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Abstract. We present an atomic-resolution observation and analysis of graph-

ene constrictions and ribbons with sub-nanometer width. Graphene membranes

are studied by imaging side spherical aberration-corrected transmission electron

microscopy at 80 kV. Holes are formed in the honeycomb-like structure due

to radiation damage. As the holes grow and two holes approach each other,

the hexagonal structure that lies between them narrows down. Transitions

and deviations from the hexagonal structure in this graphene ribbon occur

as its width shrinks below one nanometer. Some reconstructions, involving

more pentagons and heptagons than hexagons, turn out to be surprisingly

stable. Finally, single carbon atom chain bridges between graphene contacts

are observed. The dynamics are observed in real time at atomic resolution

with enough sensitivity to detect every carbon atom that remains stable for a

sufficient amount of time. The carbon chains appear reproducibly and in various

configurations from graphene bridges, between adsorbates, or at open edges

and seem to represent one of the most stable configurations that a few atomic

carbon system accommodates in the presence of continuous energy input from

the electron beam.

Carbon is one of the most important elements that occurs in numerous allotropes, displays an

exceedingly rich chemistry, and is contained in a staggering number of compounds. The two

solid crystalline forms, graphite and diamond, have been known since ancient times, while the

more recently discovered fullerenes [1], carbon nanotubes [2, 3] and graphene [4, 5] make

up a large part of today’s nanotechnology research. Thus, a wide range of allotropes and
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structural species with all dimensionalities is available for research and applications today.

Now, we present a simple and reliable synthesis of a truly one-dimensional (1D) carbon

species, a single-atomic linear carbon chain. Evidence of such carbon chains has been observed

in spectral signatures from space [6] and in laboratory experiments [7]–[9]; however, their

formation mechanisms have remained unclear and the chemical and physical properties mostly

undiscovered. Here, we form monoatomic carbon chains by shrinking a graphene constriction

under electron irradiation. We follow their formation with atomic resolution and sufficient

sensitivity to detect every carbon atom that remains stable for at least one second. We find that

graphene constrictions deviate from the hexagonal structure as their width is reduced below one

nanometer, and intermediate structures between a graphene constriction and a carbon chain are

dominated by pentagons and heptagons. The carbon chain formation from shrinking a graphene

constriction indicates a possible site-specific fabrication, which is the first step to a further

analysis or technological application.

Our study of graphene membranes reveals an efficient formation mechanism of carbon

chains. Indeed, these chains appear almost inevitably in these ultra-thin graphitic samples after

a sufficiently high dose of electron irradiation. Holes and constrictions form in the process

of irradiation and, most surprisingly, most of the constrictions turn into carbon chains before

ultimately detaching. Thus, instead of a synthesis from smaller units, the carbon chains form by

self-organization from a continuously diluted set of carbon atoms in the presence of ionizing

irradiation. In addition, the amorphous, carbonaceous adsorbates on the graphene membranes

form carbon chains while shrinking under electron irradiation, and bended chains appear at

the free edges of graphene. This variety of conditions in which they form indicates that these

chains are a preferential and stable configuration at a low density of carbon atoms, not limited

to graphene membranes. Further, by shrinking a graphene ribbon [10] in an electron beam

under continuous observation, we investigate the transition from a quasi-2D material to a 1D

structure. As the width drops below about 1 nm, the structural behaviour of the ribbon and

its two edges becomes distinctively different from that of a semi-infinite sheet with one open

edge [11]–[13], and thus marks the transition from a surface-dominated to an edge-dominated

regime. Stable planar sp2-bonded reconstructions of the graphene bridge are observed as

intermediate configurations.

Graphene membranes are prepared by mechanical cleavage of graphite and transferred

to commercially available transmission electron microscopy (TEM) grids as described

previously [14]. The presence of a single layer is verified by electron diffraction [15]. TEM

investigations are carried out using an imaging-side spherical aberration corrected Titan

80–300 (FEI, Netherlands), operated at 80 kV. The electron beam current density is about

3 × 107 e− s−1 nm−2. The spherical aberration is set to 20 µm and imaging is done under

Scherzer conditions [16]. The extraction voltage of the field emission gun is reduced from

its standard value (3.8 kV) to 1.7 kV in order to reduce the energy spread of the source. This

results in a clear improvement of contrast and resolution, both of which are limited by chromatic

aberrations of the objective lens at 80 kV operating voltage.

A key advantage of spherical aberration corrected TEM is that the point resolution can

be set approximately to the information limit of the microscope. In this way, effects of

delocalization are reduced [17]. Thus, for a sample that is imaged at optimum focus conditions

and that is thin enough to neglect multiple scattering, the images can be directly interpreted in

terms of the atomic structure. For a single layer of carbon, these requirements are easily fulfilled.

Atoms appear black under our conditions.
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Holes appear in graphene membranes during electron irradiation, as described

previously [11, 18]. We look for configurations where two nearby holes are present in a

clean region of the graphene sheet. Although we look here for the coincidental formation of

two nearby holes, we note that it has been demonstrated by Fischbein et al that an arbitrary

configuration of holes can be made in a controlled position by electron irradiation [18]. At

an electron energy of 80 kV, atoms at the graphene edges are removed while the continuous

graphene membrane areas are very stable. Thus, as the holes grow under continuous electron

irradiation, the graphene bridges between nearby holes inevitably shrink but are not damaged

otherwise. Eventually, narrow graphene constrictions form between adjacent holes. We record

a continuous sequence of images on the CCD camera, using an exposure time of 1 s at 4 s

intervals. Reconstructions that affect not only the edges but also the entire graphene ribbon are

frequently observed at widths of less than 1 nm. Finally, a single chain with a typical length

of 10–15 carbon atoms is seen in more than 50% of the cases as the final product of bridge

thinning, which then remains stable for up to 2 min under our intense electron beam.

A single-layer graphene membrane with two holes, separated by an about 1 nm wide

graphene bridge, is shown in figure 1(a). Figures 1(b)–(g) show the same graphene constriction

at later times, along with best-fit atomic models and image simulations. A video of this process

is shown in the supplementary video S1 (available from stacks.iop.org/NJP/11/083019/mmedia,

supplementary videos S2, S3 show the time evolution of two similar graphene constrictions).

Again, the atomic model is easily derived because the dark contrast in this spherical aberration

corrected image can be directly interpreted in terms of the atomic structure. Further, the structure

appears to remain planar, i.e. no indication of two carbon atoms on top of each other in the

projected structure was observed (small out-of-plane distortions are still possible, and indeed

likely, in a carbon structure with multiple pentagons and heptagons). The atomistic model is

generated with the ghemical software [19], and the TEM image calculation is obtained using

multislice software [20].

The reconstructions that occur in the time evolution, with continuous energy input from

the electron beam, are indeed remarkable. In this example, the graphene bridge incorporates

pentagons and heptagons (figure 1(b)), converts into three parallel carbon chains (figure 1(c)),

transforms back into a structure with multiple polygons (5 to 8 sides, figures 1(d) and (e)),

and finally becomes a double and single carbon chain before the two holes merge into one

(figures 1(f) and (g)). Further, it can be seen in the supplementary video S1 that the end point

of the carbon chain, i.e. its connection to the hexagonal mesh of the graphene sheet, drifts

between nearby edge atoms multiple times before the chain finally breaks. Similar transitions

or reconstructions were observed many times in different samples, and are separately discussed

in the following paragraphs.

We begin our discussion with the transformations from a hexagonal structure to a mesh that

is dominated by pentagons and heptagons. From the observed structures alone, it appears that

a variety of (seemingly random) combinations of pentagons, heptagons or higher polygons can

be generated within the graphene bridge. The reason for these reconstructions may be twofold:

as an intrinsic origin, calculations of edge stress [13] and edge reconstructions [12] indicate

that unperturbed graphene edges might not be the optimum configuration. Thus, reconstruction

of the entire structure can be expected once the graphene ribbon is sufficiently narrow. As an

extrinsic driving force, energy input from the electron beam is present, which can help, e.g. to

overcome activation barriers. Indeed, the dominant effect of the electron irradiation at 80 kV

in graphene is not atom removal, but atom rearrangement (e.g. the Stone–Wales-type bond
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Figure 1. Transition from a graphene ribbon to a single carbon chain.

(a) HRTEM image of the initial graphene ribbon configuration (atoms appear

black). In this image, the graphene ribbon runs horizontally. A tiny adsorbate is

present on the left-hand side of the bridge, but it disappears shortly afterwards.

(b–g) Time evolution of the bridge, in the experimental image (left), atomistic

model (center), and corresponding image calculation (right). Carbon chains are

present in panels (c, f, g); reconstructed bridge configurations of planar covalent

carbon networks are seen in (b, d, e). Note that the higher contrast of the

carbon chains compared to the graphene lattice is in agreement with the image

calculation.
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Figure 2. A stable configuration discovered within the reconstructions of a

graphene bridge. (a) HR-TEM image (atoms appear black). (b) Atomistic model

of the outlined region. (c) A model of pentaheptite [22]. Matching atom con-

figurations in the experiment (b) and pentaheptite model (c) are marked in pink.

rotation [21]). Thus, structures that are random (to some extent) are formed locally. At the

same time, these structures are observed with single-atom precision. We can now gain crucial

insights by studying the stability (under the beam) of the observed structures, since ‘stable’

configurations would be expected to last longer than unstable ones. For example, we find that

the configuration of figure 1(e) turns out to be stable for 2 min in the intense electron beam,

which corresponds to an electron dose of ≈4 × 109 e− nm−2 and is longer than all other multiple-

polygon-type structures observed within our data. Figure 2(a) shows an image with better signal-

to-noise ratio (by averaging of 10 CCD frames) of this structure. From the atomic configurations

(figures 2(b) and (c)), it turns out that the structure is locally that of pentaheptite, a carbon

allotrope that was predicted to be stable in 1996 [22] but has not been observed experimentally

so far.

As a generalization, it appears promising to look for stable configurations with the

continuous ‘randomization’ of some atoms by the electron beam. In this way, configurations

with local energetic minima can be discovered (such as pentaheptite), which are not

experimentally accessible otherwise. Graphene bridges provide an ideal starting point for such

a study: bond rotations were observed previously in graphene without holes but then they are

constrained by the continuous membrane, and thus relax to the unperturbed structure [23].

Graphene edges, the boundary of a semi-infinite sheet, allow us to study the migration of

edge atoms but still the reconstructions do not seem to penetrate into the graphene sheet [11]

(topological changes are limited to the edge polygons). Graphene bridges or ribbons are only

constrained in one direction and can reconstruct more freely, but at the same time the structures

remain sufficiently planar and stable for a direct analysis by low-voltage, aberration-corrected

transmission electron microscopy. Thus, we expect that a further study of intermediate structures

in graphene bridges, with particular respect to their stability, can provide further insights into

the complicated bonding behaviour in carbon materials.

We now turn to the chain-type configurations that are frequently observed as the graphene

bridge is ultimately narrowed down to a few-atom or single-atom width. It is obvious that with

only a random removal of atoms, even of only the edge atoms from a graphene bridge, the

formation of a carbon chain by coincidence would be highly unlikely. However, more than 50%
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of the graphene constrictions display one or several carbon chains before the two holes merge

into one. Therefore, it must be atomic rearrangements along with the continuous removal of

atoms in the electron beam that leads to carbon chains as the final product, the thinnest possible

carbon bridge. Indeed, several narrow bridges convert into two parallel chains (figure 1(c) shows

a rare case of even three), which indicates that this transformation is energetically favoured

rather than caused by only the removal of atoms.

There is no doubt that these chains must be made from carbon, since we can follow,

atom by atom, the transition from graphene to these chains (figure 1, and supplementary

video). Contrast and observed width in the experiment is in agreement with the calculation

for single-atomic chains (figures 1(f) and (g)). Further, the amount of carbon material that is

present just before the transitions cannot account for more than a single-atomic chain in each

of the dark lines. Several of these chains can occur in parallel (figures 1(c) and (f)) and even

convert back to a (2D) planar covalent network (figures 1(c) and (d)). The chain structures

may be of the double-bonded (cumulene-type) or alternating single–triple bonded (poly-yne-

type) structures [9, 24, 25], or possibly linear alkane or polyacetylene-type chains. The first two

structures, cumulene (. . . C C . . .) or poly-yne type (. . . − C C − C C − . . .) are linear

chains and in good agreement with the observation; calculations show that the number of carbon

atoms (even or odd) determines which case is present [24, 25]. In our experiment, the signal to

noise ratio is not sufficient to distinguish the two types. The last two structures, an alkane chain

or polyacetylene, are angled chains with bonds at 120◦ and 109.5◦, respectively. No indication

of this zigzag structure is seen in our chains; however, its visibility depends on whether the

correct projection occurs in the experiment. If we assume that random orientations occur in

the experiment, then a sufficient number of chains was observed to rule out these angled types

of chains.

Similar carbon chain configurations have been observed previously in carbon nanotube

samples [8, 26] but were often not stable enough for a TEM image to be recorded [26, 27]. In our

case, more than 50% of the graphene constrictions convert into a carbon chain at the end of the

thinning process. The carbon chains are frequently stable for 1 min, and sometimes up to 2 min,

in our rather intense electron beam. One minute corresponds to a dose of ≈2 × 109 e− nm−2.

This result is particularly surprising in light of commonly assumed radiation dose limits for

organic molecules, which are of the order of 1 × 104 e− nm−2 [28], and thus five orders of

magnitude lower than our doses. It has been speculated that the high conductivity of the

graphene sheet reduces the effect of ionization damage [29]. Of course, a carbon chain is

not a complex organic structure, but it does represent an organic substance and constitutes a

building block of many more complex molecules. These results indicate that radiation damage

mechanisms are not well understood; experiments at varying electron energies should help to

gain further insight.

In addition to these free-hanging carbon chains, we observe carbon chains that are

supported by a graphene sheet, as observed before [30]. We find that this type of chain frequently

occurs where amorphous adsorbates shrink under electron irradiation, and forms similarly to the

aforementioned type, but now from constrictions in the contamination layer. The supplementary

videos S4, S5 (available from stacks.iop.org/NJP/11/083019/mmedia) show this process.

Figure 3 shows two carbon chains that are attached to larger adsorbates at their end points.

Some of the adsorbates are single-layer networks of carbon atoms, as indicated in figure 3.

Even though we find a slight preference of these chains to align with the zigzag direction of

the underlying graphene lattice, again no indication of a zigzag shape (as expected for an
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Figure 3. Carbon chains suspended between adsorbates on top of a single-

layer graphene membrane. (a) HRTEM image, (b) Fourier-filtered image with

the graphene lattice removed. Arrows indicate single-atomic chains of carbon

atoms. One of them branches into a planar covalent carbon network at one end,

as indicated on the inset. The adsorbed ‘contamination’ here has a thickness of

only one or two mono-layers: the area indicated by the red dotted line contains

a single-layer network of carbon atoms on top of the graphene sheet, dominated

by carbon pentagons, hexagons and heptagons, while other areas are at most two

layers of contamination. The chain formation from a constriction in amorphous

adsorbates is also shown in the supplementary videos S4, S5 (available from

stacks.iop.org/NJP/11/083019/mmedia).

alkane- or polyacetylene-type chain) is seen in the carbon chain itself. Thus, we confirm their

structure as either cumulene or poly-yne type as described above. For the case of chain formation

from carbon contamination, it is the low-contrast background of the graphene support that

enables the visualization of this process by TEM.

As a third configuration, we observe carbon chains that form loops along graphene edges.

Although more rare than the previously described chains, they can still be reliably found by

observing graphene hole edges for a longer time. Figure 4 shows three examples of carbon

chains that have separated from the edge. Frequently they merge back into the graphene

edge at a later time. These additional ways of formation confirm that the carbon chains are

a preferred configuration in a continuously diluted set of carbon atoms, not limited to graphene

constrictions.

Finally, we discuss the edge reconstructions that are shown in figures 4(c) and (e).

Figure 4(e) shows an edge that is terminated by an alternating sequence of pentagons and

heptagons with a period that is twice as large as that of the zigzag edge. It constitutes

one of the edge reconstructions predicted in [12]. For this edge, the switching between the

two configurations was observed several times as shown in figures 4(d) and (e) and in the

supplementary video S6 (available from stacks.iop.org/NJP/11/083019/mmedia). During TEM

observation, all the edges of graphene are continuously changing, due to the energy input from

the electron beam [11]. However, as this edge switches from a well-defined zigzag edge to the

reconstructed configuration and back multiple times in-between two exposures, it cannot be a

coincidental arrangement formed by random single-atom knock-on events. More likely, these

are two stable configurations, and the energy input from the beam provides the activation energy
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1nm

a b c

d e

Figure 4. Carbon chains observed at the edges of graphene sheets (red arrows).

(a) Individual carbon chain loop at an edge. (b) Carbon chain bridging a gap at

the edge. (c) A double loop configuration. The structure in (c) is partly vibrating

(due to large holes in the membrane) and therefore the lattice is not well resolved.

Also visible in (c) are a few smaller loops (blue arrows) that indicate a new edge

reconstruction. (d, e) Transition from a zigzag edge to the reconstructed edge,

terminated by pentagons and heptagons. A structural model is overlaid in part

(blue: hexagons, pink: pentagons and red: heptagons).

that is required to switch between the two cases. However, this implies that the energy input

from the beam has a non-local effect (possibly via excitation of a phonon), which changes an

entire about 5 nm long edge in one step, rather than just kicking individual atoms to a different

position.

In conclusion, we have shown the transformation from graphene nanoribbons to single

carbon chains. Planar, sp2-bonded networks that deviate from the hexagonal structure appear as

intermediate reconstructions as the graphene ribbon width shrinks below 1 nm. Many electronic

applications of graphene require nanometer-scale graphene ribbons or graphene constrictions.

Thus, on the one hand, reconstructions have to be considered in ultra-narrow ribbons, while

on the other hand carbon chains might be useful as electronic components and represent

the ultimate constriction in graphene. The chains form efficiently by self-organization during

continuous removal of atoms from a graphene bridge. Further, they are observed at edges, or

form from constrictions in carbonaceous contamination. In other words, the ‘precursor’ material

for the chains ranges from highly crystalline (graphene) to amorphous (adsorbate) carbon,

which indicates that a rather general self-organization process is observed here. Finally, the high

robustness under irradiation of these linear carbon chains combined with the ease of electron

beam fabrication at the nm scale can provide a route to a synthesis of devices and for further

studies of these structures.
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