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Abstract: Advances in automated data acquisition in electron 

tomography have led to an explosion in the amount of data that can 

be obtained about the spatial architecture of a variety of 

biologically and medically relevant objects with resolutions in the 

“nano” range of 10-1000 nm. The development of methods to 

automatically analyze the vast amounts of information contained in 

these tomograms is a major challenge since the electron 

tomograms are intrinsically very noisy. A fundamental step in the 

automatic analysis of large amounts of data for statistical inference 

is to segment relevant 3D features in cellular tomograms. 

Procedures for segmentation must work robustly and rapidly in 

spite of the low signal to noise ratios inherent to biological 

electron microscopy. This work first evaluates various non-linear 

denoising techniques on tomograms recorded at cryogenic 

temperatures. Using datasets of bacterial tomograms as an 

example, we demonstrate that non-linear diffusion techniques 

significantly improve the fidelity of automated feature extraction. 

Our approach represents an important step in automating the 

efficient extraction of useful information from large datasets in 

biological tomography, and facilitates the overall goal of speeding 

up the process of reducing gigabyte-sized tomograms to relevant 

byte-sized data.  

Keywords: Electron tomography, denoising, feature extraction, 

diffusion, automated techniques, template matching. 
 

1. INTRODUCTION 
   Electron tomography (ET) is an emerging tool to describe the 

three-dimensional (3D) architectures of large molecular 

complexes, viruses and cells. ET is a general method for 3D 

reconstruction of electron transparent objects from a series of 

projection images recorded with a transmission electron 

microscope. For most biological applications electron tomograms 

are obtained at relatively poor signal to noise ratios [1]. 

 
Fig. 1.  Imaging Pipeline. 

The typical steps in imaging and image processing are highlighted 

in Fig. 1. Data collection normally involves recording a series of 

images at different relative tilts of beam and specimen. The 

electron microscope provides 2D projection images. Tomograms 

are generated by computational analysis of a series of electron 

micrographs taken at varying tilt angles, usually from -70° to +70°.  

Using algorithms that implement weighted back projection (WBP) 

or Simultaneous Iterative Reconstruction Technique (SIRT), one 

can obtain 3D volumes of the specimen from projection images.  

    As techniques for data collection and tomogram 

reconstruction are becoming more streamlined, the development of 

automatic and semi-automatic methods to analyze the enormous 

amounts of information in these tomograms remains a major 

challenge [1]. Efforts to establish tools for quantitative 

interpretation of tomograms are beginning to be applied to a range 

of biological problems, as reviewed recently [2]. A long-term goal 

of this type of electron tomography is to interpret the spatial 

arrangement of the constituent molecular and cellular components 

at the highest resolution possible. A fundamental step in the 

automatic analysis of large amounts of data for statistical inference 

is to employ robust methods for 3D segmentation that can work 

well at low SNR. The target of these strategies is to improve the 

signal as much as possible relative to the noise level to mine 3D 

information from complex tomograms. 

This work investigates image/transform-domain denoising 

techniques and feature extraction in the context of electron 

tomography of whole bacterial cells. Previous studies have already 

demonstrated the value of image denoising in various 2D and 3D 

datasets [3-7]. Our goal here is to first evaluate the performance of 

a range of denoising techniques on electron tomograms recorded at 

cryogenic temperature, and then use the denoised data in the 

segmentation algorithm. For analysis and feature extraction, we 

have used tomograms of Bdellovibrio bacteriovorus, a small 

bacterium, recorded at cryogenic temperatures, and reconstructed 

using WBP-based approaches. We report here on the relative 

merits of a variety of denoising algorithms on the detection, 

clustering, and computation of the spatial distribution of ribosomal 

complexes in the bacterium, and have compared their performance 

using single-image SNR estimation and Fourier ring correlation 

techniques. The performance of these denoising methods was 

tested on two sets of tomograms that were recorded at similar 

electron optical conditions. We found that the 3D nonlinear 

anisotropic diffusion (NAD) algorithm (described in Section 3) 

significantly improved the SNR while retaining the overall 

architectural information in the tomograms. Following the 

denoising, automated segmentation is achieved using a template 

matching based feature extraction method which considers 

intensity and mean-squared error between the template and the 

ribosome in the tomogram. We validate our approach by 

comparison of semi-automated and automated segmentation 

procedures on these two sets of tomograms. Furthermore, we 

present quantitative analysis such as ribosomal distribution in 3D 

which provides insights into the spatial architecture of intact cells. 
 

2. DATA COLLECTION AND RECONSTRUCTION 

TECHNIQUES 
    We imaged Bdellovibrio cells preserved by embedding in a 

thin layer of vitrified ice. For specimen preparation, an aliquot of 

cell culture (3µl) was laid on a thin layer of holey carbon 

supported on a 3mm copper grid (Quantifoil MultiA, Micro Tools 

GmbH, Germany). Excess liquid was blotted off with filter paper 

after 1 min incubation and the grid was plunge frozen in liquid 

ethane cooled by liquid nitrogen. Specimens were maintained and 

imaged at liquid nitrogen temperatures in a Polara microscope 



(FEI Corp., OR, U.S.A.) equipped with a field emission gun 

operating at 300 kV. Series of low dose (1-2 e-/A2) projection 

images of the frozen specimen, tilted over an angular range of ±69° 

at fixed 3° intervals, were recorded in a 2K by 2K CCD camera 

located at the end of a GIF 2000 (Gatan Inc., Pleasanton, CA, 

U.S.A.) energy filtering system. The effective magnification was 

22500 X, equivalent to a pixel size of 0.63 nm at the specimen 

level, and the applied under-focus was 15µm. Full resolution 

images were aligned with the aid of colloidal gold fiducial markers 

deposited on the carbon prior to specimen preparation. Three 

dimensional reconstructions were done by weighted back 

projection of aligned images binned by 4x4. The package IMOD 

[8] was used for alignment and reconstruction. 
 

3. DENOISING AND SEGMENTATION METHODS 
         We now provide a brief explanation of the denoising 

techniques used to analyse the tomographic data. Our main goal 

here is to apply existing denoising techniques to 3D tomograms 

recorded at cryogenic temperature. This is particularly of great 

interest since one denoising algorithm will not perform uniformly 

well on diverse datasets that have been collected using a variety of 

specimens and acquisition conditions. The putative ribosomes 

were readily distinguished from the other macromolecular 

complexes since they are more electron dense. The rest of the 

cytoplasm is just as packed with other complexes, possibly of 

similar size to ribosomes, but they have less contrast. The 

tomograms also need to be qualitatively examined by a biological 

expert to determine whether the features of interest are well 

preserved after denoising. Thus we used both qualitative and 

quantitative measures to choose the optimal denoising algorithm. 

We first implemented and compared the performance of non-linear 

anisotropic diffusion [3] and complex diffusion algorithms [4] on 

electron tomograms. It has been demonstrated in [9] that nonlinear 

diffusion methods significantly improve the SNR. The equations 

for anisotropic diffusion in 3D are given as .( ( , , , ) )tI c x y z t I= ∇ ∇ , 

where and subscripts denote derivatives, 
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κ  is a conductance parameter and ( , , , )I I x y z t=  is the 3D 

tomogram. For the complex diffusion,  
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where Im( )I is the imaginary value of I,θ is the phase angle and k 

is the threshold parameter. The noisy tomogram is used as initial 

condition for the above non-linear partial differential equations. In 

another tested method of denoising, the phase data is preserved [5] 

by applying the continuous wavelet transform and by using log 

Gabor functions to construct symmetric/anti-symmetric wavelet 

filters. The process determines a noise threshold at each scale, and 

by shrinking the magnitudes of the filter response vectors, phase 

information can be preserved after reconstruction. The other 

denoising methods we used for comparison are based on 

translation invariant wavelets with soft thresholding [6] and Bayes 

least-squares Gaussian scale mixtures (BLS-GSM) [7] where we 

used steerable pyramid wavelets and Wiener filtering. We used 

Wavelab and BLS-GSM MATLAB software publicly available for 

both these methods with modifications. For all these methods we 

obtained the highest SNR by varying the parameters over a valid 

range and also making sure that the spatial features of interest are 

well retained from the biological point of view. We considered two 

sets of Bdellovibrio tomograms reconstructed using WBP. 

     The effect of denoising is evident by comparing Fig. 2(c) vs. 

2(d) and Fig. 3(e) vs. 3(f) where we can observe greater definition 

of intracellular components in the denoised tomographic slices. 

The quantitative analysis procedures such as peak-SNR (PSNR) 

and MSE  assume that a clean reference image is available. For 

quantitative analysis of the denoising methods we implement 

single-image SNR estimation, [10], since we are working with 

tomograms which are essentially stacks of 2D slices of the 

reconstructed volume. We compute the SNR of each slice using 

various denoising techniques and the result shown in Fig. 2(a) is 

an average SNR over 10 consecutive slices. The single-image SNR 

estimation method assumes that the noise is white and uncorrelated 

from pixel to pixel. The SNR is given as [10]  
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where 
11(0,0)φ  and 

11
(0,0)NFφ  are the autocorrelation function 

(ACF) of the noisy image and the noise free (NF) image 

respectively.
1µ  and 

1σ  are the mean and variance of the noisy 

image. Since we do not have a noise-free reference image, 

11
(0,0)NFφ  is estimated by assuming that its value is same as the 

ACF of the neighboring offsets, i.e., 

11 11 11(0,0) ( (1,0) (0,1)) / 2NFφ φ φ≈ + . This estimate is reasonable if the 

ACF changes slowly at the origin which is the case for cryogenic 

tomograms. Single image SNR estimation on a cryo tomogram in 

Fig. 2(a) suggests that the nonlinear anisotropic diffusion 

algorithm (PM1and PM2 [3]) performs the best in terms of the 

SNR. For e.g., the SNR of the noisy tomograms were improved 

significantly from 1.2dB as shown in the figure. Furthermore, we 

also compute the Fourier ring correlation (FRC) [11] to compare 

various reconstruction and denoising methods as in Fig. 2(b). It 

can be observed that nonlinear anisotropic diffusion exhibits good 

performance at low frequencies. It should be noted that we are 

dealing with noisy tomograms and hence FRC may not be an 

accurate similarity measure at high frequencies.  

           Next we compare both semi-automated and automated 

feature extraction methods since our objective is to develop 

automatic procedures from data collection to feature extraction that 

can be integrated into the imaging pipeline. In testing the value of 

denoising, we used semi-automated and automated detection of 

putative ribosome as a measure of performance. 

         Semi-automated segmentation procedure:  Tomograms 

were segmented using the Amira Visualization software [12] 

which executes a simple procedure of 3D region-growing from 

user-marked voxels and with user-defined range. The user-

designated regions of the tomogram were also subjected to 

thresholding. To obtain the coordinates, for each ribosome, the z-

range of the volume had to be counted and the "middle slice" was 

used to obtain the (x,y,z) coordinates. For an even z-range, the 

center was estimated from the two middle slides, using averaging. 

The semi-automated feature extraction is shown in Fig. 3(c) for 

dataset 1. The shape of a typical randomly selected putative 

ribosome extracted using semi-automated segmentation after 

denoising is depicted in Fig. 3(l), and is consistent with the 

expected shape of ribosomes based on previous electron 

microscopic studies. 

         Automated segmentation procedure: The next goal is to 

obtain automatic putative ribosome segmentation, for which we 

use template matching. In this technique, different parts of the 

volume are compared (e.g., cross-correlated) with the given 

template, which is an assumed model of the desired feature to 



locate places where the pattern of interest might be present. Our 

template-matching method focuses on exploiting some prior 

knowledge about the studied data; since the cytoplasm of the cell is 

always considered as the background, we find its average intensity 

by selecting a few sample points, and then fix it to zero. As a result 

of this fixed background, contrary to normalized cross-correlation, 

we do not shift the values of the volume during the matching 

process and thus we only have one scaling parameter. In addition, 

we enforce a minimum average intensity constraint on the 

ribosomes, which together with the previous condition decrease 

the number of false detections.  

         Since we are not provided with a template, we assume the 

ribosomes to be uniform spheres of a specified radius. Although 

this might not be the best approximation, this symmetry selection 

also eliminates the angular alignment which in turn reduces the 

problem to a much simpler one. In our approach, we find the 

values which minimize the following, 

 ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
2 2

, ,
min min

t t
C

t g x f x t dx t g x f x t h x dx
α α

α α− − = − −∫ ∫   (4) 

where ( )g x  is the template (uniform sphere in our case), ( )f x  is 

the given reconstructed tomogram, region C is a sphere slightly 

bigger than the template where we compare the template with the 

sub-volume, ( )h x  is a mask for that region; 
1

( )
0

x C
h x

x C

∈
= 

∉
, 

t is the translation parameter and α  is a coefficient that might vary 

for each t and allows the data to have a scaled version of the 

template. We also specify a threshold α̂  which is the minimum 

acceptable scaling coefficient. The above function is convex with 

respect to α  and hence there is only one minimum which can be 

found by equating the derivative to zero, 

                 ( ) ( ) ( ) ( )( ) ( )2 0g x t g x f x t h x dxα − − =∫ .                     (5) 

After the change of variable y x t= −  and using the fact that 

( )g x is an even function (we consider a radially symmetric 

template), we have 

      ( )
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where ( )2n g x dx= ∫  and ( ) ( )( )v t f g t= ∗ − . Note that we can 

always write the product ( ) ( )g x h x  as ( )g x , because the non-

zero part of g is included in the non-zero part of the mask. 

Therefore the problem is reduced to 

                        ( ) ( ) ( ) ( )
2

1
m in
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The minimization leads to 
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where ( ) ( )( )2c t f h t= ∗ − . ( )D t  is the least-squared error between 

the scaled template and the reconstructed tomogram. The 

computational complexity of the feature extraction algorithm is of 

the O(NlogN), where N is the number of voxels. 

         A test example is shown in Fig. 3(a)&(b) for obtaining the 

centers of the ribosomes. We tried the feature extraction algorithm 

on non-denoised volumes and found that the algorithm did not 

pick any putative ribosomes. The putative ribosomes are extracted 

based on intensity, ( )tα  which needs to be greater than a specified 

threshold α̂ , and also the least-squared error between the scaled 

template and the reconstructed tomogram, ( )D t (Fig. 3(k) for 

dataset 1). The original scale of the volume was 0.55 nm/pixel. 

Since the datasets were binned by a factor of 4 the scale is 2.2 

nm/pixel accordingly. The size of each ribosome is about 20 nm 

across. The extracted putative ribosomes from the tomogram by 

template matching are sorted based on the error between the scaled 

template and the ribosomes in the tomogram to obtain the best 

matches. As the template, we used a uniform sphere of radius 4 

pixels; this radius minimized the false positives and provided the 

best matches when compared against the semi-automated 

segmentation results (the true radius is ~4.5 pixels). Using the 

automatic procedure, we obtained 370 and 419 ribosomes for 

datasets 1 and 2 respectively. There were about 11 and 4 outliers 

using the automated technique for datasets 1 & 2 respectively. The 

semi-automated segmentation procedure obtained 363 putative 

ribosomes for dataset 1 and the comparison with the automated 

method is shown in Fig. 3(c)&(d). The coordinates obtained using 

semi-automated and automated techniques were compared and 

about 85% of the ribsomes were within 5 pixels which is about 

half the ribosome size as shown in Fig. 3(i). About 92% of the 

ribosomes are within 7 pixels and the maximum error was within 

10 pixels. The automatic segmentation for dataset 2 is given in Fig. 

3(g). From the quantitative analysis, the automated segmentation 

technique provides accurate estimates of the coordinates of the 

ribsomes compared to the semi-automated segmentation. 

Quantitative analysis such as ribosome density is shown in Fig. 

3(h) and Table 1 and the distance to the nearest neighbor 

distribution is depicted in Fig. 3(j) and Table 1. From the ribosome 

density in Fig. 3(h) the ribosome count translates to 373.75 and 

432 ribosomes for dataset 1 and 2 (not shown in the figure)  

respectively which is close to the results obtained using automatic 

procedure without the outliers (rows 4 and 5 of Table 1). 
 Dataset 1  Dataset 2 

Nearest Neighbor 

distribution 

Mean (pixels)-10.3 

Variance (pixels)-2.89 

13.3376 

5.773 

Ribosome Distribution Avg/nm
3
=2.10e-5 1.81e-5 

Average ribosome count 373.75 432 

Automatic procedure 359 415 
 

Table 1.  Quantitative analysis 

4. CONCLUSION AND FUTURE WORK 
         Electron tomograms are intrinsically noisy and this poses 

significant challenges for image interpretation, especially in the 

context of low dose and high-throughput data analysis. Our goal 

has been to evaluate the relative performance of different 

denoising methods in further improving the SNR, and to test 

whether these denoised tomograms can be processed automatically 

to extract biologically relevant information. We show here that 

denoising significantly improves the fidelity of automated feature 

extraction. The NAD algorithm performs best for recovering 

structural information as the identification of putative ribosomes 

on denoised volumes using automated procedures closely matches 

those identified by user interaction (Fig. 3(i) and Table 1). We 

show that spatial information such as ribosome distribution can be 

obtained automatically from denoised tomograms and that the 

results closely match those obtained using semi-automated 

approaches. The use of these valuable computational tools 

provides a further step for quantitative analysis of 3D structures 

determined using electron tomography. As a part of future work, 

we intend to investigate the implications of electron doses and 

noise on denoising of tomograms and feature identification. 
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Fig. 2.  (a) Single-image SNR for various denoising methods for cryo tomograms, (WF-Wiener Filter, DWTS- Discrete Wavelet transform with soft 

thresholding, TIS-Translation invariant with soft thresholding, PM1 and PM2-Perona-Malik equations, EED-Edge enhancing Diffusion [13], CD-

Complex Diffusion, PP-Phase preserving and BGB- BLS-GSM method. (b) Fourier Ring Correlation (FRC) for reconstructed Bdellovibrio 

tomograms using various denoising methods. Denoising of reconstructed Bdellovibrio tomogram (dataset 1) using NAD (c) noisy & (d) denoised. 
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Fig. 3. Top Row (a-b): Test example to extract the ribosome, (c-d) Semi-automated and automated segmentation on dataset 1. Second Row (e-f): 

Comparison of the denoising results on dataset 2 using NAD. (g) Automated segmentation and (h) Ribosome density on dataset 2. Last Row (i): 

Comparison of the locations of the extracted ribosomes using semi-automated (*) and automated segmentation (+), (j) Distance to the nearest 

neighbor distribution, (k) Intensity and error values for the extracted ribosomes for dataset 1 and (l) Shape of a random ribosome extracted after 

denoising. 




