CUB Flower VOCa. Act40 Phrase Holid. UKB Oxf. Paris Scul.

[ e e N e O L I ) I ) R N £ I S 10) (R ) N CLC) N 0 I 0 B, O

non-ComvNet 7,1 g5 375 875 902 691 592 627 902 696 457 415 822 894 8L7 782 454

Deep Standard ~ 71.8 64.9 49.6 91.4 90.6  73.8 785 62.8 90.5 69.2 58.9 71.3 86.2 93.0 73.0 81.3 53.7

Deep Optimized* 80.7 71.3 56.0 92.5 91.5 746 88.1 67.1 91.3 74.3 66.4 82.3 90.0 96.3 79.0 85.1 67.9

Err. Reduction  32% 18% 13% 13% 10% 4% 45% 12% 8% 17% 18% 22% 28% 47% 22% 20% 31%

Source Task ImgNet Hybrid Hybrid Hybrid ImgNet ImgNet ImgNet ImgNet ImgNet ImgNet ImgNet ImgNet Hybrid ImgNet ImgNet ImgNet ImgNet

Network Width  Medium Medium Medium Medium Large Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium Medium

Network Depth® 16 8 8 8 8 16 16 16 16 16 16 16 8 8 16 16 16
Rep. Layer last last last last 2nd last 2nd last 2nd last 3rd last 3rdlast 3rdlast 3rdlast 3rdlast 4thlast 4thlast 4thlast 4thlast 4th last
PCA X X X X X X X X X X X X v v v v v
Pooling X X X X X X X X X X X X I1x1 1x1 2x2 2x2 3x3

Table 6: Final Results: Final results of the deep representation with optimized factors along with a linear SVM compared to the non-ConvNet state of
the art. In the bottom half of the table the factors used for each task are noted. We achieve up to a 50% reduction of error by optimizing transferability
factors. Relative error reductions refer to how much of the remaining error (from Deep Standard) is decreased. "Deep Standard” is the common choice of
parameters - a Medium sized network of depth 8 trained on ImageNet with representation taken from layer 6 (FC6).

5. Implementation details 6. Conclusion

The Caffe software [17] is used to train our ConvNets.
Liblinear is used to train the SVMs we use for classifica-
tion tasks. Retrieval results are based on the L2 distance
of whitened ConvNet representations. All parameters were
selected using 4-fold cross-validation. Learning choices are
the same as [32]. In particular, the pipeline for classifica-
tion tasks is as follows: we first construct the feature vector
by getting the average ConvNet feature vector of 12 jittered
samples of the original image. The jitters come from crops
of 4 corners of the original image, its center and the whole
image resized to the size needed by the network (227x227)
and their mirrors. We then L2 normalize the ConvNet fea-
ture vector, raise the absolute value of each feature dimen-
sion to the power of 0.5 and keep its sign. We use linear
SVM trained using one-versus-all approach for multilabel . .
tasks (e.g. PASCAL VOC image classification) and linear Secogd, we observe and p resept empirical ev1depce that t,he
SVM trained using one-versus-one approach and voting for effectiveness of a factor is highly correlated with the dis-

single label tasks (e.g. MIT Indoor Scene). The pipeline for ?ncel\(l)f th;:. tailget task frgm ttllle sou.rfce ?Sk of the tralpeci
the retrieval tasks are as follows: Following [ 5] The feature onviNet. Finally, we empirically verily that our categorica

vectors are L2 normalized, then the dimensions are reduced gro“ng and orQenng Of, visual recognition taslfs 1S mean-
using PCA and whitened and the resulting feature is renor- 1n.gf1.11 as the optimal setting pf the fac.tors remain constant
malized to unit length. Since buildings (Oxford and Paris) within ea.ch group and vary in a conmsts:nt Manner across
and scupltures datasets include partial images or the object our ordering. Of course, there are CXCG.:ptIOIlS to the general
can appear in small part of the whole image (zoomed in or trend. In these few cases we provide simple explanations.
out images of the object of interest) we use spatial search to Acknowledgement This work has been funded by the
match windows from each pair of images. We have 1 sub- Swedish Foundation for Strategic Research (SSF) within
patch of size 100% of the whole image, 4 sub-patches of the project VINST. We gratefully acknowledge NVIDIA for
each covering 4/9 size of the image. 9 sub-patches of each donation of K40 GPU.

covering 4/16 and 16 sub-patches of each covering 4/25 of

ConvNet representations trained on ImageNet are be-
coming the standard image representation. In this paper we
presented a systematic study, lacking until now, of how to
effectively transfer such representations to new tasks. The
most important elements of our study are: We identify and
define several factors whose settings affect transferability.
Our experiments investigate how relevant each of these fac-
tors is to transferability for many visual recognition tasks.
We define a categorical grouping of these tasks and order
them according to their distance from image classification.

Our systematic experiments have allowed us to achieve
the following. First, by optimizing the identified factors
we improve the state-of-the-art performance on a very di-
verse set of standard computer vision databases, see table 6.

a very deep network trained using hybrid model would improve results on

the image. The minimum distance of all sub-patches is con- MIT and SUN, or a deep and large network would perform better on VOC

sidered as the distance of the two images. For more details image classification. Another example is that we could do fine-tuning with

of the instance retrieval pipeline refer to [33]. the optimal choices of parameters for nearly all tasks. Obviously, it was

highly computationally expensive to produce all the existing results. We

4 Note: “Deep Optimized” results in this table are not always the opti- will update the next versions of the paper with further optimized choices
mal choices of factors studied in the paper. For instance one would expect of parameters.
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