
From Goals To Components: A Combined Approach
To Self-Management

Daniel Sykes, William Heaven, Jeff Magee, Jeff Kramer
Department of Computing
Imperial College London

{das05, wjh00, j.magee, j.kramer}@imperial.ac.uk

ABSTRACT
Autonomous or semi-autonomous systems are deployed in
environments where contact with programmers or techni-
cians is infrequent or undesirable. To operate reliably, such
systems should be able to adapt to new circumstances on
their own. This paper describes our combined approach
for adaptable software architecture and task synthesis from
high-level goals, which is based on a three-layer model. In
the uppermost layer, reactive plans are generated from goals
expressed in a temporal logic. The middle layer is respon-
sible for plan execution and assembling a configuration of
domain-specific software components, which reside in the
lowest layer. Moreover, the middle layer is responsible for
selecting alternative components when the current config-
uration is no longer viable for the circumstances that have
arisen. The implementation demonstrates that the approach
enables us to handle non-determinism in the environment
and unexpected failures in software components.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Management, Design, Reliability

Keywords
Self-adaptive, self-healing, software architecture, dynamic
reconfiguration, autonomous systems

1. INTRODUCTION
If the goal of highly reliable autonomous systems is to

be realised, then the software used to control such systems
must itself be reliable and highly adaptable. This requires
that the autonomous system is able to cope with changes in
the environment, changing goals, and failures in its software
or hardware, all while deployed in the field. Contact with
the operator or programmer may be infrequent at best.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS’08, May 12–13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-037-1/08/05 ...$5.00.

Figure 1: Three-layered conceptual model

A three-layer reference model, originally described by Gat
[8], was proposed in [13] as a framework which could provide
an integrated approach to the many challenges inherent in
this area. In this model, the uppermost layer, which we call
the goal management layer, comprises expensive deliberative
planning; the middle layer, called the change management
layer, is responsible for sequencing, that is, plan execution;
and the lowest level, the component layer, handles reactive
control concerns. Two feedback loops exist between the lay-
ers. The goal management layer pushes new plans down to
the change management layer, while this layer may request
a new plan. The change management layer generates new
component configurations in the component layer, while the
component layer may cause a new configuration to be gener-
ated by reporting a status change such as component failure.
Figure 1 shows this arrangement graphically.

Our approach is aligned with this model, as reactive plan-
ning from abstract goals forms the top layer, a plan inter-
preter and configuration generator occupy the middle layer,
and a configuration of software components resides in the
lowest layer. This arrangement allows us to deal with sev-
eral challenging aspects of autonomous systems. The plan-
ning layer allows us to develop complex behaviours from an
abstract description of the goal; the use of reactive plans
provides a mechanism for dealing with an uncertain envi-
ronment; and the component control layer is able to adapt
in response to either a change in the environment or a soft-
ware fault. Only if these schemes fail to handle a particular
situation, or the goal changes, do we resort to replanning.

In the goal management layer, so-called reactive plans are
generated from high-level goals given in a temporal logic,
and a description of the capabilities of the system. A reac-
tive plan consists of a set of condition-action rules, which

specify the behaviour of the system. In addition to the se-
quence of actions intended to lead to the goal, a reactive
plan also includes alternative paths which can be followed,
should the environment change in an unpredictable way.

Much previous work has focused on systems where each
configuration is a self-contained and often predefined entity,
or where repair strategies describe how to change between
configurations. However, in an autonomous context, it is
not feasible to consider every possible scenario beforehand,
and in effect pre-program the system to cope with all cir-
cumstances which may require an adaptation.

We exploit the presence of a plan in order to automati-
cally assemble a configuration of components, as the actions
in the plan implicitly give the functional requirements of
the configuration. Having divorced the specification of the
architecture from the programmer, we are able to permit ar-
bitrary adaptations, provided the resulting components are
sufficient to continue plan execution. While we focus on ar-
chitectural change, we do not preclude other forms of adap-
tation, such as changing component parameters, or changes
at the language level. Architectural change has the advan-
tage of permitting widespread, if not total, change, while
keeping the consistency and safety issues present at lower
levels to a minimum.

In Section 2 we briefly mention some of the related work.
Sections 3-5 describe our elaborations of the three layers.
Section 6 describes our implementation, and several of the
outstanding issues are discussed in Section 7.

2. RELATED WORK
The three-layer model is now widely used in the robotics

community, where it developed from the early sense-plan-act
(SPA) and subsumption [2] architectures. An SPA system
consists of a single control loop where sensed data passes
to an analysis or deliberation component, which then deter-
mines what actions to perform. The main limitation of this
approach was that it could not react quickly enough for low-
level behaviours. Subsumption was proposed to mitigate
this by introducing several layers. The lowest layer was con-
cerned with tight feedback loops such as obstacle avoidance,
while the highest layers dealt with abstract goals. However,
subsumption suffered from difficulties in specifying the in-
terplay between the layers, and so it was not easy to modify
a given program.

Previous work by the authors [20] introduced the idea of
automatically deriving software component configurations
from automatically generated plans. This paper builds on
that work by presenting an algorithm for component selec-
tion, explicitly instantiating the reference architecture of [13]
and describing a pair of case studies in which the approach
is implemented in a system comprising several robots.

As we observed in [20], many previous authors have de-
scribed approaches which assume adaptation can be speci-
fied and analysed before the system is deployed. Unfortu-
nately, this is not always the case with autonomous systems.

Garlan and Schmerl [7, 3] achieve dynamic change by de-
scribing an architectural style [5] for a system and a repair
strategy. The repair strategy is a script which modifies the
architecture in response to changes in the monitored sys-
tem properties. Zhang, Cheng et al. [22] derive the state
machines of two programs and examine the guarantees of
each to determine if a programmer-specified transition be-
tween them is safe. Dashofy et al. [4] use an architectural

model and design critics [19] to determine whether a set of
changes (an architectural ‘delta’) is safe to apply to a given
configuration. Georgas and Taylor [9] describe a system
where change is enacted by architectural policies which are
invoked in response to certain events such as component fail-
ure. Georgiadis [10] describes a distributed approach to en-
forcing architectural constraints, though ultimately repairs
are specified by the programmer.

The previous work that perhaps bears most resemblance
to our combined approach is that by Garlan et al. [6] where
adaptations are driven by a change of goal, and that by
Arshad et al. [1] where adaptations are found by resorting to
replanning. Unfortunately, planning for all reconfigurations
comes at some cost, as it corresponds to an SPA architecture
in an adaptive context.

3. GOAL MANAGEMENT LAYER
The top layer of the conceptual model concerns the gen-

eration of reactive plans from high-level goals. These plans
specify the behaviour of the system in terms of actions which
lead from an initial state to a goal state. The plan inter-
preter iterates through the rules of the plan to completion,
unless a situation is detected which requires reconfiguration
or replanning.

A reactive plan, unlike a sequential STRIPS-style plan
[14], is a plan that accommodates a non-deterministically
changing environment by prescribing an action towards a
given goal for each state from which that goal is reachable.
Execution of such a plan proceeds by determining the cur-
rent state of the environment, selecting the action prescribed
for that state by the plan, performing it and then determin-
ing the new state. By covering all states from which the
goal is reachable, it does not matter if the new state follow-
ing an action is the “expected” state or not. As long as the
goal is reachable from this state, execution of the plan may
continue.

In our implementation, reactive plans are generated us-
ing planning-as-model-checking technology [11]. A descrip-
tion of the system’s environment is specified in SMV [18],
expressing state predicates and pre- and postcondition con-
straints on the actions that may be performed. Intuitively,
these actions describe the capabilities of the autonomous
system. This description is submitted to the Model-Based
Planner tool (MBP) [17] along with a specification of the ini-
tial state and a goal, typically expressed in computational
tree logic (CTL). The following gives an overview of plan
generation in the goal management layer. Fuller details and
examples are given in a previous paper [20].

3.1 Domain Model
In order to generate plans automatically, the environment

of the system must be described formally. This descrip-
tion is known as the domain model. The domain model
represents certain facts about the environment with logi-
cal propositions. A given state of the environment is then
represented by the set of propositions that are true in that
state. The propositions of the domain model are typically
abstractions of properties sensed by the system, such as lo-
cation for a robot. This abstraction is necessary to make
planning tractable. The domain model also includes infor-
mation about the capabilities of the system. These are en-
coded as actions that the system can perform and the effects
these actions have on the environment. Formally, a domain

model is a 4-tuple

D = 〈Props, States, Actions, Trans〉

where Props is a finite set of propositions, States ⊆ 2Props is
a set of states, Actions is a finite set of actions, and Trans ⊆
States×Actions×States is a transition relation. Note that
actions in the environment not performed by the system are
not encoded in the domain model. However, the effects of
such actions may be represented by particular states that
the system may find itself in. Note also that domain model
captures the fact that the effects of certain actions in the
environment may be non-deterministic.

3.2 Plan Generation
Plans to achieve a particular goal in a given environment

are automatically generated from a domain model and a
goal expressed in a temporal logic (in our implementation
CTL). The model-checking technology underpinning MBP
identifies those states in the domain satisfying the specified
goal and searches breadth-first for paths to those states from
all other states in the domain model from which the goal
states are reachable. If the search terminates having found
a path from the current state of the system to a goal state,
then the goal is achievable. As we mentioned above, the
plans generated are reactive plans and thus contain paths to
the goal from all states from which the goal is achievable.
In a non-deterministic environment, if an execution of an
action does not have its expected outcome, there is often
still a path to the goal from the “unexpected” state in which
the system finds itself.

We have noted that a plan is a set of condition-action
rules. Formally, a plan P can be represented as a partial
map from states of the domain to actions of the domain:

P : States → Actions

As we will see in the next section, the component configura-
tion of the system is determined by the actions required by a
plan. The actions required by a given plan P are simply the
range of P . For a state s ∈ States and action a ∈ Actions,
P (s) = a only if (s, a, s′) ∈ Trans, for some s′ ∈ States:

ActionsP = range(P)

Finally, we note that in order to better manage potentially
enormous state spaces, we organise domain descriptions into
an abstraction hierarchy and generate plans in a correspond-
ing hierarchy. This is discussed in [20] and will not be ex-
plored further in this paper.

4. CHANGE MANAGEMENT LAYER
The middle layer is concerned with using the plans gener-

ated by the layer above to construct component configura-
tions and direct their operation to achieve the goal addressed
by the plan. It is also concerned with making changes to the
component configuration when this becomes necessary (on
component failure). Crucially, we allow for arbitrary change
which has not been specified by the user.

4.1 Component Model
For the purposes of deriving configurations we use a sim-

plified component model based on Darwin [15]. In this
model a component explicitly states its requirements (de-
pendencies) and provisions. A component has a number of

Figure 2: Components are selected according to the
plan actions

(named) ports, and each port requires or provides a single
named interface. We refer to the set of provisions of a com-
ponent x as prov(x), and the set of requirements as req(x).

A configuration is constructed by instantiating compo-
nents and connecting required ports to the provided ports
of another component where the interface type matches. A
complete configuration, then, contains no component with
an unsatisfied requirement. The detail of how connections
are implemented is not relevant for generating configura-
tions, and is deferred until Section 5. We do not at present
permit components to be defined as compositions of other
components.

4.2 Deriving Component Configurations
Since reactive plans are composed of condition-action rules,

the change management layer is able to use the plan to de-
rive the functional requirements of the system’s architecture.
Once a configuration satisfying these requirements has been
instantiated, plan execution can begin.

For example, the presence of a move operation in the plan
clearly indicates that the configuration must include a com-
ponent which provides a suitable implementation of this ac-
tion. With each type of action, we associate a particular
interface type, and thus the plan interpreter selects compo-
nents which implement the relevant interface. The mapping
from actions to interfaces need not be fixed, and could be
extended as new components become available.

Given the set of components required for their function-
ality, the interpreter can then construct a complete config-
uration by considering the required interfaces of those com-
ponents. For example, the component implementing the
move operation may require motor and sensor controllers,
or a component which provides mapping information. These
must also be instantiated and connected to the relevant ports
of the action component.

In the case where a component is already instantiated (or
selected for instantiation) it should be reused. Hence, there
can be only one instance of a given component type (or
interface type) in a configuration. Reuse requires an explicit
model of the current configuration to be maintained in this
layer. Components can be marked as “unavailable”, which
may be a result of the component recently failing, or because
a particular robot does not have the hardware necessary for
that component. Clearly, components which are unavailable
cannot be selected for use.

Figure 2 shows how a configuration would be generated to
perform a move action. The interpreter is aware of an inter-
face provided by the GoToTask that implements the move
action. Then, to complete the configuration, it considers
the requirements of the GoToTask, and their requirements
in turn. In this case the Hardware controller provides an in-
terface to the motors, and there are two alternatives for the
Location requirement. The SkyCamera provides location in-
formation by connecting to the external infrastructure which
can detect where the robot is located. However, SLAM (si-
multaneous localisation and mapping) is used in this case as
the SkyCamera has previously experienced a failure. SLAM
has a further requirement satisfied by the on-board camera.

4.2.1 Configuration Generator
The relationship between the actions required by a plan

and the interfaces that implement those actions can be rep-
resented as a binary relation:

Implements ⊆ Actions× Interfaces

At present we specify this relation manually, though it may
be possible to derive the relation by matching the interface
specification with that of the action. For a given plan p, the
image of ActionsP under Implements,

Implements [ActionsP] =

{y ∈ Interfaces : ∃ x ∈ ActionsP · (x, y) ∈ Implements}

is thus the set of interfaces that implement the actions in the
plan. Figure 3 shows the core of the algorithm in pseudo-
code. An initial configuration can be generated with the
call

Construct(∅, Implements [ActionsP])

which will locate components which implement the inter-
faces in Implements [ActionsP], and then complete the
configuration by selecting further components to satisfy the
requirements of those already selected. Subsequent configu-
rations can be generated with a call such as

Construct(oldArch, Implements [ActionsP])

where the first parameter indicates the existing configura-
tion.

Construct(arch , interfaces)
∀ i ∈ interfaces

if (∃ c ∈ arch : i ∈ prov(c))
interfaces := interfaces - {i}

else
providers = {xj : xj ∈ Components ∧

i ∈ prov(xj) ∧
available(xj)}

archs = {Construct(arch ∪ {xj}, req(xj))
: xj ∈ providers}

if (∃ a ∈ archs : a 6= null)
interfaces := interfaces - {i}
arch := a

else
return null

return arch

Figure 3: Configuration generator

Figure 4: Component selection search tree for inter-
face IA

The algorithm is expressed as a function which takes an
existing configuration (expressed as a set of component type
names, called arch), and a set of names of a desired in-
terfaces. The arch parameter may be the empty set, to
generate the initial configuration. In the first branch, the
algorithm checks whether there is a component in the cur-
rent configuration which already provides the desired inter-
face. If so, the interface can be removed from the set of
desired interfaces. In the second branch of the algorithm,
the repository of known components (here expressed as a
set called Components) is searched for components which
provide the desired interface, and are available. If there are
no providers of the desired interface, the special value null

is returned, indicating that no configuration can be found.
The function is called recursively to find the requirements of
each of these components, returning a set of configuration
choices in archs. Some of the providers may have unsatisfi-
able requirements, indicated by null. However, if there is a
non-null configuration, then this is selected.

If the algorithm can find a configuration, then the config-
uration has the capability to execute the plan to completion,
notwithstanding unexpected failures. The exception to this
is that the architecture may be required to change when
a particular abstract action is decomposed into a subplan,
since the (concrete) actions contained in the subplan were
not known when the parent plan was generated. Further-
more, an abstract action may be decomposed into different
subplans in different circumstances. The generated configu-
ration, arch, satisfies the following constraints:

∀i ∈ Implements [ActionsP] : ∃c ∈ arch : i ∈ prov(c)

∀c ∈ arch : i ∈ req(c) −→ ∃c2 ∈ arch : i ∈ prov(c2)

The first constraint states that for all initial requirements,
there should be an implementing component, and the second
constraint is simply that all component requirements are
satisfied.

The selection process forms a depth-first search tree for a
complete configuration where all requirements are satisfied,
as in Figure 4. Here, an implementation of interface IA is
required. There are two alternatives, A1 and A2, both of
which have further requirements. A1 requires interface IB,
for which there are two implementations. B1 is unavailable
(for whatever reason), so B2 is selected, giving a complete
configuration {A1, B2}. A2, however, requires IC, which is
provided by C. C in turn requires IA. In order to avoid
a potential infinite loop where more and more instances of

A2 and C are added, the requirement for IA is satisfied
by A2, which has already been selected. Consequently, the
procedure will only produce configurations which have a sin-
gle implementation of a given interface type. The complete
configuration in this second branch is {A2, C}.

The example shows how it is possible to find multiple
solutions for a given search. It may be the case that these
alternatives have differing non-functional properties which
can be used to make a choice. For example, A1 may require
a large amount of CPU attention, but give accurate results,
while A2 may run more quickly at the cost of reliability.
To differentiate them, the system would have to rank CPU
cost against accuracy. This will be addressed in our ongoing
work, however, at present, the selection algorithm makes an
arbitrary choice between the alternatives.

4.3 Adaptation
Adaptation at the component level is enacted by respond-

ing to failure events from components. It is often the case
that components are best placed to detect their own fail-
ures, and monitor their dependencies. This concept closely
mimics the use of exceptions in programming languages, and
forms the first feedback loop between the lower two layers
in Figure 1. We do not currently consider adaptation in re-
sponse to widespread problems (such as performance issues)
which may not be observable by a single component.

Systems such as [7, 3], which are able to observe global
properties, break encapsulation to a certain extent as some-
thing must be known about the component implementation.
This reduces the opportunities for reuse, particularly with
commercially available components.

Failure events are handled by the change management
layer which uses the event to determine which components
must be replaced in order to continue the plan. For ex-
ample, if an action component fails due to some internal
(non-architectural) problem, it must be replaced. However,
if it fails due to a problem in its dependencies, then its de-
pendencies must be replaced. The component types that
have failed are marked as unavailable, and the component
selection process runs to locate alternatives. The delta com-
puted, for some current configuration, current, and a failed
component, failed, is:

delta = current− Construct(current, prov(failed))

If no alternatives can be found, then the second part of the
feedback loop in Figure 1 from the change management layer
to the goal management layer must be used in order to do
dynamic update of the domain and replanning. We will
address this problem in future work.

5. COMPONENT LAYER
The domain-specific components reside in the bottom layer

of the conceptual model. Components are implemented as
objects in Java, following the component model prescribed
by the Backbone language [16] and its associated graphi-
cal design tool, jUMbLe. This model is compatible with
UML2.0 which in turn resembles Darwin [15] (and is a su-
perset of the simplified model described above).

Backbone allows us to design a configuration graphically
using jUMbLe. It then performs component instantiation
and connection. Provisions are indicated using the normal
implements syntax, while required ports are implemented
as fields. Hence, to create a connection, a reference to the

Figure 5: Implementation entities

provider is assigned to the appropriate requirement field.
Interactions over this connection then consist of method in-
vocations on the provider.

The Backbone interpreter runs on a JVM on a number
of Koala1 robots and a Katana robot arm which we use for
demontrating the work. The plan interpreter uses RMI to
instruct Backbone to instantiate the desired configurations,
and then makes the appropriate calls to execute actions in
the plan.

6. CASE STUDIES
In order to demonstrate the generality of our approach,

we have developed and implemented a number of scenarios,
two of which are described below. Figure 5 shows all parts
of the implementation and how these entities relate to the
conceptual model.

In the top layer, the MBP planner generates reactive plans
from goals and a domain description. These plans are passed
to the plan interpreter in the middle layer. The plan inter-
preter then generates a new configuration which contains an
implementation of one or more interfaces. Backbone main-
tains a model of the current configuration, which is referred
to in order to reuse component instances. When the new
configuration is ready, the plan interpreter can execute the
plan by calling the methods provided by the domain-specific
components which have been instantiated.

6.1 Reconnaissance Scenario
The first scenario requires a robot to move to a location

and take a photograph of a target. This scenario demon-
strates adaptation in response to a (simulated) failure in
the components which control the primary robot’s motion,
and includes a second robot which is able to guide the first
one towards the target.

6.1.1 Plan
The goal specified for this simple scenario is for a target t

to be photographed. If we represent the property of having
been photographed with the predicate photographed, we can
express the goal as photographed(t). Submitting this goal
along with the domain model and current state of the robot
to MBP, we generate a reactive plan prescribing actions to-
wards this goal from each state in the domain from which
photographed(t) can be made true, of which one must be
the current state. In other words, for all states in which
the CTL formula EF photographed(t) is true (read EF φ as

1http://www.k-team.com

(case (photographed_t))
(done))

...
(case (and

(not (photographed_t))
(koala1_at_loc1)
(t_at_loc3))

(action koala1_move_loc3))
...

Figure 6: Fragment of reactive plan output by MBP

“some path eventually satisfies φ”), the plan contains a path
from that state to the goal.

There is not space to illustrate the entire plan but a small
sample of the condition-action rules generated is given in
Figure 6. This shows, for example, that if t has not been
photographed and the robot “koala1” is at “loc1” and the
target is at “loc3” then koala1 should move to loc3. If t
has been photographed then the goal has been achieved and
plan execution can terminate.

If we let P denote the generated plan, then we can see
that ActionsP includes the actions koala1 take photo and
koala1 move (ActionsP will of course also include the other
actions not shown in Figure 6). Thus, the component config-
uration automatically constructed will include components
that implement these actions, as described in Section 4.

When plan execution stops, due to a failure in the compo-
nents controlling motion, an alternative path to the goal is
found that requires koala1 to follow a second robot “koala2”
(using short-range infrared sensors) to the target’s location.
The actions required by the plan along this path to the goal
include koala1 init follow koala2 and koala2 move. The
failed components in koala1 are swapped out and replaced
by the components that implement the short-range follow-
ing mechanism. If needed, the software on koala2 is also
reconfigured.

6.1.2 Components
Figure 7 shows the component configuration instantiated

on the robot in order to perform a (normal) move action.
The GoToTask provides the implementation of this action,
while the Koala component provides the interfaces to the
motors and sensors of the hardware. The ObstacleAvoider
component uses the proximity sensors to detect obstacles.

The VectorMotionController combines the outputs of the
GoToTask and ObstacleAvoider to determine the direction
in which the robot should move. In this case, the Obsta-
cleAvoider serves to push the robot away from obstacles, and
the GoToTask pushes the robot towards the target location.
The GoToTask needs to know where the robot is located
relative to the target. To provide this information we use a
number of external webcams which observe the ‘arena’ and
locate robots by detecting the distinctively-coloured patches
adorning them.

Figure 8 shows the component configuration for abnormal
operation, where the VisualFollowingTask encapsulates fol-
lowing behaviour using an on-board camera provided by the
Webcam component.

Figure 7: Configuration for performing a move ac-
tion (in Backbone’s graphical notation)

Figure 8: Abnormal configuration for moving by fol-
lowing

6.2 Cleanup Scenario
The second scenario we have considered requires a mobile

robot to co-operate with a robot arm in order to collect a
number of coloured balls. In this scenario, the goal is a
continuous one, that is, balls must be picked up as long as
there are balls remaining. Hence, the plan is cyclic.

6.2.1 Plan
This scenario illustrates a slightly more sophisticated form

of goal. The balls in the environment can be loaded on or off
the robot (one ball at a time) and whether or not the robot
is carrying a ball is represented in the domain model with
the predicate loaded. The aim is for the robot to continue
indefinitely carrying balls back and forth between the area to
be cleaned up and the arm that unloads it. In generating a
plan, MBP searches for paths that lead to a cycle satisfying
the CTL formula

AG ((loaded ⇒ EF ¬loaded) ∧ (¬loaded ⇒ EF loaded))

(read AG φ as “all paths always satisfy φ”). In other words,
whenever the robot is loaded it behaves in a way that will
lead to being unloaded and whenever the robot is unloaded
it behaves in a way that will lead to being loaded.

Plans generated for cyclic goals do not differ conceptually
from those outlined above and we omit the details in this
case to save space. Again, the actions required by the gen-
erated reactive plan drives the automatic configuration of
components.

6.2.2 Components
The configuration used by the mobile robot in this case

is identical to Figure 7, as the only action it is required
to perform is the move action. The other actions in the
plan refer to the robot arm which can perform a pickup

Figure 9: Configuration for picking up balls

action (shown in Figure 9). The components used to achieve
this are the KatanaArm which provides the interface to the
arm hardware, the Webcam component which deals with the
camera hardware, providing an interface to read the current
image and perform basic image processing functions, and a
BallGrabber component which encapsulates searching for,
gripping, and depositing the coloured ball in the box.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced work based upon Gat’s three-

layer model [8]. This reference architecture requires task
planning from high-level goals and a domain description in
the uppermost layer, task execution and derivation of archi-
tectural configurations in the middle layer, and component
implementations in the lowest layer. Planning occurs before
the system is started, and configurations are derived from
the actions indicated in the plan.

Our approach also provides two mechanisms for dealing
with unexpected events in the environment. Firstly, the use
of reactive plans allows us to recover from reaching unex-
pected states after performing an action, so execution can
continue without having to replan. Secondly, the middle
layer is able to react to component failure — potentially
due to a software bug or an environmental problem — by
selecting alternative components where possible. This layer
is capable of deriving heretofore unseen configurations which
the user may not have pre-empted. Ultimately, if both of
these mechanisms are insufficient for some problem, the sys-
tem should be able to resort to replanning.

However, as has already been alluded to in previous sec-
tions, there remains significant research to be carried out
in the various aspects of the approach. We have not yet
achieved the complete feedback loop indicated in the three-
layer model, as this requires dynamic replanning.

Dynamic replanning will occur in two categories of sce-
nario. Firstly, when execution of the current plan fails, pos-
sibly due to a change in the environment or a system failure
(as in the reconnaissance scenario above), a new plan must
be requested from the goal management layer. In this case,
it is likely that the currently held domain descriptions need
to be updated with information about the failure so that
a new plan can be generated which takes the environment
change or system failure into account. In particular, if a
component in the current configuration has failed then a
new plan should of course be generated that does not re-
quire this component. Further, this updating of the domain
descriptions must be carried out by the system automati-

cally. The details of updating the domain descriptions in
this way are still to be investigated.

Secondly, replanning will generally be required if the cur-
rent goals are changed during execution. In this case, the
domain descriptions will remain the same but the goal spec-
ification will need to be updated before generating a new
plan.

There is also a need to prevent the system from enter-
ing cycles where it switches between two alternative plans
or configurations, neither of which make any progress. This
suggests a mechanism is required for recording what has pre-
viously been attempted under what circumstances. Indeed,
this kind of logging would also remove the need to recom-
pute plans or configurations when the system has already
encountered the situation before.

Section 4.2.1 shows that there may be multiple config-
urations which satisfy the requirements of the plan to be
executed. Since each configuration may have differing non-
functional properties, it would be desirable for the selection
process to take account of these.

For instance, consider a single requirement where there
are two candidates. One candidate is highly reliable, while
the other performs its computations in real time, at some
lower reliability. If the component descriptions are anno-
tated with these properties, the selection algorithm can pro-
duce two solutions: one which maximises reliability, and one
which minimises delay. If the user specifies a preference for
performing the current plan by ranking these attributes, the
selection algorithm can select the best alternative.

The user may also wish to introduce extra structural con-
straints. For example, two components may not be com-
patible in a way not explicit to the selection process (they
might contend for a piece of hardware, for instance). Al-
ternatively the user may require that certain components
are always selected, such as the ObstacleAvoider, and may
require that the configuration generated conform to an archi-
tectural style. We are at present experimenting with ways of
expressing and solving such constraints. One approach has
been to use the Alloy analyser2 to find a configuration which
satisfies constraints expressed in the Alloy language. This is
akin to the work in [21] where candidate configurations are
checked (and possibly vetoed) by Alloy, except that we also
require Alloy to propose the configuration. Unfortunately,
the performance of this method is often insufficient for use
in a running system, so we are exploring other possibilities.

To ensure a smooth transition from one configuration to
another, special attention must be paid to the way in which
the adaptation is performed, to ensure it is safe. Clearly if
some components are to be replaced, then their dependants
must not initiate communications with them for the dura-
tion of the change. There is much previous work, notably
that on quiescence [12], which is applicable here. It is es-
pecially important for an autonomous system to be able to
keep the unaffected parts of the architecture running while
reconfiguration is taking place. For the same reasons, com-
ponents may require special shut down procedures before
they are removed from the architecture. For example, any
motor control system must ensure those motors are halted
before control is released.

2http://alloy.mit.edu

8. ACKNOWLEDGEMENTS
The work reported in this paper was funded by the Sys-

tems Engineering for Autonomous Systems (SEAS) Defence
Technology Centre established by the UK Ministry of De-
fence.

9. REFERENCES
[1] N. Arshad, D. Heimbigner, and A. L. Wolf. A planning

based approach to failure recovery in distributed
systems. In WOSS ’04: Proceedings of the 1st ACM
SIGSOFT workshop on Self-managed systems, pages
8–12, New York, NY, USA, 2004. ACM Press.

[2] R. Brooks. A robust layered control system for a
mobile robot. Robotics and Automation, IEEE Journal
of, 2(1):14–23, 1986.

[3] S. W. Cheng, D. Garlan, B. R. Schmerl, J. P. Sousa,
B. Spitnagel, and P. Steenkiste. Using architectural
style as a basis for system self-repair. In WICSA 3:
Proceedings of the IFIP 17th World Computer
Congress - TC2 Stream / 3rd IEEE/IFIP Conference
on Software Architecture, pages 45–59, Deventer, The
Netherlands, The Netherlands, 2002. Kluwer, B.V.

[4] E. M. Dashofy, A. van der Hoek, and R. N. Taylor.
Towards architecture-based self-healing systems. In
WOSS ’02: Proceedings of the first workshop on
Self-healing systems, pages 21–26, New York, NY,
USA, 2002. ACM Press.

[5] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
Style in Architectural Design Environments. In Proc.
of 2nd ACM SIGSOFT Symposium on Foundations of
Software Engineering, New York, NY, USA, 1994.

[6] D. Garlan, V. Poladian, B. Schmerl, and J. P. Sousa.
Task-based self-adaptation. In WOSS ’04: Proceedings
of the 1st ACM SIGSOFT workshop on Self-managed
systems, pages 54–57, New York, NY, USA, 2004.
ACM Press.

[7] D. Garlan and B. Schmerl. Model-Based Adaptation
for Self-Healing Systems. In Proc. of 1st Workshop on
Self-healing Systems, New York, NY, USA, 2002.

[8] E. Gat. Three-Layer Architectures. Artificial
Intelligence and Mobile Robots: Case Studies of
Successful Robot Systems, pages 195–210, 1998.

[9] J. C. Georgas and R. N. Taylor. Towards a
knowledge-based approach to architectural adaptation
management. In WOSS ’04: Proceedings of the 1st
ACM SIGSOFT workshop on Self-managed systems,
pages 59–63, New York, NY, USA, 2004. ACM Press.

[10] I. Georgiadis, J. Magee, and J. Kramer.
Self-organising software architectures for distributed
systems. In WOSS ’02: Proceedings of the first
workshop on Self-healing systems, pages 33–38, New
York, NY, USA, 2002. ACM Press.

[11] F. Giunchiglia and P. Traverso. Planning as Model
Checking. 5th European Conference on Planning, 1999.

[12] J. Kramer and J. Magee. The Evolving Philosophers
Problem: Dynamic Change Management. IEEE
Trans. Softw. Eng., 16(11), 1990.

[13] J. Kramer and J. Magee. Self-Managed Systems: an
Architectural Challenge. International Conference on
Software Engineering, pages 259–268, 2007.

[14] M. Ghallib, D. Nau, P. Traverso. Automated Planning:
Theory and Practice. Morgan Kaufman, 2005.

[15] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying distributed software architectures. In
Proceedings of the 5th European Software Engineering
Conference, pages 137–153, London, UK, 1995.
Springer-Verlag.

[16] A. McVeigh, J. Kramer, and J. Magee. Using
Resemblance to Support Component Reuse and
Evolution. In Proc. of SIGSOFT/FSE Workshop on
Specification and Verification of Component-based
Systems, New York, NY, USA, 2006. ACM Press.

[17] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, P.
Traverso. MBP: A Model-Based Planner. Proc. of
IJCAI’01 Workshop on Planning Under Uncertainty
and Incomplete Information, 2001.

[18] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, P.
Traverso. NuSMV 2: An Open Source Tool for
Symbolic Model Checking. Proc. of International
Conference on Computer-Aided Verification, 2002.

[19] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles.
Using Critics to Analyze Evolving Architectures. In
Joint Proc. of ISAW-2 and Viewpoints ’96 on
SIGSOFT ’96 Workshops, New York, NY, USA, 1996.

[20] D. Sykes, W. Heaven, J. Magee, and J. Kramer.
Plan-directed architectural change for autonomous
systems. In Proc. of SIGSOFT/FSE Workshop on
Specification and Verification of Component-based
Systems. ACM Press New York, NY, USA, 2007.

[21] I. Warren, J. Sun, S. Krishnamohan, and
T. Weerasinghe. An automated formal approach to
managing dynamic reconfiguration. In Proc. of 21st
IEEE/ACM International Conference on Automated
Software Engineering, Washington, DC, USA, 2006.

[22] J. Zhang and B. Cheng. Modular Model Checking of
Dynamically Adaptive Programs. Technical report,
Michigan State University, 2006.

	Introduction
	Related Work
	Goal Management Layer
	Domain Model
	Plan Generation

	Change Management Layer
	Component Model
	Deriving Component Configurations
	Configuration Generator

	Adaptation

	Component Layer
	Case Studies
	Reconnaissance Scenario
	Plan
	Components

	Cleanup Scenario
	Plan
	Components

	Conclusion And Future Work
	Acknowledgements
	References

