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Abstract

The growing need to deal efficiently with massive computing tasks prompts us to
consider the following question:

How well can we solve fundamental optimization problems if our algorithms have to
run really quickly?

The motivation for the research presented in this thesis stems from addressing the
above question in the context of algorithmic graph theory.

To pursue this direction, we develop a toolkit that combines a diverse set of
modern algorithmic techniques, including sparsification, low-stretch spanning trees,
the multiplicative-weights-update method, dynamic graph algorithms, fast Laplacian
system solvers, and tools of spectral graph theory.

Using this toolkit, we obtain improved algorithms for several basic graph problems
including:

• The Maximum s-t Flow and Minimum s-t Cut Problems. We develop
a new approach to computing (1 − ǫ)-approximately maximum s-t flow and
(1 + ε)-approximately minimum s-t cut in undirected graphs that gives the
fastest known algorithms for these tasks. These algorithms are the first ones to
improve the long-standing bound of O(n3/2) running time on sparse graphs;

• Multicommodity Flow Problems. We set forth a new method of speeding
up the existing approximation algorithms for multicommodity flow problems,
and use it to obtain the fastest-known (1 − ǫ)-approximation algorithms for
these problems. These results improve upon the best previously known bounds
by a factor of roughly Ω(m/n), and make the resulting running times essentially
match the Ω(mn) “flow-decomposition barrier” that is a natural obstacle to all
the existing approaches;
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• Undirected (Multi-)Cut-Based Minimization Problems. We develop a
general framework for designing fast approximation algorithms for (multi-)cut-
based minimization problems in undirected graphs. Applying this framework
leads to the first algorithms for several fundamental graph partitioning primi-
tives, such as the (generalized) sparsest cut problem and the balanced separator
problem, that run in close to linear time while still providing polylogarithmic
approximation guarantees;

• The Asymmetric Traveling Salesman Problem. We design an O( logn
log logn

)-
approximation algorithm for the classical problem of combinatorial optimiza-
tion: the asymmetric traveling salesman problem. This is the first asymptotic
improvement over the long-standing approximation barrier of Θ(log n) for this
problem;

• Random Spanning Tree Generation. We improve the bound on the time
needed to generate an uniform random spanning tree of an undirected graph.

Thesis Supervisor: Michel X. Goemans
Title: Professor of Applied Mathematics

Thesis Supervisor: Jonathan A. Kelner
Title: Assistant Professor of Applied Mathematics
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and Mihai Pǎtraşcu for making each day at the office an enjoyable experience. I am
especially grateful to Alex for being my “older brother” during my first years at MIT.

I also want to thank Umesh Vazirani for hosting me during my visits to Berkeley,
and Nikhil Bansal for the invitations to IBM Research. These experiences influenced
me greatly and helped me develop as a researcher.

Finally, I am immensely grateful to my wife Kamila and my family (that is soon
to be joined by its newest member!) for an unbelievable amount of support, love, and
happiness that they have given me, as well as, for their tolerance of me during the
frustrating times of my graduate studies. This thesis is dedicated to them.

5



6



To my wife Kamila,

and my family

7



8



Contents

1 Introduction 15

1.1 Results and Structure of This Thesis . . . . . . . . . . . . . . . . . . 17

2 Background 21

2.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Cuts and Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Laplacian of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Electrical Flows and Resistor Networks . . . . . . . . . . . . . . . . . 25

2.4.1 Effective s-t Resistance and Effective s-t Conductance . . . . . 27

2.5 Electrical Flows, Random Walks, Random Spanning Trees, and Lapla-

cians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Spectral Connection . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Electrical Flows, Random Walks, and Random Spanning Trees 29

2.6 Approximating Graphs via Simpler Graphs . . . . . . . . . . . . . . . 30

2.7 Laplacian System Solvers . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Packing Flows via Multiplicative-Weights-Update Method . . . . . . 35

2.8.1 Designing a γ-approximate Solver . . . . . . . . . . . . . . . . 36

2.8.2 Correctness of the Multiplicative-Weights-Update Routine . . 39

2.8.3 Convergence of the Multiplicative-Weights-Update Routine . . 41

I Cuts and Flows 43

3 Approximation of Maximum Flow in Undirected Graphs 45

9



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Previous Work on Maximum Flows and Minimum Cuts . . . . 46

3.1.2 Outline of This Chapter . . . . . . . . . . . . . . . . . . . . . 47

3.2 Preliminaries and Notations . . . . . . . . . . . . . . . . . . . . . . . 47
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t

)])-decomposition of G . . 130

5.5.3 Obtaining an (Õ(log n),GV [Õ(m logU
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Chapter 1

Introduction

Optimization is one of the most basic tasks in modern science. An amazingly vast
array of tasks arising in computer science, operations research, economics, biology,
chemistry, and physics can be cast as optimization problems. As a result, the goal
of understanding the nature of optimization from an algorithmic point of view is a
cornerstone of theoretical computer science. In particular, it motivated the notion of
polynomial-time algorithms as a standard of efficiency.

Unfortunately, many optimization problems of practical interest are NP-hard and
thus probably cannot be solved exactly in polynomial time. One way of coping
with this intractability is to change our paradigm by insisting that our algorithms
produce solutions in polynomial time, and then trying to obtain a solution whose
quality is within some approximation ratio of the optimum. Over the last thirty-
five years, this approach has been extremely successful, giving rise to the field of
approximation algorithms and leading to practical algorithms for a plethora of real-
world optimization problems.

However, there has been an emergence in recent years of various extremely large
graphs, which has changed the nature of the optimization tasks that we are facing.
If one considers, for example, the graphs that companies like Google or Facebook
have to deal with, one quickly realizes that the size of the corresponding optimization
problems that one needs to solve on a day-to-day (or even hour-to-hour) basis is much
larger than what one would have encountered just a decade ago. It becomes apparent
that this explosion in the amount of data to be processed cannot be accommodated
by the development of hardware-based solutions alone, especially given the growing
need to perform computations in a cost- and energy-efficient manner. It is therefore
critical to address this issue from an algorithmic point of view as well. As a parallel
to the method employed in the past to cope with NP-hardness, one should focus in
this context on reducing the running time of the algorithms to make them as fast as
possible – ideally, to run in nearly-linear time – even if it comes at a cost of reducing
the quality of the returned solution.
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The research presented in this thesis stems from pursuing of the above program
in the context of graph problems. At its core is the general question:

Can we make algorithmic graph theory run in nearly-linear time?

That is, can we obtain algorithms for graph problems that run in essentially the best
possible time and that compute solutions whose quality is comparable to the best
achievable by polynomial-time algorithms?

Addressing this challenge seems to be beyond the reach of classical, purely combi-
natorial methods. Therefore, we approach it by developing and applying a diverse set
of modern algorithmic techniques, including sparsification, low-stretch spanning trees,
the multiplicative-weights-update method, dynamic graph algorithms, fast Laplacian
system solvers, and tools of spectral graph theory. Using these, we obtain fast approx-
imation algorithms for the single- and multi-commodity flow problems, and a variety
of cut and multi-cut problems such as the minimum s-t cut problem, the (generalized)
sparsest cut problem, and the balanced separator problem.

A recurring theme that we want to highlight here is that most of the results
presented in this thesis are established by connecting combinatorial properties of
graphs to linear-algebraic properties of associated matrices, known as Laplacians.

It is well-known that one can use the eigenvalue spectrum of the Laplacian matrix
to study the underlying graph. For example, one can use this to estimate the mixing
time of the random walks or approximate certain cut properties of the graph. (An
in-depth treatment of such methods can be found in the book by Chung [42].)

In this thesis, however, we show that much more can be obtained by broadening
our investigation to include more general linear-algebraic properties of Laplacians. In
particular, a key ingredient in many of our results is the use of electrical flows and
related objects to probe the combinatorial structure of the graph. It turns out that
this approach allows one to obtain much richer information about the graph than that
conveyed by just looking at the spectrum of the Laplacian. Furthermore, computing
electrical flows corresponds to solving a linear system in the Laplacian matrix (i.e.,
Laplacian system). One can approximately solve such a system in nearly-linear time
[129, 95], thus this gives rise to an extremely efficient primitive that allows us to
access the information conveyed by electrical flows in an amount of time comparable
to that required by Dijkstra’s algorithm.

The above approach to studying graphs provides us with a powerful new toolkit
for algorithmic graph theory. In fact, as we will see in this thesis, its applicability goes
beyond providing faster algorithms for graph problems. By combining the classical
polyhedral methods with the notion of random spanning trees and its understanding
via electrical flows, we are able to break the long-standing approximation barrier
of Θ(log n) for one of the fundamental problems of combinatorial optimization: the
asymmetric traveling salesman problem.

Finally, we want to note that even though the above-mentioned bridge between
the combinatorial and linear-algebraic worlds is usually used to obtain better under-
standing of combinatorial problems, it is also possible to utilize this connection in the
other direction. Namely, in this thesis, we consider a classical algorithmic problem of
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spectral graph theory: the generation of an uniformly random spanning tree in undi-
rected graph, a problem that was traditionally approached with random-walk-based
– and thus linear-algebraic in nature – methods. We show how by integrating these
methods with the combinatorial graph partitioning techniques and fast Laplacian
system solvers, one can speed up the existing algorithms for this problem.

1.1 Results and Structure of This Thesis

The presentation of results of this thesis is divided into two main parts. The first
part focuses on finding faster algorithms for fundamental problems that deal with
cuts and flows. The second one is concerned with graph problems that are outside of
this envelope.

Chapter 2 – Background. We start by providing basic graph-theoretic definitions,
as well as, describing some of the tools and concepts that will be used repeatedly
throughout this thesis. We introduce the concepts of a Laplacian matrix of a graph
and of electrical flows, and we explain the connection between them. We portray how
electrical flows – and thus Laplacian matrices – are related to the behavior of random
walks in the graph and to the notion of random spanning trees. Next, we introduce
two important examples of techniques that allow one to approximate a given graph
by a simpler one: the sparsification and low-stretch spanning trees. We explain the
role of these techniques in obtaining one of the key tools employed in this thesis –
nearly-linear time approximate Laplacian system solvers. Finally, we describe another
technique that we will find very useful: multiplicative-weights-update method. The
particular version of this method that we present is adjusted to apply to the diverse
scenarios that arise in the thesis. It draws upon the variations and approaches to its
analysis that were presented in [14] and [139].

Chapter 3 – The Maximum s-t Flow and Minimum s-t Cut Problems. We
develop a new approach to computing (1− ǫ)-approximately maximum s-t flows and
(1 + ε)-approximately minimum s-t cut in undirected graphs. Our approach employs
electrical flow computations – each of them corresponds to solving a Laplacian system
– to probe the global flow structure of the graph. The algorithms that result from
doing this are the fastest known ones for these tasks. In particular, they improve
the long-standing bound of O(n3/2) running time on sparse graphs. The material in
this chapter is based on joint work with Paul Christiano, Jonathan Kelner, Daniel
Spielman, and Shang-Hua Teng [40].

Chapter 4 – Multicommodity Flow Problems. Next, we turn our attention
to multicommodity flow problems, which are natural generalizations of the maximum
s-t flow problem. We consider the task of designing (1−ε)-approximation algorithms
for two of the most popular problems in this family: the maximum multicommodity
flow problem and the maximum concurrent flow problem. We develop a new method
of speeding up the existing algorithms for it. This method is based on employing
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the ideas from an area of dynamic graph algorithms to improve the performance of
the multiplicative-weights-update-based algorithms that are traditionally used in the
context of multicommodity flows. As a result, we obtain running time improvements
by a factor of roughly Õ(m/n) and, whenever ε is fixed, the obtained running times
essentially match a natural barrier for all the existing fast algorithms and are within
a Õ(m/n) factor of a trivial lower bound that applies to all the algorithms for these
problems. The material in this chapter is based on [105].

Chapter 5 – (Multi-)Cut-Based Minimization Problems in Undirected
Graphs. We focus on the (multi-)cut-based minimization problems – a class of
problems capturing a variety of basic graph problems including the minimum cut
problem, the minimum s-t cut problem, and many graph partitioning primitives such
as the (generalized) sparsest cut problem and the balanced separator problem. We
present a general method of designing fast approximation algorithms for this class of
problems in undirected graphs. In particular, we develop a technique that given any
such problem that can be approximated quickly on trees, allows us to approximate
it almost as quickly on general graphs while only losing a poly-logarithmic factor in
the approximation guarantee.

As an illustration of usefulness of this framework, we apply it to obtain the first
algorithms for the (generalized) sparsest cut problem and the balanced separator
problem that run in close to linear time while still providing polylogarithmic approx-
imation guarantees.

One of the key ingredients in establishing this framework is exploiting the interplay
between a version of the multiplicative-weights-updated-based graph decomposition
technique of Räcke [114] and the ideas and tools that arise in the context of fast
Laplacian system solvers [129, 95]. The material in this chapter is based on [104].

Chapter 6 – The Asymmetric Traveling Salesman Problem. We derive a
randomized algorithm which delivers a solution within a factor of O(log n/ log log n)
of the optimum with high probability. This improves upon the long-standing approx-
imation barrier of Θ(log n). To achieve this improvement, we combine the traditional
polyhedral approaches with a randomized sampling procedure that is based on em-
ploying the notion of random spanning trees and exploits their connection to electrical
flows and Laplacian systems. The material in this chapter draws upon joint work with
Arash Asadpour, Michel Goemans, Shayan Oveis Gharan, and Amin Saberi [18].

Chapter 7 – Generation of an Uniformly Random Spanning Tree. We give a
new algorithm for a fundamental graph problem of spectral graph theory: generating
uniformly random spanning trees in undirected graphs. Our algorithm produces a
sample from the uniform distribution over all the spanning trees of the underlying
graph in expected time Õ(m

√
n). This improves the sparse graph case of the best

previously known worst-case bound of O(min{mn, n2.376}).
To achieve this improvement, we exploit the connection between random walks

on graphs and electrical networks to integrate the traditional random-walk-based
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techniques for the problem with combinatorial graph partitioning primitives and fast
Laplacian system solvers. The material in this chapter is based on joint work with
Jonathan Kelner and James Propp [90].

Chapter 8 – Conclusions. We summarize what was achieved in this thesis, and
discuss the possible avenues for further research.

19



20



Chapter 2

Background

In this chapter, we provide the basic graph-theoretic definitions and introduce some
of the tools and concepts that will be employed throughout this thesis. This includes
the concept of a Laplacian matrix of a graph and of electrical flows, as well as, tools
such as Laplacian system solvers, multiplicative-weights-update method, random and
low-stretch spanning trees, and sparsification.

2.1 Preliminary Definitions

The main objects of study of this thesis are graphs. They might be directed or
undirected. Some of the presented results, however, apply only to undirected setting.
Graphs are denoted as G = (V,E), where V is the set of vertices and E is the set
of edges. Whenever we want to emphasize that the edges are directed, we will call
them arcs. Usually, the variables n and m will denote the number of vertices |V |
and, respectively, edges |E| of the graph being considered. Also, each edge (arc) e of
our graphs might sometimes be equipped with additional characteristics: capacity ue,
length le and/or weight we. These quantities are always assumed to be non-negative.

We will often use the “soft-O” notation, i.e., we define Õ(g) to denote a quantity
that is O(g logc g), for some constant c.

2.2 Cuts and Flows

The notions that we will be dealing with extensively are the notions of a cut, an s-t
cut, and an s-t flow. We define a cut to be any subset of vertices C that induces
a non-trivial partition of vertices, i.e., any C that is non-empty and is not equal to
the set of all vertices V . For undirected graphs, we denote by E(C) the set of edges
with exactly one endpoint in C. For graphs that are directed, E(C) denotes the set
of edges that leave the cut C, i.e., the set of edges with their tails being in C and
their heads being in the complement C of the set C. Given some capacities {ue}e
corresponding to edges, we define u(C) to be the capacity of the cut C and make it
equal to the total capacity of the edges in E(C), i.e., u(C) :=

∑
e∈E(C) ue.
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By an s-t cut, for given vertices s and t, we mean any cut C in G that separates
s from t, i.e., such that s ∈ C, but t /∈ C.

Now, for a directed graph G = (V,E) and two of its vertices s and t, we define
an s-t flow to be a function that assigns non-negative values to arcs and obeys the
flow-conservation constraints:

∑

e∈E−(v)

f(e)−
∑

e∈E+(v)

f(e) = 0 for all v ∈ V \ {s, t},

where E−(v) (resp. E+(v)) is the set of arcs with v being their tail (resp. head). The
value |f | of the flow is defined to be the net flow out of the source vertex,

|f | :=
∑

e∈E−(s)

f(e)−
∑

e∈E+(s)

f(e).

It follows easily from the flow conservation constraints that the net flow out of s is
equal to the net flow into t, so |f | may be interpreted as the amount of flow that is
sent from the source s to the sink t.

To extend the above definition to undirected graphs, one could just model undi-
rected edges as two arcs that are oriented in opposite directions. However, for nota-
tional convenience, we will make our definition of s-t flow in undirected graph slightly
different. Namely, given an undirected graph G = (V,E), we orient each edge in E
arbitrarily; this divides the edges incident to a vertex v ∈ V into the set E+(v) of
edges oriented towards v and the set E−(v) of edges oriented away from v. These
orientations will be used to interpret the meaning of a positive flow on an edge. If
an edge has positive flow and is in E+(v), then the flow is towards v. Conversely,
if it has negative flow then the flow is away from v. One should keep in mind that
we allow here the flow on an edge to go in either direction, regardless of this edge’s
orientation.

Now, once the sets E+(v) and E−(v) are introduced, the rest of the definition of
an s-t flow is analogous to the one in the directed case. The only difference is that
now f can also assign negative values to edges (as they correspond to flowing in the
direction opposite to the orientation).

Cut-based graph problems: There is a lot of optimization graph problems that
are related to cuts. Usually, they correspond to a task of finding a cut that partitions
the graph into two parts while minimizing the capacity of edges cut and possibly
satisfying some additional constraints. The most basic cut-based problem is the
minimum cut problem in which our goal is to simply find a cut in G of minimum
capacity. Another fundamental cut-based graph problems called minimum s-t cut
problem in which we are given two vertices: source s and sink t, and we want to find
a minimum capacity s-t cut of the graph, i.e., one that separates the source s from
the sink t.

Sometime, however, instead of just minimizing the capacity of the edges cut, we
are interested in also making sure that both sides of the cut are relatively large. To
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achieve this, one can focus on minimizing the ratio of the capacity of the cut to some
measure of the size of its smaller side. For example, in the minimum conductance cut
problem we are given a capacitated graph G = (V,E,u) and we want to find a cut C
that minimizes its conductance:

u(C)

min{V ol(C), V ol(C)}
, (2.1)

where V ol(C) (resp. V ol(C)) is the sum of capacities of all the edges with at least
one endpoint in C (resp. C). Another important problem of this type is the sparsest
cut problem in which we want to find a cut C with minimal sparsity:

u(C)

min{|C|, |C|}
. (2.2)

2.3 Laplacian of a Graph

A matrix that will play a fundamental role in this thesis is the Laplacian of the graph.
As we will see, this matrix has intimate connections to a variety of graph-theoretic
notions. In particular, one can relate linear-algebraic properties of the Laplacian to
the behavior of random walks, the sampling probabilities of random spanning trees,
as well as, the combinatorial cut-flow structure of the underlying graph.

To define the Laplacian matrix, let us consider a weighted undirected1 graph G =
(V,E,w). Recall that the adjacency matrix A(G) of this graph is given by

A(G)u,v :=

{
we if the edge e = (u, v) is in E,

0 otherwise.

Now, the Laplacian L(G) of the graph G is defined as

L(G) := D(G)−A(G),

where D(G) is a diagonal matrix with D(G)vv equal to the weighted degree
∑

e∈E(v) we

of the vertex v. (Here, we denoted by E(v) the set E({v}) of edges adjacent to v.)
One can easily check that the entries of the Laplacian are given by

L(G)u,v :=





∑
e∈E(v) we if u = v,

−we if the edge e = (u, v) is in E,

0 otherwise.

An important property of the Laplacian – one that reveals a lot of its structure
– is that it can be expressed as a product of very simple matrices. Namely, if we

1One could also extend the definition of the Laplacian that we are about to present to the case
of directed graphs. However, the resulting object loses most of the properties that are useful to us.
Therefore, we consider the Laplacian only in the undirected setting.
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consider the edge-vertex incidence matrix B , which is an n × m matrix with rows
indexed by vertices and columns indexed by edges, such that

Bv,e =





1 if e ∈ E−(v),

−1 if e ∈ E+(v),

0 otherwise.

Then, we can express the Laplacian as

L(G) = BWBT , (2.3)

where W is an m×m diagonal matrix with We,e := we.
Now, from the above factorization, one can immediately see that the quadratic

form corresponding to the Laplacian can be expressed very cleanly as

x TL(G)x =
∑

e=(u,v)∈E

we(xu − xv)
2. (2.4)

This quadratic form reveals a lot of basic properties of the Laplacian. For instance,
from it one can immediately see that if λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues of the
Laplacian L(G) and v 1, v 2 . . . , vn are the corresponding eigenvectors then:

1. All λis are non-negative, i.e., the Laplacian L(G) is a positive semi-definite
matrix;

2. λ1 is equal to 0 and the corresponding eigenvector v 1 is a normalized all-ones
vector 1;

3. If G is connected (which will be always the case in this thesis) λ2 is strictly
positive.

Also, the quadratic form (2.4) highlights the crucial connection between Laplacian
and the cut structure of the underlying graph. Namely, if we consider a cut C in G
and its characteristic vector χC ∈ {−1, 1}|V | that has coordinates corresponding to
vertices in C equal to 1, and the remaining coordinates equal to −1, then we will
have that

χT
CL(G)χC = 4wG(C), (2.5)

where wG(C)is the total weight in G of edges in the cut C. That is, the quadratic
form of the Laplacian on such characteristic vectors measures the capacity of the
corresponding cuts.

Finally, we should observe that the Laplacian matrix is not invertible (as λ1 is
equal to 0). However, it will be useful to employ a notion that allows us to invert
a Laplacian in a restricted sense. This notion is the Moore-Penrose pseudoinverse
L(G)† of L(G) that is defined as

L(G)† :=
∑

i:λi 6=0

1

λi

v iv
T
i . (2.6)
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As one can see, L(G)† acts as an inverse on the range of the matrix L(G) and as a
zero matrix on the orthogonal complement of this range.

2.4 Electrical Flows and Resistor Networks

The second, after Laplacians, key concept that we need to introduce, is the notion of
electrical flows. This notion arises from treating an undirected graph G as a resistor
network in which each edge e has some resistance re; and studying the currents that
are induced in this network upon applying a voltage difference to some of its vertices.
As we will see shortly, electrical flows have a very close connection to the Laplacian
matrices and this connection will be pivotal for some of the results we present in this
thesis.

We start by defining the notion of electrical flow formally. To this end, consider
a vector r of resistances of edges and an s-t flow f . Let us define the energy Er (f) of
this flow f (with respect to r) as

Er (f) :=
∑

e

ref
2(e).

Now, the electrical (s-t) flow of value F (with respect to r) is the (unique) s-t flow
that minimizes Er (f) among all s-t flows f of value F .

From a physical point of view, the electrical flow of value F corresponds to the
current that is induced in G if we view it as an electrical circuit in which each edge
e has resistance of re, and we send F units of current from s to t, say by attaching s
to a current source and t to ground.

It is well-known (see e.g. [103]) that an electrical flow is a potential flow, which
means that for any electrical flow f there exists a vector φ ∈ IRn of vertex potentials
that determine the flow f via Ohm’s Law:

f(e) =
φv − φu

r(u,v)
for each e = (u, v). (2.7)

As a result, finding an electrical flow boils down to finding the corresponding vertex
potentials.

Now, the key connection between electrical flows and Laplacian matrices is that
these vertex potentials and, thus, the electrical flow, can be obtained by solving a
Laplacian system, i.e., a linear system of equations where the constraint matrix is the
Laplacian matrix.

To establish this connection formally, let us consider a task of finding an electrical
s-t flow f of value 1. (We assume that the value of the flow is 1 here, but one can
get a flow of arbitrary value F by just multiplying this value-one flow by F .)

Let us view our flow f as a vector f ∈ IRm of m real entries – one entry per
edge – with the orientations of the edges determining the signs of the coordinates. It
is easy to see that in this vector interpretation, the vth entry of the vector Bf will
be the difference between the flow out of and the flow into vertex v. Therefore, the
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constraints on f that 1 unit of flow is sent from s to t and that flow is conserved at
all other vertices can be compactly written as

Bf = χs,t , (2.8)

where χs,t is a vector with a 1 in the coordinate corresponding to s, a −1 in the
coordinate corresponding to t, and all other coordinates equal to 0.

Furthermore, by using the Ohm’s Law (2.7), we can express the vector represen-
tation f of the flow f in terms of the vector of the corresponding vertex potentials φ
as

f = CBTφ, (2.9)

where C is an m ×m diagonal matrix with each diagonal entry Ce,e being equal to
the conductance ce := 1/re of the edge e.

By multiplying both sides of (2.9) by B and combining it with (2.8), we obtain
that the vertex potentials φ have to obey the following equality

BCBTφ = χs,t .

Now, by looking at the factorization of the Laplacian from (2.3) we can conclude
that the vertex potentials φ corresponding to the electrical s-t flow f of value 1 are
given by a solution to the Laplacian system

L(G)φ = χs,t , (2.10)

where L(G) is the Laplacian of the underlying graph with the weight we equal to the
conductances ce for each e (and thus being inverses of the resistances re).

In other words, φ can be obtained by multiplying the pseudo-inverse L(G)† of the
corresponding Laplacian by the vector χs,t

φ = L(G)†χs,t .

This, in turn, allows us to use the Ohm’s Law (2.7) again to conclude that the
vector representation f of our electrical flow f can be written compactly as

f = CBTL(G)†χs,t . (2.11)

At this point we also want to note that the above discussion allows us to express
the energy Er (f) of an electrical s-t flow f (of arbitrary value) as

Er (f) = f TRf =
(
χs,t

TL(G)†
T
BC T

)
R
(
CBTL(G)†χs,t

)
(2.12)

= χs,tL(G)†L(G)L(G)†χs,t = χs,t
TL(G)†χs,t = φTL(G)φ,

where R = C−1 is the diagonal matrix with Re,e = re = 1/ce.
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2.4.1 Effective s-t Resistance and Effective s-t Conductance

Apart of the definition of the electrical flows, there are two other basic quantities from
the theory of electrical networks that we will find useful: the effective s-t resistance
and effective s-t conductance.

Let f be the electrical s-t flow of value 1, and let φ be its vector of vertex potentials.
The effective s-t resistance of G with respect to the resistances r is given by

Rs,t
eff(r) := φs − φt. (2.13)

(For notation convenience, we suppress the reference to s and t in our notation – and
simply write Reff(r) – whenever these vertices are clear from the context.)

Using our linear-algebraic description of the electrical flow and equation (2.12),
we have

Rs,t
eff(r) = φs − φt = χs,t

Tφ = χs,t
TL(G)†χs,t = Er (f).

This gives us an alternative description of the effective s-t resistance as the energy of
the corresponding electrical flow of value 1.

Now, the related notion of the effective s-t conductance of G with respect to the
resistances r is defined as

Cs,t
eff (r) = 1/Rs,t

eff(r).

We note that Cs,t
eff (r) is equal to the value of the electrical flow in which the difference

φs − φt of corresponding vertex potentials at s and t is 1. (Similarly to the case of
effective resistance, we will suppress the reference to s and t in notation whenever
they will be clear from the context.)

The following standard fact (see [32] for a proof) will be useful to us

Fact 2.4.1. For any G = (V,E) and any vector of resistances r ,

Cs,t
eff (r) = min

φ |φs=1,
φt=0

∑

(u,v)∈E

(φu − φv)
2

r(u,v)
.

Furthermore, the equality is attained for φ being vector of vertex potentials corre-
sponding to the electrical s-t flow of G (with respect to r) of value 1/Rs,t

eff(r).

This fact will allow for better understanding of how changes of the resistance of a
particular edge e influence the effective resistances of other edges. In particular, we
can prove the following simple, but fundamental result.

Corollary 2.4.2 (Rayleigh Monotonicity Principle). If r′e ≥ re for all e ∈ E, then
Rs,t

eff(r
′) ≥ Rs,t

eff(r).

Proof. For any φ,
∑

(u,v)∈E

(φu − φv)
2

r′(u,v)
≤

∑

(u,v)∈E

(φu − φv)
2

r(u,v)
,

so the minimums of these expressions over possible values of φ obey the same relation,
and thus – by Fact 2.4.1 – Cs,t

eff (r
′) ≤ Cs,t

eff (r). Inverting both sides of this inequality
yields the desired result.
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2.5 Electrical Flows, Random Walks, Random Span-

ning Trees, and Laplacians

As we mentioned, one reason behind fundamental importance of the Laplacian matrix
is that there is a great deal of information about the graph G that one can infer from
analyzing the properties of its Laplacian L(G). Here, we survey some of the examples
illustrating that.

2.5.1 Spectral Connection

A particularly important example here is an approach to analyzing a graph by study-
ing the spectrum of the associated Laplacian – most notably, its second eigenvalue
λ2. This approach, known as spectral graph theory, was started by Fiedler [64] and
produced a host of interesting connections. Here, we describe only two – arguably
the most well-known one – among them and for a more in-depth study we refer the
reader to [126] and the book of Chung [42].

Both these connections are related to, so called, spectral gap λ̂2 of G, which is just
the second-smallest eigenvalue of the normalized version of the Laplacian L(G) of G.
The normalized Laplacian L(G) of G is given by

L̂(G) := D(G)−1/2L(G)D(G)−1/2,

where we recall that D(G) is the diagonal degree matrix of G.

Mixing time of random walks: The first of them is the one to the mixing time of
random walks. Recall that a random walk in G corresponds to a stochastic process in
which we start at some starting vertex v0 and repeat for some number of times a step
such that if we are at a vertex v we move to one of its neighbors u with probability
proportional to the weight w(v,u) of the corresponding edge. Now, let τ(ε) be the
number of steps needed for a distribution on vertices of G induced by performing a
lazy random walk2 started at an arbitrary vertex, to converge point-wisely to within
ε of the stationary distribution. It turns out that

τ(ε) ≤ 1

λ̂2 log(n/Wε)
, (2.14)

where W is the ratio of the largest to smallest edge-weight in G.
As one can construct examples of graph for which this upper bound is essentially

tight, this allows us to conclude that the mixing time of random walks is essentially

2A lazy random walk is a variation of the original random walk in which in each step we have a
probability of 1/2 of staying at the vertex we are at and, with the remaining probability of 1/2, a
step of the original random walk is made. One of the reasons why we consider this modified version
of the random walk is that it will always have a unique stationary distribution, no matter what the
underlying graph G is. This would not be the case for the original random walk if the graph G was,
e.g., bipartite.
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governed by the value of λ̂2. Motivated by this connection, expander graphs (that
are known for having their mixing time very small) are often defined as graphs with
their spectral gap bounded away (by some constant) from zero.

Cheeger’s inequality: The second connection is the one to cut structure of the
graph. Namely, it turns out that there is an intimate relation between the spectral
gap λ̂2 and the conductance ΦG of G defined as ΦG := min∅6=C⊂V Φ(C), where the con-
ductance Φ(C) of a cut C is given by expression (2.1) in Section 2.2. This connection
is inspired by, so called, Cheeger’s inequality [38] that was discovered in the context
of Riemannian manifolds, and a discrete version of it (see [98, 9, 6, 55, 136, 124])
asserts that

2ΦG ≥ λ̂2 ≥ Φ2
G/2.

Note that as cuts with small conductance are obvious obstacles to mixing of a
random walk, this inequality tells us that in fact such sets are the only obstacle. To
observe why it is the case, note that if there is no cuts with small conductance then
the above inequality implies that the spectral gap is large and thus, by inequality
(2.14), we know that the mixing time of the random walk is fast.

2.5.2 Electrical Flows, Random Walks, and Random Spanning
Trees

Another type of connection between Laplacian matrices and various graph-theoretic
objects is established via the notion of electrical flows, which are tightly related to
Laplacians via equation (2.11).

Electrical flows and random walks: There is a lot of connections between prop-
erties of electrical flow with respect to resistances r and of the random walks in the
graph with weights we of each edge e being equal to 1/re. Here, we mention only one
of them – we will need it later – but we refer the reader to the book [103] for a more
complete exposition.

Fact 2.5.1 (see [103]). Let ps,t(u) be the probability that a random walk started at
vertex u will visit the vertex s before visiting the vertex t, and let φ be the vertex
potentials corresponding to the electrical s-t flow of value 1, we have:

ps,t(u) =
φu − φt

φs − φt

. (2.15)

Electrical flows and random spanning trees: Yet another objects to which
electrical flows (and thus Laplacians) have connection to, is the notion of random
spanning trees. Given a weighted graph G = (V,E,w) let us consider a stochastic
procedure of choosing a spanning tree T of G (from the set of all its spanning trees)
with probability proportional to

∏
e∈T we. The following beautiful fact ties the result-
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ing distribution over the edges of the graph and their effective resistance – its proof
can be found in Chapter 4 of [103].3

Fact 2.5.2 (see [103]). Consider a vector of resistances r in which the resistance re′
of each edge e′ is taken to be 1/we′. For any edge e = (u, v), the probability that this
edge e is included in a random spanning tree is equal to Ru,v

eff (r)/re.

The second fundamental connection between the random spanning trees and
Laplacians is captured in the following fact.

Fact 2.5.3 (Kirchhoff’s Matrix Tree Theorem [92]). We have

∑

T

∏

e∈T

we =
1

n

n∏

i=2

λi.

Note that the right-hand side term is equal to an absolute value of any cofactor
of the Laplacian. Furthermore, when all the weights we are equal to 1, the left-hand
side term simplifies to the number of spanning trees of the underlying graph.

2.6 Approximating Graphs via Simpler Graphs

A paradigm of approximating (in various senses) the graphs by simpler ones has been
very successful in design of algorithms. It often enabled one to reduce the question
about the original graph to a – usually much more tractable – question about the
simpler graph. Two classical examples here are spanners [10, 59, 133, 24] and cut
sparsifiers of Benczúr and Karger [26]. In case of spanners, one aims for finding a
sparse graph whose distances approximately preserves the distances in the original,
not necessarily sparse, graph. In case of cut sparsification, one tries to find a sparse
graph that approximately preservers the capacity of all the cuts of the original graph.

This paradigm of graph approximation will play a key role in this thesis. In
particular, two tools that are helpful in this context and that will be relevant to the
results of this thesis are: (spectral and cut) sparsification, and low-stretch spanning
tree. We introduce these tools now.

Sparsification: The goal of the (spectral) sparsification is to find for a given dense
graph G, another graph G̃ that is sparse and has its spectral picture approximately
the same as the one of G, i.e., the quadratic form (2.4) corresponding to the Laplacian
L(G) of the graph G is approximately the same as the quadratic form corresponding
to the Laplacian L(G̃) of the graph G̃.

3Lyon and Peres prove this fact only in the case of T being a uniform spanning tree i.e. when all
wes are equal, but Section 4.1 of [103] contains a justification why this proof implies this property
also in the case of arbitrary wes. Roughly speaking, for rational wes, the main idea is to replace
each edge e with Cwe edges (for an appropriate choice of C) and consider a uniform spanning tree
in the corresponding multigraph. The irrational case follows from a limit argument.
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It turns out that irrespectively of the density and structure of the graph G, one
can always take G̃ to be really sparse while still have such a spectral picture of G̃ differ
not too much from the original one. More precisely, inspired by the result of Benczúr
and Karger [26], Spielman and Teng [129] – and later Spielman and Srivastava [127]
– proved the following theorem.

Theorem 2.6.1. Given a weighted graph G = (V,E,w) and an accuracy parameter

δ > 0, there is a Monte Carlo algorithm that finds in Õ(|E|) time a (weighted)

subgraph G̃ = (V, Ẽ, w̃) of G such that:

(1) G̃ has O(δ−2|V | log |V |) edges

(2) For any vector x , x TL(G̃)x ≤ x TL(G)x ≤ (1 + δ)x TL(G̃)x

The graph G̃ with the above properties is called a (spectral) sparsifier of G.
Note that an important part of the above theorem is that we are able to construct

G̃ in time that is only nearly-linear in the size G. In this way, the benefit of being
able to deal with the sparse graph G̃ instead of dense G, is not outweighed by a
prohibitively large construction time. Interestingly, if having just a polynomial-time
construction of G̃ is sufficient for one’s purposes, one can get even better sparsifier –
one that has only O(δ−2|V |) instead of O(δ−2|V | log |V |) edges [25].

By employing the connections that we outlined in Section 2.5, one can show the
preservation of the quadratic form of the Laplacian (cf. condition (2) in the above
theorem) implies that G and G̃ are similar in a variety of aspects. The particular
similarity that we will be often using is that of the cut structure of G and G̃. Namely,
as we noted in Section 2.3 (cf. equation (2.5)), the quadratic form of the Laplacian
captures, in particular, the cuts of the underlying graph. Therefore, the condition
(2) in Theorem 2.6.1 can be viewed, in particular, as a statement about preservation
of cuts. As a result, if we take the weights we to correspond to the capacities ue of
a given capacitated graph G = (V,E,u), we can obtain the following corollary of
Theorem 2.6.1 that was originally proved by Benczúr and Karger [26].

Corollary 2.6.2 (see [26]). Given a capacitated graph G = (V,E,u) and an accu-

racy parameter δ > 0, there is a Monte Carlo algorithm that finds in Õ(|E|) time a

(capacitated) subgraph G̃ = (V, Ẽ, ũ) of G such that:

(i) G̃ has O(δ−2|V | log |V |) edges

(ii) For any cut ∅ 6= C 6= V we have ũ(C) ≤ u(C) ≤ (1 + δ)ũ(C)

To differentiate the graph G̃ with the above properties from the one returned by
the (more general) Theorem 2.6.1, we will call the former the cut sparsifier of G.

Clearly, in situations in which we are dealing with a dense graph G on which
we want to solve a cut-based problem and when we can afford returning only δ-
approximately optimal answer, the above corollary allows us to deal with the sparse
graph G̃ instead of G.
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Low-stretch spanning trees: The notion of low-stretch spanning trees was in-
troduced for the first time by Alon, Karp, Peleg and West [8] in the context of the
k-server problem. Since then, however, these trees turned out to be useful in many
other contexts – one of them will be presented in this thesis – including precondition-
ing of Laplacian matrices – see Section 2.7.

To define this notion, let us consider some spanning tree T of a weighted graph
G = (V,E,w). For a given edge e let us define the stretch stretchwT (e) of e (with
respect to T and w) as

stretchwT (e) =

∑
e′∈pathT (e) we′

we

,

where pathT (e) is the unique path in T that connects the endpoints of the edge e. Note
that if we interpret the weights as lengths of the edges, then stretchwT (e) corresponds
to a ratio of the distance between the endpoints of the edge e in T to the length of
the edge e.

Now, the natural question to ask in the above context is: can we always find a
tree T so as all the edges e of the graph G have small stretch with respect to it?
Unfortunately, if one considers G being an unweighted cycle then one immediately
sees that no matter which spanning tree is chosen there always will be an edge that
suffers a very high stretch of n− 1.

However, somewhat surprisingly, if one relaxes the above requirement and focuses
on obtaining low average stretch then trees that yield such a small-on-average stretch
always exist. In particular, the following theorem was proved by Abraham, Bartal
and Neiman [1] by building on the work of Elkin, Emek, Spielman and Teng [58].4

(Also, see [8] for a previous result, and [62] for a related work.)

Theorem 2.6.3 ([1]). There is an algorithm working in Õ(|E|) time that for any
weighted graph G = (V,E,w) generates a spanning tree T of G such that the average

stretch 1
|E|

∑
e∈E stretchwT (e) of edges of G is Õ(log |V |).

2.7 Laplacian System Solvers

The task of solving Laplacian systems is one of the fundamental problems of scientific
computing. It has a broad array of applications (see, e.g., [126]). From the point of
view of this thesis, the key reason for our interest in them is that, as we noted in
Section 2.4 (cf. equation (2.10)), the task of finding the vertex potential that describe
electrical flows can be cast as the task of solving a Laplacian system. Therefore, being
able to solve such systems efficiently allows us to make the connections we surveyed
in Section 2.5 algorithmic.

4Technically, the notion of stretch considered in [1] is slightly different – it corresponds to the
ratio of distance of the endpoints of the edge e in T and the corresponding distance in the original
graph G. But, as the latter has to be always at most we, the statement of the Theorem 2.6.3 is
implied by [1].
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The classical approach to solving Laplacian systems – and, more generally, linear
systems – is based on, so called, direct methods. These methods can be viewed as
variants of Gaussian elimination and give exact solutions. Unfortunately, due to their
construction, they tend to have fairly large running time. The fastest known methods
require O(nω) running time [35, 34], where ω is the exponent of matrix multiplication
and is known to be between 2 and 2.376 [46].

As the sizes of instances we want to handle are very large, even O(n2) running time
is prohibitive from our point of view. This motivates us to turning our attention to a
different approach to solving Laplacian systems: the one based on iterative (indirect)
methods.

These methods consist of finding successfully better approximations of the solution
and tend to be much faster than the direct methods, but pay a price of providing only
approximate answers. The most fundamental method in this family is the Conjugate
Gradient method. This method considers a Laplacian system

L(G)x = b,

where b is in the range of L(G) (when the graph G is connected this means that b is
orthogonal to all-ones vector 1) and, for any ε > 0, provides an ε-approximate solution
x̃ to this system after at most O(

√
κf (L(G)) log 1/ε) iterations. Here, κf (L(G))

denotes the finite condition number of the Laplacian L(G) that is equal to the ratio of
its largest to smallest non-zero eigenvalue, and x̃ ε-approximates the optimal solution
x = L(G)†b by satisfying the following condition

‖x − x̃‖L(G) ≤ ε ‖x‖L(G) , (2.16)

where ‖x‖L(G) :=
√

x TL(G)x .
Each iteration of the Conjugate Gradient method boils down to performing one

multiplication of a vector by the matrix L(G), thus, as L(G) has O(m) non-zero
entries, the resulting running time is O(m

√
κf (L(G)) log 1/ε).5

As κf (L(G)) can still be fairly large, an idea that allows reducing the running
time of Conjugate Gradient method is preconditioning. Roughly speaking, a precon-
ditioner of a matrix A is a matrix B that provides good spectral approximation of A
and enables us to solve a linear system with respect to B fast. Having such a pre-
conditioner, we can employ it to guide the iterative steps of the Conjugate Gradient
method to obtain faster convergence.

More precisely, it is known that if one is solving a Laplacian system in matrix
L(G) and take some positive semi-definite matrix A as a preconditioner, the Precon-
ditioned Conjugate Gradient method allows one to obtain an ε-approximate solution
to this Laplacian system after at most O(

√
κf (A,L(G)) log 1/ε) iterations, where

κf (A,L(G)) denotes the relative finite condition number equal to the finite condi-

5One can also show that, as long as one is using exact arithmetic, Conjugate Gradient method
will always converge to an exact solution after at most O(n) iterations (independently of the value
of κf (L(G))). The resulting running time of O(mn) is, however, still prohibitive from our point of
view.
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tion number κf (A
†L(G)) of the matrix A†L(G), and each of these iterations requires

solving a linear system in A.
Note that one can view the original Conjugate Gradient method as a special case of

the preconditioned version. If A is an identity matrix I then κf (I ,L(G)) = κf (L(G))
and solving linear system in I is trivial. It turns out, however, that using non-trivial
preconditioners allows for a dramatically faster (approximate) solving of Laplacian
systems.

In particular, inspired by the pioneering work of Vaidya [135], Spielman and Teng
[128, 129] (see also [130]) designed a Laplacian system solver that employs Precon-
ditioned Conjugate Gradient method (with appropriate choice of preconditioners)
and works in nearly-linear time, i.e., it provides an ε-approximate solution in time
Õ(m log 1/ε). This solver was, in turn, simplified and sped-up recently by Koutis,
Miller and Peng [95] to provide the following result.

Theorem 2.7.1 ([95]). For any ε > 0, and Laplacian system L(G)x = b with b

being in range of L(G), one can obtain an ε-approximate solution x̃ to it in time

O(m log2 n(log log n)2 log 1/ε) = Õ(m log 1/ε).

Note that the running time of the above solver is within a small poly-logarithmic
factor of the obvious lower bound of Ω(m) and its running time is comparable to the
running time of such elementary algorithms as Dijkstra’s algorithm. As we will see
later, such an extremely fast solver constitutes a powerful primitive that will enable
us to make progress on a several basic graph problems.

The key idea behind the construction of the fast Laplacian system solver from
Theorem 2.7.1, is building preconditioners for a given graph Laplacian L(G) from
Laplacians of appropriately chosen (and reweighted) subgraphs of the graph G. This
idea was first proposed by Vaidya [135] and then was fully developed by Spielman and
Teng in [129]. This graph-based preconditioners that were introduced by Spielman
and Teng are called ultrasparsifiers.

Ultrasparsifiers: Formally, an k-ultrasparsifier G̃ of G, for any parameter k ≥ 1, is
a (reweighted) subgraph of G that is extremely sparse – i.e., it consists of a spanning
tree of G and a small, Õ(n/k), number of additional edges – and preserves the spectral
picture of G pretty well, that is, the corresponding relative finite condition number
κf (L(G̃),L(G)) is at most k.

The construction of the k-ultrasparsifier due to Spielman and Teng [129] is based
on finding first a low-stretch spanning tree (as in Theorem 2.6.3) of G for an appropri-
ate choice of weights. Next, this tree is augmented with a sufficiently large number of
additional edges to ensure that the relative condition number of the Laplacian of the
resulting graph (with respect to L(G)) is at most k/2. Finally, by applying spectral
sparsification (as in Theorem 2.6.1) to each dense cluster formed by these additional
edges, one can ensure that the total number of them becomes Õ(n/k) and the relative
condition number is at most k, as desired.

Now, roughly speaking, the way the Laplacian systems solver of Spielman and
Teng works is as follows. By taking k to be large enough (but still poly-logarithmic)
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and applying the Preconditioned Conjugate Gradient method with the corresponding
k-ultrasparsifier G̃ of G, one essentially reduces the task of (ε-approximately) solving
the Laplacian system corresponding to L(G), to solving a small number of Laplacian
systems in the matrix L(G̃). If the choice of k was large enough, G̃ will be a graph
with only n − 1 + o(n) edges, so a significant fraction of its vertices has to have a
degree of 1 or 2. These vertices can be eliminated (via Cholesky factorization) to
make the size of the Laplacian system one needs to solve significantly smaller. By
solving this resulting system recursively, one obtains the desired nearly-linear time
Laplacian systems solver (see [129] for details).

2.8 Packing Flows via Multiplicative-Weights-Update

Method

A task that will arise in many of the results presented in this thesis is packing into a
given capacitated graph G a convex combination of flows coming from some set F .

Formally, given a capacitated graph G = (V,E,u), and a set of flows F , we are
looking for coefficients {λf}f∈F , where each λf corresponds to a f ∈ F , that satisfy
the following set of constraints that we will call (F , G)-system:

∀e∈E
∑

f∈F

λf |f(e)| ≤ ue

∑

f∈F

λf = 1 (2.17)

∀f∈F λf ≥ 0.

(Note that, a priori, we do not bound the number of λfs – in our applications, however,
only a small number of them will be non-zero.)

To make the edge-constraints of the above system more homogeneous, let us define
for a given flow f and an edge e, the congestion congf (e) of e (with respect to f) to
be |f(e)|

ue
. Then, we can rewrite (2.17) in the following form

∀e∈E
∑

f∈F

λfcongf (e) ≤ 1

∑

f∈F

λf = 1 (2.18)

∀f∈F λf ≥ 0.

To illustrate why having a solution to the above system might be useful, consider
F to be a set of all s-t flows in G of some prescribed value F . Now, if {λ∗

f}f would
be a solution to this system then we could associate with it a convex combination of
flows

∑
f λ

∗
ff . Note that this convex combination corresponds naturally to a valid

s-t flow f with f(e) =
∑

f λ
∗
ff(e) for any e ∈ E. This flow would have a value of
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F and, by definition, would need to be feasible, i.e., respect all the capacities of the
graph G. So, it would be a witness that shows that the maximum value F ∗ attainable
by a feasible s-t flow in G has to be at least F . On the other hand, if the system
of constraints would have no solution, this would mean that F > F ∗ (otherwise the
solution corresponding to just taking the maximum s-t flow f ∗ would satisfy the
constraints). We can therefore see that the ability to solve such (F , G)-systems (or
deciding that they are infeasible), for various values of F , together with employment
of binary search, would allow us to solve the maximum s-t flow problem.

Unfortunately, in practice, it is hard to obtain fast methods of solving such sys-
tems exactly. Therefore, in this thesis, we will be settling for approximate solutions.
Namely, for a given γ ≥ 1, let us define a γ-relaxed version of a (F , G)-system to be

∀e∈E
∑

f∈F

λfcongf (e) ≤ γ

∑

f∈F

λf = 1 (2.19)

∀f∈F λf ≥ 0.

Now, our goal will be to solve such (F , G)-systems approximately. Formally, we
would like to obtain algorithms of the following type.

Definition 2.8.1. For a given set of flows F , graph G, and γ ≥ 1, we define a
γ-approximate solver for (F , G)-system to be a procedure that:

• if the system is feasible (i.e., all the constraints of (2.18) can be satisfied), it
finds a feasible solution to its γ-relaxed version (cf. (2.19));

• on the other hand, if the system is infeasible, it either finds a feasible solution
to the γ-relaxed system (2.19) as above, or “fail” is returned to indicate the
infeasibility of this system.

To put this definition in context, note that having such a γ-approximate solver
for the above-mentioned case of the s-t flows would enable us to solve the maximum
s-t problem γ-approximately.

2.8.1 Designing a γ-approximate Solver

Let us fix some capacitated graph G = (V,E,u), a set of flows F and the corre-
sponding (F , G)-system. Our γ-approximate solver for this system will be based on,
so called, multiplicative-weights-update method. The multiplicative-weights-update
method is a framework established by Arora, Hazan and Kale [14] to encompass
proof techniques employed in [112, 139, 65, 70]. In our setting, one can understand
the approach of this framework as a way of taking an algorithm that solves given
(F , G)-system very crudely and, by calling it repeatedly, converting it into an algo-
rithm that provides a pretty good solution to this system. The crude algorithm is
treated as a black-box, so it can be thought of as an oracle that answers a certain
type of queries.
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More precisely, instead of solving the (F , G)-system directly, this oracle is solving
the following, much simpler, task. It is given a set of weights {we}e – one weight
for each edge-constraint – and its task is to output a flow f ∈ F that respects the
edge-constraints only on weighted average, where weighting in this average is given
by the weights {we}e.

To formalize this notion, we introduce the following definition.

Definition 2.8.2. Given an α ≥ 1 and some (F , G)-system, by an α-oracle for this
system we mean an algorithm that given weights vector w returns:

• A flow f ∈ F such that

∑

e

wecongf (e) ≤ α
∑

e

we = α|w |1,

if the (F , G)-system is feasible;

• “fail” or a flow f ∈ F as above, otherwise

Remark: An important detail of the above definition is that sometime the oracle
might return the desired flow f even though the (F , G)-system is infeasible. To
understand why this might be the case, one should observe that our requirements on
f are weaker than the requirements on a feasible solution to the (F , G)-system.

Note that if f ∗ ∈ F is a feasible solution to the (F , G)-system then we must have
that

∑
e wecongf∗(e) ≤ |w |1. So, whenever the system is feasible there exists at least

one flow that satisfies the condition required of the oracle.
Now, the way we will use an α-oracle to (approximately) solve the corresponding

(F , G)-system is by employing the routine presented in Figure 2-1. This routine takes
an α-oracle O and an accuracy parameter δ > 0 as an input, then it presents this
oracle with a sequence of queries corresponding to different weight vectors. Finally,
it either combines the obtained answers to output a γ-approximate solution to the
(F , G)-system, where γ = α(1 + 3δ), or it returns “fail” to indicate that the system
is not feasible.

In a bit greater detail, the way such a γ-approximate solution is build is by main-
taining weights for each edge-constraint – initially, all the weights are set to 1. In
each iteration i, the oracle O is called with these weights. If this call returns a flow
f i ∈ F , the weight of each edge is multiplied by a factor of (1+δNλ

i
congf i(e)), where

Nλ
i
is roughly proportional to the inverse of the largest congestion ρi exerted by f i

in G. This iterative process finishes once the sum of all the λ
i

coefficients becomes
one.

The key fact underlying the above process is that if in some iteration i the con-
gestion of some edge is poor, say close to ρi, then the weight of the corresponding
edge-constraint will increase by a factor of roughly (1 + δ). On the other hand, if
congestion of an edge is good, e.g., the flow on that edge is no more than its capacity,
then the weight of the corresponding edge-constraint is essentially unchanged. In
this way, we make sure that a larger fraction of the total weight is being put on the
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Input : An accuracy parameter 1/2 > δ > 0, capacitated graph G = (V,E,u),
corresponding (F , G)-system, and an α-oracle O for it;

Output: Either a convex combination {λf}f∈F of flows from F , or “fail” indicating
that the (F , G)-system is infeasible;

Initialize w0
e ← 1 for all edges e, i = 1, and N ← 2 lnm

δ2

while
∑i−1

i′=1 λ
i′
< 1 do

Query the oracle O with edge weights given by w i−1

if O returns “fail” then return “fail”

else

Let f i be the returned flow and let ρi ← maxe∈E congf i(e) be the maximum

congestion f i exerts in G

Set λ
i ← min{ 1

Nρi
, 1−∑i−1

i′=1 λ
i}

Set wi
e ← wi−1

e (1 + δNλ
i
congf i(e)) for each e ∈ E

Increment i

end

end

Let λf ←
∑

i:f i=f λ
i
, for each f ∈ F

return {λf}f

Figure 2-1: Multiplicative-weights-update routine

violated constraints, so the oracle is being forced to return solutions that come closer
to satisfying these constraints (possibly at the expense of some other, previously only
slightly violated, constraints).

Now, the dynamics that emerges from this process is that, on one hand, the total
weight |w |1 does not grow too quickly, due to the average (weighted) congestion
constraint on the flows returned by the oracle O (cf. Definition 2.8.2). On the other
hand, if a particular edge e consistently suffers large congestion in a sequence of flows
returned by O then the weight of corresponding edge-constraint increases rapidly
relative to the total weight, which significantly penalizes any further congestion of
this edge in the subsequent flows. So, as in the end we are returning an appropriately
weighted convex combination of all the obtained flows, this ensures that no edge-
constraint is violated by more than γ in it.

We proceed to making the above intuition precise by proving that our routine will
indeed return the desired γ-approximate solution to the (F , G)-system. After that,
in section 2.8.3, we will analyze how by looking at some additional properties of the
oracle one can bound the number of oracle calls this routine makes before termination
– this will be critical to bounding the total running time of the resulting algorithms.
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2.8.2 Correctness of the Multiplicative-Weights-Update Rou-
tine

In this section, we prove the correctness of the routine from Figure 2-1 by establishing
the following theorem.

Theorem 2.8.3. For any 1/2 > δ > 0 and α ≥ 1, if all the oracle calls in the
routine from Figure 2-1 terminate without returning “fail”, the convex combination
{λf}f returned is an γ-approximate solution to the corresponding (F , G)-system, with
γ = α(1 + 3δ).

Our proof of the above theorem will be based on the potential function µi := |w i|1.
Clearly, µ0 = m and this potential only increases during the course of the algorithm.
Now, the crucial fact we will be using is that from Definition 2.8.2 it follows that if
the oracle O did not return “fail” then

∑

e

wi−1
e congf i(e) ≤ α|w i−1|1, (2.20)

for all i ≥ 1.
We start the proof by upper bounding the total growth of µi throughout the

algorithm.

Lemma 2.8.4. For any i ≥ 0,

µi+1 ≤ µi exp
(
αδNλ

i+1
)
.

In particular, after the final, T -th iteration, the total weight |wT |1 = µT is at most

m exp
(
αδN

∑T
i=1 λ

i
)
= nO(α/δ).

Proof. For any i ≥ 0, we have

µi+1 =
∑

e

wi+1
e =

∑

e

wi
e

(
1 + δNλ

i+1
congf i+1(e)

)

=
∑

e

wi
e + δNλ

i+1∑

e

wi
econgf i+1(e)

≤ µi + αδNλ
i+1|w i|1,

where the last inequality follows from (2.20). Thus, we can conclude that

µi+1 ≤ µi + αδNλ
i+1|w i|1 = µi(1 + αδNλ

i+1
) ≤ µi exp

(
αδNλ

i+1
)
,

as desired. The lemma follows.

One of the consequences of the above lemma is that whenever we make a call to
the oracle, the total weight |w i|1 is at most nO(α/δ). Thus, we have an absolute bound
on the value of the weights the oracle is dealing with.
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Next, we tie the final weight wT
e of a particular edge e to the congestion

∑

f∈F

λfcongf (e)

that this edge suffers with respect to the convex combination output by the algorithm.

Lemma 2.8.5. For any edge e and i ≥ 0,

wi
e ≥ exp

(
(1− δ)δN

i∑

i′=1

λ
i′

congf i′ (e)

)
.

In particular, for the last, T -th iteration, we have

wT
e ≥ exp

(
(1− δ)δN

T∑

i′=1

λ
i′

congf i′ (e)

)
= exp

(
(1− δ)δN

∑

f∈F

λfcongf (e)

)
.

Proof. For any i ≥ 0, we have

wi
e =

i∏

i′=1

(
1 + δNλ

i′

congf i′ (e)
)
≥

i∏

i′=1

exp
(
(1− δ)δNλ

i′

congf i′ (e)
)
,

where we used the fact that, by definition, Nλ
i
congf i(e) ≤ 1 and that for any 1/2 >

δ > 0 and x ∈ [0, 1]:
exp((1− δ)δx) ≤ (1− δx).

Now, the lemma follows since

wi
e ≥

i∏

i′=1

exp
(
(1− δ)δNλ

i′

congf i′ (e)
)
= exp

(
(1− δ)δN

i∑

i′=1

λ
i′

congf i′ (e)

)
,

as desired.

Finally, by Lemmas 2.8.4 and 2.8.5, we conclude that for any edge e,

m exp (αδN) ≥ µT = |wT |1 ≥ wT
e ≥ exp

(
(1− δ)δN

∑

f∈F

λfcongf (e)

)
.

This implies that

∑

f∈F

λfcongf (e) ≤
α

(1− δ)
+

lnm

(1− δ)δN
=

α

(1− δ)
+

δ

2(1− δ)
≤ α(1 + 3δ)

for every edge e, as 1/2 > δ > 0. The Theorem 2.8.3 follows.
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2.8.3 Convergence of the Multiplicative-Weights-Update Rou-
tine

Note that even though we proved above that our multiplicative-weights-update rou-
tine from Figure 2-1 will always returned the desired solution, it is unclear how many
iterations will this routine make before termination. We proceed now to relating this
number of iterations to some properties of the oracle that is employed.

Width-based bound: Probably the simplest and most broadly applied way of
bounding the number of iterations is based on the concept of width of an oracle.

Definition 2.8.6. For a given oracle O for some (F , G)-system, we say that O has
width ρ if for any possible weights w , the flow returned by O in response to them
exerts a congestion of at most ρ in G.

Clearly, width of an oracle provides us with a simple way of bounding the number
of queries to it, as explain in the following lemma.

Lemma 2.8.7. If the oracle O used by the routine from Figure 2-1 has width ρ then
at most O(ρδ−2 logm) iterations is made.

Proof. By Definition 2.8.6, we must have that all ρi ≤ ρ and thus each λ
i
(possibly

except λ
T
) has to be at least 1

Nρi
≥ 1

Nρ
. This means that

∑i
i′=1 λ

i
reaches 1 after at

most Nρ+ 1 iterations. The lemma follows.

Tightness-based bound: Even though the use of width is a very simple way of
bounding the running time of the multiplicative-weights-update routine, sometime
one can obtain a better bound. This is possible as the width-based bound is, in some
sense, pessimistic, i.e., it does not give a good handle on situations in which only
a few of the calls made in the multiplicative-weights-update routine results in flows
with ρi being close to the width ρ.

To get a different type of bound that avoids this problem, let us define ρG(f) to
be the maximum congestion maxe∈E congf (e) that flow f exerts in G. (Note that if
f is returned by an oracle with width ρ then ρG(f) has to be at most ρ.) Also, let
κG(f) := {e ∈ E | congf (e) ≥ ρG(f)

2
} be the set of edges of G whose congestion is

within a factor of two of the maximum congestion exerted by f in G.

Definition 2.8.8. For a given oracle O for some (F , G)-system, we say that O has
tightness k if for any possible weights w , the flow f returned by O in response to it
is such that |κG(f)| ≥ k.

Observe that, trivially, every oracle has a tightness of at least one.
Now, we prove the following lemma that tells us that the number of oracle calls

in our multiplicative-weights-update routine is inversely proportional to the tightness
of the oracle.

Lemma 2.8.9. If the α-oracle O used by the routine from Figure 2-1 has tightness
k then at most 2αNm

k
= 4αm logm

kδ2
iterations is made.
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Proof. Consider the following potential function:

φi =
∑

e∈E

∑

i′=1

iλ
i′

congf i′ (e).

Note that φ0 = 0, φi+1 ≥ φi for each i, and, by Theorem 2.8.3, we know that

T∑

i′=1

λ
i′

congf i′ (e) =
∑

f∈F

λfcongf (e) ≤ γ = α(1 + 3δ),

for each edge e. Therefore, the final value φT of this potential is at most α(1+ 3δ)m.
Now, observe that in each iteration i of the multiplicative-weights-update routing

from Figure 2-1, we have that for every e ∈ κG(f
i),

λ
i
congf i(e) ≥ 1

2N
.

As a result, we see that in each iteration the potential φ increases by at least k
2N

.
This implies that the total number of iterations is at most 2α(1+3δ)mN

k
and the lemma

follows.

Note that the bounds offered by Lemma 2.8.7 and Lemma 2.8.9 are in general
incomparable. Therefore, in this thesis, we will be using one or the other depending
on the characteristic of the flow packing problem we will be dealing with.
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Part I

Cuts and Flows
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Chapter 3

Approximation of Maximum Flow in
Undirected Graphs

In this chapter, we consider the maximum s-t flow problem and the dual problem of
finding a minimum s-t cut.1 We propose a new approach to solving these problems
approximately in a capacitated, undirected graph. Our approach is based on solving
a sequence of electrical flow problems. Each electrical flow is given by a solution to
a Laplacian system (cf. Section 2.4) and thus may be approximately computed in
nearly-linear time (cf. Section 2.7).

Using this approach, we develop the fastest known algorithm for computing ap-
proximately maximum s-t flow. For a graph having n vertices and m edges, our algo-
rithm computes a (1− ε)-approximately maximum s-t flow in time2 Õ(mn1/3ε−11/3).
A dual version of our approach gives the fastest known algorithm for computing a
(1 + ε)-approximately minimum s-t cut. Its running time is Õ(m+ n4/3ε−16/3).

3.1 Introduction

The maximum s-t flow problem and its dual, the minimum s-t cut problem, are two
of the most fundamental and extensively studied problems in Operations Research
and Optimization [120, 2]. They have many applications (see [3]) and are often used
as subroutines in other algorithms (see e.g. [14, 122]). Also, the celebrated Max-Flow
Min-Cut theorem [67, 57] that establishes equality of the value of the maximum s-t
flow and capacity of the minimum s-t cut, is a prototypical example of duality relation
in optimization. Many advances have been made in the development of algorithms
for this problem (see Goldberg and Rao [73] for an overview). However, for the basic
problem of computing or (1−ε)-approximating the maximum flow in undirected, unit-
capacity graphs with m = O(n) edges, the asymptotically fastest known algorithm is
the one developed in 1975 by Even and Tarjan [61], which takes time O(n3/2). Despite
35 years of extensive work on the problem, this bound has not been improved.

1This chapter is based on joint work with Paul Christiano, Jonathan Kelner, Daniel Spielman,
and Shang-Hua Teng and contains material from [40].

2Recall that Õ(g(m)) denotes O(g(m) logc g(m)) for some constant c.

45



In this chapter, we introduce a new approach to computing approximately max-
imum s-t flows and minimum s-t cuts in undirected, capacitated graphs. Using it,
we present the first algorithms that break the O(n3/2) complexity barrier described
above. In addition to being the fastest known algorithms for these problems, they are
simple to describe and introduce techniques that may be applicable to other tasks.
One of the key steps of these algorithms is reducing the problem of computing max-
imum flows subject to capacity constraints to the problem of computing electrical
flows in resistor networks. An approximate solution to each electrical flow problem
can be found in time Õ(m) using recently developed algorithms for solving systems
of linear equations in Laplacian matrices [95, 130] that are discussed in Section 2.7.

There is a simple physical intuition that underlies our approach, which we describe
here in the case of a graph with unit edge capacities. We begin by thinking of each
edge of the input graph as a resistor with resistance one, and we compute the electrical
flow that results when we send current from the source s to the sink t. These currents
obey the flow conservation constraints, but they are ignorant of capacities of the
edges. To remedy this, we increase the resistance of each edge in proportion to the
amount of current flowing through it—thereby penalizing edges that violate their
capacities—and compute the electrical flow with these new resistances.

After repeating this operation Õ(m1/3 ·poly(1/ε)) times, we will be able to obtain
a (1−ε)-approximately maximum s-t flow by taking a certain average of the electrical
flows that we have computed, and we will be able to extract a (1 + ε)-approximately
minimum s-t cut from the vertex potentials3. This will give us algorithms for both
problems that run in time Õ(m4/3 · poly(1/ε)). By combining this with the graph
smoothing and sampling techniques of Karger [86], we can get a (1−ε)-approximately
maximum s-t flow in time Õ(mn1/3ε−11/3). Furthermore, by applying the cut algo-
rithm to a sparsifier [26] of the input graph, we can compute a (1+ ε)-approximately
minimum s-t cut in time Õ(m+ n4/3ε−16/3).

We remark that the results presented in this chapter immediately improve the
running time of algorithms that use the computation of an approximately maximum
s-t flow on an undirected, capacitated graph as a subroutine. For example, combining
our work with that of Sherman [122] allows us to achieve the best currently known
asymptotic approximation ratio of O(

√
log n) for the sparsest cut problem in time

O(m+ n4/3+δ) for any constant δ > 0.

3.1.1 Previous Work on Maximum Flows and Minimum Cuts

The best previously known algorithms for the problems studied here are obtained by
combining techniques of Goldberg and Rao [73] and Benczúr and Karger [27]. In a
breakthrough paper, Goldberg and Rao [73] developed an algorithm for computing
exact maximum s-t flows in directed or undirected capacitated graphs in time

O(mmin(n2/3,m1/2) log(n2/m) logU),

3For clarity, we will analyze these two cases separately, and they will use slightly different rules
for updating the resistances.
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assuming that the edge capacities are integers between 1 and U . In undirected graphs,
one can find faster approximation algortithms for these problems by using the graph
sparsification techniques of Benczúr and Karger [26, 27]. Goldberg and Rao [73]
observe that by running their exact maximum flow algorithm on the sparsifiers of
Benczúr and Karger [26], one can obtain a (1 + ε)-approximately minimum cut in
time Õ(m + n3/2ε−3). This provides an approximation of the value of the maximum
flow. To actually obtain a feasible flow whose value approximates the maximum one
can apply the algorithm of Goldberg and Rao in the divide-and-conquer framework
of Benczúr and Karger [27]. This provides a (1− ε)-approximately maximum flow in
time Õ(m

√
nε−1). We refer the reader to the the paper of Goldberg and Rao for a

survey of the previous work on algorithms for computing maximum s-t flows.
In more recent work, Daitch and Spielman [51] showed that fast solvers for Lapla-

cian linear systems [130, 95] could be used to make interior-point algorithms for the
maximum flow and minimum-cost flow problems run in time Õ(m3/2 logU), and, as
we will see in Chapter 5, one can approximate a wide range of cut problems, including
the minimum s-t cut problem, within a polylogarithmic factor in almost linear time.

3.1.2 Outline of This Chapter

We begin in Section 3.2 by introducing some notations, as well as, stating some simple
facts that we will need in the sequel. In Section 3.3 we give a simplified version of
our approximate maximum-flow algorithm that has running time of Õ(m3/2ε−5/2).

In Section 3.4, we will show how to improve the running time of our algorithm to
Õ(m4/3ε−3); we will then describe how to combine this with existing graph smoothing
and sparsification techniques to compute approximately maximum s-t flows in time
Õ(mn1/3ε−11/3) and to approximate the value of such flows in time Õ(m+n4/3ε−16/3).
In Section 3.5, we present a variant of our algorithm that computes approximately
minimum s-t cuts in time Õ(m+ n4/3ε−16/3).

3.2 Preliminaries and Notations

Following the convention introduced in Section 2.1, let us denote by G = (V,E,u)
an undirected capacitated graph with n vertices and m edges. We distinguish two
vertices, a source vertex s and a sink vertex t. Each edge e has a nonzero integral
capacity ue, and we let U := maxe ue/mine ue be the ratio of the largest to the
smallest capacities.

Now, the minimum s-t cut problem is that of finding an s-t cut in G of minimum
capacity.4 On the other hand, the maximum s-t flow problem is that of finding a
feasible s-t flow in G of maximum value. We denote a maximum flow in G by f ∗, and
we denote its value by F ∗ := |f ∗|. We say that f is a (1−ε)-approximately maximum
flow if it is a feasible s-t flow of value at least (1− ε)F ∗. Similarly, we say that C is

4The reader can consult Section 2.1 for some of the definitions that are not stated here.
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an (1 + ε)-approximately minimum s-t cut if its capacity is within (1 + ε) factor of
the capacity of the minimum cut C∗.

To simplify the exposition, we will take ε to be a constant independent of m
throughout this chapter, and m will be assumed to be larger than some fixed con-
stant. However, our analysis will go through unchanged as long as ε > Ω̃(m−1/3). In
particular, our analysis will apply to all ε for which our given bounds are faster than
the O(m3/2) time required by existing exact algorithms.

One can easily reduce the problem of finding a (1−ε)-approximation to the maxi-
mum flow in an arbitrary undirected graph to that of finding a (1−ε/2)-approximation
in a graph in which the ratio of the largest to smallest capacities is polynomially
bounded. To do this, one should first compute a crude approximation of the max-
imum flow in the original graph. For example, one can compute the s-t path of
maximum bottleneck in time O(m+ n log n) [120, Section 8.6e], where we recall that
the bottleneck of a path is the minimum capacity of an edge on that path. If this
maximum bottleneck of an s-t path is B, then the maximum flow lies between B and
mB. This means that there is a maximum flow in which each edge flows at most
mB, so all capacities can be decreased to be at most mB. On the other hand, if one
removes all edges with capacities less than εB/2m, the maximum flow can decrease
by at most εB/2. So, we can assume that the minimum capacity is at least εB/2m
and the maximum is at most Bm, for a ratio of 2m2/ε. Thus, by a simple scaling,
we can assume that all edge capacities are integers between 1 and 2m2/ε.

3.3 A Simple Õ(m3/2ε−5/2)-Time Flow Algorithm

Before describing our Õ(m4/3ε−3) algorithm, we will describe a simpler algorithm
that finds a (1−O(ε))-approximately maximum flow in time Õ(m3/2ε−5/2). Our final
algorithm will be obtained by carefully modifying the one described here.

The algorithm will employ the flow packing framework we described in Section
2.8. To see how this framework can be applied, consider F being the set of all the
s-t flows in G of value F , for some value F . Note that if one obtains an (1 + ε)-
approximate solution {λf}f to the corresponding (F , G)-system then taking a flow f
being just a convex combination of the flows indicated by these λfs, provides us with
an s-t flow of value F that exerts a congestion of at most (1 + ε) in G. Such a flow
f thus certifies that the value F ∗ of the maximum s-t flow in G is at least F/(1 + ε).
On the other hand, if the (F , G)-system is infeasible, then it means that the value of
F ∗ has to be smaller than F .

Now, by our discussion in Section 3.2, we know that the value F ∗ of the maximum
s-t flow in G lies between B and mB, where B is the maximum bottleneck of an s-
t path that we can compute fast. Therefore, we can use binary search to turn an
(1 + ε)-approximate solver for a (F , G)-system mentioned above into a (1 − O(ε))-
approximation algorithm for the maximum s-t flow problem that we are seeking.
Note that as our lower and upper bound on F ∗ is within a factor m of each other, the
running time overhead introduced by doing this is O(logm/ε) and thus negligible.

In the light of the above, we can focus from now on on a particular value of F and

48



design a (1 + ε)-approximate solver for the corresponding (F , G)-system. This will
be done by employing the multiplicative-weights-update routine from Figure 2-1 with
accuracy parameter δ equal to ε. To this end, we will design a simple (1 + ε)-oracle
for the (F , G)-system that has a width of 3

√
m/ε and runs in Õ(m log ε−1) time.

By our discussion above, Theorem 2.8.3 and Lemma 2.8.7, providing such an oracle
will give the desired (1 − O(ε))-approximation algorithm for the maximum s-t flow
problem running in time Õ(m3/2ε−5/2).

3.3.1 From Electrical Flows to Maximum Flows: Oracle Con-
struction

The key component of our oracle will be an approximate electrical flow computations
using the fast Laplacian solvers discussed in Section 2.7. More precisely, we will use
the following theorem, whose proof is deferred to Section 3.3.2.

Theorem 3.3.1 (Fast Approximation of Electrical Flows). For any δ > 0, any F >
0, and any vector r of resistances in which the ratio of the largest to the smallest
resistance is at most R, we can compute, in time Õ(m logR/δ), a vector of vertex
potentials φ̃ and an s-t flow f̃ of value F such that

a. Er (f̃) ≤ (1+δ)Er (f), and Er (f̃) ≤ (1+δ)Er (f) where f is the electrical s-t flow
of value F ,

b. for every edge e, ∣∣∣ref(e)2 − ref̃(e)
2
∣∣∣ ≤ δ

2mR
Er (f),

where f is the true electrical flow.

c.

φ̃s − φ̃t ≥
(
1− δ

12nmR

)
FRs,t

eff(r).

We will refer to a flow meeting the above conditions as a δ-approximate electrical
flow.

Now, to build our oracle, we set

re :=
1

u2
e

(
we +

ε|w |1
3m

)
(3.1)

for each edge e, and we use the procedure from Theorem 3.3.1 to approximate the
electrical flow that sends F units of flow from s to t in a network whose resistances
are given by the re. The pseudocode for this oracle is shown in Figure 3-1.

It is easy to see that f̃ is an s-t flow of value F and thus f̃ ∈ F . So, to established
the desired properties of our oracle we need to show that the resulting flow f̃ meets
also the conditions required by Definition 2.8.2 (with α = (1 + ε)) and Definition
2.8.6. We will do it by using the basic fact that, by its definition, the electrical flows
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Input : A graph G = (V,E) with capacities {ue}e, a target flow value F , and edge
weights {we}e

Output: Either a flow f̃ , or “fail” indicating that F > F ∗

re ← 1
u2
e

(
we +

ε|w |1
3m

)
for each e ∈ E

Find an (ε/3)-approximate electrical flow f̃ using Theorem 3.3.1 on G with resistances
r and target flow value F

if Er (f̃) > (1 + ε)|w |1 then return “fail”

else return f̃

Figure 3-1: A simple implementation of an (1 + ε)-oracle with width 3
√
m/ε

minimize the energy of the flow. Our analysis will then be based on comparing the
energy of f̃ with that of an optimal max flow f ∗. Intuitively, what will turn out is
that the we term in equation (3.1) guarantees the bound on the average congestion
from Definition 2.8.2, while the ε|w |1/(3m) term guarantees the bound on the width,
i.e., on the maximum congestion ρG(f̃) exerted by f̃ .

To prove it formally, suppose f ∗ is a maximum flow. By its feasibility, we have
congf∗(e) ≤ 1 for all e, so

Er (f ∗) =
∑

e

(
we +

ε|w |1
3m

)(
f ∗(e)

ue

)2

=
∑

e

(
we +

ε|w |1
3m

)(
congf∗(e)

)2

≤
∑

e

(
we +

ε|w |1
3m

)

=
(
1 +

ε

3

)
|w |1.

Since the electrical flow minimizes the energy, Er (f ∗) is an upper bound on the
energy of the electrical flow of value F whenever F ≤ F ∗. In this case, Theorem 3.3.1
implies that our (ε/3)-approximate electrical flow satisfies

Er (f̃) ≤
(
1 +

ε

3

)
Er (f ∗) ≤

(
1 +

ε

3

)2
|w |1 ≤ (1 + ε) |w |1. (3.2)

This shows that our oracle will never output “fail” when F ≤ F ∗. It thus suffices to
show that the energy bound Er (f̃) > (1+ε)|w |1, which holds whenever the algorithm
does not return “fail” , implies the required bounds on the average and worst-case
congestion. To see this, we note that the energy bound implies that

∑

e

we

(
congf̃ (e)

)2 ≤ (1 + ε) |w |1, (3.3)
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and, for all e ∈ E,
ε|w |1
3m

(
congf̃ (e)

)2 ≤ (1 + ε) |w |1. (3.4)

By the Cauchy-Schwarz inequality,

(
∑

e

wecongf̃ (e)

)2

≤ |w |1
(
∑

e

we

(
congf̃ (e)

)2
)
, (3.5)

so equation (3.3) gives us that

∑

e

wecongf̃ (e) ≤
√
1 + ε |w |1 < (1 + ε) |w |1, (3.6)

which is the required bound on the average congestion. Furthermore, equation (3.4)
and the fact that ε < 1/2 implies that

congf̂ (e) ≤
√

3m(1 + ε)

ε
≤ 3
√
m/ε

for all e, which establishes the required bound on the maximum congestion. So our
algorithm indeed implements an (1 + ε)-oracle with width 3

√
m/ε), as desired.

To bound the running time of this oracle, recall that we can assume that all edge
capacities lie between 1 and U = m2/ε and obtain

R = max
e,e′

re
re′
≤ U2maxe re + ε |w |1

ε |w |1
≤ U2m+ ε

ε
= O

(
(m/ε)O(1)

)
. (3.7)

This establishes an upper bound on the ratio of the largest resistance to the
smallest resistance. Thus, by Theorem 3.3.1, the running time of this implementation
is Õ(m logR/ε) = Õ(m log 1/ε). Combining this with Theorem 2.8.3 and Lemma
2.8.7, we get

Theorem 3.3.2. For any 0 < ε < 1/2, the maximum flow problem can be (1 − ε)-

approximated in Õ(m3/2ε−5/2) time.

3.3.2 Computing Electrical Flows

In this section, we prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Without loss of generality, we may scale the resistances so
that they lie between 1 and R. This gives the following relation between F and the
energy of the electrical s-t flow of value F :

F 2

m
≤ Er (f) ≤ F 2Rm. (3.8)

Let L be the Laplacian matrix for this electrical flow problem, i.e., one in which
weights of edges are equal to the inverses of their resistances. Note that all off-
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diagonal entries of L lie between −1 and −1/R. Recall that the vector of optimal
vertex potentials φ of the electrical flow is the solution to the following linear system:

Lφ = Fχs,t

Using Theorem 2.7.1, for any ε > 0 ,we can compute in time

O(m log2 n(log log n)2 log 1/ε) = Õ(m log 1/ε)

a set of potentials φ̂ (cf. (2.16)) such that
∥∥∥φ̂− φ

∥∥∥
L
≤ ε ‖φ‖L ,

where

‖φ‖L
def
=

√
φTLφ.

Note also that
‖φ‖2L = Er (f),

where f is the potential flow obtain from φ via Ohm’s law, i.e., via equation 2.7
(and it corresponds exactly to the electrical s-t flow of value F ). Now, let f̂ be the
potential flow obtained from φ̂, its vector representation is given by

f̂ = CBT φ̂.

The flow f̂ is not necessarily an s-t flow because φ̂ only approximately satisfies the
linear system. Therefore, there could be some small surpluses or deficits of the flow
at vertices other than s and t. In other words, the vector representation f̂ of f̂
may not satisfy the equation Bf̂ = Fχs,t (cf. equation (2.8)). The way we address
this problem will be computing an approximation f̃ of f̂ that such that its vector
representation f̃ satisfies Bf̃ = Fχs,t .

Before fixing this problem, we first observe that the energy of f̂ is not much more
than the energy of f . We have

∥∥∥φ̂
∥∥∥
2

L
= Er (f̂),

and by the triangle inequality
∥∥∥φ̂
∥∥∥
L
≤ ‖φ‖L +

∥∥∥φ̂− φ

∥∥∥
L
≤ (1 + ε) ‖φ‖L .

So
Er (f̂) ≤ (1 + ε)2Er (f).

To see that the flow f̂ does not flow too much into or out of any vertex other than
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s and t, note that the flows into and out of vertices are given by the vector

i ext
def
= Bf̂ .

Observe that the sum of the entries in i ext is zero. Furthermore, we will produce an
s-t flow of value F by adding a flow to f̂ to obtain a flow f̃ for which

Bf̃ = Fχs,t .

So, if η is the maximum discrepancy between i ext and Fχs,t :

η
def
= ‖i ext − Fχs,t‖∞ .

then we have

η ≤ ‖i ext − Fχs,t‖2 =
∥∥∥Lφ̂− Lφ

∥∥∥
2
≤ ‖L‖2

∥∥∥φ̂− φ

∥∥∥
L
≤ 2n

∥∥∥φ̂− φ

∥∥∥
L
≤ 2nε

√
Er (f).

It is an easy matter to produce an s-t flow f̃ that differs from the flow represented
by f̂ by at most nη on each edge. For example, one can do this by solving a flow
problem in a spanning tree of the graph. Let T be any spanning tree of the graph
G. We now construct a flow in T that with the demands Fχs,t(u) − i ext(u) at each
vertex u. As the sum of the positive demands in this flow is at most nη, one can find
such a flow in which every edge flows at most nη. Moreover, since the edges of T are
a tree, one can find the flow in linear time. We obtain the flow f̃ by adding this flow
to the flow f̂ . The resulting flow is an s-t flow of value F . Moreover,

∥∥∥f̂ − f̃

∥∥∥
∞
≤ nη.

To ensure that we get a good approximation of the electrical flow, we now impose the
requirement that

ε ≤ δ

2n2m1/2R3/2
.

To check that requirement a is satisfied, observe that

Er (f̃) =
∑

e

ref̃
2
e

≤
∑

e

re(f̂e + nη)2

≤ Er (f̂) + 2nη
∑

e

ref̂e + n2η2
∑

e

re

≤ Er (f̂) + (2nηF + n2η2)
∑

e

re

≤ Er (f̂) + ε(2n2(mR)1/2 + 4n4)Er (f)mR (by (3.8))

≤ Er (f)
(
(1 + ε)2 + ε6n4mR3/2

)
.
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We may ensure that this is at most (1 + δ)Er (f) by setting

ε =
δ

12n4mR3/2
.

Now, to establish part b, note that

‖φ‖L =
∑

e

ref
2
e

and so ∑

e

re(fe − f̂e)
2 =

∥∥∥φ− φ̂

∥∥∥
2

L
≤ ε2Er (f).

We now bound
∣∣∣ref 2

e − ref̂
2
e

∣∣∣ by

∣∣∣ref 2
e − ref̂

2
e

∣∣∣
2

= re

(
fe − f̂e

)2
re

(
fe + f̂e

)2

≤ ε2Er (f)(2 + ε)2Er (f),

which implies ∣∣∣ref 2
e − ref̂

2
e

∣∣∣ ≤ ε(2 + ε)Er (f).

It remains to bound
∣∣∣ref̂ 2

e − ref̃
2
e

∣∣∣, which we do by the calculation

∣∣∣ref̂ 2
e − ref̃

2
e

∣∣∣ ≤
√
R
∣∣∣f̂e − f̃e

∣∣∣
√
re

∣∣∣f̂e + f̃e

∣∣∣

≤
√
R2n2ε

√
Er (f)(2 + ε)

√
Er (f)

= ε
√
R2(2 + ε)n2Er (f).

Putting these inequalities together we find

∣∣∣ref 2
e − ref̃

2
e

∣∣∣ ≤ ε
√
R(2n2 + 1)(2 + ε)Er (f) ≤ Er (f)

δ

2mR
.

To prove part c, first recall that

Lφ = Fχs,t

and that
Er (f) = F 2R.

eff(r)
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So,

ε2 ‖φ‖2L ≥
∥∥∥φ− φ̃

∥∥∥
2

L

=
(
φ− φ̃

)T
L
(
φ− φ̃

)

=
∥∥∥φ̃
∥∥∥
2

L
+ ‖φ‖2L − 2φ̃

T
Lφ

= ‖φ‖2L +
∥∥∥φ̃
∥∥∥
2

L
− 2Fχs,t

T φ̃.

Thus,

2Fχs,t
T φ̃ ≥ ‖φ‖2L +

∥∥∥φ̃
∥∥∥
2

L
− ε2 ‖φ‖2L

≥
(
1 + (1− ε)2 − ε2

)
‖φ‖2L

= (2− 2ε) ‖φ‖2L
= (2− 2ε)F 2R.

eff(r)

By dividing both side of the obtained inequality by 2F and noting that χs,t
T φ̃ =

φ̃s − φ̃t

3.4 An Õ(mn1/3ε−11/3) Algorithm for Approximate Max-

imum Flow

In this section, we modify our algorithm to run in time Õ(m4/3ε−3). We then com-
bine this with the smoothing and sampling techniques of Karger [86] to obtain an
Õ(mn1/3ε−11/3)-time algorithm.

For fixed ε, the algorithm in the previous section required us to compute Õ(m1/2)

electrical flows, each of which took time Õ(m), which,in turn, led to a running time
of Õ(m3/2). To reduce this running time to Õ(m4/3), we’ll show how to find an
approximately maximum s-t flow while computing only Õ(m1/3) electrical flows.

Before we proceed to doing this, let us recall that our analysis of the oracle from
Section 3.3.1 was fairly simplistic, and therefore one might hope to improve the run-
ning time of the algorithm by proving a tighter bound on the width. Unfortunately,
the graph in Figure 3-2 shows that our analysis was essentially tight. The graph
consists of k parallel paths of length k connecting s to t, along with a single edge e
that directly connects s to t. The max flow in this graph is k + 1. In the first call
made to the oracle by the multiplicative weights routine, all of the edges will have the
same resistance. In this case, the electrical flow of value k + 1 will send (k + 1)/2k
units of flow along each of the k paths and (k+1)/2 units of flow across e. Since the
graph has m = Θ(k2), the width of the oracle in this case is Θ(m1/2).
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Figure 3-2: A graph on which the electrical flow sends approximately
√
m units of

flow across an edge when sending the maximum flow F ∗ from s to t.

3.4.1 The Improved Algorithm

The example from Figure 3-2 that we discussed above, shows that it is possible for
the electrical flow returned by the oracle to exceed the edge capacities by Θ(m1/2).
However, we note that if one removes the edge e from the graph in Figure 3-2, the
electrical flow on the resulting graph is much better behaved, but the value of the
maximum flow is only very slightly reduced. This demonstrates a phenomenon that
will be central to our improved algorithm: while instances in which the electrical flow
sends a huge amount of flow over some edges exist, they are somewhat fragile, and
they are often drastically improved by removing the bad edges.

This motivates us to modify our algorithm as follows. We’ll set ρ to be some value
smaller than the actual worst-case bound of Õ(m1/2). (It will end up being Õ(m1/3).)
The oracle will begin by computing an electrical flow as before. However, when this
electrical flow exceeds the capacity of some edge e by a factor greater than ρ, we’ll
remove e from the graph and try again, keeping all of the other weights the same.
We’ll repeat this process until we obtain a flow in which all edges flow at most a
factor of ρ times their capacity (or some failure condition is reached), and we’ll use
this flow (as an oracle answer) in our multiplicative-weights-update routine. All the
edges removed by the oracle during this process, are added to a set H of forbidden
edges. We will keep these edges permanently removed from the graph, i.e., they will
not be included in the graphs supplied to future invocations of the oracle.

In Figures 3-3, we present the modified versions of the oracle implementation,
where we have highlighted the parts that have changed from the simpler version
shown in Figures 3-1. The set H is initialized to be empty and then is passed between
consecutive oracle calls.
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Input : A graph G = (V,E) with capacities {ue}e, a target flow value F , edge

weights {we}e, and a set H of forbidden edges

Output: Either a flow f̃ and a set H of forbidden edges , or “fail” indicating that
F > F ∗

ρ← 8m1/3 ln1/3 m
ε

re ← 1
u2
e

(
we +

ε|w |1
3m

)
for each e ∈ E \H

Find an approximate electrical flow f̃ using Theorem 3.3.1 on GH := (V,E \H) with

resistances r , target flow value F , and parameter δ = ε/3.

if Er (f̃) > (1 + ε)|w |1 or s and t are disconnected in GH then return “fail”

if there exists e with congf̃ (e) > ρ then add e to H and start over

return f̃

Figure 3-3: The modified oracle O
′ used by our improved algorithm

3.4.2 Analysis of the New Algorithm

Before proceeding to a formal analysis of the new algorithm, it will be helpful to
examine what is already guaranteed by the analysis from Section 3.3, and what we’ll
need to show to demonstrate the algorithm’s correctness and bound its running time.

We first note that, by construction, the congestion of any edge in the flow f̃
returned by the modified oracle from Figure 3-3 will be bounded by ρ. Furthermore,
as this oracle enforces the bound Er (f̃) ≤ (1 + ε)|w |1; by equations (3.3), (3.5),
and (3.6) in Section 3.3.1, this guarantees that f̃ will meet the weighted average
congestion bound required for a (1 + ε)-oracle for the (F , G)-system of our interest.
So, as long as the modified oracle always successfully returns a flow, it will function
as an (1+ε)-oracle with width ρ, and our analysis from Section 3.3 will show that the
multiplicative-weights-update routine employed by our algorithm (with δ = ε) will
yield a (1 +O(ε))-approximately maximum s-t flow after Õ(ρε−2) iterations.

Our problem is thus reduced to understanding the behavior of the modified oracle.
To prove correctness, we will need to show that whenever the modified oracle is called
and the value F is at most F ∗, it will return some flow f̃ (as opposed to returning
“fail”). To bound the running time, we will need to provide an upper bound on
the total number of electrical flows computed by the modified oracle throughout the
execution of the algorithm.

To this end, we will show the following upper bound on the cardinality |H| and the
capacity u(H) of the set of forbidden edges. The proof of these bounds is postponed
until the next section.

Lemma 3.4.1. Throughout the execution of the algorithm,

|H| ≤ 30m lnm

ε2ρ2
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and

u(H) ≤ 30mF lnm

ε2ρ3
.

Now, if we plug in the value ρ = (8m1/3 ln1/3 m)/ε used by the algorithm, the
above lemma gives us that |H| ≤ 15

32
(m lnm)1/3 and u(H) ≤ 15

256
εF < εF/12.

Given these bounds, it is now straightforward to show the following theorem,
which establishes the correctness and bounds the running time of our algorithm.

Theorem 3.4.2. For any 0 < ε < 1/2, if F ≤ F ∗ our improved algorithm will return

a feasible s-t flow f of value |f | = (1−O(ε))F in time Õ(m4/3ε−3).

Proof. To bound the running time, we note that whenever we invoke the algorithm
from Theorem 3.3.1, we either advance the number of iterations of the multiplicative-
weights-update routine or increase the cardinality of the set H. As a result, the
number of linear systems we solve is at most Õ(ρε−2)+|H| ≤ Õ(ρε−2)+ 15

32
(m lnm)1/3.

equation (3.7) implies that the value of R from Theorem 3.3.1 is O((m/ε)O(1)),
so solving each linear system takes time at most Õ(m log 1/ε). This gives an overall
running time of

Õ((ρε−2 + 15
32
(m lnm)1/3)m) = Õ(m4/3ε−3),

as claimed.
It thus remains to prove correctness. For this, we need to show that if F ≤ F ∗,

then the oracle does not return “fail” . By definition of the oracle, this can occur only
if we disconnect s from t or if Er (f̃) > (1+ε)|w |1. By Lemma 3.4.1 and the comment
following it, we know that throughout the whole algorithm GH has maximum flow
value of at least F ∗ − εF/12 ≥ (1− ε/12)F and thus, in particular, we will never
disconnect s from t.

Furthermore, this implies that there exists a feasible flow in our graph of value
(1− ε/12)F , even after we have removed the edges in H. There is thus a flow of
value F in which every edge has congestion at most 1/ (1− ε/12). We can therefore
use the argument from Section 3.3.1 (equation (3.2) and the lines directly preceding
it) to show that we always have

Er (f̃) ≤ (1 + ε/12)2(1 + ε/3)2|w |1 ≤ (1 + ε)|w |1,

as required.

The above theorem allows us to apply the binary search strategy that we used in
Section 3.3. This yields the following theorem:

Theorem 3.4.3. For any 0 < ε < 1/2, the maximum flow problem can be (1 − ε)-

approximated in Õ(m4/3ε−3) time.

3.4.3 The Proof of Lemma 3.4.1

All that remains is to prove the bounds given by Lemma 3.4.1 on the cardinality
and capacity of H. To do so, we will use the effective resistance of the circuits on
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which we compute electrical flows. The key insight is that we only cut an edge when
its flow accounts for a nontrivial fraction of the energy of the electrical flow, and
that cutting such an edge will cause a substantial change in the effective resistance.
Combining this with a bound on how much the effective resistance can change during
the execution of the algorithm will guarantee that we won’t cut too many edges.

Before we do all of that, let us first prove the following lemma which gives a lower
bound on the effect that increasing the resistance of an edge can have on the effective
resistance.

Lemma 3.4.4. Let f be an electrical s-t flow on a graph G with resistances r . Sup-
pose that some edge h = (i, j) accounts for a β fraction of the total energy of f ,
i.e.,

f(h)2rh = βEr (f).
For some γ > 0, define new resistances r ′ such that r′h = γrh, and r′e = re for all
e 6= h. Then

Reff(r
′) ≥ γ

β + γ(1− β)
Reff(r).

In particular:

• If we “cut” the edge h by setting γ =∞, then

Reff(r
′) ≥ Reff(r)

1− β
.

• If we slightly increase the effective resistance of the edge h by setting γ = (1+ε)
with ε ≤ 1, then

Reff(r
′) ≥ 1 + ε

β + (1 + ε)(1− β)
Reff(r) ≥

(
1 +

εβ

2

)
Reff(r).

Proof. The assumptions of the theorem are unchanged if we multiply f by a constant,
so we may assume without loss of generality that f is the electrical s-t flow of value
1/Reff(r). If φf is the vector of vertex potentials corresponding to f , this gives
φf
s − φf

t = 1. Since adding a constant to the potentials doesn’t change the flow, we
may assume that φf

s = 1 and φf
t = 0. By Fact 2.4.1,

Ceff(r) =
∑

(u,v)∈E

(
φf
u − φf

v

)2

r(u,v)
=

(
φf
i − φf

j

)2

rh
+

∑

(u,v)∈E\{h}

(
φf
u − φf

v

)2

r(u,v)
.

The assumption that h contributes a β fraction of the total energy implies that, in
the above expression, (

φf
i − φf

j

)2

rh
= βC ,

eff(r)
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and thus
∑

(u,v)∈E\{h}

(
φf
u − φf

v

)2

r(u,v)
= (1− β)Ceff(r).

We will obtain our bound on Ceff(r
′) by plugging the original vector of potentials

φf into the expression in Fact 2.4.1:

Ceff(r
′) = min

φ |φs=1,
φt=0

∑

(u,v)∈E

(
φu − φv

)2

r′(u,v)
≤

∑

(u,v)∈E

(
φf
u − φf

v

)2

r′(u,v)

=

(
φf
i − φf

j

)2

r′h
+

∑

(u,v)∈E\{h}

(
φf
u − φf

v

)2

r′(u,v)
=

(
φf
i − φf

j

)2

γrh
+

∑

(u,v)∈E\{h}

(
φf
u − φf

v

)2

r(u,v)

=
β

γ
Ceff(r) + (1− β)Ceff(r) = Ceff(r)

(
β + γ(1− β)

γ

)
.

Since Reff(r) = 1/Ceff(r) and Reff(r
′) = 1/Ceff(r

′), the desired result follows.

Now, to prove Lemma 3.4.1, let r j be the resistances used in the jth electrical flow
computed during the execution of the algorithm. If an edge e is not in E or if e has
been added to H by step j, set rje =∞. We define the potential function

Φ(j) = Reff(r
j) = Erj(f j),

where f j is the (exact) electrical flow of value 1 arising from r j. Lemma 3.4.1 will
follow easily from the following statement.

Lemma 3.4.5. Suppose that F ≤ F ∗ ≤ mF . Then:

(1) Φ(j) never decreases during the execution of the algorithm.

(2) Φ(1) ≥ m−4F−2.

(3) If we add an edge to H between steps j− 1 and j, then (1− ερ2

5m
)Φ(j) > Φ(j− 1).

Proof. We prove each of the above properties one by one.

Proof of (1)

The only way that the resistance rje of an edge e can change is if the weight we is
increased by the multiplicative-weights-update routine, or if e is added to H so that
rje is set to∞. As such, the resistances are nondecreasing during the execution of the
algorithm. By Rayleigh Monotonicity (Corollary 2.4.2), this implies that the effective
resistance is nondecreasing as well.
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Proof of (2)

In the first linear system, H = ∅ and r1e = 1+ε/3
u2
e

for all e ∈ E. Let C∗ be the
minimum s-t cut of G. By the Max Flow-Min Cut Theorem ([67, 57]), we know that
the capacity u(C∗) of this cut is equal to F ∗. In particular,

r1e =
1 + ε/3

u2
e

≥ 1 + ε/3

F ∗2
>

1

F ∗2

for all e ∈ E(C∗). As f 1 is an electrical s-t flow of value 1, it sends 1 unit of net flow
between C∗ and C

∗
; so, some edge e′ ∈ E(C∗) must have f 1(e′) ≥ 1/m. This gives

Φ(1) = Er1(f 1) =
∑

e∈E

f 1(e)2r1e ≥ f 1(e′)2r1e′ >
1

m2F ∗2
. (3.9)

Since F ∗ ≤ mF by our assumption, the desired inequality follows.

Proof of (3)

Suppose we add the edge h to H between steps j − 1 and j. We will show that
h accounts for a substantial fraction of the total energy of the electrical flow with
respect to the resistances r j−1, and use Lemma 3.4.4.

Now, let w be the weights used at step j − 1, and let f̃ be the flow we computed
in step j − 1. Because we added h to H, we know that congf̃ (h) > ρ. Since our
algorithm did not return “fail” after computing this f̃ , we must have that

Erj−1(f̃) ≤ (1 + ε)|w |1. (3.10)

Using the definition of rj−1
h , the fact that congf̃ (h) > ρ, and equation (3.10), we

obtain:

f̃(h)2rj−1
h = f̃(h)2

we + ε |w |1
3m

u2
e

≥ f̃(h)2
ε|w |1
3mu2

e

=
ε

3m

(
f̃(h)

ue

)2

|w |1

=
ε

3(1 + ε)m
congf̃ (h)

2 ((1 + ε)|w |1)

>
ερ2

3(1 + ε)m
Erj−1(f̃).

The above inequalities establish that edge h accounts for more than a ερ2

3(1+ε)m

fraction of the total energy Er i(f̃) of the flow f̃ .
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The flow f̃ is the approximate electrical flow computed by our algorithm, but our
argument will require that an inequality like this holds in the exact electrical flow
f j−1. This is guaranteed by part b of Theorem 3.3.1, which, along with the facts that
Er (f̃) ≥ Er (f j−1), ρ ≤ 1, and ε < 1/2, gives us that

f j−1(h)2rj−1
h > f̃(h)2rj−1

h − ε/3

2mR
Er (f j−1) >

(
ερ2

3(1 + ε)m
− ε/3

2mR

)
Er (f j−1)

>
ερ2

5m
Er (f j−1).

The result now follows from Lemma 3.4.4.

We are finally ready to prove Lemma 3.4.1.

Proof of Lemma 3.4.1. Let k be the cardinality of the set H at the end of the algo-
rithm. Let f̃ be the flow that was produced by our algorithm just before k-th edge
was added to H, let j be the time when this flow was output, and let w be the
corresponding weights.

As the energy required by an s-t flow scales with the square of the value of the
flow,

Φ(j) ≤ Erj(f)

F 2
≤ Erj(f̃)

F 2
. (3.11)

By the construction of our algorithm, it must have been the case that Erj(f̃) ≤
(1+ ε)|w |1. This inequality together with equation (3.11) and part 2 of Lemma 3.4.5
implies that

Φ(j) = Erj(f j) ≤ Erj(f̃)

F 2
≤ (1 + ε)|w |1m4Φ(1).

Now, since up to time j we had k − 1 additions of edges to H, parts 1 and 3 of
Lemma 3.4.5, and Lemma 2.8.4 imply that

(
1− ερ2

5m

)−(k−1)

≤ Φ(j)

Φ(1)
≤ (1 + ε)|w |1m4 ≤ (1 + ε)m4

(
m exp

(
(1 + ε)

ε

))

≤ 2m5 exp(3ε−1 lnm),

where the last inequality used the fact that ε < 1/2. Rearranging the terms in the
above inequality gives us that

k ≤ − ln 2 + 5 lnm+ 3ε−1 lnm

ln
(
1− ερ2

5m

) + 1 < − 6ε−1 lnm

ln
(
1− ερ2

5m

) <
30m lnm

ε2ρ2
,

where we used the inequalities ε < 1/2 and log(1 − c) < −c for all c ∈ (0, 1). This
establishes our bound on cardinality of the set H.

To bound the value of u(H), let us note that we add an edge e to H only when we
send at least ρue units of flow across it. But since we never flow more than F units

62



across any single edge, we have that ue ≤ F/ρ. Therefore, we may conclude that

u(H) ≤ |H|F
ρ
≤ 30mF lnm

ε2ρ3
,

as desired.

3.4.4 Improving the Running Time to Õ(mn1/3ε−11/3)

We can now combine our algorithm with existing methods to further improve its
running time. In [86] (see also [27]), Karger presented a technique, which he called
“graph smoothing”, that allows one to use random sampling to speed up an exact or
(1−ε)-approximate flow algorithm. More precisely, his techniques yield the following
theorem, which is implicit in [86] and stated in a more similar form in [27].

Theorem 3.4.6 ([86, 27]). Let T (m,n, ε) be the time needed to find a (1 − ε)-
approximately maximum flow in an undirected, capacitated graph with m edges and n
vertices. Then one can obtain a (1− ε)-approximately maximal flow in such a graph

in time Õ(ε2m/n · T (Õ(nε−2), n,Ω(ε))).

By applying the above theorem to our Õ(m4/3ε−3) algorithm, we obtain our desired
running time bound.

Theorem 3.4.7. For any 0 < ε < 1/2, the maximum flow problem can be (1 − ε)-

approximated in Õ(mn1/3ε−11/3) time.

3.4.5 Approximating the Value of the Maximum s-t Flow in
Time Õ(m+ n4/3ε−8/3)

By applying our improved algorithm described by Theorem 3.4.3 to a cut sparsifier
of G (cf. Corollary 2.6.2) gives us an algorithm for (1 − ε)-approximating the value
of the maximum s-t flow on G in time Õ(m+ n4/3ε−3).

We note that this only allows us to approximate the value of the maximum s-t
flow on G. It gives us a flow on G′, not one on G. We do not know how to use an
approximately maximum s-t flow on G′ to obtain one on G in less time than would
be required to compute a maximum flow in G from scratch using the algorithm from
Section 3.4.

For this reason, there is a gap between the time we require to find a maximum
flow and the time we require to compute its value. We note, however, that this gap
will not exist for the minimum s-t cut problem, since an approximately minimum
s-t cut on G′ will also be an approximately minimum s-t cut G. We will present
an algorithm for finding such a cut in the next section. By the Max Flow-Min Cut
Theorem, this will provide us with an alternate algorithm for approximating the value
of the maximum s-t flow. It will have a slightly better dependence on ε, which will
allow us to approximate the value of the maximum s-t flow in time Õ(m+n4/3ε−8/3).
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3.5 A Dual Algorithm for Finding an Approximately

Minimum s-t Cut in Time Õ(m + n4/3ε−8/3)

In this section, we’ll describe our approach from a dual perspective that yields an even
simpler algorithm for computing an approximately minimum s-t cut. Rather than
using electrical flows to obtain a flow, it will use the electrical potentials to obtain a
cut.

The algorithm will eschew the oracle abstraction and multiplicative-weights-update
machinery discussed in Section 2.8. Instead, it will just repeatedly compute an elec-
trical flow, increase the resistances of edges according to the amount flowing over
them, and repeat. It will then use the electrical potentials of the last flow computed
to find a cut by picking a cutoff and splitting the vertices according to whether their
potentials are above or below the cutoff.

The algorithm is shown in Figure 3-4. It finds a (1 + ε)-approximately minimum
s-t cut in time Õ(m4/3ε−8/3); applying it to a cut sparsifier will give us

Theorem 3.5.1. For any 0 < ε < 1/7, we can find a (1 + ε)-approximate minimum

s-t cut in Õ(m+ n4/3ε−8/3) time.

We note that, in this algorithm, there is no need to deal explicitly with edges
flowing more than ρ, maintain a set of forbidden edges, or average the flows from
different steps. We will separately study edges with very large flow in our analysis,
but the algorithm itself avoids the complexities that appeared in the improved flow
algorithm described in Section 3.4.

We further note that the update rule is slightly modified from the one that ap-
peared earlier in this chapter. This is done to guarantee that the effective resistance
increases substantially when some edge flows more than ρ, without having to explic-
itly cut it. Our previous rule allowed the weight (but not resistance) of an edge to
constitute a very small fraction of the total weight; in this case, a significant multi-
plicative increase in the weight of an edge may not produce a substantial change in
the effective resistance of the graph.

3.5.1 An Overview of the Analysis

To analyze this algorithm, we will track the total weight placed on the edges crossing
some minimum s-t cut. The basic observation for our analysis is that the same amount
of net flow must be sent across every cut, so edges in small cuts will tend to have
higher congestion than edges in large cuts. Since our algorithm increases the weight
of an edge according to its congestion, this will cause our algorithm to concentrate a
larger and larger fraction of the total weight on the small cuts of the graph. This will
continue until almost all of the weight is concentrated on approximately minimum
cuts.

Of course, the edges crossing a minimum s-t cut will also cross many other (likely
much larger) cuts, so we certainly can’t hope to obtain a graph in which no edge
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Input : A graph G = (V,E) with capacities {ue}e, and a target flow value F
Output: A cut C

Initialize w0
e ← 1 for all edges e, ρ← 3m1/3ε−2/3, N ← 5ε−8/3m1/3 lnm, and δ ← ε2.

for i := 1, . . . , N do

Find an approximate electrical flow f̃ i−1 and potentials φ̃ using Theorem 3.3.1 on G
with

resistances ri−1
e = wi−1

e
u2
e

, target flow value F , and parameter δ.

µi−1 ←∑
ew

i−1
e

wi
e ← wi−1

e + ε
ρcongf̃ i−1(e)wi−1

e + ε2

mρµ
i−1 for each e ∈ E

Scale and translate φ̃ so that φ̃s = 1 and φ̃t = 0
Let Cx = {v ∈ V |φv > x}
Set C to be the set Cx of minimal capacity
If the capacity of Cx is less than F/(1− 7ε), return Cx.

end

return “fail”“

Figure 3-4: A dual algorithm for finding an s-t cut

crossing a large cut has non-negligible weight. In order to formalize the above argu-
ment, we will thus need some good way to measure the extent to which the weight is
“concentrated on approximately minimum s-t cuts”.

In Section 3.5.2, we will show how to use effective resistance to formulate such a
notion. In particular, we will show that if we can make the effective resistance large
enough then we can find a cut of small capacity. In Section 3.5.3, we will use an
argument like the one described above to show that the resistances produced by the
algorithm in Figure 3-4 converge after T = Õ(m1/3ε−8/3) steps to one that meets such
a bound.

3.5.2 Cuts, Electrical Potentials, and Effective Resistance

During the algorithm, we scale and translate the potentials of the approximate electri-
cal flow so that φ̃s = 1 and φ̃t = 0. We then produce a cut by choosing x ∈ [0, 1] and
dividing the graph into the sets C = {v ∈ V |φv > x} and V \C = {v ∈ V | φ̃v ≤ x}.
The following lemma upper bounds the capacity of the resulting cut in terms of the
electrical potentials and edge capacities.

Lemma 3.5.2. Let φ̃ be as above. Then there is a cut Cx of capacity at most

∑

(u,v)∈E

|φ̃u − φ̃v|u(u,v). (3.12)

Proof. Consider choosing x ∈ [0, 1] uniformly at random. The probability that an
edge (u, v) is cut is precisely |φ̃u − φ̃v|. So, the expected capacity of the edges in a
random cut is given by (3.12), and so there is a cut of capacity at most (3.12).
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Now, suppose that one has a fixed total amount of resistance µ to distribute
over the edges of a cut of size F . It is not difficult to see that the maximum possible
effective resistance between s and t in such a case is µ

F 2 , and that this is achieved when
one puts a resistance of µ

F
on each of the edges. This suggests the following lemma,

which bounds the quantity in Lemma 3.5.2 in terms of the effective resistance and the
total resistance (appropriately weighted when the edges have non-unit capacities):

Lemma 3.5.3. Let µ =
∑

e u
2
ere, and let the effective s-t resistance of G with edge

resistances given by r be Reff(r). Let φ be the potentials of the electrical s-t flow,
scaled to have potential drop 1 between s and t. Then

∑

(u,v)∈E

|φu − φv|u(u,v) ≤
√

µ

Reff(r)
.

If, φ̃ is an approximate electrical potential returned by the algorithm of Theorem 3.3.1
when run with parameter δ ≤ 1/3, re-scaled to have potential difference 1 between s
and t, then ∑

(u,v)∈E

|φ̃u − φ̃v|u(u,v) ≤ (1 + 2δ)

√
µ

Reff(r)
.

Proof. By Fact 2.4.1, the rescaled true electrical potentials correspond to a flow of
value 1/Reff(r) and

∑

(u,v)∈E

(φu − φv)
2

r(u,v)
=

1

Reff(r)
.

So, we can apply the Cauchy-Schwarz inequality to prove

∑

(u,v)∈E

|φu − φv|u(u,v) ≤
√√√√

∑

(u,v)∈E

(φu − φv)2

r(u,v)

∑

e

u2
ere

=

√
µ

Reff(r)
.

By parts a and c of Theorem 3.3.1, after we rescale φ̃ to have potential drop 1 between
s and t, it will have energy

∑

(u,v)∈E

(φ̃u − φ̃v)
2

re
≤ 1 + δ

1− δ

1

Reff(r)
≤ (1 + 3δ)

1

Reff(r)
,

for δ ≤ 1/3. The rest of the analysis follows from another application of Cauchy-
Schwarz.
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3.5.3 The Proof that the Dual Algorithm Finds an Approxi-
mately Minimum Cut

We’ll show that if F ≥ F ∗ then within T = 5ε−8/3m1/3 lnm iterations, the algorithm
in Figure 3-4 will produce a set of resistances r i such that

Reff(r
i) ≥ (1− 7ε)

µi

(F )2
. (3.13)

Once such a set of resistances has been obtained, Lemmas 3.5.2 and 3.5.3 tell us that
the best potential cut of φ̃ will have capacity at most

1 + 2δ√
1− 7ε

F ≤ 1

1− 7ε
F.

The algorithm will then return this cut.
Let C be the set of edges crossing some minimum cut in our graph. Let uC = F ∗

denote the capacity of the edges in C. We will keep track of two quantities: the
weighted geometric mean of the weights of the edges in C,

νi =

(
∏

e∈C

(
wi

e

)ue

)1/uC

,

and the total weight
µi =

∑

e

wi
e =

∑

e

rieu
2
e

of the edges of the entire graph. Clearly νi ≤ maxe∈C wi
e. In particular,

νi ≤ µi

for all i.
Our proof that the effective resistance cannot remain large for too many iterations

will be similar to our analysis of the flow algorithm in Section 3.4. We suppose to the
contrary that Reff(r

i) ≤ (1 − 7ε) µi

(F )2
for each 1 ≤ i ≤ T . We will show that, under

this assumption:

1. The total weight µi doesn’t get too large over the course of the algorithm
[Lemma 3.5.4].

2. The quantity νi increases significantly in any iteration in which no edge has
congestion more than ρ [Lemma 3.5.5]. Since µi doesn’t get too large, and
νi ≤ µi, this will not happen too many times.

3. The effective resistance increases significantly in any iteration in which some
edge has congestion more than ρ [Lemma 3.5.6]. Since µi does not get too
large, and the effective resistance is assumed to be bounded in terms of the total
weight µi, this cannot happen too many times.

67



The combined bounds from 2 and 3 will be less than T , which will yield a contradic-
tion.

Lemma 3.5.4. For each i ≤ T such that R≤
eff(r

i)(1− 7ε) µi

F 2 ,

µi+1 ≤ µi exp

(
ε(1− 2ε)

ρ

)
.

So, if for all i ≤ T we have R≤
eff(r

i)(1− 7ε) µi

F 2 , then

µT ≤ µ0 exp

(
ε(1− 2ε)

ρ
T

)
. (3.14)

Proof. If R≤
eff(r

i)(1− 7ε) µi

F 2 then the electrical flow f of value F has energy

F 2R=
eff(r

i)
∑

congf i(e)2wi
e ≤ (1− 7ε)µi.

By Theorem 3.3.1, the approximate electrical flow f̃ has energy at most (1+ δ) times
the energy of f ,

∑
congf̃ i(e)

2wi
e ≤ (1 + δ)(1− 7ε)µi ≤ (1− 6ε)µi.

Applying the Cauchy-Schwarz inequality, we find

∑
congf̃ i(e)w

i
e ≤

√∑
wi

e

√∑
congf̃ i(e)2wi

e ≤
√
1− 6εµi ≤ (1− 3ε)µi.

Now we can compute

µi+1 =
∑

e

wi+1
e

=
∑

e

wi
e +

ε

ρ

∑

e

wi
econgf i(e) +

ε2

ρ
µi

≤
(
1 +

ε(1− 2ε)

ρ

)
µi

≤ µi exp

(
ε(1− 2ε)

ρ

)

as desired.

Lemma 3.5.5. If congf i(e) ≤ ρ for all e, then

νi+1 ≥ exp

(
ε(1− ε)

ρ

)
νi.
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Proof. To bound the increase of νi+1 over νi, we use the inequality

(1 + εx) ≥ exp (ε(1− ε)x) ,

which holds for ε and x between 0 and 1. We apply this inequality with x =

congf̃ i(e)/ρ. As f̃ i is a flow of value F and C is a cut,
∑

e∈C

∣∣∣f̃ i
e

∣∣∣ ≥ F . We now
compute

νi+1 =

(
∏

e∈C

(
wt+1

e

)ue

)1/uC

≥
(
∏

e∈C

(
wi

e

(
1 +

ε

ρ
congf̃ i(e)

))ue
)1/uC

= νi

(
∏

e∈C

(
1 +

ε

ρ
congf̃ i(e)

)ue
)1/uC

≥ νi exp

(
1

uC

∑

e∈C

ue
ε(1− ε)

ρ
congf̃ i(e)

)

= νi exp

(
1

uC

∑

e∈C

ε(1− ε)

ρ

∣∣∣f̃ i
e

∣∣∣
)

≥ νi exp

(
1

uC

ε(1− ε)

ρ
F

)

≥ νi exp

(
ε(1− ε)

ρ

)
.

Lemma 3.5.6. If Reff(r
i) ≤ (1 − 7ε) µi

F 2 and there exists some edge e such that
congf̃ i(e) > ρ, then

Reff(r
i+1) ≥ exp

(
ε2ρ2

4m

)
Reff(r

i).

Proof. We first show by induction that

wi
e ≥

ε

m
µi.

69



If i = 0 we have 1 ≥ ε. For i > 0, we have

wi+1
e ≥ wi

e +
ε2

mρ
µi

≥
(

ε

m
+

ε2

mρ

)
µi

=
ε

m

(
1 +

ε

ρ

)
µi

≥ ε

m
exp

(
ε(1− 2ε)

ρ

)
µi

≥ ε

m
µi+1,

by Lemma 3.5.4.
We now show that an edge e for which congf̃ i(e) ≥ ρ contributes a large fraction

of the energy to the true electrical flow of value F . By the assumptions of the lemma,
the energy of the true electrical flow of value F is

F 2Reff(r) ≤ (1− 7ε)µi.

On the other hand, the energy of the edge e in the approximate electrical flow is

f̃ i(e)2rie = congf̃ i(e)
2we ≥ ρ2

ε

m
µi.

As a fraction of the energy of the true electrical flow, this is at least

1

1− 7ε

ρ2ε

m
=

1

(1− 7ε)ε1/3m1/3
.

By part b of Theorem 3.3.1, the fraction of the energy that e accounts for in the true
flow is at least

1

(1− 7ε)ε1/3m1/3
− ε2

2mR
≥ 1

ε1/3m1/3
=

ρ2ε

m
.

As

wi+1
e ≥ wi

e

(
1 +

ε

ρ
congf̃ i(e)

)
≥ (1 + ε)wi

e,

we have increased the weight of edge e by a factor of at least (1 + ε). So, by
Lemma 3.4.4,

Reff(r
i+1)

Reff(r
i)
≥
(
1 +

ρ2ε2

2m

)
≥ exp

(
ρ2ε2

4m

)
.

We now combine these lemmas to obtain our main bound:

Lemma 3.5.7. For ε ≤ 1/7, after T iterations, the algorithm in Figure 3-4 will

produce a set of resistances such that R≤
eff(r

i)(1− 7ε) µi

F 2 .
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Before proving Lemma 3.5.7, we note that combining it with Lemmas 3.5.2 and 3.5.3
immediately implies our main result:

Theorem 3.5.8. On input ε < 1/7, the algorithm in Figure 3-4 runs in time

Õ(m4/3ε−8/3). If F ≥ F ∗, then it returns a cut of capacity at most F/(1 − 7ε),
where F ∗ is the minimum capacity of an s-t cut.

To use this algorithm to find a cut of approximately minimum capacity, one should
begin as described in Section 3.3 by crudely approximating the minimum cut, and
then applying the above algorithm in a binary search. Crudely analyzed, this incurs
a multiplicative overhead of O(logm/ε).

Proof of Lemma 3.5.7. Suppose as before that Reff(r
i) ≤ (1−7ε) µi

F 2 for all 1 ≤ i ≤ T .
By Lemma 3.5.4 and the fact that µ0 = m, the total weight at the end of the algorithm
is bounded by

µT ≤ µ0 exp

(
ε(1− 2ε)

ρ
T

)
= m exp

(
ε(1− 2ε)

ρ
T

)
. (3.15)

Let A ⊆ {1, . . . , T} be the set of i for which congf̃ i(e) ≤ ρ for all e, and let
B ⊆ {1, . . . , T} be the set of i for which there exists an edge e with congf̃ i(e) > ρ.
Let a = |A| and b = |B|, and note that a+ b = T . We will obtain a contradiction by
proving bounds on a and b that add up to something less than T .

We begin by bounding a. By applying Lemma 3.5.5 to all of the steps in A and
noting that νi never decreases during the other steps, we obtain

νT ≥ exp

(
ε(1− ε)

ρ
a

)
ν0 = exp

(
ε(1− ε)

ρ
a

)
(3.16)

Since νT ≤ µT , we can combine equations (3.15) and (3.16) to obtain

exp

(
ε(1− ε)

ρ
a

)
≤ m exp

(
ε(1− 2ε)

ρ
T

)
.

Taking logs of both sides and solving for a yields

ε(1− ε)

ρ
a ≤ ε(1− 2ε)

ρ
T + lnm,

from which we obtain

a ≤ 1− 2ε

1− ε
T +

ρ

ε(1− ε)
lnm ≤ (1−ε)T +

ρ

ε(1− ε)
lnm < (1−ε)T +

7ρ

6ε
lnm. (3.17)

We now use a similar argument to bound b. By applying Lemma 3.5.6 to all of
the steps in B and noting that Reff(r

i) never decreases during the other steps, we
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obtain

Reff(r
T ) ≥ exp

(
ε2ρ2

4m
b

)
Reff(r

0) ≥ exp

(
ε2ρ2

4m
b

)
1 + ε

m2F ∗2
≥ exp

(
ε2ρ2

4m
b

)
1 + ε

m2F 2
,

where the second inequality applies the bound Reff(r
0) ≥ 1/(m2F ∗2), which follows

from an argument like the one used in equation (3.9). Using our assumption that
Reff(r

T ) ≤ (1− 7ε) µT

(F )2
and the bound on µT from equation (3.15), this gives us

exp

(
ε2ρ2

4m
b

)
1 + ε

m2F 2
≤ 1− 7ε

F 2
m exp

(
ε(1− 2ε)

ρ
T

)
.

Taking logs and rearranging terms gives us

b ≤ 4m(1− 2ε)

ερ3
T +

4m

ε2ρ2
ln

(
1− 7ε

1 + ε
m3

)
<

4m

ερ3
T +

12m

ε2ρ2
lnm. (3.18)

Adding the inequalities in equations (3.17) and (3.18), grouping terms, and plugging
in the values of ρ and T , yields

T = a+ b <

(
(1− ε) +

4m

ερ3

)
T +

(
7ρ

6ε
+

12m

ε2ρ2

)
lnm

=

(
(1− ε) +

4m

ε(27mε−2)

)
(5ε−8/3m1/3 lnm)

+

(
7m1/3ε−2/3

2ε
+

12m

ε2(9m2/3ε−4/3)

)
lnm

=

(
(1− ε) +

4ε

27

)
(5ε−8/3m1/3 lnm) +

(
7m1/3

2ε5/3
+

12m1/3

9ε2/3

)
lnm

=
5m1/3

ε8/3
lnm−

(
41

54
− 12ε

9

)
m1/3

ε5/3
lnm

<
5m1/3

ε8/3
= T.

This is our desired contradiction, which completes the proof.

3.6 Towards a Maximum Flow Algorithm for Di-

rected Graphs

The whole discussion in this chapter was focused on dealing with undirected graphs.
So, given that the techniques we employed here seem to be applicable only to undi-
rected setting, at first one might not expect our approach to be also relevant to
directed case of the maximum s-t flow problem.

Somewhat surprisingly, however, it turns out that there is a quite close connection
between the maximum s-t flow problem in directed and undirected graphs. Namely,
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one can turn an efficient algorithm that computes the maximum s-t flow in undirected
graphs into an efficient algorithm that computes such a flow also in directed graphs.
More precisely, the following theorem holds.

Theorem 3.6.1 (Folklore). Given an algorithm A that computes a maximum s-t flow
in any undirected capacitated graph G′ = (V ′, E ′,u ′) in time T (|V ′|, |E ′|, U ′), where

U ′ := maxe,e′
u′
e

u′
e′

is the capacity ratio of G′, one can compute a maximum s-t flow

in any directed capacitated graph G = (V,E,u) in time T (O(|V |), O(|E|), |V | · U) +

Õ(|E|), where U := maxe,e′
ue

ue′
is the capacity ratio of G.

Note that in the above theorem we need the algorithm A to compute the exact
maximum s-t flow not only its approximation. So, we cannot directly use here the
algorithm presented in this chapter. Still, however, this theorem shows that to make
progress also on the directed case, we can just focus on refining our approach to
develop an error control mechanism that allows us to perform exact undirected max-
imum flow computations. We also observe that the maximum s-t flow and minimum
s-t cut duality [67, 57] can be used to get an analogous result for the minimum s-t
cut problem.

Proof. The way we will find the maximum s-t flow f ∗ in the graph G within desired
time bounds – and thus prove the theorem – is based on constructing an appropriate
undirected graph G̃ = (Ṽ , Ẽ, ũ) and extracting the flow f ∗ from the maximum s-t
flow f̃ ∗ in G̃ (that we will find using the algorithm A).

The graph G̃ is constructed from G as follows. We take Ṽ to be equal to V .
Next, for each (directed) arc e = (u, v) of G we add (undirected) edges h(e) := (u, v),
hs(e) := (s, v), and ht(e) := (u, t) to G̃, with the capacity of each of these edges being
ue. Clearly, the resulting graph G̃ is undirected and has O(|E|) edges and O(|V |)
vertices. Also, by just viewing each multi-edge created in G̃ as a singe edge with total
capacity being the sum of the capacities of all the edges forming it, we see that the
capacity ratio of G̃ is at most |V | · U .

Now, we claim that the maximum s-t flow value F̃ ∗ of the graph G̃ is at least

F̃ ∗ ≥ 2F ∗ +
∑

e∈E

ue,

where F ∗ is the value of the maximum s-t flow in G.
To see why this is the case, we just need to realize that each s-t cut C in G̃ has

a capacity of at least 2F ∗ +
∑

e∈E ue. The claim will then follow from the Max-
Flow Min-Cut theorem [67, 57]. To this end, let us fix some s-t cut C. Next, let us
consider an arc e ∈ E that is leaving this cut in G. By construction of G̃, all the
edges h(e), hs(e), and ht(e) contribute to the capacity of the cut C in G̃ and their
total contribution is exactly 3ue. On the other hand, for every arc e ∈ E that is not
leaving C, we have that either h(e), hs(e), or ht(e) has to be cut by C (as these three
edges form an s-t path), which results in a contribution of at least ue to the capacity
of C in G̃. Now, the claim follows by invoking Max-Flow Min-Cut theorem again to
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show that the total capacity u(C) of the arcs leaving the cut C in G has to be at
least F ∗.

In the light of the above, if we compute the maximum s-t flow f̃ ∗ in G̃ using the
algorithm A, then the running time of this procedure will be T (O(|V |), O(|E|), |V | ·
U) +O(|E|) and the value |f̃ ∗| of f̃ ∗ is at least 2F ∗ +

∑
e∈E ue.

Now, we describe how to extract out of the flow f̃ ∗ a feasible flow f ∗ in G of
value at least F ∗ in Õ(|E|) time. Clearly, once we obtain this flow f ∗ it will be the
maximum s-t flow in G that we are looking for. The extraction will consists of two
steps.

The first step is based on first obtaining a flow f̃ ′ out of f̃ ∗ by subtracting for each
arc e ∈ E, the s-t flows f e in G that sends ue units of flow through the arcs hs(e),
h(e), and ht(e); and then scaling it down by a factor of 2. In other words, we take

f̃ ′ :=
1

2

(
f̃ ∗ −

∑

e∈E

f e

)
.

Note that the value |f̃ ′| of this flow is at least 1
2
(F̃ ∗−∑e∈E ue) ≥ F ∗. Furthermore,

it is easy to see that by the feasibility of f̃ , f̃ ′ routes over each edge h(e) at most
1
2
(|f̃(h(e))| + f e(h(e))) ≤ ue units of flow and this flow has to flow in direction

consistent with the orientation of the arc e. So, if f̃ ′ would not flow any flow over
the edges hs(e)s and ht(e)s, i.e., we had |f̃ ′(hs(e))| = |f̃ ′(ht(e))| = 0, for each e ∈ E,
then f̃ ′ would be also a feasible flow in G and thus we could just take f ∗ to be f̃ ′.

Of course, we cannot expect the flow f̃ ′ to never flow anything over the edges
hs(e) and ht(e). However, what is still true is that the only direction the flow over
the edge hs(e) (resp. the edge ht(e)) can flow is towards s (resp. out of t). This is so,
since by feasibility of f̃ , the flow over the edges hs(e) and ht(e) in f̃ can be at most
ue, and during construction of f̃ ′ we subtract the s-t flows f es that flow exactly ue

units over the edges hs(e) (resp. ht(e)) in the direction out of s (resp. towards t).
However, as an acyclic s-t flow does not send any flow towards s or out of t, it

must be the case that the flow f̃ ′ can have a non-zero flow on edges hs(e) and ht(e)

only if it contains some flow cycles. Therefore, if we just apply to f̃ ′ the Õ(m)-time
flow-cycle-canceling algorithm that is described in [125] then the acyclic flow f ∗ that
we obtain in this way will be the maximum s-t flow in G that we are seeking.
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Chapter 4

Multicommodity Flow Problems

We turn our attention to multicommodity flow problems – natural generalizations of
the maximum s-t flow problem we considered in the previous chapter.1 We investigate
the task of designing (1−ε)-approximation algorithms for such problems and develop
a new method of speeding up the existing algorithms for them. This method is based
on employing the ideas from an area of dynamic graph algorithms to improve the per-
formance of the multiplicative-weights-update-based algorithms that are traditionally
used in the context of multicommodity flows. As a result, we achieve running time
improvements by a factor of roughly Õ(m/n). Also, whenever ε is fixed, our running
times essentially match a natural barrier for all the existing fast algorithms and are
within a Õ(m/n) factor of an absolute lower bound.

4.1 Introduction

We will be studying multicommodity flow problems. These problems correspond to
a task of finding in a capacitated and directed graph G = (V,E,u), a set of k flows
(f1, . . . , fk) – each fi being an si-ti flow of commodity i with a source si and a sink
ti – that optimize some objective function while respecting the capacity constraints,
i.e., while having the total flow

∑
i fi(e) of the commodities through any arc e not

exceeding its capacity ue. There are two basic variations of this task. The first one is
the maximum multicommodity flow problem – in this case the objective is to maximize
the sum

∑
i |fi| of the values of the flows. The second one is the maximum concurrent

flow problem. In this problem, we are given a set of k positive demands d1, . . . , dk and
are asked to find a multicommodity flow that is feasible (i.e. obeys arc capacities)
and routes θdi units of commodity i between each source-sink pair (si, ti). The goal
is to maximize the value of the rate θ.

Although the problems defined above can be solved optimally in polynomial time
by formulating them as linear programs, in many applications it is more important
to compute an approximate solution fast than to compute an optimal one. There-
fore, much effort was put into obtaining efficient approximation algorithms for these
problems. In particular, one is interested in getting a fast algorithm that computes a

1This chapter contains material from [105].
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solution that has objective value within a factor of (1− ε) of the optimal one, where
ε > 0 is the desired accuracy factor.

4.1.1 Previous Work

Over the past two decades there has been a rich history of results providing such
a (1 − ε)-approximation algorithms for multicommodity flow problems. The domi-
nating approach stemmed from Lagrangian relaxation methods and can be viewed
as a precursor of the multiplicative-weight-update-based approach. Shahrokhi and
Matula [121] presented the first such algorithm for the maximum concurrent flow
problem with uniform arc capacities that was combinatorial and introduced the idea
of using an exponential length function to control arc congestion. Building on that, a
series of results [93, 99, 72, 75, 112, 123, 115, 84, 76] based on Langrangian relaxation
and linear programming decomposition yielded algorithms that had significantly im-
proved running time and could be applied to various versions of the multicommodity
flow problem with arbitrary arc capacities. All the above algorithms were based
on computing an initial (infeasible) flow and then redistributing it from more con-
gested paths to less congested ones by repeatedly solving an oracle subproblem of
either minimum cost single-commodity flow [99, 72, 75, 115, 84, 76], or shortest path
[121, 93, 112, 123].

In [139], Young deviated from this theme by presenting an oblivious rounding
algorithm that avoids rerouting of the flow. Instead, it builds the solution from
scratch. At each step it employs shortest path computations (with respect to expo-
nential length function that models the congestion of the arcs) to augment the flow
along suitable (i.e. relatively uncongested) paths. At the end, it obtains the final
feasible solution by scaling down the flow by the maximum congestion it incurred on
arcs. A similar approach was taken by Garg and Könemann [70]; however they man-
aged to provide an elegant framework for solving multicommodity flow problems that
yields a simple analysis of the correctness of the obtained algorithms. This allowed
them to match and, in some cases, improve over the running time of the algorithms
obtained via the redistribution methodology. Subsequently, Fleischer [65] used this
framework to develop significantly faster algorithms for various multicommodity flow
problems. In particular, for the maximum multicommodity flow problem she man-
aged to obtain a running time of Õ(m2ε−2) that is independent of the number of
commodities. For the maximum concurrent flow problem her algorithm has a run-
ning time of Õ((m + k)mε−2). Her results for both versions of the concurrent flow
problem were later improved by Karakostas [83], who was able to reduce the term in
the running time that depends on k from Õ(kmε−2) to Õ(knε−2). Interestingly, he
also showed that if we want to obtain the (1− ε)-approximation of only the value of
the maximum concurrent flow rate (without obtaining the actual flow) then this can
be done in Õ(m2ε−2) time.

All the above algorithms have quadratic dependence of their running times on
1/ε. Klein and Young [94] gave an evidence that this quadratic dependence might
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be inherent for Dantzig-Wolfe-type algorithms2 and all the algorithms mentioned so
far are of this type. As it turns out, better dependence on 1/ε can be obtained.
Bienstock and Iyengar [29] adapted the technique of Nesterov [107] to give an (1−ε)-
approximation algorithm for maximum concurrent flow problem that have O( 1

ε log 1/ε
)

dependence on 1/ε. Very recently, Nesterov [108] obtained an algorithm for this
problem in which this dependence is just linear. However, the running times of both
these algorithms have worse dependence on parameters other than 1/ε compared
to the algorithms described above – for example, the approximation scheme due to
Nesterov has the running time of Õ(k2m2ε−1).

4.1.2 Overview of Our Results

The point of start of the results to be presented in this chapter are the multiplicative-
weights-update-based algorithms of Garg and Könemann [70] and of Fleischer [65]
for multicommodity flow problems. As mentioned above, at a high level, these algo-
rithms reduce the task of approximation of multicommodity flow problems to solving
a sequence of shortest-path questions in the underlying graph with the lengths of
edges modeling the edge congestion. Their running times have a bottlenecking term
of Ω(m2ε−2), which – as we will see later – arises from a need to run Õ(mε−2) execu-
tions of Dijkstra’s algorithm.

The main result of this chapter is development of a general approach to speeding
up multiplicative-weight-update-based algorithms arising in the context of multicom-
modity flow. By applying this approach, we will be able to substitute the above
Õ(m2ε−2) running time term that all such previous algorithms suffer from, with a
Õ(mnε−2) one. This approach is based on two main ideas.

The first one stems from an observation that the shortest-path subproblems that
the multiplicative-weight-update-based algorithms solve repeatably are closely re-
lated. Namely, each successive subproblem corresponds to the same underlying graph
– only the lengths of the arcs differ. Furthermore, the way the lengths of the arcs
change is not completely arbitrary – as we will see later, they can only increase over
time. This observation suggests that treating each of these subproblems as an inde-
pendent task – as it is the case in all the previous algorithms – is suboptimal. One
might wonder, for example, whether it is possible to maintain a data structure that
allows us to answer such a sequence of shortest-path queries more efficiently than just
by computing everything from scratch in each iteration. Indeed, it turns out that
this kind of questions were already studied extensively in the area of dynamic graph
algorithms (see e.g. [60, 20, 52, 54, 116, 22, 53, 117, 119, 118, 23]). In particular,
the data structure that we would like to maintain in our context corresponds to the
decremental dynamic all-pairs shortest path (DDAPSP) problem. Unfortunately, this
realization alone is not sufficient to obtain the desired improvement, as it turns out
that if we are interested in solutions for the DDAPSP problem whose overall running

2A Dantzig-Wolfe-type algorithm for a fractional packing problem – in which the goal is to find
x in some polytope P that satisfies the set of packing inequalities Ax ≤ b – is an algorithm that
accesses P only by queries of the form: "given a vector c, what is the x ∈ P minimizing c · x?".
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Problem Previous best Our result

maximum multicommodity flow Õ(m2ε−2) [65] Õ(mnε−2)

maximum concurrent flow Õ((m2 + kn)ε−2) [83] Õ((m+ k)nε−2 logM)

Õ(k2m2ε−1) [108]

Figure 4-1: Comparison of (1 − ε)-approximation schemes for multicommodity flow
problems. Here, m is the number of arcs, n is the number of vertices, k is the number
of commodities, and logM is the upper bound on the size of binary representation of
any number used in the input instance.

time would be within our intended bounds, then it seems there is no suitable existing
result that can be used (see section 4.3 for details).

This lack of existing solution fitting our needs brings us to the second idea. We
note that when we employ the multiplicative-weights-update-based framework to solve
multicommodity flow problems, it is not necessary to compute the (approximately)
shortest path for each shortest-path subproblem. All we really need is that the set
of the suitable paths over which we are optimizing the length comes from a set that
contains all the flowpaths of some fixed optimal solution to the multicommodity flow
instance that we are solving. To exploit this fact, we introduce a random set of
paths P̂ (formally defined in Definition 4.3.1) that can be seen as a sparsification of
the set of all paths in G, and that with high probability has the above-mentioned
containment property. Next, we combine the ideas from dynamic graph algorithms
to design an efficient data structure that maintains all-pairs shortest path distances
with respect to the set P̂ . This data structure allows us to modify (in an almost
generic manner) the existing multiplicative-weights-update-based algorithms for vari-
ous multicommodity flow problems and transform them into Monte-Carlo algorithms
with improved running times.

The summary of our results and their comparison with the previous ones can be
found in Figure 4-1. To put these result in a context, we note that there are simple
examples (see Figure 4-2) that show that no (1 − ε)-approximate algorithm for the
maximum multicommodity flow problem (resp. maximum concurrent flow problem)
can have running time smaller than O(n2) (resp. O(n2+ kn)). On the other hand, in
the setting where ε is fixed or moderately small, say 1/ logO(1) n, and the size of every
number used in the input instance is polynomially bounded, our algorithms for these
two problems have their running time become Õ(mn) and Õ(mn+ kn) respectively.
Thus they are within a Õ(m/n) factor of these trivial lower bounds and the Õ(kn)
term in the second running time is essentially optimal.

Furthermore, these Õ(mn) terms almost match a natural barrier for the existing
multiplicative-weights-based approaches: the Ω(mn) flow-decomposition barrier cor-
responding to a single-commodity flows. Recall that the flow-decomposition barrier
corresponds to the fact that there are instances to the maximum s-t flow problem
for whom decomposition of any (even approximately) optimal solution into flowpaths
has to have a size of Ω(mn). As a result, any algorithm that produces such a de-
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Figure 4-2: In this example, the arcs leaving vertices {si}i and entering vertices {ti}i
have capacity 1. The edges on the middle path have capacity n/4. By choosing
the set of source-sink pairs to be {(si, ti)}i we obtain an instance of the maximum
multicommodity flow problem for which any (1− ε)-approximate solution has repre-
sentation size Ω((1 − ε)n2) = Ω(n2), for ε < 1

2
– each of n/2 − 1 arcs on the middle

path has to have non-zero flow of at least (1 − ε)n/4 commodities flowing through
it. Similarly, by choosing any set of k ≤ n2/16 distinct (si, tj) pairs as source-sink
pairs for k commodities and setting all demands to 1, we obtain an instance of the
maximum concurrent flow problem for which any (1 − ε)-approximate solution has
representation size Ω(kn) = Ω(n2 + kn) whenever k ≥ n.

composition has to have a running time of Ω(mn). Therefore, as all the existing
multiplicative-weights-based algorithms for the problem are based on iterative find-
ing of shortest paths that are used to flow the commodities, this natural barrier
transfers over.

Recall that in the case of the maximum s-t flow problem this barrier was overcome
– Goldberg and Rao [73] were the first one to presented an algorithm that improves
upon this barrier. Thus it raises an interesting question of whether one can also
achieve a similar improvement for the maximum multicommodity flow problem.

4.1.3 Notations and Definitions

In this chapter, we will be dealing with a directed and capacitated graph G =
(V,E,u), as is our convention, we assume that all capacities are at least one and
that U denotes the largest capacity maxe ue. In addition to capacities, we will often
equip arcs of G with lengths described by a vector l . For any directed path p in G,
by the length of p with respect to l we mean a quantity l(p) :=

∑
e∈p le. For any two

vertices u and v of G, a u-v path is a directed path in G that starts at u and ends
at v. We define distance from u to v (with respect to l) for u, v ∈ V to be the length
(with respect to l) of the shortest u-v path. We will omit the reference to the length
vector l whenever it is clear from the context which length vector we are using.

For 1 ≤ i ≤ k, we denote by Pi the set of all si-ti paths in G, where {(si, ti)}i is
the set of k source-sink pairs of the instance of the multicommodity flow problem we
are considering. Let P =

⋃k
i=1Pi. For a given subset S ⊆ V of vertices, let P(S) be

the set of all paths in P that pass through at least one vertex from S. Finally, for a
given j > 0, let P(S, j) be the set of all the paths from P(S) that consist of at most
j arcs.
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4.1.4 Outline of This Chapter

We start with section 4.2 where we present the multiplicative-weights-update-based
algorithm for the maximum multicommodity flow problem. Next, in section 4.3, we
introduce the main ideas and tools behind our results – the connection between fast
approximation schemes for multicommodity flow problems and dynamic graph algo-
rithm for maintaining (approximately) shortest paths with respect to the sparsified
set of paths. In particular, we formally define the set P̂ , and the (δ,Mmax,Mmin, P̂)-
ADSP data structure that we will be using for maintenance of the (approximately)
shortest paths that we are interested in. Subsequently, in section 4.4, we show how
these concepts can be applied to give a more efficient algorithm for the maximum
multicommodity flow problem. Then, in section 4.5, we describe an implementation
of the (δ,Mmax,Mmin, P̂)-ADSP data structure that is efficient enough for our pur-
poses. We conclude in section 4.6 by showing how the ideas developed in this chapter
lead to an improved algorithm for the maximum concurrent flow problem.

4.2 Multiplicative-Weights-Update Routine for Solv-

ing Maximum Multicommodity Flow Problem

As we mentioned previously, Garg and Könemann [70] presented the first general
multiplicative-weights-based framework to solving the multicommodity flow problems,
and all the techniques to be presented in this chapter, can be applied in their setting.
However, for the sake of illustration, instead of using the framework of [70], we utilize
instead the multiplicative-weights-update routine from Section 2.8. As an additional
benefit, doing this will also lead to a simpler exposition.

To show how the framework from Section 2.8 can be applied let us consider, for a
given value of F , a (F , G)-system in which F is a set of all si-ti flows of value F in
G for each 1 ≤ i ≤ k. Note that if one obtains a feasible solution {λf}f to a (1 + ε)-
relaxed version of this system then the flow f associated with the convex combination
{λf}f can be decomposed into a union of si-ti flows whose value sum up to F and
that together exert a congestion of at most (1 + ε) in G. So, this implies that f is a
multicommodity flow certifying that F ∗ ≥ F/(1+ ε), where F ∗ =

∑
i |f ∗

i | is the value
of some optimal solution f ∗ = (f ∗

1 , . . . , f
∗
k ) to the maximum multicommodity flow

problem. On the other hand, if F ≤ F ∗ then f ∗ corresponds to a feasible solution
to the (F , G)-system if one just scales each flow f ∗

i down by a factor of F ∗/F and
includes it in the solution with coefficient λf∗

i
=

|f∗
i |∑

i′ |f
∗
i′
|
.

In the light of the above, similarly to the case of maximum s-t flow problem in
Chapter 3, we can proceed to relating the task of approximation of the maximum
multicommodity flow problem, to the task of designing a (1 + O(ε))-approximate
solver for the (F , G)-system described above for a given value of F . To see why this
is the case, we just need to note that we can obtain a crude bound on the value of
F ∗ relatively fast. Namely, it is easy to see that

B ≤ F ∗ ≤ kmB,
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where B is the maximum bottleneck of any si-ti path in G. (Recall that a bottleneck
of a path is the minimum capacity of an edge on that path.) Such a bottleneck B

can be computed in O(mn + n2 log n) = Õ(mn) time, e.g., using the algorithm of
Fredman and Tarjan [68]. Now, we can just follow the reasoning outlined in Section
3.3 for the maximum s-t flow problem to reach the desired conclusion.

Therefore, from now on, we can just focus on a particular value of F and the task of
designing a (1+O(ε))-approximate solver for the corresponding (F , G)-system. Once
again, similarly to the case of Chapter 3, this solver will be based on multiplicative-
weights-update routine from Figure 2-1 and thus all we need to do is to design an
oracle for it. Our oracle will be very simple. Given a query corresponding to some
weights w , it considers the length vector l with lengths corresponding to the weights
normalized by the capacities, i.e., sets

le :=
we

ue

(4.1)

for each arc e. Then, it finds the shortest si-ti path p with respect to l , i.e., the path
p = argminp∈P l(p). Once such a path is found, the oracle returns as an answer a
flow f̃ that sends F units of flow along the path p, if l(p) ≤∑e leue/F ; and returns
“fail” , otherwise.

We claim that this procedure provides a 1-oracle for our (F , G)-system (cf. Def-
inition 2.8.2). To see that this is indeed the case it suffices to prove the following
lemma and note that, by definition, Fl(p) =

∑
e wecongf̃ (e) and

∑
e leue =

∑
e we.

Lemma 4.2.1. For any length vector l, whenever F ≤ F ∗, there exists a path p ∈ P
with Fl(p) ≤∑e leue.

Proof. Let p1, . . . , pq be a decomposition of the optimal solution f ∗ into flow-paths.
The fact that f ∗ has to obey the capacity constraints implies that

∑

e

leue ≥
q∑

j=1

l(pj)f
∗(pj),

where f ∗(pj) is the amount of flow flown over the path pj by f ∗. But

F ≤ F ∗ =
∑

i

|f ∗
i | =

q∑

j=1

f ∗(pj).

So, an averaging argument shows that there exists a j∗ such that

l(pj∗) ≤
∑

e

leue/F.

Thus, taking p = pj∗ concludes the proof of the Lemma.

Observe that this oracle can be implemented to run in Õ(km) time, by just running
Dijkstra’s algorithm for each source-sink pair. Therefore, by Theorem 2.8.3 and by
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applying Lemma 2.8.9 with the trivial tightness bound of 1, we can conclude that the
above multiplicative-weights-update routine makes at most Õ(mε−2) queries to the
oracle and thus the following theorem is established.

Theorem 4.2.2 (see also [70]). For any 1/2 > ε > 0, one can compute a (1 − ε)-

approximation to the maximum multicommodity flow problem in time Õ(km2ε−2).

Although the above algorithm is conceptually simple, its running time is fairly
large – note that for k can be Ω(n2) which would result in prohibitively large Ω(m2n2)
running time. However, it is not obvious how to reduce this running time signifi-
cantly3. After all, there are limits to how fast the underlying multiple source-sink
pairs shortest path problem can be solved (e.g., there is a trivial lower bound of
Ω(n2)) and it is not hard to construct examples on which the bound on the number
of iterations is essentially tight.

It turns out, however, that this multiplicative-weights-update-based approach can
still be sped up considerably. The key to achieving this is not focusing on finding
more efficient way of answering each individual oracle query, but trying to come up
instead with a more efficient way of solving the whole sequence of these queries. This
insight is pivotal for all the techniques presented in this chapter.

To see an example of how this insight can be utilized, we present a way of improv-
ing the running time of the above algorithm that was originally devised by Fleischer
[65]. This improvement is based on the realization that whenever we need the shortest
path in the above algorithm, it is sufficient to compute a (1+ε)-approximately short-
est source-sink path instead of the shortest one. The only thing that is changed by
doing so, is that now we are working with a (1+ε)-oracle to the (F , G)-system instead
of the 1-oracle that was used above. However, as we are solving this (F , G)-system
(1 + ε)-approximately anyway, this difference does not change anything.

Now, the fact that providing only (1+ε)-approximate answers to the oracle queries
suffices, allows us to modify the way these answers are computed, to avoid solving
the shortest-path problem for all the source-sink pairs each time the oracle is queried.
The way we achieve this is by cycling through the source-sink pairs, keeping supplying
as the answer the shortest path corresponding to the currently chosen source-sink pair
as long as the length of this path is at most (1 + ε)α̂ – where α̂ is a maintained by
the algorithm lower bound estimate of the current length of the overall shortest path
in P – and moving on to next source-sink pair once it does not. To start, we set α̂
sufficiently small and we do not increase its value as long as we manage to find a path
in P of small enough length (i.e. at most (1+ε)α̂). Once we are unable to find such a
path i.e. our cycling through commodities made a full cycle, we set α̂← (1+ε)α̂, and
start cycling again. The resulting algorithm is presented in Figure 4-3. An important
implementation detail used there is that when cycling through source-sink pairs, we
group together the pairs that share the same source. This allows us to take advantage
of the fact that one execution of Dijkstra’s algorithm computes simultaneously the
shortest paths for all these pairs.

3One possible speeding up would come from noting that one can solve all-pairs shortest path
problem in time O(min{mn, n2.575) [66, 137, 140], which gives a speed up in cases of k being very
large. But, even after this improvement, the running time is still Ω(mn2).
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To see why the above modifications reduce the number of shortest path com-
putations needed to execute our multiplicative-weights-update routine, note that
each execution of Dijkstra’s algorithm either results in providing an answer to or-
acle query, or causes us to move on in our cycling to the next group of source-
sink pairs. Observe that by Lemma 2.8.4 we know that the length of the short-
est path is always nO(1/ε) and thus our way of updating the value of α̂ ensures
that there is at most ⌊log(1+ε) n

O(1/ε)⌋ = O(logmε−2) full cycles through the pairs.

Also, the number of oracle queries is still Õ(mε−2). Therefore, we have at most
Õ((m+min{k, n})ε−2) = Õ(mε−2) executions of Dijkstra’s algorithm which leads to
the following theorem.

Theorem 4.2.3 (see also [65]). For any 1/2 > ε > 0, the algorithm in Figure 4-3
provides a (1− O(ε))-approximation to the maximum multi-commodity flow problem

in time Õ(m2ε−2).

4.3 Solving Multicommodity Flow Problems and Dy-

namic Graph Algorithms

The multiplicative-weights-update-based algorithm for maximum multicommodity
flow problem that we described in the previous section, finds a (1−O(ε))-approximate
solution by repeatedly solving the subproblem of computing the shortest path in graph
G with respect to some length vector l that evolves according to multiplicative weights
updates. (Later we will see that the same general approach is also used for another
variant of multicommodity flow problem.) As a consequence, the running time of
the resulting algorithm is dominated by the time needed to solve these subproblems
using Dijkstra’s algorithm. As we have seen, by careful choice of the subproblems
as well as better utilization of the computed answers, the number of these (single-
source) shortest path computations was reduced considerably. However, this number
is still Ω(mε−2) which leads to a time complexity of Ω(m2ε−2) for the corresponding
algorithms.

The main observation that underlies the speeding-up techniques we want to de-
velop in this chapter is that treating each of these shortest-path subproblems as an
independent task (and thus using Dijkstra’s algorithm each time), as was the case so
far, is suboptimal. After all, each successive subproblem corresponds to the same un-
derlying graph, only the lengths of some of the arcs increased. Therefore, one might
hope to construct a data structure that solves such a sequence of subproblems more
efficiently than by computing each time everything from scratch. More precisely, one
might wonder whether there is more efficient data structure that maintains a directed
graph G with lengths on arcs and supports operations of: increasing a length of some
arc; answering shortest-path distance query; and returning shortest vertex-to-vertex
path.

It turns out that the problem of designing such a data structure is already known
in the literature as the decremental dynamic all-pairs shortest path problem and ex-
tensive work has been done on this and related problems (see e.g. [60, 20, 52, 54,
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Input : Graph G = (V,E,u), source-sink pairs {(si, ti)}i, accuracy parameter
1/2 > ε > 0, and a target flow value F

Output: Either a flow f , or “fail” indicating that F > F ∗

Initialize the multiplicative-weights-update routine D from Figure 2-1 (for F being
the set of si-ti flows of value F in G), let w be the corresponding weights vector
Initialize le ← we/ue for each arc e ∈ E (cf. (4.1)), α̂← 1/U , and
I(s)← {i | si = s} for each s ∈ V (∗ grouping source-sink pairs with

common sources ∗)
while True do

foreach s ∈ V with I(s) 6= ∅ do (∗ cycling through commodities ∗)
Use Dijkstra’s algorithm to find the shortest path p in

⋃
i∈I(s) Pi

while l(p) < (1 + ε)α̂ do

if l(p) > (1 + ε)
∑

e leue/F then return “fail”

else

Supply to D the flow f̃ sending F units of flow over p as an oracle
answer
Update the weights w as dictated by the routine D
Update the lengths l to make (4.1) hold with respect to updated
weights

if D terminates then return the flow f computed by D
end

end

Use Dijkstra’s algorithm to find the shortest path p in
⋃

i∈I(s) Pi
end

end

α̂← (1 + ε)α̂ (∗ increase the value of α̂ ∗)

Figure 4-3: Faster algorithm for computing (1 − O(ε))-approximation to the

maximum multicommodity flow problem
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116, 22, 53, 117, 119, 118, 23]). However, if we are interested in solutions whose
overall running time is within our intended bounds, the result that is closest to what
we need is the one by Roditty and Zwick [117]. They show that if G were undi-
rected and had positive, integer lengths on edges, with maximum length being b, a
(1+δ)-approximate solution to the decremental dynamic all-pairs shortest path prob-
lem can be implemented with total maintenance time of Õ(mnb

δ
), O(1) time needed

to answer any vertex-to-vertex shortest-path distance query, and returning shortest
vertex-to-vertex path in O(n) time.4 Unfortunately, in our applications the graph G
is not only directed, but also the lengths of the arcs can be of order of b = Ω(n1/ε)
with ε < 1/2 (cf. Lemma 2.8.4. Therefore, the resulting running time would be pro-
hibitive. Further, the construction of Roditty and Zwick assumes that the sequence
of operations to be handled is oblivious to the behavior of the data structure (e.g. to
its randomized choices). This feature is another shortcoming from our point of view
since in our setting the way the lengths of the arcs evolves depends directly on which
shortest paths the data structure chose to output previously.

To circumvent this lack of suitable existing solutions, we observe that for our pur-
poses it is sufficient to solve a simpler task than the decremental dynamic all-pairs
shortest path problem in its full generality (i.e. in the directed setting, allowing large
lengths on arcs and adversarial requests). Namely, when apply the multiplicative-
weights-update-based approach from the previous section, it is not necessary to com-
pute for each of the resulting subproblems the (approximately) shortest path among
all the suitable paths in the set P . As we will prove later, to establish satisfac-
tory bounds on the quality of the final flow, it suffices that whenever we solve some
shortest-path subproblem, the set of suitable paths over which we are optimizing the
length comes from a set that contains all the flowpaths of some fixed optimal solution
to the instance of the multicommodity flow problem that we are solving. To see why
this is the case, we just need to note that Lemma 4.2.1 – that we need to establish
to obtain the desired bound on the quality of the return solution – is proved by only
considering flowpaths of some optimal solution.

With this observation in mind, we define the following random subset P̂ of paths
in P .5 One may view P̂ as a sparsification of the set P .

Definition 4.3.1. For j = 1, . . . , ⌈log n⌉, let Sj be a random set obtained by sampling

each vertex of V with probability pj = min{10 lnn
2j

, 1}. Define P̂ :=
⋃⌈logn⌉

j=1 P(Sj, 2
j),

where P(S, j′) for a given S ⊆ V , and j′ > 0 is the set of all paths in P that consist
of at most j′ arcs and pass through at least one vertex of S.

It turns out that this sparsification P̂ retains, with high probability, the key
property that we need.

4Note that there can be as many as mb edge length increases in a sequence, thus this solution is
faster than naïve solution that just computes all-pairs shortest-path after each edge-length increase,
or one that just answers each of the queries using Dijkstra’s algorithm.

5It is worth noting that a very similar set was used in [117] albeit with a slightly different
motivation.
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Lemma 4.3.2. For any fixed multicommodity flow solution f = (f1, . . . , fk), with

high probability, all the flowpaths of f are contained in P̂.

Proof. Let p1, . . . pq be the decomposition of the flow f into flowpaths. By definition,
all pi are contained in the set P . Furthermore, by standard flow decomposition
argument we know that q ≤ km ≤ n4. Let us focus now on some particular path pi.
Let 1 ≤ t ≤ n be the number of arcs in this path, and let j∗ be the smallest j for which
t ≤ 2j. The probability that pi ∈ P(Sj∗ , 2

j∗) ⊆ P̂ is exactly the probability that at
least one vertex from p is in Sj∗ . Simple computation shows that the probability that
none among t+ 1 vertices of pi is in P(Sj∗ , 2

j∗) is at most

(1− 10 lnn

2j∗
)t+1 ≤ e

− 10(t+1) lnn

2j
∗ ≤ e−5 lnn = n−5.

Therefore, by union bounding over all q ≤ n4 paths pi, we get that indeed
{p1, . . . , pq} ⊆ P̂ with high probability.

4.3.1 (δ,Mmax,Mmin,Q)-ADSP data structure

Once we defined set P̂ , our goal is to devise an efficient way of maintaining the
(1 + δ)-approximate shortest paths with respect to it. We start by formally defining
our task.

Definition 4.3.3. For any δ ≥ 0, Mmax ≥ 2Mmin > 0 and a set of paths Q ⊆ P, let
the δ-approximate decremental (Mmax,Mmin,Q)-shortest path problem ((δ,Mmax,Mmin,Q)-
ADSP, for short) be a problem in which one maintains a directed graph G with length
vector l that supports four operations (sometimes we will refer to these operations as
requests):

• Distance(u, v, β), for u, v ∈ V , and β ∈ [Mmin,Mmax/2]: let d∗ be the length of
the shortest (with respect to l) u-v path in Q; if d∗ ≤ 2β then the query returns
a value d such that d ≤ d∗ + δβ. If d∗ > 2β, the query may return either d as
above, or ∞;

• Increase(e, ω), for e ∈ E and ω ≥ 0: increases the length l(e) of the arc e by ω;

• Path(u, v, β), for u, v ∈ V , and β ∈ [Mmin,Mmax/2]: returns a u-v path of length
at most Distance(u, v, β), as long as Distance(u, v, β) 6=∞;

• SSrcDist(u, β) for u ∈ V , and β ∈ [Mmin,Mmax/2]: returns Distance(u, v, β) for
all v ∈ V .

Intuitively, β is our guess on the interval [β, 2β] in which the length of the
shortest path we are interested in is. We say that β is (u, v)-accurate for given
(δ,Mmax,Mmin,Q)-ADSP data structure R and u, v ∈ V , if the length d∗ of the short-
est u-v path in Q is at least β and the data structure R returns a finite value in
response to Distance(u, v, β) query. Note that if β is (u, v)-accurate then the δβ-
additive error guarantee on the distance estimation supplied by R in response to
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Distance(u, v, β) query implies a (1 + δ) multiplicative error guarantee. Also, as long
as d∗ is at least Mmin (this will be always the case in our applications), we can em-
ploy binary search to ask O(log logMmax/Mmin) Distance(u, v, ·) requests and either
realize that d∗ is bigger than Mmax, or find 0 ≤ i ≤ ⌈logMmax/2Mmin⌉ such that
βi = min{2iMmin,Mmax/2} is (u, v)-accurate.6 Finally, it is worth emphasizing that
we do not require that the paths returned in response to Path(·, ·, ·) requests are
from Q – all we insist on is just that the length of all the suitable paths from Q are
considered when the path to be returned is chosen.

In section 4.5, we will describe how the ideas and tools from dynamic graph
algorithms lead to an implementation of the (δ,Mmax,Mmin, P̂)-ADSP data structure
that is tailored to maintain the shortest paths from set P̂ and whose performance is
described in the following theorem. The theorem is proved in section 4.5.2.

Theorem 4.3.4. For any 1 > δ > 0, Mmax ≥ 2Mmin > 0, (δ,Mmax,Mmin, P̂)-ADSP

data structure can be maintained in total expected time Õ(mn logMmax/Mmin

δ
) plus ad-

ditional O(1) per Increase(·, ·) request in the processed sequence. Each Distance(·, ·, ·)
and Path(·, ·, ·) query can be answered in Õ(n) time, and each SSrcDist(·, ·) query in

Õ(m) time.

4.3.2 Solving the Decremental Dynamic All-Pairs Shortest Paths
Problem Using the (δ,Mmax,Mmin, P̂)-ADSP Data Struc-
ture

Before we proceed further, we want to note that even though the (δ,Mmax,Mmin, P̂)-
ADSP data structure construction from Theorem 4.3.4 was designed with the aim of
speeding up the multicommodity flow algorithms, it turns out it also establishes a
new result for the dynamic shortest-path algorithms. Namely, using Theorem 4.3.4
one can obtain a (1 + ε)-approximate solution to the oblivious decremental dynamic
all-pairs shortest path problem in directed graphs with rational arc lengths, where
obliviousness means that the sequence of requests that we process does not depend
on the randomness used in the solution.

Theorem 4.3.5. For any 1 > ε > 0, and L ≥ 1 there exists a (1 + ε)-approximate
Monte Carlo solution to the oblivious decremental dynamic all-pairs shortest paths
problem on directed graphs where arc lengths are rational numbers between 1 and
L, that has total maintenance cost of Õ(mn logL

ε
) plus additional O(1) per increase

of the length of any arc, and answers shortest path queries for any vertex pair in
Õ(n(log log(1+ε) L)(log logL)) time.

Note that even when we allow lengths to be quite large (e.g. polynomial in n),
the maintenance cost of our solution is still similar to the one that Roditty and Zwick

6The binary search just chooses i in the middle of the current range of values in which the desired
value of i may lie (initially this range is [0, ⌈logMmax/2Mmin⌉]), and if the Distance(u, v, βi) query
returns ∞ then the left half of the range (including the i queried) is dropped, otherwise the other
half is dropped.
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achieved in [117] for undirected graphs with small integer lengths. Unfortunately,
our distance query time is Õ(n) instead of the O(1) time obtained in [117]. So, the
gain that we get over a naïve solution for the problem is that we are able to answer
((1 + ε)-approximately) shortest path queries for any vertex pair in Õ(n) time, as
opposed to the O(m+ n log n) time required by Dijkstra’s algorithm.

Proof of Theorem 4.3.5. Let G = (V,E) be the graph of our interest, and let l i be
the length vector of G after processing i requests from our sequence. Consider a u-v
path p, for some u, v ∈ V , that is the shortest u-v path in G with respect to l i, for
some i. Our construction is based on the following simple observation: for any δ > 0,
and for all i′ ≥ i, as long as for all arcs e of p, li

′

e is at most (1 + δ)lie, p remains to be
a (1 + δ)-approximate shortest u-v path in G with respect to l i

′

. Now, note that we
have n2 different (u, v) pairs, and each of m arcs can increase its length by a factor
(1 + δ) at most ⌈log(1+δ) L⌉ times. Therefore this observation implies that for any
δ > 0 there exists a set Q(δ) of O(mn2 logL

δ
) paths such that for any (u, v) and i there

exists a u-v path p in Q(δ) that has length li(p) within (1 + δ) of the length li(p∗) of
the shortest (with respect to l i) u-v path p∗ in G.

In the light of the above, our solution for the decremental all-pairs shortest path
problem is based on maintaining (ε/3, Ln, 1, Q̂(ε/3))-ADSP data structure R, where
Q̂(ε/3) is the set constructed as in Definition 4.3.1 after we make P to be the set of

all paths in G and change the sampling probabilities pj to min{10 ln(n⌈log(1+ε/3) L⌉)

2j
, 1}

for j = 1, . . . , ⌈log n⌉. Note that by reasoning completely analogous to the one from
the proof of Lemma 4.3.2, we can argue that with high probability Q(ε/3) ⊆ Q̂(ε/3).
Also, by straight-forward adjustment of the construction from Theorem 4.3.4 we ob-
tain an implementation of (ε/3, Ln, 1, Q̂(ε/3))-ADSP data structure that has total
maintenance cost of Õ(mn logL

ε
) plus O(1) time per each Increase(·, ·) request, and

that answers Path(·, ·, ·) and Distance(·, ·, ·) requests in Õ(n log log(1+ε) L) time. There-
fore, if we process the request sequence by just passing arc length increase requests
to R, and answering each u-v shortest path query by issuing to R a Path(u, v, β)
query – where (u, v)-accurate β is found through binary search using O(log logL)
Distance(u, v, ·) requests (see discussion after Definition 4.3.3), then the Definition
4.3.3 ensures that we obtain a correct (1 + ε)-approximate solution for decremental
all-pairs shortest path problem whose performance obeys the desired bounds. The
theorem follows.

4.4 Maximum Multicommodity Flow Problem

We proceed to developing a faster algorithm for the maximum multicommodity flow
problem. As we indicated in the previous section, the basic idea behind our improve-
ment is making the procedure presented in Section 4.2 (see Figure 4-3) to exploit the
dependencies between the shortest-path subproblems it is solving. More precisely,
instead of employing Dijkstra’s algorithm each time, we answer these shortest-path
questions by querying a (δ,Mmax,Mmin, P̂)-ADSP data structure (as described in
Theorem 4.3.4) that we maintain for an appropriate choice of δ, Mmax, and Mmin,
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and where P̂ is a sparsification of P , as described in Definition 4.3.1. However, the
straight-forward implementation of this idea encounters some difficulties.

First, we have to justify the fact that while answering shortest-path queries we
take into account mainly paths in P̂ , as opposed to the whole set P . Second, an im-
portant feature of Dijkstra’s algorithm that is exploited in Fleischer’s approximation
scheme, is the fact that whenever one computes the distance between a pair of ver-
tices using this algorithm it simultaneously computes all single source shortest-path
distances. Unfortunately, in our case we cannot afford to replicate this approach – the
SSrcDist(·, ·) query that would be an equivalent of Dijkstra’s algorithm’s execution
here, takes still Õ(m) instead of desired Õ(n) time; we need to circumvent this issue
in a more careful manner. We address both these problems below.

4.4.1 Existence of Short Paths in P̂
As mentioned in section 4.2, the key ingredient used in our multiplicative-weights-
update-based framework to bound the quality of the solution for the maximum multi-
commodity flow problem it obtains, is Lemma 4.2.1. We prove now that this Lemma
still holds, with high probability, that the same property still holds when we consider
only paths in P̂ .

Lemma 4.4.1. With high probability, for any length vector l, whenever F ≤ F ∗,
there exists a path p ∈ P̂ with Fl(p) ≤∑e leue.

Proof. Let f ∗ = (f ∗
1 , f

∗
2 , . . . , f

∗
k ) be some optimal multicommodity flow with

∑
i |f ∗

i | =
F ∗. By Lemma 4.3.2 we know that with high probability P̂ contains all the flowpaths
p1, . . . , pq of f ∗. The fact that f ∗ has to obey the capacity constraints implies that∑

e leue ≥
∑q

j=1 l(pj)f
∗(pj). But OPT =

∑
i |f ∗

i | =
∑q

j=1 f
∗(pj); an averaging argu-

ment shows that there exists a j∗ such that l(pj∗) ≤
∑

e leue/F as desired.

4.4.2 Randomized Cycling Through Commodities

For a given value of α̂, and some (δ,Mmax,Mmin, P̂)-ADSP data structure R, we say
that a source-sink pair (s, t) is admissible for α̂ (with respect to R) if upon querying R
with Distance(s, t, α̂) the obtained answer is at most (1 + 2δ)α̂. In other words, (s, t)
is admissible for α̂ if R’s estimate of the distance from s to t in P̂ is small enough
that our algorithm could choose to augment the flow along this path (provided α̂ was
its current lower-bound estimate of the length of the shortest path in P̂). Obviously,
our algorithm is vitally interested in finding source-sink pairs that are admissible for
its current value of α̂ – these pairs are the ones that allow us to answer the oracle
queries.

Unfortunately, given the set of all possible pairs {(s1, t1), . . . , (sk, tk)}, and the
data structure R, it is not clear at all which one among them (if any) are admissible
for given α̂. Note, however, that if we deem some source-sink pair (s, t) inadmissible
for α̂ (by querying R for the corresponding s-t distance) then, since our lengths are
always increasing, this pair will never become admissible for α̂ again. This suggests
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the following natural approach for identification of admissible pairs for a given α̂. We
cycle through all the sink-source pairs and query R for the corresponding distance,
we stick with one pair as long as it is admissible, and move on once it becomes
inadmissible. Clearly, the moment we cycled through all pairs, we know that all the
pairs are inadmissible for α̂. The problem with this approach is that the resulting
number of s-t distance queries is at least k and thus this would lead to the somewhat
prohibitive bottleneck of Ω̃(kn) in the running time (note that k can be Ω(n2)).

To alleviate this problem we note that a very similar issue was present already
in the algorithm from Section 4.2 – the way it was avoided there was by grouping
the source-sink pairs according to common sources and exploiting the fact that Di-
jkstra’s algorithm computes all single source shortest-path distances simultaneously.
Therefore, one execution of Dijkstra’s algorithm either finds an (analog of) admissi-
ble pair, or deems all the pairs sharing the same source inadmissible. Unfortunately,
although our (δ,Mmax,Mmin, P̂)-ADSP data structure allows single source shortest-
path distance queries, these queries require Õ(m) time and we cannot afford to use
them to obtain s-t distances in the manner it was done in Section 4.2 – this could
cause Ω(m2ε−2) worst-case running time. We therefore devise a different method of
circumventing this bottleneck. To describe it, let us assume that we are given some
vertex s, and a set I(s) of source-sink pairs that have s as their common source and
that have not yet been deemed inadmissible for our current value of α̂. Our procedure
samples ⌈log n⌉ source-sink pairs from I(s) and checks whether any of them is admis-
sible using the Distance(·, ·, ·) query. If so, then we return the admissible pair found.
Otherwise, i.e. if none of them was admissible, we use the SSrcDist(·, ·) query to check
which (if any) source-sink pairs in I(s) are inadmissible, remove them from the set
I(s) and return an admissible pair (if any was found). We repeat the whole procedure
– if I(s) became empty, we proceed to the next possible source s – until we examine
all source-sink pairs. The algorithm is summarized in Figure 4-5 – for convenience,
we substituted for δ, Mmax, and Mmin the actual values used in our algorithm. The
intuition behind this procedure is that if all ⌈log n⌉ samples from I(s) turned out to
be inadmissible then with probability at least (1− 1

n
), at least half of the pairs in I(s)

is inadmissible, and therefore the SSrcDist(·, ·) query will reduce the size of I(s) by
at least half. This leads to the expected number of SSrcDist(·, ·) requests being not
too large.

4.4.3 Our Algorithm

We present our algorithm for the maximum multicommodity flow problem in Figure
4-4. As already noted, the basic idea behind it is making the algorithm from Sec-
tion 4.2 (presented in Figure 4-3) to answer shortest-path distance queries using an
(ε/2, 1/U, n2(1+ε)/ε, P̂)-ADSP data structure (where P̂ is constructed as in Definition
4.3.1). To implement this idea efficiently, we incorporated the randomized cycling
through commodities described above.

We prove the following theorem.
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Input : Graph G = (V,E,u), source-sink pairs {(si, ti)}i, accuracy parameter
1/2 > ε > 0, and a target flow value F

Output: Either a flow f , or “fail” indicating that F > F ∗

Initialize the multiplicative-weights-update routine D from Figure 2-1 (for F being
the set of si-ti flows of value F in G), let w be the corresponding weights vector
Initialize le ← we/ue for each arc e ∈ E (cf. (4.1)), α̂← 1/U , and
I(s)← {i | si = s} for each s ∈ V (∗ grouping source-sink pairs with

common sources ∗)
Sample sets {Sj}j=1,...,⌈logn⌉ to indicate the set P̂ (see Definition 4.3.1)

Initialize (ε/2, 1/U, n2(1+ε)/ε, P̂)-ADSP data structure R as in Theorem 4.3.4
while True do

I(s)← {i | si = s} for each s ∈ V (∗ initializing pairs to be examined

∗)
foreach s ∈ V with I(s) 6= ∅ do (∗ cycling through commodities ∗)
〈(s, t), I(s)〉 ← Find_Admissible_Pair(ε,R, α̂, I(s))
while I(v) 6= ∅ do

p← R.Path(s, t, α̂)
if l(p) > (1 + ε)

∑
e leue/F then return “fail”

else

Supply to D the flow f̃ sending F units of flow over p as an oracle
answer
Update the weights w as dictated by the routine D
Use R.Increase(·, ·) requests to make the lengths l obey (4.1) with
respect to updated weights

if R terminates then return the flow f computed by D
〈(s, t), I(s)〉 ← Find_Admissible_Pair(ε,R, α̂, I(s))

end

end

α̂← (1 + ε/2)α̂ (∗ increase the value of α̂ ∗)
end

end

Figure 4-4: Improved algorithm for solving maximum multicommodity flow.

Find_Admissible_Pair procedure is described in Figure 4-5.
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Input : Accuracy parameter ε > 0, (ε/2, 1/U, n2(1+ε)/ε, P̂)-ADSP data structure
R, lower bound α̂ on min

p∈P̂ l(p), and a set I(s) of source-sink pairs that
might be admissible for α̂

Output: 〈(s, t), I ′(s)〉, where I ′(s) is a subset of I(s), and (s, t) is: an admissible
pair for α̂ if I ′(s) 6= ∅; an arbitrary pair otherwise

for i = 1, . . . , ⌈log n⌉ do

Sample a random source-sink pair (s, t) from I(s)
if R.Distance(s, t, α̂) ≤ (1+ ε)α̂ then (∗ checking admissibility for α̂ ∗)

return 〈(s, t), I(s)〉
end

end

(∗ No admissible pairs sampled ∗)
Use R.SSrcDist(s, α̂) to check admissibility for α̂ of all the source-sink pairs in I(s)
Let I ′(s) be the subset of admissible pairs from I(s)
if I ′(s) 6= ∅ then

return 〈(s, t), I ′(s)〉 where (s, t) ∈ I ′(s)
else

return 〈(s, t), ∅〉 where (s, t) is an arbitrary pair
end

Figure 4-5: Procedure Find_Admissible_Pair

Theorem 4.4.2. For any 1/2 > ε > 0, with high probability, one can obtain a
(1 − O(ε))-approximate solution to the maximum multicommodity flow problem in

expected Õ(mnε−2) time.

Proof. By our discussion at the beginning of Section 4.2, we just need to prove that,
whenever F ≤ F ∗, the algorithm presented in Figure 4-4 returns a flow f that, with
high probability, exerts a congestion of at most (1 + ε) in G, and that it works in
expected time of Õ(mnε−2).

To this end, let us first notice that as we are explicitly check whether l(p) ≤
(1 + ε)

∑
e leue/F , we know that whenever we pass a flow f̃ corresponding to the

path p, to the routine D, it is a correct answer of a (1 + ε)-oracle. As a result, we
can use Lemma 2.8.4 to prove that the weights we are dealing with are never bigger
than n2(1+ε)/ε, and thus our value of Mmax is initialized correctly (as is Mmin since
le ≥ 1/U = Mmin for each e). Furthermore, by Theorem 2.8.3, we know that all we
have to do is to prove that our algorithm never returns “fail” when F ≤ F ∗ and that
it never takes more than Õ(mnε−2) steps to terminate.

In order to establish the first fact, let l j be the length vector l after j-th oracle
answer has been computed, and let αj be the length of the shortest path in P̂ with
respect to lj. We want to prove that for every j, the value α̂j of α̂ immediately
before (j + 1)-th augmentation is at most αj. Once we do that, then the definition
of (ε/2, 1/U, n2(1+ε)/ε, P̂)-ADSP and Lemma 4.4.1, will allow us to conclude that the
algorithm never returns “fail” for F ≤ F ∗.

To prove that α̂j ≤ αj for each j, assume for the sake of contradiction that this
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is not the case; let j∗ be the first j for which α̂j > αj. By definition, this means that
there exists an s-t path p ∈ P̂ with lj

∗
(p) < α̂j∗ . Since lj∗(p) ≥ mine le = 1/U = α̂0,

it must have been the case that α̂j∗ > γ and the pair (s, t) was deemed inadmissible
for α̂j∗

(1+ε/2)
at some earlier point of the algorithm – otherwise the value of α̂ would

have never increased up to α̂j∗ . But this is impossible, since the length of p could
only increase over time and

lj
∗

(p) +
ε

2

α̂j∗

(1 + ε/2)
< α̂j∗ +

ε

2

α̂j∗

(1 + ε/2)
= (1 + ε)

α̂j∗

(1 + ε/2)
.

Thus by Theorem 4.3.4, we know that Distance(s, t, α̂j∗/(1+ ε/2)) must have had
return a value of at most (1 + ε)

α̂j∗

(1+ε/2)
which would deem the pair (s, t) admissi-

ble. This contradiction gives us the desired claim and proves the correctness of our
algorithm.

Now, to bound the running time of the algorithm, we note that it is dominated
by the total cost of maintaining our (ε/2, 1/U, n2(1+ε)/ε, P̂)-ADSP data structure R,
and servicing all the requests issued to it – all other operations performed by the
algorithm can be amortized within this total cost.

Note that by the reasoning analogous to the one we did in case of the maximum
s-t flow problem, we can assume that the largest capacity U (after normalizing the
smallest one to be equal to 1) is bounded by a polynomial in m and 1/ε. Now,
by Theorem 4.3.4, we obtain that the total expected maintenance cost of our data
structure R is at most Õ(mn logn2(1+ε)/εU

ε
) = Õ(mnε−2). Also, note that by Lemma

2.8.9 (taking tightness to be 1), there can be at most Õ(mε−2) oracle answers.
As a result, the cost of serving all the Path(·, ·, ·) request is at most Õ(mnε−2), as

desired. Furthermore, as each of the paths p returned can be assumed to consist of
at most n arcs and the only length that increase after the flow corresponding to p is
supplied to the routine D are the ones being in p, the total cost of serving Increase(·, ·)
request is at most Õ(mε−2) · n · O(1) = Õ(mnε−2) too. and Increase(·, ·) requests is
at most Õ(mε−2(Õ(n) + n ·O(1))) = Õ(mnε−2), as desired.

Now, to bound the time needed to service all the Distance(·, ·, ·) requests, we
note that there can be at most Õ(mε−2) samplings of source-sink pairs during the
Find_Admissible_Pair procedure that yield an admissible pair. This is so, since finding
an admissible pair results in an oracle answer. Thus the total cost of samplings that
found some admissible pair is at most ⌈log n⌉Õ(mε−2)Õ(n) = Õ(mnε−2). On the
other hand, in cases when sampling does not yield an admissible path the time needed
to serve all the corresponding Distance(·, ·, ·) requests can be amortized in the time
needed to serve SSrcDist(·, ·) that is always issued afterward.

Therefore, all that is left to do is to bound the expected service cost of SSrcDist(·, ·)
requests. We call a SSrcDist(s, α̂) successful if it resulted in decreasing the size of I(s)
by at least a half. Note that there can be at most ⌈log n⌉ successful SSrcDist(·, ·)
requests per one source and one value of α̂. As a result, the total time spent on
answering successful requests is at most log(1+ε/2)(n

2(1+ε)/εU) · Õ(m) = Õ(mnε−2),
since we have at most log(1+ε/2)(n

2(1+ε)/εU) different values of α̂. On the other hand,
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to bound the time taken by serving unsuccessful SSrcDist(·, ·) requests, we notice that
each (successful or not) SSrcDist(·, ·) query either empties one set I(s) for given source
s and a value of α̂, or finds an admissible pair (which results in flow augmentation),
therefore there can be at most Õ(mε−2) SSrcDist(·, ·) requests in total. Moreover, the
probability that a particular query is unsuccessful is at most 1

n
- this follows from

the fact that if I(s) has more than a half of pairs admissible for given α̂ then the
probability that none among ⌈log n⌉ independent samples turns out to be admissible
is at most (1

2
)⌈logn⌉ ≤ 1

n
. Therefore, the total expected cost of this type of requests is

at most Õ(mnε−2

n
· Õ(m) = Õ(m2

nε2
) = Õ(mnε−2), as desired. The theorem follows.

4.5 Construction of the (δ,Mmax,Mmin, P̂)-ADSP Data

Structure

In this section we describe a step-by-step construction of the (δ,Mmax,Mmin, P̂)-ADSP
data structure (as defined in Definition 4.3.3) whose performance is described by
Theorem 4.3.4. To this end, let us fix our set P̂ :=

⋃⌈logn⌉
j=1 P(Sj, 2

j), where {Sj}j
are the sampled subsets of vertices as in Definition 4.3.1. Note that for each j the
expected size of Sj is O(n log n/2j).

For given length vector l , and real number ρ, let us define l [ρ] to be a length vector
with l

[ρ]
e = ⌈le/ρ⌉ρ i.e. l [ρ] corresponds to rounding-up the lengths of the arcs given

by l to the nearest multiple of ρ. The key relation between l and l ρ is captured by
the following simple lemma.

Lemma 4.5.1. For any ρ > 0, length vector l , and 1 ≤ j ≤ ⌈log n⌉, if there exists a
path p ∈ P(Sj, 2

j) of length l(p) then l[ρ/2
j ](p) ≤ l(p) + ρ.

Proof. Consider a path p ∈ P(Sj, 2
j), for some j, by definition we have

l[ρ/2
j ](p) =

∑

e∈p

l[ρ/2
j ]

e ≤
∑

e∈p

(le + ρ/2j) ≤ l(p) + ρ,

since p can have at most 2j arcs.

As suggested by the above lemma, the basic idea behind our (δ,Mmax,Mmin, P̂)-
ADSP data structure construction is to maintain for each j exact shortest paths from
a set larger than P(Sj, 2

j) (namely, P(Sj)), but with respect to the rounded version
l [δMmin/2

j ] of the lengths l , and to cap the length of these paths at Mmax + δMmin.
Note that we do not require our (δ,Mmax,Mmin, P̂)-ADSP data structure to output
paths from P̂ , thus this approach yields a correct solution. Moreover, as we show in
section 4.5.1, using existing tools from dynamic graph algorithms we can obtain an
implementation of this approach whose performance is close to the one postulated by
Theorem 4.3.4, but with linear dependence of the maintenance cost on the ratio Mmax

Mmin

(as opposed to logarithmic one), and rather high service cost of Increase(·, ·) requests.
We alleviate these shortcomings in section 4.5.2, where we also prove Theorem 4.3.4.
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4.5.1 Implementation of the (δ,Mmax,Mmin, P̂)-ADSP with Lin-
ear Dependence on Mmax

Mmin

An important feature of the rounded length vector l [ρ] for any ρ > 0, is that after
dividing it by ρ we obtain a length vector that assigns integral lengths to arcs. There-
fore, we are able to take advantage of existing tools for solving decremental shortest
path problem in dynamic graphs with integer arc lengths. We start by defining this
problem formally.

Definition 4.5.2. For any integer r ≥ 0 and a set of paths Q ⊆ P, let the decre-
mental (r,Q)-shortest path problem ((r,Q)-DSPP for short) be a problem in which
one maintains a directed graph G with positive integral weights on its arcs, and that
supports four operations:

• Distance(u, v), for u, v ∈ V : returns the length of the shortest u-v path in Q if
this length is at most r, and ∞ otherwise.

• Increase(e, t), for e ∈ E and integer t ≥ 0: increases the length of the arc e by t

• Path(u, v), for u, v ∈ V : returns a u-v path of length Distance(u, v), as long as
Distance(u, v) 6=∞.

• SSrcDist(u), for u ∈ V : returns Distance(u, v) for all v ∈ V .

We state first the following lemma which is just a simple and known extension of
the classical construction of Even and Shiloach [60] (see also [119]).

Lemma 4.5.3. For any s ∈ V and positive integer r, (r,P({s}))-DSPP data structure

can be maintained in total time Õ(mr) plus additional O(log n) per each Increase(·, ·)
request. Each Distance(·, ·) request can be answered in O(1) time and each Path(·, ·),
and SSrcDist(·) query - in O(n) time.

Proof. First, we notice that to prove the lemma it is sufficient to show that we can
maintain, within desired time bounds, the single-source shortest paths tree of all v-
s paths that have length at most r, for any v ∈ V . Indeed, once we achieve this,
it will also imply that we can keep the single-source shortest paths tree of all s-v
paths having length at most r, for any v ∈ V . Now, to implement (r,P({s}))-DSPP
data structure we just maintain both single-source shortest path trees and whenever
queried Distance(u, v) we answer Distance(u, s) + Distance(s, v) if this sum does not
exceed r and (u, v) is a source sink pair (i.e. the corresponding u-v path is in P);
and ∞ otherwise. Note that our trees allow finding Distance(u, s) and Distance(s, u)
in O(1) time. Similarly, we can answer request Path(u, v), as long as Distance(u, s) +
Distance(s, v) ≤ r, by just concatenating paths Path(u, s) and Path(s, v) that we can
obtain from our trees in O(n) time. Finally to answer SSrcDist(u) request we just
issue a Distance(u, v) request – that we already know how to handle – for each v ∈ V .
It is easy to see that all the running times will fit within the desired bounds as long
as our maintenance of single-source shortest paths tree will obey these bounds.
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Our way of maintaining such a single-source shortest path tree of all v-s paths is
a simple extension of the classical construction of Even and Shiloach [60] (see also
[119]) who showed how to dynamically maintain in an unweighted directed graph, a
decremental single-source shortest paths tree up to depth d, in O(md) total running
time.

In our data structure, each vertex v will keep a variable d[v] whose value will be
always equal to v’s current distance to s. Moreover, each vertex v keeps a priority
queue Q[v] of all its outgoing arcs, where the key of a particular arc (v, u) is equal
to the current value of d[u] + l(v,u). We want the queue to support three operations:
Insert(e, t) that adds an arc to a queue with key equal to t, FindMin - returns the
arc with smallest value of the key, and SetKey(e, t) that sets the value of the key of
arc e to t. By using e.g. Fibonacci heap implementation of such queue, FindMin
can be performed in O(1) time, and each of the remaining operations can be done in
O(log n) amortized time.7

The initialization of the data structure can be easily done by computing the single-
source shortest path tree from s using Dijkstra algorithm and inserting arcs into
appropriate queues, which takes O(m log n) time. Also, Distance(·, s) requests can
be easily answered in O(1) time by just returning d[v]. Finally, the implementations
of the Path(·, s), and Increase(·, ·) can be found in Figure 4-6. Clearly, answering
Path(·, s) query takes at most O(n) time. Now, the total time needed to serve w
Increase(·, ·) request is at most O(log n) times the total number of Scan(·) calls. But,
since for a particular arc e = (u, v) Scan(e) is called only if either Increase(e, ·) was
called; or d[v] < ∞ and d[v] increases by at least one, we see that this number is at
most m(r + 1) + w, which gives the desired running time.

We combine now the above construction of (r,P({s}))-DSPP data structure to
obtain an implementation of (r,P(U))-DSPP.

Lemma 4.5.4. For any S ⊆ V and positive integer r, (r,P(S))-DSPP data structure

can be maintained in total time Õ(mr|S|) plus additional Õ(|S|) per each Increase(·, ·)
request. Each Distance(·, ·) query can be answered in O(|S|) time, each Path(·, ·) – in
time O(n), and each SSrcDist(·) query - in O(m+ n log n) time.

Proof. We maintain (r,P({s}))-DSPP data structure Rs as in Lemma 4.5.3 for each
s ∈ S. Clearly, the maintenance cost is Õ(mr|S|) plus additional Õ(|S|) per each
Increase(·, ·) operation – we just forward each Increase(·, ·) operation to each Rs. Now,
to serve Distance(u, v) request we just issue Distance(u, v) query to each Rs that we
maintain and return the answer yielding minimal value. Answering Path(u, v) request
consist of just querying each Rs with Distance(u, v), and forwarding Path(u, v) request
to Rs returning the minimal distance. Finally, to serve SSrcDist(u) query, we construct
a graph Gu,S that consists of G equipped with current length vector l , and additional
vertex u′ from which there is arc to each s ∈ S with length corresponding to the

7Note that SetKey(e, t) operation can be translated to ’standard’ priority queue operations as:
decrease the key of e by a value of ∞, extract the minimal element, and insert e again with new
value of the key.
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Procedure Path(v, s):
if v = s then

return an empty path ∅
else

e = (v, u)← Q[v].F indMin

return Path(u, s) ∪ {e}
end

Procedure Increase(e, t):
le ← le + t
Scan(e)

Procedure Scan(e) :
Q[u].SetKey(e, d[v] + le)
f = (u, v′)← Q[u].F indMin
if d[v′] + lf > r then

d[u]←∞
end

if d[v′] + lf > d[u] then

d[u]← d[v′] + lf
foreach arc f ′ incoming to u do Scan(f ′)

end

Figure 4-6: Implementation of procedures Path(v, s) and Increase(e, t), where

e = (u, v)
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distance from u to s with respect to l . Note that construction of the graph Gu,S

can be performed in O(m) time – in particular the length of each arc (u′, s) can be
obtained by querying Rs with Distance(u, s). It is easy to see that if we compute
single-source shortest path distances in Gu,S from u′ to all v ∈ V using Dijkstra’s
algorithm then we can obtain the value of Distance(u, v) for each v ∈ V by just
returning the computed value if it is at most r and (u, v) is a source-sink pair (so,
the corresponding u-v path is in P); and returning∞ otherwise. Obviously, the total
time required is O(m+ n log n), as desired.

We proceed now to designing an implementation of (δ,Mmax,Mmin, P̂)-ADSP data
structure that meets the time bounds of Theorem 4.3.4 except it maintenance time
has linear – instead of logarithmic – dependence on Mmax

Mmin
, and the time needed to

serve Increase(·, ·) request is much larger.

Lemma 4.5.5. For any δ > 0,and any Mmax,Mmin such that Mmax > 2Mmin >
0, we can maintain (δ,Mmax,Mmin, P̂)-ADSP data structure in total expected time

Õ(mn Mmax

δMmin
) plus additional Õ(n) per each Increase(·, ·) request. Each Distance(·, ·, ·)

and Path(·, ·, ·) query can be answered in Õ(n) time, and each SSrcDist(·, ·) query - in

Õ(m) time.

Proof. Let l be the lengths of our graph G. For each 1 ≤ j ≤ ⌈log n⌉ we maintain a
(⌈Mj/ρj⌉,P(Sj))-DSPP data structure Rj with respect to lengths l j := l[ρj ]/ρj, where
ρj := δMmin/2

j, and Mj := Mmax + δMmin. Note that, by definition, l j is integral,
so we are allowed to use the data structure from Lemma 4.5.4. Moreover, by Lemma
4.5.4 and Lemma 4.5.1 applied with ρ = ρj2

j, we see that if there is an s-t path p
in P(Sj, 2

j) of length l(p) ∈ [Mmin,Mmax] then Rj maintains a s-t path p′ ∈ P(Sj)
whose length with respect to l is at most l(p) + 2jρj = l(p) + δMmin.

Now, to answer a Distance(u, v, β) query we just issue an Distance(u, v) query to
all Rj and return the value that is minimal after multiplying it by the respective value
of ρj. Note that we are ignoring the value of β here - since β ≥Mmin, the accuracy of
our answers is still sufficient. Similarly, as long as Distance(u, v, β) 6= ∞, we answer
Path(u, v, β) query by just returning the result of Path(u, v) query forwarded to Rj

whose Distance(u, v) (after multiplying by ρj) is minimal. We implement answering
SSrcDist(u, β) query by just issuing SSrcDist(u) queries to each Rj, and for each v ∈ V
we return the reported distance that is minimal (after multiplication by respective
ρj). Finally, whenever there is a Increase(e, ω) request, we increase the length function
l accordingly and issue Increase(e, ⌈(le + ω)/σj⌉ − ⌈le/σj⌉) request to each Rj.

To analyze the performance of this implementation, we note that by Lemma 4.5.4
each Distance(·, ·, ·) requires O(

∑
j |Sj|) = Õ(n) time, each Path(·, ·, ·) – Õ(n) time,

and each SSrcDist(·, ·) – Õ(m) time. Also, the cost of serving Increase(e, ω) request is
Õ(
∑

j |Sj|) = Õ(n). As a result, the total expected maintenance cost is, by Lemma
4.5.4:

Õ(

⌈logn⌉∑

j=1

mE[|Sj|]⌈Mj/ρj⌉) = Õ(mn

⌈logn⌉∑

j=1

2jMmax

δMmin2j
) = Õ(mn

Mmax

δMmin

),
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where we used the fact that expected size of Sj is O(n log n/2j). The lemma
follows.

4.5.2 Proof of Theorem 4.3.4

As we mentioned in section 4.3, in our applications the ratio of Mmax to Mmin can
be very large i.e. Ω(n1/ε) for ε < 1/2. Therefore, the linear dependence on this
ratio of the maintenance time of the (δ,Mmax,Mmin, P̂)-ADSP data structure from
Lemma 4.5.5 is still prohibitive. To address this issue we refine our construction in
the following lemma. Subsequently, we will deal with large service time of Increase(·, ·)
requests in the proof of Theorem 4.3.4.

Lemma 4.5.6. For any δ > 0, Mmax ≥ 2Mmin > 0, (δ,Mmax,Mmin, P̂)-ADSP data

structure can be maintained in total expected time Õ(mn logMmax/Mmin

δ
) plus additional

Õ(n log 1
δ
) per each Increase(·, ·) request in the processed sequence. Each Distance(·, ·, ·)

and Path(·, ·, ·) query can be answered in Õ(n) time, and each SSrcDist(·, ·) query –

in Õ(m) time.

Proof. For each 0 ≤ b ≤ ⌊log Mmax

Mmin
⌋, let us define M b

min := 2bMmin, and M b
max =

2b+2Mmin. We will maintain for each b, a (δ,M b
max,M

b
min, P̂)-ADSP data structure Rb

as in Lemma 4.5.5. Intuitively, we divide the interval [Mmin,Mmax] into exponentially
growing and partially overlapping intervals [M b

min,M
b
max], and we will make each Rb

responsible for queries with β falling into interval [M b
min,M

b
max/2].

More precisely, upon receiving Distance(u, v, β), Path(u, v, β), or SSrcDist(u, β)
request, we just pass it to the unique Rb with M b

min ≤ β ≤ M b
max/2, and report back

the obtained answer. By Lemma 4.5.5 and definition of (δ,M b
max,M

b
min, P̂)-ADSP

data structure, the supplied answer is correct, and the service cost is within desired
bounds. Also, the part of the total expected maintenance cost that is independent of
the number of Increase(·, ·) requests is at most Õ(mn logMmax/Mmin

δ
), as needed.

Therefore, it remains to design our way of handling Increase(·, ·) requests, and
bound the corresponding service cost. A straight-forward approach is to update the
length vector l accordingly upon receiving Increase(e, ω) request, and forward this
request to all Rb. This would, however, result in Õ(n log Mmax

Mmin
) service cost which

is slightly suboptimal from our point of view. Our more refined implementation of
handling Increase(e, ω) request is based on two observations. First, we note that if at
any point of time the length of arc e increases to more than 2M b

max for some b, we can
safely increase the length of this arc in Rb to ∞ without violating the correctness of
the answers supplied by Rb – we call such event deactivation of e in Rb. Second, we
don’t need to forward Increase(e, ω) requests to Rb for which le + ω < σb

⌈logn⌉, where

σb
j =

δMb
min

2j
, and le is the current length of the arc e. This is so, since the construction

of Rb’s from Lemma 4.5.5 will have the rounded length l[σ
b
j ](e) of e still equal to σb

j ,
for every j. Therefore, instead of passing to such Rb Increase(e, ω) requests each time
they are issued, we just send an Increase(e, ω′) request to Rb once the length of e
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exceeds σb
⌈logn⌉, where ω′ is the total increase of the length of e from the beginning

up to the current value of le – we call such an event activation of e in Rb.
In the light of the above, our handling of a Increase(e, ω) request is as follows. Let

b− be the largest b with 2M b
max < le+ω, and let b+ be the largest b with le+ω ≥ σb

⌈logn⌉.
We start by deactivating e in all Rb with b ≤ b− in which e wasn’t already deactivated,
and activating e (by increasing the length of e to le) in all Rb with b− < b ≤ b+ in
which it wasn’t activated yet. Next, we issue Increase(e, ω) request to all Rb with
b− < b ≤ b+, and we increase le by ω. It is not hard to see that by the above two
observations, this procedure does not violate the correctness of our implementation of
(δ,Mmax,Mmin, P̂)-ADSP data structure. Now, to bound the time needed to service
Increase(·, ·) request we note that each arc e can be activated and deactivated in each
Rb at most once, and each such operation takes Õ(n) time. So, the total cost of these
operation is at most Õ(mn log Mmax

Mmin
) and this cost can be amortized within the total

maintenance cost. To bound the time taken by processing the Increase(e, ω) requests
passed to all Rb with b− < b ≤ b+, we note that le + ω < 2M b−+1

max ≤ 2j+3σ
b−+1
j /δ for

any j, thus b+− b−−1 ≤ log 2⌈logn⌉+3

δ
, and the total service time is at most Õ(n log 1

δ
),

as desired. The lemma follows.

We are ready to prove Theorem 4.3.4.

of Theorem 4.3.4. We maintain (δ/2,Mmax,Mmin, P̂)-ADSP data structure R as in
Lemma 4.5.6. While serving the sequence of requests, we pass to R all the Path(·, ·, ·)
requests and return back the answers supplied by R. Similarly, we pass Distance(·, ·, β)
and SSrcDist(·, β) to R, and return back the values supplied by R with δβ

2
added to

each of them. Finally, in case of Increase(·, ·) requests we pass them to R in an
aggregate manner. Namely, in addition to l – the (evolving) length function of the
graph G – we also maintain an aggregated length function l̂ . Initially, l̂ = 1, and
later, as l evolves in an on-line manner, we increase l̂e to le for given arc e, each
time le becomes greater than max{(1 + δ/8)l̂e, δMmin/4n}. Note that this definition
ensures that we have always l̂e ≤ le ≤ (1 + δ/8)l̂e + δMmin/4n for any arc e. Now,
instead of passing to R an Increase(e, ω) request each time it is issued, we only issue
an Increase(e, le − l̂e) request to R each time the value of l̂e increases to le. In other
words, we make R to work with respect to the length vector l̂ instead of l .

Clearly, by Lemma 4.5.6 the time needed to answer Distance(·, ·, ·), Path(·, ·, ·),
and SSrcDist(·, ·) queries is within our intended bounds. Also, we can raise the length
le of an arc e to∞ once its length exceeds 2Mmax, without violating the correctness of
our implementation of (δ,Mmax,Mmin, P̂)-ADSP data structure. Thus, for given arc
e, the length l̂e can increase at most ⌈log(1+δ/8)

4Mmaxn
δMmin

⌉+ 1 = Õ( logMmax/Mmin

δ
) times.

Therefore, we issue at most Õ(m logMmax/Mmin

δ
) Increase(·, ·) requests to R, which by

Lemma 4.5.6 takes at most Õ(mn logMmax/Mmin

δ
) time to process. As a result, the total

maintenance time of our construction is Õ(mn logMmax/Mmin

δ
) plus additional O(1) time

per each Increase(·, ·) request in the sequence, as desired.
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To prove that our construction is a correct implementation of (δ,Mmax,Mmin, P̂)-
ADSP data structure, consider some s-t path p in P̂ whose length l(p) is at most
2β for some β ∈ [Mmin,Mmax/2]. Now, upon being queried with Distance(s, t, β)
request, our data structure will return a value d′ = d + δβ/2, where d is the value
returned by R as an answer to Distance(s, t, β) request passed. Since l̂(p) ≤ l(p), we
have d′ = d + δβ/2 ≤ l̂(p) + δβ/2 + δβ/2 ≤ l(p) + δβ, as desired. Moreover, upon
Path(s, t, β) query we return a path p′ with l̂(p′) ≤ d. This means that

l(p′) ≤
∑

e∈p′

(1 + δ/8)l̂e + δMmin/4n ≤ (1 + δ/8)l̂(p′) + δβ/4

≤ (1 + δ/8)d+ δβ/4 ≤ d+ δβ/2 = d′,

since d ≤ l̂(p) + δβ/2 ≤ 2β + δβ/2 < 3β for δ < 1. The theorem follows.

4.6 Maximum Concurrent Flow Problem

Recall that in the maximum concurrent flow problem, in addition to the capacitated
graph G = (V,E,u) (once again, we assume that mine ue = 1, and define U :=
maxe ue), and k source-sink pairs {(si, ti)}i, we also have a demand di > 0 associated
with each commodity i. The task is to find a feasible multicommodity flow routing
θdi units of each commodity i that maximizes the rate θ.

Let as take θ∗ to denote, from now on, the maximum concurrent flow in G (with
respect to the source-sink pairs {(si, ti)}i and the corresponding demands {di}i). We
want to show first that we can assume without loss of generality that 1 ≤ θ∗ ≤ km.8

To this end, let us define ηi := Bi/di, where Bi is the maximum bottleneck of an si-ti
path. Note that using the algorithm of Fredman and Tarjan [68] we can compute all
of ηis in Õ(mn) time. Let η∗ := mini ηi. As we know that the value of maximum si-ti
flow can be at most mη∗, we have that θ∗ ≤ η∗m. On the other hand, as the value of
each maximum si-ti flow is at least Bi and we can simultaneously route 1/k fraction
of each of them, we have that θ∗ ≥ η∗/k. Thus, by scaling all the demands by η∗/k,
we can reduce our consideration to 1 ≤ θ∗ ≤ mk.

Similarly to the case of the maximum multicommodity flow in Section 4.2, we
proceed to developing a multiplicative-weights-update-based framework for comput-
ing (1 − ε)-approximation to the maximum concurrent flow problem. However, in
contrast to the approach used in Section 4.2, our framework will not employ the flow
packing machinery set forth in Section 2.8. It will use instead the original framework
developed by Garg and Könemann [70]. This is motivated by the fact that even
though one could employ the flow packing approach of Section 2.8 to the setting of
maximum concurrent flow problem pretty easily, doing so in a way that yields the

8This observation was first made by Fleischer [65] and led to improvement of the running time
of the original algorithm of Garg and Könemann [70] as they were using less efficient procedure for
this.
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desired performance is a bit involved. Therefore, for the sake of the exposition, in
what follows we stick to the original approach of Garg and Könemann. We want to
emphasis the fact that the dynamic-graph-based tools we developed in this chapter,
could be applied to either of these approaches.

The algorithm of Garg and Könemann that (1−O(ε))-approximates the maximum
concurrent flow problem works as follows. It starts with a zero flow – f = ∅, and
setups for each arc e an initial length le = γ

ue
, where γ = ( m

1−ε
)−1/ε. The algorithm

proceeds in phases – each one of them consists of k iterations. In each iteration i,
the algorithm tries to route di units of flow from si to ti. This is done by repeating
the following steps. First, a shortest (with respect to current lengths l) si-ti path p
is found. Next, the bottleneck capacity u, which is the minimum of the bottleneck
capacity of the path p and the remaining demand d̂i to be routed, is computed. Then,
the flow f is augmented by routing u units of commodity i along the path p. Finally,
the length of each arc e of the path p is increased by a factor of (1 + εu

ue
), and d̂i is

decreased by u. The entire procedure stops when D(l) :=
∑

e leue – the volume of
G with respect to l , is at least one. The summary of the algorithm can be found in
Figure 4-7.

Input : Graph G = (V,E,u), source-sink pairs {(si, ti)}i with demands {di}i, and
an accuracy parameter ε > 0

Output: (Infeasible) flow f

Initialize f ← ∅, le ← γ
ue

for all arcs e ∈ E, where γ = ( m
1−ε)

−1/ε

while D(l) < 1 do

for i := 1, . . . , k do

d̂i ← di

while D(l) < 1 and d̂i > 0 do

Find the shortest path p in Pi
Find the bottleneck capacity u of p (∗ u← min{d̂i,mine∈p ue} ∗)
d̂i ← d̂i − u
Augment the flow f by routing u units of flow along the path p
foreach arc e in p do le ← le(1 +

εu
ue
)

end

end

end

Figure 4-7: Garg-Könemann algorithm for maximum concurrent flow.

Garg and Könemann prove the following lemmas.

Lemma 4.6.1. If θ∗ ≥ 1, the algorithm in Figure 4-7 terminates after at most
t := 1 + θ∗ log1+ε 1/γ = 1 + θ∗

ε
log1+ε

m
1−ε

phases.

Lemma 4.6.2. After t − 1 phases, the algorithm has routed (t − 1)di units of each
commodity i. Scaling the final flow by log1+ε 1/γ yields a feasible flow that achieves
a rate θ = t−1

log1+ε 1/γ
.
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Lemma 4.6.3. If θ∗ ≥ 1, then the final flow scaled down by log1+ε 1/γ is feasible and
has a value of at least (1− 3ε)θ∗.

As we ensured that 1 ≤ θ∗ ≤ km, it is easy to see that the above lemmas imply that
the algorithm in Figure 4-7, after at most 1+θ∗ log1+ε 1/γ ≤ 1+km log1+ε 1/γ phases,
returns a (1 − 3ε)-approximation for the maximum concurrent flow. Unfortunately,
the bound of 1 + mk log1+ε 1/γ on the number of phases is not sufficient to obtain
the Õ((m + k)mε−2) running time (in fact, it only establishes the time bound of
Õ((m+k2m)mε−2)). To reduce this dependence of the number of phases on θ∗, Garg
and Könemann use a halving technique developed in [112]. They run the algorithm
and if it does not stop after T := 2 log1+ε 1/γ+1 phases then, by Lemma 4.6.1, it must
be that θ∗ > 2. In this case, they multiply the demands by two, so θ∗ is halved and
still at least one. Next, they continue the algorithm and keep doubling the demands
again if it does not stop after T phases. Clearly, since initially θ∗ ≤ km, after
repeating such doubling at most log km times the algorithm stops, and thus the total
number of phases is at most T log km. The number of phases can be reduce further
to O(T ) by first applying the above approach with constant ε to get a constant-factor
approximation for θ∗ – this takes O(log2 km) phases – and then with at most O(T )
more phases the (1 − 3ε)-approximation is obtained. Having established this bound
on the number of phases, the bound of Õ((m + k)mε−2) on the running time of the
whole algorithm follows easily.

Input : Graph G = (V,E,u), source-sink pairs {(si, ti)}i with demands {di}i, and
an accuracy parameter ε > 0

Output: (Infeasible) flow f

Initialize f ← ∅, and le ← γ
ue

for all arcs e ∈ E, where γ = ( m
1−ν )

−1/ν , and

ν := ε(1 + ε)

Sample sets {Sj}j=1,...,⌈logn⌉ to indicate the set P̂ (see Definition 4.3.1)

Initialize (ε/2, 1, γ/U, P̂)-ADSP data structure R as in Theorem 4.3.4
while D(l) < 1 do

for i := 1, . . . , k do

d̂i ← di

while D(l) < 1 and d̂i > 0 do

p← R.Path(si, ti, β), where β is guessed with binary search

Find the bottleneck capacity u of p (∗ u← min{d̂i,mine∈p ue} ∗)
d̂i ← d̂i − u
Augment the flow f by routing u units of flow along the path p

foreach arc e in p do R.Increase(e, εuleue
); le ← le(1 +

εu
ue
)

end

end

end

Figure 4-8: Improved implementation of the algorithm from 4-7.
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4.6.1 Our Algorithm

We present now a more efficient approximation scheme for maximum concurrent flow
problem. Similarly, to the case of the maximum multicommodity flow problem, our
improvement is based on making the algorithm from Figure 4-7 find the (approxi-
mately) shortest paths using (ε, 1, γ/U, P̂)-ADSP data structure instead of Dijkstra’s
algorithm. Our new implementation of procedure from Figure 4-7 is presented in Fig-
ure 4-8. Note that whenever the algorithm issues Path(u, v, ·) request it uses binary
search to find the (u, v)-accurate β that yields small enough error – see discussion
after Definition 4.3.3 for more details.

Let us define α(l) :=
∑

i didisti(l), where disti(l) is the length of the shortest si-ti
path in P̂ with respect to lengths l . As it was the case for maximum multicommodity
flow problem, we need to justify the fact that we focus our attention on shortest paths
in P̂ instead of the whole P .

Lemma 4.6.4. With high probability, for any length vector l , α(l) ≤ D(l)/θ∗, where
D(l) :=

∑
e leue.

Proof. Similarly to the proof of Lemma 4.4.1, let us fix the optimal solution f ∗ =
(f ∗

1 , . . . , f
∗
k ) that achieves the ratio of θ∗. By Lemma 4.3.2, with high probability,

each pj belongs to P̂ ∩ Pi(j), where p1, . . . , pq are the flowpaths of f ∗ and i(j) is the
corresponding commodity. Now, since f ∗ obeys capacity constraints we have that

D(l) =
∑

e

leue ≥
∑

j

l(pj)f
∗
i(j)(pj) ≥

k∑

i=1

θ∗di min
p∈Pi

l(p) ≥ θ∗α(l)

and the lemma follows.

We are ready to prove the following theorem.

Theorem 4.6.5. For any 0.15 > ε > 0, there exists a Monte Carlo algorithm that
finds a (1−4ε)-approximate solution for maximum concurrent flow problem in expected

time Õ((m+ k)nε−2 logU).

Proof. As it was already mentioned, we will be using the algorithm of Garg and
Könemann, in which we use the procedure from Figure 4-8 instead of the one presented
in Figure 4-7. To bound the running time of this new algorithm, we recall that the
preprocessing that ensures that 1 ≤ θ∗ ≤ km can be performed in Õ(mn) time.
Also, we use the halving technique to ensure that the running time of the rest of the
algorithm is bounded by the time needed to execute O(T ) = O(log1+ε 1/γ) phases of
the procedure in Figure 4-8.

Now, it is easy to see that this running time is dominated by the cost of maintain-
ing the data structure R, and the time needed to answer the requests Path(·, ·, ·) (note
there is at most O(n) Increase(·, ·) requests per each Path(·, ·, ·) one). By Theorem
4.3.4 we know that the maintenance cost is Õ(mn logU/γ

ε
) = Õ(mnε−1(ε−1+logU)) =

Õ(mnε−2 logU). To upperbound the time needed to answer Path(·, ·, ·) requests, we
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note that each such request results in augmentation of the flow, and each augmenta-
tion of the flow results either in increasing the length of at least one arc by (1+ε), or it
is the last augmentation for given commodity. But no arc can have length bigger than
(1 + ε)/ue, because leue ≤ D(l) and we stop when D(l) ≥ 1, thus the total number
of augmentations of the flow is at most m⌊log(1+ε)

(1+ε)
γ
⌋+ k ·O(T ) = Õ(mε−2 + kT ),

which results in Õ((m+k)nε−2 log logU/γ) = Õ((m+k)nε−2 log logU) needed to an-
swer all Path(·, ·, ·) requests (including the time needed to perform each binary search
for β). As a result, the algorithm works in Õ((m+ k)nε−2 logU) time, as desired.

We proceed now to lowerbounding the value of the final flow f computed by
our algorithm after scaling it down by the maximal congestion of the arcs. To this
end, let, for given j, and 1 ≤ q ≤ qj, fj,q be the flow of commodity i(j, q) that
was routed along si(j,q)-ti(j,q) path pj,q in q-th augmentation of the flow f in phase
j, where qj is the total number of flow augmentations during phase j. Let l j,q be
the length vector l after routing the flow fj,q. For any j and q ≥ 1, the fact that
we always find the (si(j,q), ti(j,q))-accurate β for the Path(si(j,q), ti(j,q), β) query, implies
that lj,q−1(pj,q) ≤ (1 + ε)disti(j,q)(l j,q−1). Therefore, we have that

D(l j,q) ≤ D(l j,q−1) + νdisti(j,q)(l j,q−1),

where ν := ε(1 + ε).
As a result, since the lengths of arcs can only increase, and in each completed

phase we route exactly di units of commodity i, for all j ≥ 1 we have that

D(j) ≤ D(j − 1) + ν
∑

i

didisti(l j,qj) = D(j − 1) + να(l j,qj),

where D(j) denotes D(l j,qj).

By Lemma 4.6.4 we know that with high probability D(j)
α(lj,qj )

≥ θ∗ for all j, thus we

have that

D(j) ≤ D(j − 1)

1− ν/θ∗
.

But, D(0) =
∑

e
γ
ue)

ue) = mγ, so for j ≥ 1

D(j) ≤ mγ

(1− ν/θ∗)j

=
mγ

(1− ν/θ∗)
(1 +

ν

(θ∗ − ν)
)j−1

≤ mγ

(1− ν/θ∗)
e

ν(j−1)
θ∗−ν

≤ mγ

(1− ν)
e

ν(j−1)
θ∗(1−ν) ,

where the last inequality uses the fact that θ∗ ≥ 1.
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The algorithm stops at the first phase jf during which D(l) ≥ 1. Thus,

1 ≤ D(jf ) ≤
mγ

(1− ν)
e

ν(jf−1)

θ∗(1−ν) ,

which in turn implies

jf − 1 ≥
θ∗(1− ν) ln 1−ν

mγ

ν

Since we had jf − 1 successfully completed phases, the flow produced by our
procedure routes at least (jf − 1)di units of each commodity i. Unfortunately, this
flow may be not feasible – it may violate some capacity constraints. But in our
algorithm the length le of any arc e cannot be bigger than (1 + ε)/ue. Thus, the
fact that each arc starts with length le := γ/ue and each time a full unit of flow is
routed through it, its length increases by a factor of at least (1 + ε), implies that the
congestion incurred at e can be at most ⌊log1+ε(1+ ε)/γ⌋. Therefore, we see that the
rate θ achieved by the final flow after scaling it down is at least

θ ≥ jf − 1

⌊log1+ε(1 + ε)/γ⌋ ≥
θ∗(1− ν) ln 1−ν

mγ

ν log1+ε 1/γ
.

Plugging in γ = (m/(1− ν))−1/ν and unwinding the definition of ν yields

θ ≥ (1− ε(1 + ε))2 ln(1 + ε)

ε(1 + ε)
θ∗ ≥ (1− 4ε)θ∗,

which proves that the flow is indeed a (1 − 4ε)-approximation of the maximum
concurrent flow.
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Chapter 5

(Multi-)Cut-Based Minimization
Problems in Undirected Graphs

The focus of this chapter are the (multi-)cut-based minimization problems. This
class of problems captures a variety of basic graph optimization tasks, including the
minimum cut problem, the minimum s-t cut problem, the (generalized) sparsest cut
problem, the balanced separator problem, minimum multi-cut problem, minimum
multi-way-cut problem, and many other graph partitioning primitives. We present a
general method of designing fast approximation algorithms for this class of problems
in undirected graphs. In particular, we develop a technique that given any such
problem that can be approximated quickly on trees, allows us to approximate it
almost as quickly on general graphs while only losing a poly-logarithmic factor in the
approximation guarantee.

To illustrate the applicability of this paradigm, we consider the undirected general-
ized sparsest cut problem and the balanced separator problem. By a simple use of the
developed framework, we obtain the first poly-logarithmic approximation algorithms
for these problems that run in time close to linear.

The main tool behind the results of this chapter is an efficient procedure that
decomposes general graphs into simpler ones while approximately preserving the cut
structure. This decomposition is inspired by the graph decomposition technique of
Räcke that was developed in the context of oblivious routing schemes, and it employs
some of the tools described in Section 2.6, as well as, draws upon some high-level
ideas underlying the iterative approach of Spielman and Teng to solving Laplacian
systems (cf. Section 2.7).

5.1 Introduction

(Multi-)cut-based graph problems are ubiquitous in optimization. They have been
extensively studied – both from theoretical and applied perspective – in the con-
text of flow problems, theory of Markov chains, geometric embeddings, clustering,
community detection, VLSI layout design, and as a basic primitive for divide-and-
conquer approaches (cf. [123]). For the sake of concreteness, we define an optimization
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problem P to be an (undirected) multi-cut-based (minimization) problem if its every
instance P ∈ P can be cast as a task of finding – for a given input undirected capac-
itated graph G = (V,E,u) – a partition ~C∗ := {C∗

i }k
∗

i=1 of vertices of V such that:

~C∗ = argmin ~Cis a partition ofV u(
~C)fP ( ~C), (5.1)

where u( ~C) is the sum of capacities of all the edges of G whose endpoints are in
different Cis and fP is an arbitrary non-negative function of ~C that depends on P ,
but not on the edge set E (and the capacities u) of the graph G. It is not hard
to see that a large number of graph problems fits this definition. For instance, the
minimum cut problem (cf. [79, 106, 89, 132, 87]) corresponds to taking fP ( ~C) to be
1 if ~C partitions the graph into exactly two pieces (i.e., it corresponds to a cut), and
+∞ otherwise; and the minimum s-t cut problem (that was discussed in Chapter
3) corresponds to a further restricting of fP ( ~C) by making it equal to 1 only if ~C
corresponds to a cut that separates s and t, and being +∞ otherwise. Also, to see
an example of a multi-cut problem captured by this definition, one can see that the
multi-way cut problem in which we need to find a minimum capacity set of edges
that disconnects some set of terminals (cf. [49, 50, 47, 48, 88]), corresponds to taking
fP ( ~C) to be always equal to 1 if ~C has exactly one of terminals in each part of the
partition, and +∞ otherwise.

For the sake of simplicity, we will focus from now on only on the cut-based min-
imization problems – the problems in which the function fP ( ~C) is equal to +∞
whenever the partition ~C consists of more than two parts. These problems can be
viewed as the ones that can be cast as a task of finding a cut C∗ such that:

C∗ = argmin∅6=C⊂V u(C)fP (C), (5.2)

where u(C) is the capacity of the cut C in G and fP , once again, is a non-negative
function that depends on P and C, but not on the set E of edges of G and their
capacities.

Even though we develop the framework for this special case, everything easily
transfer over to the general multi-cut-based setting. The reason behind this is that
for any partition ~C = {Ci}ki=1, we can express u( ~C) as a linear combinations of the
capacities of the cuts {Ci}i. Namely, we have

u( ~C) =
1

2

k∑

i=1

u(Ci).

Therefore, by linearity of expectation, we can conclude that if G is our input graph
then any graph that approximates (in expectation) the cuts of G also approximates (in
expectation) its multi-cuts. As we will see, this statement alone suffices to transplant
the framework to the multi-cut setting.

For illustrative purposes, we will focus in this chapter on two particular examples
of cut-based minimization problems – fundamental graph partitioning primitives –
generalized sparsest cut problem and balanced separator problem.
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In the generalized sparsest cut problem, we are given a graph G = (V,E,u) and
a demand graph D = (V,ED,d). Our task is to find a cut C∗ that minimizes the
(generalized) sparsity u(C)/d(C) among all the cuts C of G. Here, d(C) is the total
demand

∑
e∈ED(C) de of the demand edges ED(C) of D cut by the cut C. Casted

in our terminology, the problem is to find a cut C∗ being argminCu(C)fP (C) with
fP (C) := 1/d(C).

An important problem that is related to the generalized sparsest cut problem is
the sparsest cut problem. In this problem one aims at finding a cut C∗ that minimizes
the sparsity u(C)/min{|C|, |C|} among all the cuts C of G. Note that if we considered
an instance of generalized sparsest cut problem corresponding to the demand graph D
being complete and each demand being 1/|V | (this special case is sometimes called the
uniform sparsest cut problem) then the corresponding generalized sparsity of every
cut C is within factor of two of its sparsity. Therefore, up to this constant factor, one
can view the sparsest cut problem as a special case of the generalized sparsest cut
problem.

On the other hand, the balanced separator problem corresponds to a task of finding
a cut that minimizes the sparsity among all the c-balanced cuts C in G, i.e. among
all the cuts C with min{|C|, |C|} ≥ c|V |, for some specified constant c > 0 called the
balance constant of the instance. In our framework, the function fP (C) corresponding
to this problem is equal to 1/min{|C|, |C|} if min{|C|, |C|} ≥ c|V | and equal to +∞
otherwise.

5.1.1 Previous Work on Graph Partitioning

The captured by the above-mentioned problems task of partitioning a graph into
relatively large pieces while minimizing the number of edges cut is a fundamental
combinatorial problem (see [123]) with a long history of theoretical and applied in-
vestigation. Since most of the graph partitioning problems – in particular, the ones
we consider – are NP-hard, one needs to settle for approximation algorithms. In case
of the sparsest cut problem and the balanced separator problem, there were two main
types of approaches to approximating them.

First type of approach was based on spectral methods. Inspired by Cheeger’s
inequality [38] discovered in the context of Riemannian manifolds, Alon and Milman
[9] transplanted it to discrete setting (cf. Section 2.5) and presented an algorithm
for the sparsest cut problem that can be implemented to run in nearly-linear time
(see Section 6 in [130]) by utilizing the fast Laplacian system solver (cf. Section 2.7).
However, the approximation ratio of this algorithm depends on the conductance of
the graph – being the conductance of the minimum-conductance cut (see equation
(2.1) for definition of the conductance of a cut) – and can be as large as Ω(n) even
in a graph with unit-capacity edges. Later, Spielman and Teng [129, 131] (see also
[11] and [12] for a follow-up work) used this approach to design an algorithm for the
balanced separator problem. However, both the running time and the approximation
guarantee of this algorithms depend on the conductance of the graph, leading to an
Ω(n) approximation ratio and large running time in the worst case.

The second type of approach relies on flow methods. It was started by Leighton
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and Rao [100] who used linear programming relaxation of the maximum concurrent
flow problem to establish the first poly-logarithmic approximation algorithms for
many graph partitioning problems. In particular, an O(log n)-approximation for the
sparsest cut and the balanced separator problems. Both these algorithms can be
implemented to run in Õ(n2) time.

These spectral and flow-based approaches were combined in a seminal result of
Arora, Rao, and Vazirani [17] to give an O(

√
log n)-approximation for the sparsest

cut and the balanced separator problems.
In case of the generalized sparsest cut problem, the results of Linial, London,

and Rabinovich [101], and of Aumann and Rabani [19] give a O(log r)-approximation
algorithms, where r is the number of vertices of the demand graph that are endpoints
of some demand edge. Subsequently, Chawla, Gupta, and Räcke [37] extended the
techniques from [17] to obtain an O(log3/4 r)-approximation. This approximation
ratio was later improved by Arora, Lee, and Naor [16] to O(

√
log r log log r).

5.1.2 Fast Approximation Algorithms for Graph Partitioning
Problems

More recently, a lot of effort was put into designing algorithms for the graph partition-
ing problems that are very efficient while still having poly-logarithmic approximation
guarantee. Arora, Hazan, and Kale [13] combined the concept of expander flows that
was introduced in [17] together with multicommodity flow computations to obtain
O(
√
log n)-approximation algorithms for the sparsest cut and the balanced separator

problems that run in Õ(n2) time.
Subsequently, Khandekar, Rao, and Vazirani [91] designed a primal-dual frame-

work for graph partitioning algorithms and used it to achieve O(log2 n)-approximations
for the same two problems running in Õ(m + n3/2) time needed to perform graph
sparsification of Benczúr and Karger [26] followed by a poly-logarithmic number of
maximum single-commodity flow computations. In [15], Arora and Kale introduced
a general approach to approximately solving semi-definite programs which, in partic-
ular, led to O(log n)-approximation algorithms for the sparsest cut and the balanced
separator problems that also run in Õ(m + n3/2) time. Later, Orecchia, Schulman,
Vazirani, and Vishnoi [109] obtained the same approximation ratio and running time
as [15] by extending the framework from [91]. Recently, Sherman [122] presented an
algorithm that for any ε > 0 works in Õ(m + n3/2+ε) time – corresponding to per-
forming sparsification and Õ(nε) maximum single-commodity flow computations –
and achieves an approximation ratio of O(

√
log n/ε). Therefore, for any fixed ε > 0,

his algorithm has the best-known approximation guarantee while still having running
time close to the time needed for (approximate) maximum s-t flow computation. By
employing our maximum s-t flow algorithm from Chapter 3, the running time of
Sherman’s algorithm can be immediately improved to Õ(m+ n4/3+ε).

Unfortunately, despite this progress in designing efficient poly-logarithmic approx-
imation algorithms for the sparsest cut problem, if one is interested in the generalized
sparsest cut problem then a folklore O(log r)-approximation algorithm running in
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Õ(n2 logU) time is still the fastest one known. This folklore result is obtained by
combining an efficient implementation [26, 65] of the algorithm of Leighton and Rao
[100] together with the results of Linial, London, and Rabinovich [101], and of Au-
mann and Rabani [19].

5.1.3 Overview of Our Results

In this chapter we present a general method of designing fast approximation algo-
rithms for undirected (multi-)cut-based minimization problems. In particular, we de-
sign a procedure that given an integer parameter k ≥ 1 and any undirected graph G
with m edges, n vertices, and having integral edge capacities in the range [1, . . . , U ],
produces in Õ(m + 2kn1+1/(2k−1) logU) time a small number of trees {Ti}i. These
trees have a property that, with high probability, for any α ≥ 1, we can find an
(α log(1+o(1))k n)-approximation to given instance of any (multi-)cut-based minimiza-
tion problem on G by just obtaining some α-optimal solution for each Ti and choosing
the one among them that leads to the smallest objective value in G (see Theorem 5.4.1
for more details). As a consequence, we are able to transform any α-approximation
algorithm for a (multi-)cut-based problem that works only on tree instances, to an
(α log(1+o(1))k n)-approximation algorithm for general graphs, while paying a computa-
tional overhead of Õ(m+2kn1+1/(2k−1) logU) time that, as k grows, quickly approaches
close to linear time.

We illustrate the applicability of the above paradigm on two fundamental graph
partitioning problems: the undirected (generalized) sparsest cut and the balanced
separator problems. By a simple use of the framework to be presented in this chapter
we obtain, for any integral k ≥ 1, a (log(1+o(1))k n)-approximation algorithm for the
generalized sparsest cut problem that runs in time Õ(m+ |ED|+2kn1+1/(2k−1) logU),
where |ED| is the number of the demand edges in the demand graph. Furthermore,
in case of the sparsest cut and the balanced separator problems, we combine these
techniques with the algorithm of Sherman [122] to obtain approximation algorithms
that have even better dependence on k in the running time. Namely, for any k ≥ 1
and ε > 0, we get a (log(1+o(1))(k+1/2) n/

√
ε)-approximation algorithms1 for these

problems that run in time Õ(m + 2kn1+1/(4·2k−1)+ε). We summarize the obtained
results for these problems together with the previous work in Figure 5-1. One can
see that even for small values of k, the running times of the obtained algorithms
beat the multicommodity flow barrier of Ω(n2) and the bound of Ω(m + n3/2) time
corresponding to performing sparsification and single-commodity flow computation.
Unfortunately, in the case of the generalized sparsest cut problem our approximation
guarantee has poly-logarithmic dependence on n. This is in contrast to the previous
algorithms for this problem that have their approximation guarantee depending on r.

1As was the case in all the previous work we described, we only obtain a pseudo-approximation for
the balanced separator problem. Recall that an α-pseudo-approximation for the balanced separator
problem with balance constant c is a c′-balanced cut C – for some other constant c′ – such that C’s
sparsity is within α of the sparsest c-balanced cut. For the sake of convenience, in the rest of the
chapter we don’t differentiate between pseudo- and true approximation.
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(Uniform) sparsest cut and balanced separator problem:
Algorithm Approximation ratio Running time

Alon-Milman [9] O(Φ−1/2) Õ(m/Φ2)

(Ω(n) worst-case) (Õ(m) using [130])
Andersen-Peres [12] Õ(Φ−1/2) Õ(m/Φ3/2)

(Ω̃(n) worst-case)
Leighton-Rao [100] O(log n) Õ(n2)
Arora-Rao-Vazirani [17] O(

√
log n) polynomial time

Arora-Hazan-Kale [13] O(
√
log n) Õ(n2)

Khandekar-Rao-
-Vazirani [91] O(log2 n) Õ(m+ n3/2)

Arora-Kale [15] O(log n) Õ(m+ n3/2)
Orecchia-Schulman-
-Vazirani-Vishnoi [109] O(log n) Õ(m+ n3/2)

Sherman [122] O(
√

log n/ε) Õ(m+ n3/2+ε)

(Õ(m+ n4/3+ε) using the
algorithm from Chapter 3)

this thesis k = 1 (log3/2+o(1) n)/
√
ε Õ(m+ n8/7+ε)

this thesis k = 2 (log5/2+o(1) n)/
√
ε Õ(m+ n16/15+ε)

this thesis k ≥ 1 (log(1+o(1))(k+1/2) n)/
√
ε Õ(m+ 2kn1+1/(4·2k−1)+ε)

Generalized sparsest cut problem:
Algorithm Approximation ratio Running time

Folklore O(log r) Õ(n2 logU)
([100, 101, 19, 26, 65])

Chawla-Gupta-Räcke [37] O(log3/4 r) polynomial time
Arora-Lee-Naor [16] O(

√
log r log log r) polynomial time

this thesis k = 2 log2+o(1) n Õ(m+ |ED|+ n4/3 logU)

this thesis k = 3 log3+o(1) n Õ(m+ |ED|+ n8/7 logU)

this thesis k ≥ 1 log(1+o(1))k n Õ(m+ |ED|+
+2kn1+1/(2k−1) logU)

Figure 5-1: Here, n denotes the number of vertices of the input graph G, m the
number of its edges, Φ its conductance, U is its capacity ratio, and r is the number
of vertices of the demand graph D = (V,ED, d) that are endpoints of some demand
edges. Also, Õ(·) notation suppresses poly-logarithmic factors. The algorithm of Alon
and Milman applies only to the sparsest cut problem.
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5.1.4 Overview of the Techniques

The approach we take is inspired by the cut-based graph decomposition of Räcke
[114] that was developed in the context of oblivious routing schemes (see [113, 21, 28,
80] for some previous work on this subject). This decomposition is a powerful tool
in designing approximation algorithms for various undirected cut-based problem.2

It is based on finding for a given graph G with n vertices and m edges, a convex
combination {λi}i of decomposition trees {Ti}i such that: G is embeddable into each
Ti, and this convex combination can be embedded into G with O(log n) congestion.
One employs this decomposition by first approximating the desired cut-based problem
on each tree Ti – this usually yields much better approximation ratio than general
instances – and then extracting from obtained solutions a solution for the graph G
while incurring only additional O(log n) factor in the approximation guarantee.

The key question motivating our results is: can the above paradigm be applied to
obtain very efficient approximation algorithms for cut-based graph problems? After
all, one could envision a generic approach to designing fast approximation algorithms
for such problems in which one decomposes first an input graph G into a convex
combination of structurally simple graphs Gi (e.g. trees), solves the problem quickly
on each of these easy instances and then combines these solutions to obtain a solution
for the graph G, while losing some (e.g. poly-logarithmic) factor in approximation
guarantee as a price of this speed-up. Clearly, the viability of such scenario depends
critically on how fast a suitable decomposition can be computed and how ’easy’ are
the graphs Gis from the point of view of the problems we want to solve.

We start investigation of this approach by noticing that if one is willing to settle for
approximation algorithms that are of Monte Carlo-type then, given a decomposition
of the graph G into a convex combination {(λi, Gi)}i, one does not need to compute
the solution for each of Gis to get the solution for G. It is sufficient to just solve the
problem on a small number of Gis that are sampled from the distribution described
by λis.

However, even after making this observation, one still needs to compute the de-
composition of the graph to be able to sample from it and, unfortunately, Räcke’s
decomposition – that was aimed at obtaining algorithms that are just polynomial-time
– has serious limitations when one is interested in time-efficiency. In particular, the
running time of his decomposition procedure is dominated by Õ(m) all-pair shortest
path computations and is thus prohibitively large from our point of view – cf. Section
5.3.1 for more details.

To circumvent this problem, we design an alternative and more general graph de-
composition (cf. Theorem 5.3.6). Similarly to the case of Räcke’s decomposition, our
construction is based on combining the multiplicative-weights-updated-based routine
(cf. Section 2.8 with the technique of embedding graph metrics into tree metrics.
However – instead of the embedding result of Fakcharoenphol, Talwar, and Rao [62]
that was used by Räcke – we employ the nearly-linear time algorithm of Abraham,
Bartal, and Neiman [1] for finding low-average-stretch spanning trees (cf. Theorem

2As explained above, in the rest of the chapter, we will focus only on cut-based problems, but all
the results we obtain hold also for the multi-cut-based setting.
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2.6.3). This choice allows for a much more efficient implementation of our decompo-
sition procedure at a cost of decreasing the quality of provided approximation from
O(log n) to Õ(log n). Also, even more crucially, inspired by the construction of the
ultrasparsifiers of Spielman and Teng [129, 130] (see Section 2.7 for an overview of
this construction), we allow flexibility in choosing the type of graphs into which our
graph is decomposed. In this way, we are able to offer a trade-off between the struc-
tural simplicity of these graphs and the time needed to compute the corresponding
decomposition.

Finally, by recursive use of our decomposition – together with sparsification tech-
nique – we are able to leverage the above-mentioned flexibility to design a procedure
that can have its running time be arbitrarily close to nearly-linear and, informally
speaking, allows us to sample from a decomposition of our input graph G into graphs
whose structure is arbitrarily simple, but at a cost of getting proportionally worse
quality of the reflection of the cut structure of G – see Theorem 5.3.7 for more details.

5.1.5 Outline of This Chapter

We start with some preliminaries in section 5.2. Next, in section 5.3, we introduce
the key concepts of the chapter and state the main theorems. In section 5.4 we show
how our framework leads to fast approximation algorithms for undirected cut-based
minimization problems. We also construct there our algorithms for the (generalized)
sparsest cut and balanced separator problems. Section 5.5 contains the description
of our decomposition procedure that allows expressing general graphs as a convex
combinations of simpler ones while approximately preserving cut-flow structure. We
conclude in section 5.6 with showing how a recursive use of this decomposition pro-
cedure together with sparsification leads to the sampling procedure underlying our
framework.

5.2 Preliminaries

The object of study in this chapter will be an undirected capacitated graphs G =
(V,E,u). By our convention, we will denote by U the capacity ratio of G be-
ing the maximum possible ratio between capacities of two edges of G i.e. U :=
maxe,e′∈E u(e)/u(e′).

We will say, for some V ′ ⊆ V , that a subgraph G′ = (V ′, E ′,u ′) is a subgraph of
G induced by V ′ if E ′ consists of all the edges of G whose both endpoints are in V ′

and the capacity vector u ′ on these edges is inherited from the capacity vector u of
G.

5.2.1 The Maximum Concurrent Flow Problem

The problem that will find useful in consideration in this chapter, is the maximum
concurrent flow problem that we already studied in Chapter 4. For convenience, we
recall its definition here – as in this chapter we are dealing only with undirected
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graphs, we adjust its definition to this setting. In the maximum concurrent flow
problem, we are given an undirected capacitated graph G = (V,E,u), as well as, a
set of k source sink pairs {(si, ti)}i and corresponding positive demands {di}i. The
goal is to find a multicommodity flow f = (f1, . . . , fk), where each fi is an si-ti flow
of value θdi that is feasible, i.e. has |f(e)| ≤ ue for each edge e, and maximizes the
rate θ. Here, |f(e)| :=∑i |f i(e)| is the total flow routed along the edge e by f .

For reasons that will be clear soon, in this chapter, we will describe the maximum
concurrent flow instances in slightly different – although completely equivalent – way.
Namely, we will represent the source-sink pairs {(si, ti)}i and the demands {di}i via
a demand graph D = (V,ED,d). In this graph, each source-sink pair (si, ti) with
demand di is represented by an edge (si, ti) ∈ ED with its demand d(si,ti) = di.
Clearly, this correspondence allows us not only represent a set of source-sink pairs
as a demand graph, but also view any demand graph as a maximum concurrent flow
problem instance.3

5.2.2 Embeddability

A notion we will be dealing extensively with is the notion of a graph embedding.

Definition 5.2.1. For given graphs G = (V,E,u) and G = (V,E,u), by an embed-
ding f of G into G we mean a multicommodity flow f = (fe1 , . . . , fe|E|

) in G with |E|
commodities indexed by the edges of G, such that for each 1 ≤ i ≤ |E|, the flow fei
routes in G uei units of flow between the endpoints of ei.

One may view an embedding f of G into G as a concurrent flow in G corresponding
to a demand graph given by G, i.e., source-sink pairs and corresponding demands are
given by the endpoints of edges of G and their corresponding capacities. Note that
the above definition does not require that f is feasible. We proceed to the definition
of embeddability.

Definition 5.2.2. For given t ≥ 1, graphs G = (V,E,u), and G = (V,E,u), we say
that G is t-embeddable into G if there exists an embedding f of G into G such that
for all e ∈ E, |f(e)| ≤ tue. We say that G is embeddable into G if G is 1-embeddable
into G.

Intuitively, the fact that G is t-embeddable into G means that we can fractionally
pack all the edges of G into G having all its capacities u multiplied by t. Also, it is
easy to see that for given graphs G and G, one can always find the smallest possible
t such that G is t-embeddable into G by just solving the maximum concurrent flow
problem in G in which we treat G as a demand graph with the demands given by its
capacities.

3The fact that we use the notion of demand graph in the definition of both the maximum con-
current flow problem and the generalized sparsest cut problem, is not a coincidence. These two
problems turn out to be closely related – see [101] and [19].
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5.3 Graph Decompositions and Fast Approximation

Algorithms for Cut-based Problems

The central concept of our approach is the notion of an (α,G)-decomposition. This
notion is a generalization of the cut-based graph decomposition introduced by Räcke
[114].

Definition 5.3.1. For any α ≥ 1 and some family of graphs G, by an (α,G)-
decomposition of a graph G = (V,E,u) we mean a set of pairs {(λi, Gi)}i, where
for each i, λi > 0 and Gi = (V,Ei,u i) is a graph in G, such that:

(a)
∑

i λ
i = 1

(b) G is embeddable into each Gi

(c) There exist embeddings f i of each Gi into G such that for each e ∈ E,

∑

i

λi|f i(e)| ≤ αue.

Moreover, we say that such decomposition is k-sparse if it consists of at most k dif-
ferent Gis.

In other words, an (α,G)-decomposition is constituted by a convex combination
{(λi, Gi)}i of graphs from the family G such that one can pack G into each of these
Gis, and one can pack the convex combination of these Gis into G while exerting a
congestion of at most α in G.

The crucial property of (α,G)-decomposition is that it captures α-approximately
the cut structure of the graph G. We formalize this statement in the following easy
to prove fact.

Fact 5.3.2. For any α ≥ 1, graph G = (V,E,u), and a family of graphs G, if
{(λi, Gi)}i is an (α,G)-decomposition of G then for any cut C of G:

(lowerbounding) for all i, the capacity ui(C) of C in Gi is at least its capacity
u(C) in G;

(upperbounding in expectation) E~λ[u(C)] :=
∑

i λ
iui(C) ≤ αu(C).

Note that the condition (a) from Definition 5.3.1 implies that {(λi, Gi)}i is a
convex combination of the graphs {Gi}i. Therefore, one of the implications of the
Fact 5.3.2 is that for any cut C in G, not only the capacity of C in every Gi is
lowerbounded by its capacity u(C) in G, but also there always exists a graph Gj in
which the capacity of C is at most αu(C). As it turns out, this property alone allows
one to reduce a task of αβ-approximation of any cut-based minimization problem in
G, any β ≥ 1, to a task of β-approximation of this problem in each of Gis.
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To see why this is the case, consider an instance P of some cut-based minimization
problem and let fP be the function corresponding to this instance (cf. (5.2)). Let C i,
for each i, be some β-optimal solution to the instance P in Gi – we can obtain these
solutions by just running the promised β-approximation algorithm for Gis. Now, let
C := argminiu(C

i)fP (C
i) be the one among solutions C i that constitutes the best

solution for the original G. We claim that C is a αβ-approximate solution for G.
This is so, since if C∗ is the optimal solution for G, then – as we observed above –
there exists j such that uj(C∗) ≤ αu(C∗). But this means that

u(C)fP (C) ≤ u(Cj)fP (C
j) ≤ uj(Cj)fP (C

j)

≤ βuj(C∗)fP (C
∗) ≤ αβu(C∗)fP (C

∗) = αβOPT,

where the first inequality follows from definition of C, the second one from cut
lowerbounding property of (α,G)-decomposition, and the third one from the fact that
Cj was a β-approximate solution for Gj. So, C is indeed an αβ-approximate solution
for G.

In the above, we reduce the task of approximation of a cut-based minimization
problem to a task of approximation of this problem in all Gis. However, it turns out
that if one is willing to settle for Monte Carlo-type approximation guarantees, one
just need to approximately solve this problem in only a small number of Gis. To make
this statement precise, let us introduce the following definition.

Definition 5.3.3. For a given G = (V,E, u), α ≥ 1, and 1 ≥ p > 0, we say that a
collection {Gi}i of random graphs4 Gi = (V,Ei, ui), α-preserves the cuts of G with
probability p if for every cut C of G:

(lowerbounding) for all i, the capacity ui(C) of C in Gi is at least its capacity
u(C) in G;

(probabilistic upperbounding) with probability at least p, there exists i such that
ui(C) ≤ αu(C).

With a slight abuse of notation, we will say that a random graph G′ is α-preserving
the cuts of G with probability p if the corresponding singleton family {G′} is doing
it. Now, a useful connection between (α,G)-decomposition of graph G and obtaining
graphs O(α)-preserving the cuts of G with some probability is given by the following
fact whose proof is a straight-forward application of Markov’s inequality.

Fact 5.3.4. Let G = (V,E,u), α ≥ 1, 1 > p > 0 and let {(λi, Gi)}i be some (α,G)-
decomposition of G. If G′ is a random graph chosen from the set {Gi}i according to
distribution given by λis i.e. Pr[G′ = Gi] = λi, then G′ 2α-preserves cuts of G with
probability 1/2.

Therefore – as we will formally prove later – for any β ≥ 1, we can obtain a
Monte Carlo 2αβ-approximation algorithm for any minimization cut-based problem

4We formalize the notion of random graphs by viewing each Gi as a graph on vertex set V chosen
according to some underlying distribution over all such graphs.
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in G, by β-approximating it in a sample of O(ln |V |) Gis that were chosen according
to distribution described by λis.

5.3.1 Finding a Good (α,G)-decomposition Efficiently

In the light of the above discussion, we focus our attention on the task of developing
a (α,G)-decomposition of graphs into some family G of structurally simple graphs
that enjoys relatively small value of α. Of course, since our emphasis is on obtaining
algorithms that are very efficient, an important aspect of the decomposition that we
will be interested in is the time needed to compute it.

With this goal in mind, we start by considering the following theorem due to Räcke
[114] that describes the quality of decomposition one can achieve when decomposing
the graph G into a family GT of its decomposition trees (cf. [114] for a formal definition
of a decomposition tree).

Theorem 5.3.5 ([114]). For any graph G = (V,E,u), an Õ(m)-sparse (O(log n),GT )-
decomposition of G can be found in polynomial time, where n = |V | and m = |E|.

Due to structural simplicity of decomposition trees, as well as, the quality of
cut preservation being the best – up to a constant – achievable in this context, this
theorem was used to design good approximation algorithms for a number of cut-based
minimization problems.

Unfortunately, from our point of view, the usefulness of Räcke’s decomposition is
severely limited by the fact that the time needed to construct it is not acceptable when
one is aiming at obtaining fast algorithms. More precisely, the running time of the
decomposing algorithm of [114] is dominated by Õ(m) executions of the algorithm of
Fakcharoenphol, Talwar and Rao [62] that solves the minimum communication cost
tree problem with respect to a cost function devised from the graph G (cf. [114]
for details). Each such execution requires, in particular, computation of the shortest-
path metric in G with respect to some length function, which employs the well-known
all-pair shortest path algorithm [66, 137, 7] running in O(min{mn, n2.376}) time. This
results in – entirely acceptable when one is just interested in obtaining polynomial-
time approximation algorithms, but prohibitive in our case – Õ(mmin{mn, n2.376})
total running time.

One could try to obtain a faster implementation of Räcke’s decomposition by using
a nearly-linear time low-average-stretch spanning tree construction due to Abraham,
Bartal, and Neiman [1] (cf. Theorem 2.6.3) in place of the algorithm of [62]. This
would lead to an Õ(m2) time decomposition of G into its spanning trees that has
a – slightly worse – quality of Õ(log n) instead of the previous O(log n). However,
although we will use [1] in our construction (cf. Section 5.5.2), Õ(m2) time is still
not sufficiently fast for our purposes.

The key idea for circumventing this running time bottleneck is allowing ourselves
more flexibility in the choice of the family of graphs into which we will decompose G.
Namely, we will be considering (α,G)-decompositions of G into objects that are still
structurally simpler than G, but not as simple as trees.
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H’

F

H

Figure 5-2: An example of a j-tree H, its core H ′, and its envelope F consisting of
bold edges.

To this end, for j ≥ 1, we say that a graph H = (VH , EH , uH) is a j-tree (cf.
Figure 5-2) if it is a connected graph being a union of: a subgraph H ′ of H induced
by some vertex set V ′

H ⊆ VH with |V ′
H | ≤ j; and of a forest F on VH whose each

connected component has exactly one vertex in V ′
H . We will call the subgraph H ′ the

core of H and the forest F the envelope of H.5

Now, if we define GV [j] to be the family of all the j-trees on the vertex set V , the
following theorem – being the heart of our framework – holds. Its proof appears in
section 5.5.

Theorem 5.3.6. For any graph G = (V,E,u) and t ≥ 1, we can find in time Õ(tm)

a t-sparse (Õ(log n),GV [Õ(m logU
t

)])-decomposition {(λi, Gi)}i of G, where m = |E|,
n = |V |, and U is the capacity ratio of G. Moreover, the capacity ratio of each Gi is
O(mU).

Intuitively, the above theorem shows that if we allow j = Õ(m logU
t

) to grow, the
sparsity of the corresponding decomposition of G into j-trees – and thus the time
needed to compute it – will decrease proportionally.6

Note that a 1-tree is just an ordinary tree, so by taking t in the above theorem
sufficiently large, we obtain a decomposition of G into trees in time Õ(m2 logU).

5Note that given a j-tree we can find its envelope in linear time. Therefore, we will always assume
that the j-trees we are dealing with have their envelopes and cores explicitly marked.

6Interestingly, such a trade-off is somewhat reminiscent of the trade-off achieved by Spielman
and Teng [129, 130] between the number of additional edges of an ultrasparsifier and the quality of
spectral approximation provided by it – see Section 2.6.
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Therefore, we see that compared to the decomposition result of Räcke (cf. Theorem
5.3.5), we obtain in this case a decomposition of G with more efficient implementation
and into objects that are even simpler than decomposition trees, but at a cost of
slightly worse quality.

However, the aspect of this theorem that we will find most useful is the above-
mentioned trade-off between the simplicity of the j-trees into which the decomposition
decomposes G and the time needed to compute it. This flexibility in the choice of t
can be utilized in various ways.

For instance, one should note that, in some sense, the core of a j-tree H captures
all the non-trivial cut-structure of H. In particular, it is easy to see that maximum
flow computations in H essentially reduce to maximum flow computations in H’s core.
So, one might hope that for some cut-based problems the complexity of solving them
in H is proportional to the complexity of solving them in the – possibly much smaller
than H – core of H (this is, for example, indeed the case for the balanced separator
and the sparsest cut problems – see section 5.4.3). Thus one could use Theorem 5.3.6
– for appropriate choice of t – to get a faster algorithm for this kind of problems by
just computing first the corresponding decomposition and then leveraging the existing
algorithms to solve the given problem on a small number of sampled j-trees, while
paying an additional Õ(log n) factor in the approximation quality for this speed-up.

Even more importantly, our ability to choose in Theorem 5.3.6 sufficiently small
value of t, as well as, the cut sparsification technique (cf. Theorem 3.5.1) and recursive
application of the theorem to the cores of Õ(m logU

t
)-trees sampled from the computed

decomposition, allows us to establish the following theorem – its proof appears in
section 5.6.

Theorem 5.3.7. For any 1 ≥ l ≥ 0, integral k ≥ 1, and any graph G = (V,E,u), we

can find in Õ(m+2kn
(1+ 1−l

2k−1
)
logU) time a collection of (2k+1 lnn) nl-trees {Gi}i that

(log(1+o(1))k n)-preserve the cuts of G with high probability. Moreover, the capacity
ratio of each Gi is n(2+o(1))kU , where U is the capacity ratio of G, n = |V |, and
m = |E|.

As one can see, the above theorem allows obtaining a collection of j-trees that
α-preserve cuts of G – for arbitrary j = nl – in time arbitrarily close to nearly-linear,
but at a price of α growing accordingly as these two parameters decrease.

Note that one can get a cut-preserving collection satisfying the requirements of
the theorem by just finding an (Õ(log n), nl)-decomposition of G via Theorem 5.3.6
and sampling – in the spirit of Fact 5.3.4 – O(log n) nl-trees from it so as to ensure
that each cut is preserved with high probability. Unfortunately, the running time of
such procedure would be too large. Therefore, our approach to establishing Theorem
5.3.7 can be heuristically viewed as an algorithm that in case when the time required
by Theorem 5.3.6 to compute a decomposition of G into nl-trees is not acceptable,
does not try to compute and sample from such decomposition directly. Instead, it
performs its sampling by finding a decomposition of G into j-trees, for some value of
j bigger than nl, then samples a j-tree from it and recurses on this sample. Now, the
desired collection of nl-trees is obtained by repeating this sampling procedure enough
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times to make sure that the cut preserving probability is high enough, with the value
of j chosen so as to bound the number of recursive calls by k−1. Since each recursive
call introduces an additional Õ(log n) distortion in the faithfulness of the reflection of
the cut structure of G, the quality of the cut preservation of the collection generated
via such algorithm will be bounded by log(1+o(1))k n.

5.4 Applications

We proceed to demonstrating how the tools and ideas presented in the previous section
lead to a fast approximation algorithms for cut-based graph problems. In particular,
we apply our techniques to the (generalized) sparsest cut and the balanced separator
problems.

The following theorem encapsulates our way of employing the framework.

Theorem 5.4.1. For any α ≥ 1, integral k ≥ 1, 1 ≥ l ≥ 0, and undirected graph
G = (V,E,u) with n = |V |, m = |E|, and U being its capacity ratio, we can find in

Õ(m + 2kn
(1+ 1−l

2k−1
)
logU) time, a collection of 2k+1 lnn nl-trees {Gi}i, such that for

any instance P of any cut-based minimization problem P the following holds with high
probability. If {C i}i is a collection of cuts of G with each C i being some α-optimal
solution to P on the nl-tree Gi, then at least one of C i is an (α log(1+o(1))k n)-optimal
solution to P on the graph G.

When we take l equal to zero, the above theorem implies that if we have an
α-approximation algorithm for a given cut-based problem that works only on tree in-
stances and runs in T (m,n, U) time then, for any k ≥ 1, we can get an (α log(1+o(1))k n)-
approximation algorithm for it in general graphs and the running time of this algo-
rithm will be just Õ(m+ k2kn(1+1/(2k−1) logU)+ (2k+1 lnn)T (m,n, U). Note that the
computational overhead introduced by our framework, as k grows, quickly approaches
nearly-linear. Therefore, if we are interested in designing fast poly-logaritmic approx-
imation algorithms for some cut-based minimization problem, we can just focus our
attention on finding a fast approximation algorithm for its tree instances.

Also, an interesting feature of our theorem is that the procedure producing the
graphs {Gi}i is completely oblivious to the cut-based problem we want to solve – the
fact that this problem is a cut-based minimization problem is all we need to make
our approach work.

Proof of Theorem 5.4.1. We produce the desired collection {Gi}i by just employing

Theorem 5.3.7 with the desired value of k ≥ 1 to find in time Õ(m+2kn
(1+ 1−l

2k−1
)
logU)

a set of t = (2k+1 lnn) nl-trees that (log(1+o(1))k n)-preserve the cuts of G with high
probability and output them as {Gi}i.

Now, to prove the theorem, let us define C to be the cut that minimizes the
quantity u(C i)fP (C

i) among all the t solutions C1, . . . , Ct found, where fP is the
function corresponding to the instance P of a problem P we are solving (cf. equation
(5.2)). Clearly, by definition of (log(1+o(1))k n)-preservation of the cuts, the capacity
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of C – and thus the quality of the solution corresponding to it – can only improve in
G i.e.

u(C)fP (C) ≤ uj(C)fP (C),

where Gj is the nl-tree to which C corresponds and, for any i, u i denotes the capacity
vector of Gi.

Moreover, if we look at an optimum solution C∗ to our problem in G – i.e. C∗ =
argmin∅6=C⊂V u(C)fP (C) – then, with high probability, in at least one of the Gis,
say in Gj′ , C∗ has the capacity at most (log(1+o(1))k n) times larger than its original
capacity u(C∗) in G. As a result, for the α-optimal solution Cj′ found by the algorithm
in Gj′ it will be the case that

u(Cj′)fP (C
j′) ≤ uj′(Cj′)fP (C

j′) ≤ αuj′(C∗)fP (C
∗) ≤ α(log(1+o(1))k n)u(C∗)fP (C

∗),

where the first inequality follows from the fact that {Gi}i (log(1+o(1))k n)-preserve
cuts of G.

But, by definition of C, we have

u(C)fP (C) ≤ u(Cj′)fP (C
j′).

So, by noting that u(C∗)fP (C
∗) is the objective value of an optimal solution to our

instance, we get that C is indeed an (α log(1+o(1))k n)-optimal solution to P with high
probability.

5.4.1 Computing Maximum Concurrent Flow Rate on Trees

As Theorem 5.4.1 suggests, we should focus on designing fast approximation algo-
rithms for tree instances of our problems. The basic tool we will use in this task is
the ability to compute maximum concurrent flow rate on trees in nearly-linear time.
The main reason for existence of such a fast algorithm stems from the fact that if we
have a demand graph D = (V,ED,d) and a tree T = (V,ET ,u

T ), there is a unique
way of satisfying these demands in T . Namely, for each demand edge e ∈ ED the
flow of de units of corresponding commodity has to be routed along the unique path
pathT (e) joining two endpoints of e in the tree T . As a result, we know that if we
want to route in T a concurrent flow of rate θ = 1 then the total amount of flow
flowing through a particular edge h of T is equal to

uT [D](h) :=
∑

e∈ED,h∈pathT (e)

de.

Interestingly, we can compute uT [D](h) for all h ∈ ET in nearly-linear time.

Lemma 5.4.2. For any tree T = (V,ET ,u
T ) and demand graph D = (V,ED,d), we

can compute uT [D](h), for all h ∈ ET , in Õ(|ED|+ |V |) time.
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Proof. To compute all the values uT [D](h), we adapt the approach to computing the
stretch of edges outlined by Spielman and Teng in [130].

For a given tree T ′ = (V ′, ET ′ ,uT ′
) and a demand graph D′ = (V ′, ED′ ,d ′)

corresponding to it, let us define the size SD′(T ′) of T ′ (with respect to D′) as
SD′(T ′) :=

∑
v∈V ′(1 + dD′(v)), where dD′(v) is the degree of the vertex v in D′.

Let us define a splitter v∗D′(T ′) of T ′ (with respect to D′) to be a vertex of T ′ such
that each of the trees T ′

1, . . . , T
′
q obtained from T ′ by removal of v∗D′(T ′) and all the

adjacent edges has its size SD′(T ′
i ) being at most one half of the size of T ′ i.e.

SD′(T ′
i ) ≤ SD′(T ′)/2 = |ED′ |+ |V ′|/2,

for each i. It is easy to see that such a splitter v∗(T ′) can be computed in a greedy
fashion in O(|V ′|) = O(SD′(T ′)) time.

Our algorithm for computing uT [D]s works as follows. It starts with finding a
splitter v∗ = v∗D(T ) of T . Now, let E0 be the set of demand edges e ∈ ED such that
pathT (e) contains v∗. Also, for 1 ≤ i ≤ q, let Ei ⊆ ED be the set of edges e ∈ D for
which pathT (e) is contained entirely within Ti. Note that this partition of edges can
be easily computed in O(|ED|+ |V |) = O(SD′(T ′)) time. Also, let us define Di to be
the demand graph being the subgraph of D spanned by the demand edges from Ei

(with demands inherited from D).
As a next step, our algorithm computes in a simple bottom-up fashion uT [D0](h)

for each h ∈ ET . Then, for 1 ≤ i ≤ q, it computes recursively the capacities uTi [Di]
of all the edges of Ti – note that, by definition of Di, uTi [Di](h) = uT [Di](h) for any
edge h of Ti. Finally, for each h ∈ ET , we output uT [D](h) =

∑
i u

T [Di](h). Note
that, since for i ≥ 1, uT [Di](h) 6= 0 only if h is a part of Ti, the sum

∑
i u

T [Di](h) has
at most two non-zero components and thus all the values uT [D](h) can be computed
in O(|ED| + |V |) = O(SD(T )) time. Furthermore, the fact that, by our choice of v∗,
SDi

(Ti) ≤ SD(T )/2 implies that the depth of recursion is at most log SD(T ) and the
whole algorithm runs in Õ(SD(T )) = Õ(|ED|+ |V |) time, as desired.

Now, the crucial observation to be made is that the best achievable flow rate θ∗

of the maximum concurrent flow corresponding to the demand graph D = (V,ED,d)

is equal to minh∈ET

uT
h

uT [D](h)
. Therefore, Lemma 5.4.2 implies the following corollary.

Corollary 5.4.3. For any tree T = (V,ET ,u
T ) and demand graph D = (V,ED,d),

we can find in Õ(|ED|+ |V |) time the optimal maximum concurrent flow rate θ∗ and

an edge h∗ ∈ ET such that θ∗ =
uT
h∗

uT [D](h∗)
.

Note that we only compute the optimal flow rate of the concurrent flow and not
the actual flows. In some sense, this is unavoidable – one can easily construct an
example of maximum concurrent flow problem on tree, where the representation of
any (even only approximately) optimal flow has size Ω(|ED||V |) – see Figure 4-2 in
Chapter 4.
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5.4.2 Generalized Sparsest Cut Problem

We proceed to designing a fast approximation algorithm for the generalized sparsest
cut problem. We start by noticing that for a given tree T = (V,ET ,u

T ), demand

graph D = (V,ED,d), and an edge h of this tree, the quantity uT
h

uT [D](h)
is exactly the

(generalized) sparsity of the cut that cuts in T only the edge h. Therefore, Corollary
5.4.3 together with the fact that the sparsity of the sparsest cut is always an upper
bound on the maximum concurrent flow rate achievable (cf. [101, 19]), gives us the
following corollary.

Corollary 5.4.4. For any given tree T = (V,E,u) and demand graph D = (V,ED,d),

an optimal solution to the generalized sparsest cut problem can be computed in Õ(|ED|+
|V |) time.

Now, by applying Theorem 5.4.1 together with a preprocessing step of cut sparsi-
fication of D (cf. Corollary 2.6.2), we are able to obtain a poly-logarithmic approxi-
mation for the generalized sparsest cut problem in close to linear time.

Theorem 5.4.5. For any graph G = (V,E,u), demand graph D = (V,ED,d), and
integral k ≥ 1, there exists a Monte Carlo log(1+o(1))k n-approximation algorithm for
generalized sparsest cut problem that runs in time Õ(m+ |ED|+2kn(1+1/(2k−1)) logU),
where n = |V |, m = |E|, and U is the capacity ratio of G.

Proof. We start by employing Corollary 2.6.2 with δ equal to 1, to sparsify both
G – to obtain a graph G̃ = (V, Ẽ, ũ)) – and the demand graph D – to obtain a
demand graph D̃ = (V, ẼD, d̃) – in total time of Õ(m+ |ED|). Note that computing
sparsity of a cut with respect to these sparsified versions of G and D leads to a
4-approximate estimate of the real sparsity of that cut. Since this constant-factor
approximation is acceptable for our purposes, we can focus on approximating the
sparsest cut problem with respect to G̃ and D̃. To this end, we just use Theorem
5.4.1 together with Corollary 5.4.4 and, since both |Ẽ| and |ẼD| have Õ(n) edges, our
theorem follows.

5.4.3 Balanced Separator and Sparsest Cut Problem

We turn our attention to the balanced separator problem. Analogously to the case
of the generalized sparsest cut problem above, to employ our approach we need an
efficient algorithm for the tree instances of the balanced separator problem. Unfor-
tunately, although we can solve this problem on trees optimally via dynamic pro-
gramming, there seems to be no algorithm that does it very efficiently – ideally, in
nearly-linear time. Therefore, we circumvent this problem by settling for a fast but
approximate solution.

Namely, we use the result of Sherman [122] who shows that, for any ε > 0, the bal-
anced separator problem – as well as the sparsest cut problem – can be O(

√
log n/ε)-

approximated in a graph G – with n vertices and m edges – in time Õ(m + n4/3+ε).
This running time corresponds to sparsifying G and then using perform (approxi-
mate) maximum flow computations on a sequence of nε graphs that are derived in a
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certain way from the sparsified version of G. As these computations can be performed
using the maximum flow algorithm from Chapter 3, the running time Õ(m+ n4/3+ε)
follows.

Unfortunately, Õ(m + n4/3+ε) running time is still not sufficiently fast for our
purposes. At this point, however, we recall that maximum flow computation in a
j-tree reduces to the task of finding the maximum flow in its core. So, if we want
to perform a maximum flow computation on a j-tree that has its core sparsified (i.e.
the core has only Õ(j) edges), the real complexity of this task is proportional to j as
opposed to being proportional to n. This motivates us to obtaining an implementation
of Sherman’s algorithm on j-trees that achieves better running time. This is captured
in the following lemma.

Lemma 5.4.6. For any j-tree G = (V,E,u) and ε > 0, one can O(
√

log n/ε)-

approximate the balanced separator and the sparsest cut problems in Õ(m + nε(n +
j4/3)) time, where m = |E| and n = |V |.

Proof. We start by using Corollary 2.6.2 with δ = 1 to sparsify the core of our j-tree
G. This ensures that the resulting j-tree G̃ has a core with Õ(j) edges. Also, it is
easy to see that we can focus on approximating our problems in this graph since any
approximation obtained for G̃ leads to an approximation for G that is only by at
most a constant factor worse.

For given ε > 0, the algorithm of Sherman reduces the task of O(
√

log n/ε)-
approximation of the balanced partition and the sparsest cut problems in the graph
G̃ to solving a sequence of nε instances of the following problem7. We are given a
graph Ĝ being G̃ with a source s and sink t added to it. We also add auxiliary edges
that connect these two vertices with the original vertices corresponding to G̃. The
capacities of the auxiliary edges can be arbitrary – in particular, they can be zero
which means that the corresponding edge is not present – but we require that the
value of the s-t cut C = {s} is at most n/2 (thus the throughput of the maximum
s-t flow is also bounded by this value). The task is to find a constant approximation
to the maximum s-t flow in the graph Ĝ.

Our goal is to show that we can solve any instance of the above problem in
Õ(n+ j4/3) time – this will imply our desired Õ(m+nε(n+ j4/3)) total running time
of Sherman’s O(

√
log n/ε)-approximation algorithm and thus yield the proof of the

lemma.
To this end, we design a method of fast compression of the graph Ĝ to make it only

consist of the core of G̃, the source s and the sink t, and the corresponding auxiliary
edges (with modified capacities). This method will allow efficient – i.e. linear time –
recovering from any flow in the compressed graph a flow in the original graph Ĝ, such
that if the flow in the compressed graph was an approximately maximum flow then
so is the recovered one (with the same approximation factor). So, by running the
maximum flow algorithm from Chapter 3 on this compressed graph and recovering

7For our purposes, we use a slight generalization of the problem that is actually considered in
[122].
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the flow in Ĝ from the computed flow, we will obtain an approximately maximum
flow in Ĝ in time Õ(n+ j4/3), as desired.

Our compression procedure works in steps – each such step is a local transforma-
tion that reduces the number of vertices and edges of the graph by at least one and
can be implemented in constant time. In each transformation we consider a vertex
v in the current version Ĝ′ of Ĝ such that v has exactly one non-auxiliary edge e
incident to it and this edge is a part of an envelope of G̃. As we will see, Ĝ′ will be
always a subgraph of the graph Ĝ and thus one can convince oneself that – as long
as Ĝ′ still contains some edges of the envelope of G̃ – we can always find a vertex v
as above.

Assume first that there is at most one auxiliary edge that is incident to v. (For
the sake of the argument, let us use here a convention that this single auxiliary edge
e′ is always present, but might have a capacity of zero.) In this case, we just contract
the edge e and set the new capacity of e′ to be the minimum of its previous capacity
and the capacity of e. We claim now that given any flow f ′′ in the graph Ĝ′′ obtained
through this contraction of e, we can extend it in constant time to a flow f ′ in the
graph Ĝ′ of the same value. To achieve this, we just transplant the flow of |f ′′(e′)|
units that f ′′ routes over the edge e′ in Ĝ′′, to a flow in Ĝ′ routed through the edges
e and e′. Note that by definition of the capacity of e′ in Ĝ′′, the transplanted flow f ′

is feasible in Ĝ′ and has the same value as f ′′ had in Ĝ′′. Moreover, one can see that
the value of the maximum flow in Ĝ′ can be at most the value of the maximum flow
in Ĝ′′ since any minimum s-t cut in Ĝ′′ can be easily extended to a minimum s-t cut
in Ĝ′ that has the same capacity. So, if f ′′ was approximately maximum flow in Ĝ′′

then so is f ′ in Ĝ′.
Now, we deal with the case when there are two auxiliary edges e′,e′′ incident to

v (wlog, let us assume that the capacity u′′ of e′′ is not bigger than the capacity u′

of e′). To this end, we note that if we route u′′ units of flow from s to t along the
path consisting of the edges e′,e′′ then there still exists a maximum flow in Ĝ′ such
that its flow-path decomposition contains the flow-path corresponding to our pushing
of u′′ units of flow over the edges e′, e′′. This implies that if we reduce the capacity
of e′ and e′′ by u′′ – thus reducing the capacity of e′′ to zero and removing it – and
find the approximate maximum flow f ′′ in the resulting graph, we can still recover
an approximately maximum flow in Ĝ′ by just adding the above-mentioned flow-path
to f ′′. But, since in the resulting graph v has at most one auxiliary edge incident to
it – namely, e′ – we can use our transformation from the previous case to compress
this graph further. This will reduce the number of vertices and edges of Ĝ′ by at
least one while still being able to recover from an approximately maximum flow in
the compressed graph Ĝ′′ an approximately maximum flow in Ĝ′.

By noting that the compression procedure stops only when Ĝ′ contains no more
edges of the envelope of G̃ and thus the final compressed graph indeed consists of
only (sparsified) core of G̃, source s, and t, the lemma follows.

Before we proceed further, we note that we can compute very quickly a very
rough, but polynomial in |V |, approximation to the graph partitioning problems of
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our interest.

Lemma 5.4.7. For any graph G = (V,E,u), we can find a |V |2-approximation to

the sparsest cut and the balanced separator problems in time Õ(|E|).

Proof. Consider the case when we are interested in the sparsest cut problem (we will
present variation for the balanced separator problem shortly). We sort the edges
of G non-increasingly according to their capacities. Let e1, . . . , e|E| be the resulting
ordering. Let r∗ be the smallest r such that the set {e1, . . . , er} contains a spanning
tree T of G. It is easy to see that we can find such r∗ in Õ(|E|) time using the
union-find data structure.

Now, let us look at the cut C in G that cuts only the edge er∗ in T . Since no
vertex of G can have degree bigger than |V |, the sparsity of C is at most uer∗ |V |. On
the other hand, any cut in G has to cut at least one edge er with r ≤ r∗. Therefore,
we know that the sparsity of the optimal cut in G has to be at least uer∗/|V |. This
implies that C is the desired |V |2-approximation of the sparsest cut of G.

In case of balanced separator problem, we define r∗ to be the smallest r such that
the largest connected component of the subgraph Er spanned by the edges {e1, . . . , er}
has its size bigger than (1 − c)|V |, where c is the desired balance constant of our
instance of the problem. Once again, one can easily find such r∗ in Õ(|E|) time
by employing union-find data structure. Let F be the connected component of Er∗

containing er∗ . Note that by minimality of r∗, removing er∗ from F disconnects it
into two connected pieces and at least one of these pieces, say F ′, has to have at
least (1 − c)|V |/2 and at most (1 − c)|V | vertices. Let C be the cut corresponding
to F ′. Clearly, the sparsity of C is at most uer∗ |V |. Furthermore, any cut C∗ with
min{|C∗|, |C∗} ≥ c|V | has to cut some edge er with r ≥ r∗. Therefore, the optimal
solution can have sparsity at most u(er∗)/|V |. This implies that C is a c′-balanced
separator with c′ = min{(1− c)/2, c} and thus constitutes our desired |V |2-(pseudo-
)approximation for our instance of the balanced separator problem.

Now, we can use Theorem 5.4.1 and Lemma 5.4.6 – for the right choice of j = nl

– together with a simple preprocessing making the capacity ratio of the graphs we
are dealing with polynomially bounded, to obtain the following result.

Theorem 5.4.8. For any ε > 0, integral k ≥ 1, and graph G = (V,E,u), we
can (log(1+o(1))(k+1/2) n/

√
ε)-approximate the sparsest cut and the balanced separator

problems in time Õ(m+ 2kn
1+ 1

4·2k−1
+ε
), where m = |E| and n = |V |.

Proof. Let us assume first that the capacity ratio of G is polynomially bounded i.e.
it is nO(1). In this case, we just use Theorem 5.4.1 on G with l = 3·2k

4·2k−1
to obtain a

collection of (2k+1 lnn) nl-trees {Gi}i in time

Õ(m+ 2kn
(1+ 1−l

2k−1
)
) = Õ(m+ 2kn

(1+ 1

4·2k−1
)
).

Next, we compute – using the algorithm from Lemma 5.4.6 – O(
√
log n/ε)-

approximately optimal solutions to our desired problem – being either the sparsest
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cut or the balanced separator problem – on each of Gis in total time of

Õ(m+ (2k+1 lnn)nε(n+ n4l/3)) = Õ(m+ 2kn
1+ 1

4·2k−1
+ε
).

By Theorem 5.4.1 we know that choosing the best one among these solutions will
give, with high probability, a (log(1+o(1))(k+1/2) n/

√
ε)-approximately optimal solution

that we are seeking.
To ensure that G has its capacity ratio always polynomially bounded, we devise

the following preprocessing procedure. First we use Lemma 5.4.7 to find a cut C
being n2-approximation to the optimal solution of our desired problem. Let ζ be the
sparsity of C. We remove all the edges in G that have capacity smaller than ζ/mn2

and, for all the edge with capacity bigger than ζn, we trim their capacity to ζn.
Clearly, the resulting graph G′ has its capacity ratio polynomially bounded. Also,
the capacity of any cut in G can only decrease in G′.

Now, we just run the approximation algorithm described above on G′ instead of
G. Also, in the case of approximating the balanced separator problem, we set as our
balance constant the value c′′ := min{c, c′}, where c′ := min{|C|, |C|}/n and c is the
balance constant of our input instance. Since the capacity ratio of G′ is polynomially
bounded, the running time of this algorithm will be as desired. Moreover, we can
assume that the α-approximately optimal cut C ′ output will have sparsity at most ζ
in G′ - otherwise, we can just output C as our solution. This means that C ′ does not
cut any edges with trimmed capacity and thus the capacity of C ′ in G (after putting
the removed edges back) can be only by an additive factor of ζ/n2 larger than in G′.
But since ζ/n2 is a lower bound on the sparsity of the optimal solution, we see that
C ′ is our desired (log(1+o(1))(k+1/2) n/

√
ε)-approximately optimal solution.

Recall that our main motivation to establishing Lemma 5.4.6 was our inability
to solve the balanced separator problem on trees efficiently. However, the obtained
trade-off between the running time of the resulting algorithm and the quality of
the approximation provided for both the balanced separator and the sparsest cut
problems is much better than the one we got for the generalized sparsest cut problem
(cf. Theorem 5.4.5). This shows us that sometimes it is beneficial to take advantage
of the flexibility in the choice of l given by Theorem 5.4.1 by combining it with an
existing fast approximation algorithm for our cut-based problem that allows us to
obtain a faster implementation on j-tree instances.

5.5 Proof of Theorem 5.3.6

Let us fix throughout this section the parameter t ≥ 1, the graph G = (E, V,u) to be
(Õ(log n),GV [Õ(m logU

t
)])-decomposed, m = |E|, n = |V |, and U equal to the capacity

ratio of G. Our proof of Theorem 5.3.6 consists of two main steps. First, we show
how to quickly decompose G into a t-sparse (Õ(log n),H[Õ(m logU

t
)])-decomposition

{(λi, H i)}i, where H[j] is a family of graphs that we will define shortly. Then, as a
second step, we prove that for any graph H ∈ H[j] we can efficiently find a graph
G ∈ GV [O(j)] (i.e. a graph G being a O(j)-tree) such that H is embeddable into G
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and G is 9-embeddable into H. This will imply that both these graphs are equivalent
(up to a constant) with respect to their cut-flow structure. As a result, if we consider
a decomposition of G into convex combination {(λi, G

i
)}i, where each graph G

i
is the

graph from GV [O(j)] equivalent – in the above sense – to the graph H i ∈ H[j], then
we will be able to show that this constitutes the t-sparse (Õ(log n),GV [Õ(m logU

t
)])-

decomposition of G that we are seeking.

5.5.1 Graphs H(T, F ) and the Family H[j]

a) b)

G

T

F

T \ F

H(T, F )

E[T ](F )

Figure 5-3: a) An example of a graph G (solid edges), its spanning tree T (bold edges),
and a subset F of edges of T (dotted edges). b) Graph H(T, F ) corresponding to the
example from a). The edges of T \ F are bold and the edges of the set E[T ](F ) are
dashed.

To define the family H[j], consider some spanning tree T = (V,ET ) of G. There
is a unique way of embedding G into T . Namely, for each edge e = (u, v) of G we
route the corresponding ue units of flow along the unique u-v path pathT (e) in T .
This implies that if we want G to be embeddable into T then each edge e of the tree
T has to have capacity of at least uT (e), where we define

uT (e) :=
∑

e′∈E:e∈pathT (e′)

ue′ .

Now, for a subset of edges F ⊆ ET , let us define

E[T ](F ) := {e ∈ E : pathT (e) ∩ F 6= ∅}.

Finally, let H(T, F ) = (V,E,u) be a graph (cf. Figure 5-3) with edge set E :=
ET ∪ E[T ](F ) and the capacities ue, for e ∈ E, being equal to:

ue :=

{
ue if e ∈ E[T ](F )

uT (e) otherwise.
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In other words, H(T, F ) is a graph obtained by taking the forest corresponding to
the tree T with edges of F removed and adding to it all the edges that are in the set
E[T ](F ) containing the edges of E whose endpoints are in different components of
this forest (note that F ⊆ E[T ](F )). The capacity ue of an edge e of H(T, F ) is equal
to the capacity uT (e) inherited from the tree T – if e is from the forest T \ F ; and it
is just the original capacity ue of e otherwise. It is easy to see that, by construction,
G embeds into H.

An observation that will turn out to be useful later is that both the capacity vector
uT and the graph H(T, F ) can be constructed very efficiently. This is captured in
the following lemma.

Lemma 5.5.1. Given a spanning tree T = (V,ET ) of G and some F ⊆ ET , we can

compute uT (e) for all e ∈ ET and construct the graph H(T, F ) in Õ(m) time.

Proof. First, we show how to construct the set E[T ](F ) in O(m). We do this by
first associating with each vertex v a label indicating the connected component of the
forest T \F to which v belongs. This can be easily done in O(n) time. Next, we start
with E ′ := ∅ and for each e edge of G we check whether its both endpoints belong to
the same connected component. If this is not the case, we add e to E ′. Clearly, this
procedure takes O(m) time and the resulting set E ′ is equal to E[T ](F ). Now, we
obtain H(T, F ) by just taking the union of the edges from E[T ](F ) – with capacities
given by the capacity vector u – and of the forest T \ F – with capacities given by
the capacities given by the capacity vector uT that, as we will see shortly, can be
computed in Õ(m) time.

To compute the capacity vector uT , we just note that for any e ∈ ET , uT (e) =
uT [G](e), where uT [G](e) is defined in section 5.4.1. Thus we can use the algorithm
from Lemma 5.4.2 to compute all the uT (e) in Õ(m) time.

Now, we define H[j] to be the family of all the graphs H(T, F ) arising from all
the possible choices of a spanning tree T of G and of a subset F of edges of T such
that |F | ≤ j.

5.5.2 Obtaining an (Õ(log n),H[Õ(m logU
t )])-decomposition of G

The way the desired t-sparse (Õ(log n),H[Õ(m logU
t

)])-decomposition of G will be
constructed is by employing the multiplicative-weights-update-based approach from
Section 2.8. To this end, consider a (F [j], G)-system with F [j] consisting of flows
fH , for each H = H(T, F ) that is in H[j]. Here, the flow fH is a flow resulting from
identity embedding of H into G, i.e., fH puts uT (e) units of flow on each e ∈ T \ F
and ue units of flow on each e ∈ E[T ](F ).

Clearly, having any feasible solution {λf}f∈F [j] to an α-relaxed (F [j], G)-system
gives us an (α,H[j])-decomposition, as G is embeddable into each H(T, F ). Also, if
this solution has at most t λfs non-zero then this corresponding (α,H[j])-decomposition
will be t-sparse. Thus, our goal is to obtain such a solution for α being Õ(log n) and
j = Õ(m logU

t
), sufficiently fast.
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To achieve this goal we will design a nearly-linear time algorithm that for any
length vector l in G finds a graph Hl = (V,EHl

,uHl ) that belongs to the family
H[Õ(m logU

t
)] and:

(i)
∑

e leu
Hl
e ≤ αl(G), where l(G) :=

∑
e leue is the volume of G with respect to l ;

(ii) |κ(Hl )| ≥ 4αm logm
t

, where κ(Hl ) is the set of edges e of Hl with u
Hl
e

ue
≥ ρ(Hl )

2
and

ρ(Hl ) := maxe′
u
Hl
e′

ue′
.

To understand the motivation behind the two above conditions, one needs to note
that if w is some weight vector and one takes the length vector l to be le :=

we

ue
for

each e, then the flow fHl
corresponding to Hl as above constitutes a valid answer of

an α-oracle for the (F [Õ(m logU
t

)], G)-system with respect to the weights w . To see
why this is the case, we just need to note that the condition (i) asserts that

∑

e

wecongfHl
(e) =

∑

e∈EHl

leu
Hl
e ≤ α

∑

e∈E

leue = α
∑

e

we,

where we use the fact that uHl
e = fHl

(e). Thus, fHl
satisfies the requirements of the

oracle definition (cf. Definition 2.8.2). (Interestingly, this oracle never returns “fail”–
even when the underlying (F [Õ(m logU

t
)], G)-system is infeasible.)

Furthermore, condition (ii) implies that

|κG(fHl
)| = |κ(Hl )| ≥

4αm logm

t
,

where we again used the fact that uHl
e = fHl

(e) and thus ρG(fHl
) = ρ(Hl ) and

κG(fHl
) = κ(Hl ). This mean that the tightness of the resulting oracle is at least

4αm logm
t

.
Now, by employing the multiplicative-weights-update routine from Section 2.8

with δ = 1 and the above oracle we can obtain a feasible solution {λf}f to the α-
relaxed (F [Õ(m logU

t
)], G)-system. Moreover, Lemma 2.8.9 allows us to conclude that

this routine will run in total Õ(mt) time and produce a solution that has at most t
non-zero λfs. So, in the light of the above, we can just focus on designing a nearly-
linear time algorithm that finds for any length function l the graph Hl that satisfies
conditions (i) and (ii) above with α = Õ(log n).

Construction of the Graph Hl

Let us fix the length vector l throughout this section. Our construction of the graph
Hl is based on first finding a tree Tl that satisfies the condition (i) (for some α =

Õ(log n), with respect to capacity vector uT ) and then computing a subset Fl of
Õ(m logU

t
) edges such that taking Hl = H(Tl , Fl ) satisfies both conditions and the

resulting graph is in H[Õ(m logU
t

)].
To find the tree Tl we will use the low-stretch spanning tree construction from

Theorem 2.6.3.
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Lemma 5.5.2. We can find in Õ(m) time a spanning tree Tl of G such that if we
impose capacities uTl on the edges of Tl then l(Tl ) =

∑
e leu

Tl
e ≤ 2αl(G), for some α

being Õ(log n).

Proof. Consider some spanning tree T = (V,ET ) of G with capacities uT on its edges.
Note that
∑

f

lfu
T
f =

∑

f∈ET

lf
∑

e∈E,f∈pathT (e)

ue =
∑

e∈E

l(pathT (e))ue =
∑

e∈E

stretchlT (e)leue,

where we recall from Section 2.6 that the stretch stretchlT (e) of an edge e is the ratio
of the distance l(pathT (e)) between the endpoints of e in T and the length le of the
edge e.

Therefore, we see that to establish the lemma it is sufficient to find in Õ(m) time
a tree T such that ∑

e

stretchlT (e)leue ≤ 2αl(G).

To this end, let us follow a technique used in [8] and define a multigraph G on
vertex set V that contains de := 1 + ⌊ leue|E|

l(G)
⌋ copies of each edge e ∈ E. Note that

the total number of edges of G – when counting multiple copies separately – is

∑

e

de ≤ |E|+
∑

e

leue|E|
l(G)

≤ 2|E| = 2m.

Now, we use the algorithm8 from Theorem 2.6.3 on G with weights we = le for
each e, and obtain in Õ(

∑
e de) = Õ(m) time a spanning tree Tl of G – that also must

be a spanning tree of G – such that:

∑
e stretch

l
Tl
(e)de∑

e de
≤ α,

for an α being Õ(log n).
But, by the fact that for any e

de ≥
leue|E|
l(G)

≥ leue

∑
e′ de′

2l(G)
,

we get

∑
e stretch

l
Tl
(e)leue

2l(G)
≤
∑

e stretch
l
Tl
(e)de∑

e′ de′
≤ α.

This means that

l(Tl ) =
∑

f

lfu
Tl

f =
∑

e∈E

stretchlTl
(e)leue ≤ 2αl(G)

8Technically, the algorithm of [1] is designed for simple graphs, but it is straight-forward to adapt
it to work on multigraphs with a running time being nearly-linear in the total number of edges.
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with α = Õ(log n), as desired.

So, we see that by taking Tl as in the above lemma we obtain a graph in H[0] ⊆
H[Õ(m logU

t
)] that satisfies condition (i). However, this graph may still violate the

remaining condition (ii). To illustrate our way of alleviating this shortcoming of Tl ,
consider a hypothetical situation in which κ(Tl ) = {e} for some edge e and for all the

other edges f 6= e of Tl we have
u
Tl
f

uf
= ρ for some ρ << ρ(Tl ) =

u
Tl
e

ue
. Clearly, in this

case Tl is a bad candidate for the graph Hl (at least when t is not very large) as it
severely violates condition (ii).

However, the key thing to notice in this situation is that if – instead of Hl = Tl –
we consider the graph Hl = H(Tl , F ) with F = {e} then for all the edges f of Tl other

than e we have
u
Tl
f

uf
= ρ. Furthermore, for each edge f ∈ E[Tl ](F ) = E[Tl ]({e}) it is

the case that
u
Tl
f

uf
= u(f)

u(f)
= 1 ≤ ρ. This means that ρ(Hl ) = ρ and thus |κ(Hl )| ≥ n−2,

which makes Hl satisfy condition (ii) for even very small values of t.
We see, therefore, that in the above, hypothetical, case by adding only one bot-

tlenecking edge e to F and considering the graph Hl = H(Tl , F ) – instead of Hl = Tl

– we managed to make the size of the set κ(Hl ) really large. It turns out that we
can always make the above approach work. As the following lemma shows, we can
always get the size of κ(Hl ) to be at least 4(2α+1)m

t
while fixing in the above manner

only Õ(m logU
t

) edges of the tree Tl .

Lemma 5.5.3. We can construct in Õ(m) time a graph Hl = H(Tl , Fl ), for some

Fl ⊆ ETl
with |Fl | = Õ(m logU

t
), that satisfies the conditions (i) and (ii) with α equal

to 2α + 1.

Proof. First, we prove that no matter what is our choice of the set Fl the graph
Hl = H(Tl , Fl ) satisfies condition (i) for α = (2α + 1). To this end, note that

l(Hl ) =
∑

e∈(ETl
\Fl )

leu
Tl
e +

∑

e∈E[Tl ](Fl )

leue ≤ l(Tl ) + l(G) ≤ (2α + 1)l(G).

We proceed to finding the subset Fl of edges of the tree Tl that will make Hl =
H(Tl , Fl ) satisfy also the condition (ii). Let us define for 0 ≤ j ≤ ⌊logmU⌋ Fj(Tl ) to

be the set of edges e of Tl such that mU
2j+1 ≤ u

Tl
e

ue
< mU

2j
.

Note that for any edge e of Tl 1 ≤ u
Tl
e

ue
≤ mU – the first inequality follows since

e itself has to be routed in Tl over e, and the second one since in the worst case all
m edges will be routed in Tl over e. Therefore, the union

⋃⌊logmU⌋
j=0 Fj(Tl ) of all the

Fj(Tl )s partitions the whole set ETl
of the edges of the tree Tl .

Now, let us take j∗ to be the smallest j such that

⌊logmU⌋∑

j′=j

|Fj′(Tl )| ≤
4(2α + 1)m(⌊logmU⌋+ 1)

t
.
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In other words, j∗ is the smallest j such that we could afford to take as Fl the
union of all the sets Fj∗(Tl ), . . . , F⌊logmU⌋(Tl ) and still have the size of Fl not exceed
the desired cardinality bound of

4(2α + 1)m(⌊logmU⌋+ 1)

t
= Õ(

m logU

t
).

Note that we can assume that j∗ > 0. Otherwise, we could just afford to take
Fl to be the union of all the sets Fj(Tl ) i.e. Fl = ETl

. This would mean that
Hl = H(Tl , ETl

) is just the graph G itself and thus ρ(Hl) = 1 and |κ(Hl )| = m, which
would satisfy the condition (ii).

Once we know that j∗ > 0, the definition of j∗ implies that

⌊logmU⌋∑

j′=j∗−1

|Fj′(Tl )| >
4(2α + 1)m(⌊logmU⌋+ 1)

t
.

However, since this sum has j∗+2 ≤ ⌊logmU⌋+1 summands, pigeon-hole principle
asserts existence of j∗ ≤ j ≤ ⌊logmU⌋ such that

|Fj−1(Tl )| ≥
4(2α + 1)m

t
.

Now, we define Fl to be the union
⋃⌊logmU⌋

j=j
Fj(Tl ). By the fact that j∗ ≤ j we

know that the size of such Fl obeys the desired cardinality bound. Furthermore, we
claim that if we take Hl = H(Tl , Fl ) with such choice of Fl then |κ(Hl )| is large
enough.

To see this, note that the fact that u
Hl
e

ue
= 1 for all edges e in E[Tl ](Fl ) implies

that ρ(Hl ) is at most 2j−1

mU
. But this means that all the edges from Fj−1(Tl ) are in

κ(Hl ) and thus

|κ(Hl )| ≥ |Fj−1(Tl )| ≥
4(2α + 1)m

t
,

as desired.
Now, to conclude the proof, we notice that Lemma 5.5.2 and Lemma 5.5.1 imply

that the graph Hl as above can indeed be constructed in Õ(m) time – to find the set

Fl we just sort the edges of Tl according to u
Tl
e

ue
and choose the appropriate value of

j.

In the light of our above considerations and Lemma 5.5.3 we obtain the following
corollary.

Corollary 5.5.4. A t-sparse (α′,H[Õ(m logU
t

)])-decomposition of G can be found in

Õ(tm) time for some α′ being Õ(log n).
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5.5.3 Obtaining an (Õ(log n),GV [Õ(m logU
t )])-decomposition of G

We proceed now to transforming the (Õ(log n),H[Õ(m logU
t

)])-decomposition obtained
in the previous section into the (Õ(log n),GV [Õ(m logU

t
)])-decomposition that we want

to obtain.
To this end, let us call G′ an almost-j-tree if it is a union of a tree and of an

arbitrary graph on at most j vertices. Now, let us consider a graph H(T, F ) for some
choice of the spanning tree T of G and of a subset F of edges of T . A property of
this graph that we will find useful is that the cut-flow structure of H(T, F ) is similar
to a cut-flow structure of an almost-O(|F |)-tree G(T, F ) and that furthermore, this
G(T, F ) can be found efficiently.

Lemma 5.5.5. For any spanning tree T = (V,ET ) of G and F ⊆ ET , we can find in

Õ(m) time an almost-O(|F |)-tree G(T, F ) such that the graph H(T, F ) is embeddable
into G(T, F ) and G(T, F ) is 3-embeddable into H(T, F ). Furthermore, the capacity
ratio of G(T, F ) is at most mU .

Proof. Consider some edge e = (v, v′) from E[T ](F ). Let us define v1(e) (resp. v2(e))
to be the vertex that corresponds to the first (resp. last) moment we encounter an
endpoint of an edge from F while moving along the path pathT (e) from v to v′. Also,
let us denote by path1T (e) (resp. path2T (e)) the fragment of pathT (e) between v and
v1(e) (resp. between v′ and v2(e)).

a) b)

T \ FT \ F

H(T, F )

E[T ](F )

G(T, F )

e
f

h

Figure 5-4: a) An example of a graph H(T, F ) from Figure 5-3. b) The corresponding
graph G(T, F ) with three projected edges e, f , and h. The set Proj(e) consist of
edges of H(T, F ) marked as dashed, the edges of the set Proj(f) are solid, and Proj(h)
contains all the edges that are dotted.

We define the graph G(T, F ) = (V,E ′,u ′) as follows. We make the edge set E ′

of G(T, F ) to consist of the edges from ET \ F and of an edge f = (w,w′) for each
w, w′ such that (w,w′) = (v1(e), v2(e)) for some edge e ∈ E[T ](F ). We will call
such an edge f projected and define Proj(f) to be the set of all e ∈ E[T ](F ) with
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(v1(e), v2(e)) = (w,w′). Now, we set the capacity u′
e in G(T, F ) to be:

u′
e :=

{
2uT

e if e ∈ ET \ F ;∑
e′∈Proj(e) ue′ otherwise (i.e. if e is projected).

See Figure 5-4 for an example of a graph H(T, F ) and the graph G(T, F ) correspond-
ing to it.

To see that this construction of G(T, F ) can be performed quickly, note that
by Lemma 5.5.1 we can find the set E[T ](F ) and capacity vector uT in Õ(m) time.
Moreover, by employing a simple adaptation of the divide-and-conquer approach that
was used in Lemma 5.4.2 to compute uT [D], we can compute all v1(e), v2(e) for each
e ∈ E[T ](F ) also in Õ(m) time.

By noting that if a vertex v is equal to v1(e) or v2(e) for some edge e then v
has to be an endpoint of an edge in F , we conclude that the subgraph of G(T, F )
induced by projected edges is supported on at most 2|F | vertices. This means that
G(T, F ) – as a connected graph being a union of a forest ET \ F and a graph on
2|F | vertices – is an almost-2|F |-tree. Furthermore, note that uT

e ≤ mmaxe′∈E ue′

for each edge e and that the capacity u′
f of an projected edge f is upperbounded by∑

e′∈E ue′ ≤ mmaxe′∈E ue′ . So, the fact that no edge e in G(T, F ) has its capacity
smaller than ue implies that the capacity ratio of G(T, F ) is at most mU .

To relate the cut-flow structure of H(T, F ) and G(T, F ), one can embed H(T, F )
into G(T, F ) by embedding each edge e ∈ ET \F of H(T, F ) into its counterpart edge
in G(T, F ) and by embedding each edge e ∈ E[T ](F ) by routing the corresponding
flow of ue units along the path formed from paths path1T (e) and path2T (e) connected
through the projected edge (v1(e), v2(e)). It is easy to see that our definition of u ′

ensures that this embedding does not overflow any capacities of edges of G(T, F ).
On the other hand, to 3-embed G(T, F ) into H(T, F ), we embed each non-

projected edge of G(T, F ) into the same edge in H(T, F ). Moreover, we embed each
projected edge f by splitting the corresponding u′

f =
∑

e∈Proj(f) ue units of flow into
|Proj(f)| parts. Namely, for each e ∈ Proj(f), we route ue units of this flow along the
path constituted by paths path1T (e), path

2
T (e) and the edge e. Once again, it is not

hard to convince oneself that such a flow does not overflow the capacities of edges of
H(T, F ) by a factor of more than three. The lemma follows.

It is easy to see that every j-tree is an almost-j-tree, however the converse does
not necessarily hold – one can consider an almost-2-tree corresponding to a cycle.
Fortunately, the following lemma proves that every almost-j-tree G is close – with
respect to its cut structure – to some O(j)-tree G and this G can be found efficiently.

Lemma 5.5.6. Let G′ = (V ′, E ′,u ′) be an almost-j-tree, we can obtain in Õ(|E ′|)
time an O(j)-tree G = (V ′, E,u) such that G′ is embeddable into G and G is 3-
embeddable into G′. Furthermore, the capacity ratio of G is at most twice the capacity
ratio of G′.

Proof. Let us assume first that G′ does not have vertices of degree one - we will deal
with this assumption later. Let W ⊂ V ′ be the set of all vertices of degree two in G′.
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It is easy to see that we can find in O(|E ′|) time a collection of edge-disjoint paths
p1, . . . , pk covering all vertices in W such that in each pi all the internal vertices are
from W and the two endpoints v1(pi) and v2(pi) of pi are not in W , i.e. they have
degree at least three in G′.

a) b)

v1(pi) v2(pi)

emin(pi)

G
′

v1(pi) v2(pi)

G

F
pi

Figure 5-5: a) An example of a path pi found in G′. b) Transformed path pi in the
resulting graph G.

We construct G by first taking the subgraph H ′ of G′ induced by the vertex set
V ′ \W and an empty forest F . Next, for each path pi, we repeat the following. Let
emin(pi) be the edge of pi that has minimal capacity u′

e among all the edges e of pi.
We add to both G and F the path pi with emin(pi) removed . We set the capacities
u of these added edges to be equal to their capacity in G′ increased by the capacity
u′
emin(pi)

of emin(pi). Finally, we add an edge (v1(pi), v
2(pi)) to G with capacity equal

to u′
emin(pi)

. See Figure 5-5. Clearly, such a construction can be performed in O(|E ′|)
time and the capacity ratio of G can be at most twice the capacity ratio of G′.

We claim that the graph G obtained above is a (3j − 2)-tree with F being its
envelope and its core being the subgraph of G induced by vertex set V ′ \W (note
that this subgraph consists of H ′ and all the edges {(v1(pi), v2(pi))}i). One can see
that we only need to argue that |V ′ \ W | ≤ 3j + 2, the rest of the claim follows
immediately from the above construction. To this end, note that since G′ is an
almost-j-tree at least |V ′|− j of its vertices is incident only to edges of the underlying
spanning tree on V ′. This means that the total sum of degrees of these vertices in G′

is at most 2(|V ′|−1). But there is no vertices in G′ with degree smaller than two, thus
a simple calculation shows that at most 2(j− 1) of them can have degree bigger than
two. We can conclude therefore that |W | ≥ |V ′| − j− 2(j− 1) and |V ′ \W | ≤ 3j− 2,
as desired.

Now, to see that G′ embeds into G, we note that H ′ is already contained in G.
So, we only need to take care of the paths {pi}i. For each path pi, G already contains
all its edges except emin(pi). But this edge can be embedded into G by just routing
the corresponding flow from one of its endpoints, along the fragment of path leading
to v1(pi), then through the edge (v1(pi), v

2(pi)) and finally back along the path to the
other endpoint. It is easy to verify that our way of setting up capacities ensures that
this routing will not overflow any of them.

Similarly, to 3-embed G into G′ we first embed H ′ into G′ via identity embed-
ding. Subsequently, for each path pi, G′ already contains all its edges, so we can use
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identity embedding for them as well. Furthermore, to embed the remaining edges
{(v1(pi), v2(pi))}i we can just route, for each i, the corresponding flow from v1(pi) to
v2(pi) along the path pi. Once again, one can convince oneself that by definition of
emin(pi) the resulting embedding does not overflow any capacities in G′ by a factor of
more than three.

To conclude the proof, it remains to explain how to deal with graph G′ having
vertices of degree one. In this case one may preprocess G′ as follows. We start with
an empty forest F

′
and as long as there is a degree one vertex in G′ we remove it –

together with the incident edge – from G′ and we add both the vertex and the edge to
F

′
. Once this procedure finishes the resulting graph G′ will not have vertices of degree

one and still will be an almost-j-tree. Thus, we can use our algorithm described above
and then just add F

′
to the (3j − 2)-tree that the algorithm outputs. It is easy to

see that the resulting graph will be still a (3j − 2)-tree – with F
′
being part of its

envelope – having all the desired properties.

Note that the above lemmas can be combined to produce – in Õ(m) time – for a
given graph H(T, F ) an O(|F |)-tree that preserves the cut-flow structure of H(T, F )
up to a factor of nine. This allows us to prove Theorem 5.3.6.

Proof of Theorem 5.3.6. By Corollary 5.5.4 we can compute in Õ(tm) time a t-sparse
(α′,H[Õ(m logU

t
)])-decomposition {(λi, H(T i, F i))}i of G with α′ being Õ(log n). Now,

consider a convex combination {(λi, G
i
)}i with each G

i
being the Õ(m logU

t
)-tree pro-

duced by applying Lemma 5.5.5 and then Lemma 5.5.6 to the graph H(T i, F i).
Clearly, we can obtain this combination in Õ(tm) time.

We claim that this combination is a t-sparse (Õ(log n),G[Õ(m logU
t

)])-decomposition

of G. Obviously,
∑

i λ
i = 1 and G is embeddable into each G

i
since G is embeddable

into each H(T i, F i) and each H(T i, F i) is embeddable into corresponding G
i
. Simi-

larly, by composing the 9-embedding of G
i
into H(T i, F i) and the identity embedding

of H(T i, F i) into G (cf. embeddings {fj}j in Definition 5.3.1), we get that {(λi, G
i
)}i

satisfies all the requirements of a t-sparse (9α′,GV [Õ(m logU
t

)])-decomposition. Fur-

thermore, by Lemma 5.5.5 and Lemma 5.5.6 the capacity ratio of each G
i
is at most

2mU . The theorem follows.

5.6 Proof of Theorem 5.3.7

Finally, we are ready to prove the main theorem of this chapter – Theorem 5.3.7. The
heart of the algorithm that will prove this theorem is the procedure Find_Trees(G, t, j)
described in Figure 5-6. On the high level, this procedure given an input graph G aims
at finding a j-tree that α-preserves the cuts of G with some probability p, where both
α and p depend on the parameters t and j. This is done by first cut sparsifying G (cf.
Corallary 2.6.2) to reduce the number of its edges, then using the decomposition of
Theorem 5.3.6 to represent the resulting graph as a convex combination of t simpler
graphs (j′-trees, for some j′ ≥ j). Next, one of these simpler graphs H is sampled –
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in the spirit of Fact 5.3.4 – and if H is already a j-tree then it is returned. Otherwise,
the procedure recursively finds a j-tree G

′
that approximates the cuts of the core of

H – thus G
′
is only defined on the vertex set of this core – and returns a j-tree that

approximates the cuts of the whole H – and thus of G – by just adding the envelope
of H to G

′
. An important detail is that whenever we recurse, we increase the value of

parameter t by squaring it. Intuitively, we may employ this more aggressive setting of
the value of t since the size of the problem – i.e. the size of the core of H – decreased
by a factor of at least t.

Procedure Find_Trees(G, t, j):
Input : Graph G = (V,E,u), parameters t ≥ 1, and j ≥ 1
Output: A j-tree G on vertex set V

Obtain a cut sparsification G̃ of G as in Corollary 2.6.2 with δ = 1

Find a t′-sparse (Õ(log |V |),GV [max{ |V |
t , 1}])-decomposition {(λi, G̃i)}i of G̃ as

in Theorem 5.3.6, where t′ is chosen so as to make the decomposition consist of
max{ |V |

t , 1}-trees
Sample a graph H by choosing G̃i with probability λi, as in Fact 5.3.4
if H is a j-tree then

G← H
else

Let H ′ be the core of H and let F be the envelope of H

Invoke Find_Trees(H ′, t2, j) to obtain a j-tree G
′
on vertex set V ′ ⊆ V of the

graph H ′

Add F to G
′
to get a j-tree G on vertex set V

end

return G

Figure 5-6: Procedure Find_Trees(G, t, j)

To justify our recursive step we prove the following lemma.

Lemma 5.6.1. Let H = (V,E,u) be a j′-tree and let H ′ = (V ′, E ′,u) be its core.

Also, let G
′
= (V ′, E,u) be a j-tree on vertex set V ′ that α-preserves the cuts of H ′

with probability p, for some α ≥ 1 and p > 0. Then the graph G being a union of G
′

and the envelope F of H is a j-tree on vertex set V that α-preserves the cuts of H
with probability p.

Proof. Note that for any cut ∅ 6= C ⊂ V , the capacity u(C) of this cut in H is equal
to the capacity uH′(C) of this cut with respect to edges of H ′ plus its capacity uF (C)
with respect to edges of F . Similarly, the capacity of C in G is equal to its capacity
u(C) in G

′
plus the capacity uF (C). Therefore, the lemma follows by the fact that

G
′
α-preserves the cuts of H ′ with probability p and that after adding an envelope F

to it G
′
is still a j-tree.

We proceed to analyzing the running time and the quality of cut preservation
offered by the j-tree found by the procedure Find_Trees(G, t, j).
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Lemma 5.6.2. For a given graph G = (V,E,u) and j ≥ 1, and t ≥ 2, Pro-

cedure Find_Trees(G, t, j) works in Õ(m + tnT 2 logU) time and returns a j-tree
G that (log(1+o(1))T n)-preserves the cuts of G with probability (1/2)T , where T ≤
max{⌈log(logt(n/j) + 1)⌉, 1}, n = |V |, m = |E|, and U is the capacity ratio of G.
Moreover, the capacity ratio of G is n(2+o(1))TU .

Proof. Let us define nl to be an upper bound on the number of the vertices of the graph
that we are dealing with at the beginning of the l-th recursive call of the procedure.
Also, let tl be the value of t and let Ul be the upper bound on the capacity ratio of
this graph at the same moment. Clearly, n0 = n, t0 = t, and U0 = U . By solving
simple recurrence we see that

tl = t2
l

(5.3)

and thus

nl+1 ≤
nl

tl
≤ n

t2l+1−1
. (5.4)

Now, by Theorem 5.3.6 and Corollary 2.6.2, we know that Ul+1 is O(n2
lUl). More-

over, by the fact that we sparsify G first and by Theorem 5.3.6, we know that in l-th
iteration it is sufficient to take t′ = tlt̂l, where t̂l is logO(1) n logUl.

Note that every graph on at most j vertices is a j-tree thus the procedure stops
issuing further recursive calls once the number of vertices of G is at most j. So, the
number of recursive calls of our procedure is at most T − 1, where

T := max{⌈log(logt(n/j) + 1)⌉, 1}.
As a result, the bound on the capacity ratio of G is UT ≤ n(2+o(1))TU , as desired.
To bound the total running time of the procedure, consider its modification in

which we additionally sparsify the graph H ′ before passing it to the recursive call.
Clearly, running time of such modification can only increase. Note that in this case
all but the topmost invocation of the procedure deals from the beginning till the end
with sparsified version of the graph. Therefore, the time need to execute l-th recursive
call, for l ≥ 1, is Õ(t̂ltlnl). By equations (5.3) and (5.4), this implies that the total
time taken by the execution of our procedure is:

Õ(m) +
T−1∑

l=0

Õ(t̂ltlnl) ≤ Õ(m+
T−1∑

l=0

nt2
l
logUl

t2l−1
)

≤ Õ(m+ tn
T−1∑

l=0

logUl) = Õ(m+ tnT 2 logU),

where Õ(m) is the cost of the initial cut sparsification of G.
To establish the desired bound on the quality of the preservation of cuts of G by

G, we prove that for all l ≥ 0, if the execution of the procedure made l recursive calls
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then the graph G (log(1+o(1))(l+1) n)-preserves the cuts of G with probability (1/2)l+1.
Clearly, this claim implies the desired bounds by combining it with the fact that
l ≤ T − 1.

We prove the claim inductively. For l = 0 it follows from Corollary 2.6.2, Theorem
5.3.6, and Fact 5.3.4. Now, assume that the claim holds for l ≥ 0 and we will prove
it for l + 1. By Corollary 2.6.2, Theorem 5.3.6, and Fact 5.3.4, we know that H is
(log1+o(1) n)-preserving the cuts of G with probability 1/2. So, by our inductive as-
sumption we know that G

′
(log(1+o(1))(l+1) n)-preserves the cuts of H ′ with probability

(1/2)l+1. Therefore, by Lemma 5.6.1 we know that G also (log(1+o(1))(l+1) n)-preserves
the cuts of H with probability (1/2)l+1 which – by the above-mention relation of
the cut-structure of H to the cut-structure of G – implies that G (log(1+o(1))(l+2) n)-
preserves the cuts of H with probability (1/2)l+2. So, our claim holds for l + 1 and
thus for all the values of l. This concludes the proof of the lemma.

Now, proving Theorem 5.3.7 boils down to running the Find_Trees(G, t, j) for the
right setting of parameters and sufficiently many times, so as to boost the probability
that the obtained collection of j-trees preserves cuts with high probability.

Proof of Theorem 5.3.7. To obtain the desired collection of nl-trees, we just invoke

procedure Find_Trees(G, t, j) on G (2k+1 lnn) times with t := n
1−l

2k−1 . Note that for
this choice of parameters we get that in the statement of Lemma 5.6.2 T ≤ k.

Therefore, this lemma allows us to conclude that each invocation of the procedure
takes Õ(n(1+1/k) logU) time to execute and thus we obtain (2k+1 lnn) nl-trees {Gi}i
in total time of

Õ(m+ 2kn
1+ 1−l

2k−1 logU).

(We used here the fact that it is sufficient to cut sparsify G only once for all the
procedure calls.)

Furthermore, Lemma 5.6.2 implies that the capacity ratio of the obtained trees
is at most n(2+o(1))kU and each particular nl-tree Gi (log

(1+o(1))k n)-preserves the cuts
of G with probability (1/2)k. However, it is easy to see that this in turn means that
the whole collection {Gi}i (log(1+o(1))k n)-preserved the cuts of G with probability
(1− (1− (1/2)k)2

k+1 lnn) = (1− 1/n2), as desired. The theorem follows.
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Part II

Beyond Cuts and Flows
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Chapter 6

Approximation of the Asymmetric
Traveling Salesman Problem

In this chapter, we study the asymmetric traveling salesman problem.1 We derive
a randomized algorithm which delivers a solution within a factor O( logn

log logn
) of the

optimum, with high probability. This improves upon the long-standing approximation
barrier of Θ(log n).

To achieve this improvement, we combine the traditional polyhedral approaches
with randomized rounding procedure that is based on the notion of random spanning
trees and exploits their connection to electrical flows and Laplacian systems – cf.
Section 2.5.2 and Fact 2.5.2.

6.1 Introduction

The traveling salesman problem (TSP) – the task of finding a minimum cost tour
that visits each city in a given set at least once – is one of the most celebrated and
extensively studied problems in combinatorial optimization. The book by Lawler et
al. [97] provides a tour d’horizon of all the concepts and techniques developed in the
context of TSP.

The traveling salesman problem comes in two variants. The symmetric version
(STSP) assumes that the cost c(v, u) of getting from city v to city u is equal to c(u, v),
while the more general asymmetric version (ATSP) that we study here does not make
this assumption. Note that since we can replace every arc (u, v) in the tour with the
shortest path from u to v, we can assume that the cost function c satisfies the triangle
inequality, i.e., we have c(u, w) ≤ c(u, v) + c(v, w) for all u, v, and w.

Despite a lot of interest and work, little progress has been made over the last three
decades on its approximability in the general metric case. For the symmetric variant,
there is a celebrated factor 3/2 approximation algorithm due to Christofides [41].
This algorithm is based on first finding a minimum cost spanning tree T on V , then

1This chapter is based on joint work with Arash Asadpour, Michel Goemans, Shayan Oveis
Gharan, and Amin Saberi and contains material from [18].
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finding the minimum cost Eulerian augmentation of that tree, and finally shortcut-
ting the corresponding Eulerian walk into a tour. No better approximation algorithm
has since been found for the general symmetric metric case. For the asymmetric
case, no constant approximation algorithm is known. Frieze et al. [69] gave a simple
log n-approximation algorithm for ATSP, which was improved slightly by subsequent
results down to 2/3 log n [30, 78, 63]. This is in sharp contrast to the best inapprox-
imability result of Papadimitriou and Vempala [111] which shows the nonexistence of
an 117/116-approximation algorithm for the ATSP, and of an 220/219-approximation
algorithm for the STSP, unless P = NP . Whether ATSP can be approximated within
a constant factor is a major open question, and so is whether an c-approximation al-
gorithm for STSP can be obtained for a constant c < 3/2.

In this chapter, we make progress on this question by presenting an O( logn
log logn

)-
approximation algorithm for the ATSP. This approximation factor finally breaks the
long-standing Θ(log n) barrier mentioned above. Our approach to the asymmetric
version has similarities with Christofides’ algorithm; we first construct a spanning
tree with special properties. Then we find a minimum cost Eulerian augmentation of
this tree, and finally, shortcut the resulting Eulerian walk. (Recall that for undirected
graphs, being Eulerian means being connected and having even degrees, while for
directed graphs it means being (strongly) connected and having the indegree of every
vertex equal to its outdegree.)

Our way of bounding the cost of the Eulerian cost augmentation is based on apply-
ing a simple flow argument using Hoffman’s circulation theorem [120] that shows that
if the tree chosen in the first step is “thin” then the cost of the Eulerian augmentation
is within a factor of the “thinness” of the (asymmetric) Held-Karp linear programming
(LP) relaxation value (OPTHK) [81]. This flow argument works irrespectively of the
actual directions of the (directed) arcs corresponding to the (undirected) edges of the
tree. Roughly speaking, a thin tree with respect to the optimum solution x ∗ of the
Held-Karp relaxation is a spanning tree that, for every cut, contains a small multiple
(the thinness) of the corresponding value of x ∗ in this cut when the direction of the
arcs are disregarded.

A key step of our algorithm is to find a thin tree of small cost compared to the
LP relaxation value OPTHK. For this purpose, we employ a sampling procedure that
produces a random spanning tree (cf. Section 2.5.2) with respect to weights {λe}e
that are chosen so as to make the probabilities of each edge appearing in this tree to
(approximately) agree with marginal probabilities obtained from the symmetrized LP
solution (scaled by 1 − 1/n). To make this procedure efficient, we develop a simple
iterative algorithm for (approximately) computing these λe’s efficiently.

The main motivation behind choosing such a sampling procedure is that the events
corresponding to edges being present in the sampled tree are negatively correlated.
This means that the upper tail of well-known Chernoff bound for the independent
setting still holds, see Panconesi and Srinivasan [110]. The proof of the O( logn

log logn
)-

thinness of the sampled tree is based on combining this tail bound with “union-
bounding over cuts” technique of Karger [85].

The high level description of our algorithm can be found in Figure 6-1. The proof
of our main Theorem 6.6.4 also gives a more formal overview of the algorithm.
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INPUT: A set V consisting of n points and a cost function c : V × V → R
+

satisfying the triangle inequality.

OUTPUT: O( logn
log logn

)-approximation to the asymmetric traveling salesman problem
on V .

ALGORITHM:

1. Solve the Held-Karp LP relaxation of the ATSP instance to get an optimum
extreme point solution x ∗. [See LP (6.1).] Define z ∗ by (6.5); z ∗ can be inter-
preted as the marginal probabilities on the edges of a probability distribution
on spanning trees.

2. Sample Θ(lnn) spanning trees T1, T2, . . . from a distribution that corresponds to
a random spanning tree that approximately preserves the marginal probabilities
imposed by z ∗. Let T ∗ be the tree with minimum (undirected) cost among all
the sampled trees. [See Sections 6.4 and 6.5.]

3. Orient each edge of T ∗ so as to minimize its cost. Find a minimum cost integral
circulation that contains the oriented tree ~T ∗. Shortcut this multigraph and
output the resulting tour.

Figure 6-1: An O( logn
log logn

)-approximation algorithm for the ATSP.

6.2 Notation

Before describing our approximation algorithm for ATSP in details, we need to in-
troduce some notation. Throughout this chapter, we use a = (u, v) to denote the arc
(directed edge) from u to v and e = {u, v} for an undirected edge. Also we use A
(resp. E) for the set of arcs (resp. edges) in a directed (resp. undirected) graph.

For a given function f : A→ R, the cost of f is defined as follows:

c(f) :=
∑

a∈A

c(a)f(a).

For a set S ⊆ A, we define
f(S) :=

∑

a∈S

f(a).

We use the same notation for a function defined on the edge set E of an undirected
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graph. For U ⊆ V , we also define the following sets of arcs:

δ+(U) := {a = (u, v) ∈ A : u ∈ U, v /∈ U},
δ−(U) := δ+(V \U)

A(U) := {a = (u, v) ∈ A : u ∈ U, v ∈ U}.

Similarly, for an undirected graph G = (V,E), δ(U) denotes the set of edges with
exactly one endpoint in U , and E(U) denotes the edges entirely within U , i.e. E(U) =
{{u, v} ∈ E : u ∈ U, v ∈ U}.

6.3 The Held-Karp Relaxation

Given an instance of ATSP corresponding to the cost function c : V × V → R
+, we

can obtain a lower bound on the optimum value by considering the following linear
programming relaxation defined on the complete bidirected graph with vertex set V :

min
∑

a

c(a)xa (6.1)

s.t. x (δ+(U)) ≥ 1 ∀U ⊂ V, (6.2)

x (δ+(v)) = x (δ−(v)) = 1 ∀v ∈ V, (6.3)

xa ≥ 0 ∀a.

This relaxation is known as the Held-Karp relaxation [81] and its optimum value,
which we denote by OPTHK, can be computed in polynomial-time (either by the
ellipsoid algorithm or by reformulating it as an LP with polynomially-bounded size).
Observe that (6.3) implies that any feasible solution x to the Held-Karp relaxation
satisfies

x (δ+(U)) = x (δ−(U)), (6.4)

for any U ⊂ V .
Let x ∗ denote an optimum solution to this LP (6.1); thus c(x ∗) = OPTHK. We

can assume that x ∗ is an extreme point of the corresponding polytope. We first make
this solution symmetric and slightly scale it down by setting

z ∗
{u,v} :=

n− 1

n
(x∗

uv + x∗
vu). (6.5)

Let A denote the support of x ∗, i.e. A = {(u, v) : x∗
uv > 0}, and E the support

of z ∗. For every edge e = {u, v} of E, we can define its cost as min{c(a) : a ∈
{(u, v), (v, u)} ∩ A}; with the risk of overloading the notation, we denote this new
cost of this edge e by c(e). This implies that c(z ∗) < c(x ∗).

The main purpose of the scaling factor in the definition (6.5) is to obtain a vector
z ∗ which belongs to the spanning tree polytope P of the graph (V,E), i.e. z ∗ can be
viewed as a convex combination of incidence vectors of spanning trees, see Lemma
6.3.1. In fact, z ∗ even belongs to the relative interior of P .
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Lemma 6.3.1. The vector z ∗ defined by (6.5) belongs to the relative interior of the
spanning tree polytope P .

Proof. From Edmonds’ characterization of the base polytope of a matroid [56], it
follows that the spanning tree polytope P is defined by the following inequalities (see
[120, Corollary 50.7c]):

P = {z ∈ R
E : z (E) = |V | − 1 (6.6)

z (E(U)) ≤ |U | − 1, ∀U ⊂ V (6.7)

ze ≥ 0 ∀e ∈ E.} (6.8)

The relative interior of P corresponds to those z ∈ P satisfying all inequalities (6.7)
and (6.8) strictly.

Clearly, z ∗ satisfies (6.6) since:

∀v ∈ V, x ∗(δ+(v)) = 1 ⇒ x ∗(A) = n = |V |
⇒ z ∗(E) = n− 1 = |V | − 1.

Consider any set U ⊂ V . We have
∑

v∈U

x ∗(δ+(v)) = |U | = x ∗(A(U)) + x ∗(δ+(U))

≥ x∗(A(U)) + 1.

Since x ∗ satisfies (6.2) and (6.3), we have

z ∗(E(U)) =
n− 1

n
x ∗(A(U)) < x ∗(A(U)) ≤ |U | − 1,

showing that z ∗ satisfies (6.7) strictly. Since E is the support of z ∗, (6.8) is also
satisfied strictly by z ∗. This shows that z ∗ is in the relative interior of P .

One implication of being in the relative interior of P is that z ∗ can be expressed
as a convex combination of spanning trees such that the coefficient corresponding to
any spanning tree is positive.

Regarding the size of the extreme point x ∗, it is known that its support A has
at most 3n − 4 arcs (see [71, Theorem 15]). In addition, we know that it can be
expressed as the unique solution of an invertible system with only 0− 1 coefficients,
and therefore, we have that every entry x∗

a is rational with integral numerator and
denominator bounded by 2O(n lnn). In particular, z∗min = mine∈E z∗e > 2−O(n lnn).

6.4 Random Spanning Tree Sampling and Concen-

tration Bounds

Our goal in this section is to round z ∗, as a point in the relative interior of the spanning
tree polytope, to a spanning tree. Suppose that we are looking for a distribution over

147



spanning trees of G that preserves the marginal probabilities imposed by z ∗, i.e.
Pr[e ∈ T ] = z∗e for every edge e ∈ E, where G = (V,E) is the graph whose edge set
E is the support of z ∗. There is plenty of such distributions. The distribution we
actually choose in our approach corresponds to taking the tree to be a λ-random tree
for some vector λ ∈ R

|E|, i.e., a spanning tree T chosen from the collection of all the
possible spanning trees with probability proportional to

∏
e∈T λe – cf. Section 2.5.2.

As we will see later – see Theorem 6.4.1 and the discussion after its statement
– such a vector λ always exists and an approximation λ̃ of it (that suffices for our
purposes) can be found efficiently. Furthermore, as we describe in Section 6.4.1, given
λ̃, we can sample a λ̃-random tree sufficiently fast too.

The main reason behind use of such distribution is that the events corresponding
to the edges of G being included in a sampled λ-random tree are negatively correlated
– see Section 6.4.2. This enables us to use the upper tail of Chernoff bound on such
events. We use this tail bound – together with the union-bounding technique of
Karger [85] – to establish the thinness of a sampled tree. (Roughly speaking, a tree
is said to be thin if the number of its edges in each cut is not much higher than its
expected value; see Section 6.5 for a formal definition of thinness.) This, in turn, will
enable us to obtain from this sampled thin tree a tour in G that has sufficiently small
cost – see Section 6.6 for details.

Before we proceed, let us just note that in Section 6.7 we show how to efficiently
find λ̃e’s that approximately preserve the margins dictated by z ∗. More formally, we
prove the following theorem and we use in the rest of the chapter the vector λ̃ that is
produced by it for ε = 0.2.. (Recall that for our ATSP application, zmin is 2−O(n lnn)

and having ε equal to 0.2 suffices.)

Theorem 6.4.1. Given z in the spanning tree polytope of G = (V,E) and some

ε > 0, one can find values λ̃e, for all e ∈ E, such that if we sample a λ̃-random tree
T then

Pr[e ∈ T ] ≤ (1 + ε)ze,

for each e, i.e. the marginals are (1 + ε)-approximately preserved. Furthermore, the
running time of the resulting algorithm is polynomial in n = |V |, − ln zmin and 1/ε.

The above theorem shows that for any z one can find a vector λ̃ that preserves
marginals up to arbitrarily small precision. This suffices for our purposes. However,
a natural question here is whether there always exists a vector λ that preserves the
marginals exactly. It turns out (cf. [18]) that indeed such a vector exists, as long as, z
is in the relative interior of the spanning tree polytope. Furthermore, this requirement
on z is necessary (in fact, this has been observed already before, see Exercise 4.19 in
[103]). To see why it is the case, suppose G is a triangle and z is the vector (1

2
, 1
2
, 1).

In this case, z is in the polytope (but not in its relative interior) and there are no
λe’s that preserve the margins exactly.
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6.4.1 Sampling a λ-Random Tree

There is a host of results (cf. [77, 96, 45, 4, 33, 138, 90] and Chapter 7) on obtaining
polynomial-time algorithms for generating a uniform spanning tree, i.e. a λ-random
tree for the case of all λes being equal. Almost all of them can be easily modified to
allow arbitrary λ; however, not all of them still guarantee a polynomial running time
for such general λes. (For instance, the algorithm to be present in Chapter 7 might
be not polynomial-time in this setting.) Therefore, to circumvent this problem we
will use an iterative approach similar to [96] that is still polynomial for general λes.

This approach is based on ordering the edges e1, . . . , em of G arbitrarily and pro-
cessing them one by one, deciding probabilistically whether to add a given edge to
the final tree or to discard it. More precisely, when we process the j-th edge ej, we
decide to add it to a final spanning tree T with probability pj being the probability
that ej is in a λ-random tree conditioned on the decisions that were made for edges
e1, . . . , ej−1 in earlier iterations. Clearly, this procedure generates a λ-random tree,
and its running time is polynomial as long as the computation of the probabilities
p1, . . . , pm can be done in polynomial time.

To compute these probabilities efficiently we note that, by Fact 2.5.2, we have
that p1 is equal to λe1 times the effective resistance of the edge e1 = (u1, v1) in the
graph G that has the resistance re of each edge e equal to 1/λe. Furthermore, by
definition of the effective resistance (cf. (2.13)), we can compute it by finding the
vertex potentials corresponding to an electrical u1-v1 flow of value 1. These, in turn,
can be obtained by solving the Laplacian system (cf. (2.10)). Note that we care only
about having a polynomial running time here, so we can afford solving this system –
and thus compute p1 – exactly, e.g., by employing Gaussian elimination.

Now, once the probability p1 has been computed, to compute p2 we note that if
we choose to include e1 in the tree then:

p2 = Pr[e2 ∈ T |e1 ∈ T ] =

∑
T ′∋e1,e2

∏
e∈T ′ λe∑

T ′∋e1

∏
e∈T ′ λe

=

∑
T ′∋e1,e2

∏
e∈T ′\e1

λe∑
T ′∋e1

∏
e∈T ′\e1

λe

.

As one can see, the probability that e2 ∈ T conditioned on the event that e1 ∈ T is
equal to the probability that e2 is in a λ-random tree of a graph obtained from G
by contracting the edge e1. (Note that one can sum up the λes of the multi-edges
formed during the contractions and replace them with one single edge.) Similarly,
if we choose to discard e1, the probability p2 is equal to the probability that e2 is
in a λ-random tree of a graph obtained from G by removing e1. In general, pj is
equal to the probability that ej is included in a λ-random tree of a graph obtained
from G by contracting all edges that we have already decided to add to the tree, and
deleting all edges that we have already decided to discard. So, this means that we
can compute each pj in polynomial time in the manner completely analogous to the
way we computed p1 – we just use appropriately modified version of the graph G for
each of these computations.
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6.4.2 Negative Correlation and a Concentration Bound

We derive now the following concentration bound. As discussed in the next section,
this bound is instrumental in establishing the thinness of a sampled tree.

Theorem 6.4.2. For each edge e, let Xe be an indicator random variable associated
with the event [e ∈ T ], where T is a λ-random tree. Also, for any subset C of the
edges of G, define X(C) =

∑
e∈C Xe. Then we have

Pr[X(C) ≥ (1 + δ)E[X(C)]] ≤
(

eδ

(1 + δ)1+δ

)E[X(C)]

.

Usually, when we want to obtain such concentration bounds, we prove that the
variables {Xe}e are independent and use the Chernoff bound. Unfortunately, in our
case, the variables {Xe}e are not independent. However, it turns out that they are
still negatively correlated, i.e. for any subset F ⊆ E,

Pr[∀e∈FXe = 1] ≤
∏

e∈F

Pr[Xe = 1].

This fact should be not too surprising as, intuitively, if one considers, e.g., F = {e, e′}
then the presence of the edge e in the tree makes the edge e′ “less needed” for making
sure that the resulting tree is connected and more likely to lead to creation of a cycle.
Also, as the number of edges in a spanning tree is exactly one fewer than the number of
vertices of the underlying graph, the negative correlation holds “on average”. However,
despite this intuitive feel, no direct proof of this negative correlation is known, and
the only proof crucially relies on the connection between random spanning trees and
electrical flows, i.e., Fact 2.5.2.

Lemma 6.4.3. The random variables {Xe}e are negatively correlated.

Proof. Let us consider some subset F of the edges E and let e1, . . . , ek be some
arbitrary ordering of the edges in F . Now, as we have

Pr[∀e∈FXe = 1] =
k∏

i=1

Pr[ei ∈ T |Xej = 1∀j<i],

it just suffices to show that for any i

Pr[ei ∈ T |Xej = 1∀j<i] ≤ Pr[ei ∈ T ].

To this end, we note that by Fact 2.5.2 we have that Pr[ei ∈ T ] is equal to λei

times the effective resistance of ei in a version of the graph G with resistances re
equal to 1/λe for each edge e. Furthermore, by the discussion in Section 6.4.1 (and
Fact 2.5.2), we know that Pr[ei ∈ T |Xej = 1∀j<i] is equal to λei times the effective
resistance of ei in a version of G corresponding to contracting the edges ej for j < i –
which can be viewed as setting the resistances rej of these edges to zero – and setting
the resistances re of the rest of the edges to 1/λe.
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However, by Rayleigh’s Monotonicity Principle (cf. Corollary 2.4.2), we must have
that the effective resistance of ei in the first version of the graph G can be only bigger
than the effective resistance of ei in the second version. Thus, the lemma follows.

Once we have established negative correlation between Xes, Theorem 6.4.2 follows
directly from the result of Panconesi and Srinivasan [110] that the upper tail part of
the Chernoff bound requires only negative correlation (or even a weaker notion, see
[110]) and not the full independence of the random variables.

At this point, we want to note that other ways of producing negatively correlated
probability distributions on trees (or, more generally, matroid bases) satisfying some
given marginals z have been proposed by Chekuri, Vondrak and Zenklusen [39]. Their
approach can also be used in the framework developed in this chapter.

6.5 The Thinness Property

In this section, we focus on the λ̃-random trees that we obtain by applying the
algorithm of Theorem 6.4.1 to z ∗. We show that such trees are almost surely “thin”.

We start by defining the thinness property formally.

Definition 6.5.1. We say that a tree T is α-thin if for each set U ⊂ V ,

|T ∩ δ(U)| ≤ αz ∗(δ(U)).

Also we say that T is (α, s)-thin if it is α-thin and moreover,

c(T ) ≤ sOPTHK.

We first prove that if we focus on a particular cut then the “α-thinness” property
holds for it with overwhelming probability where α ≈ logn

log logn
.

Lemma 6.5.2. If T is a λ̃-random tree for λ̃ corresponding to applying Theorem
6.4.1 to z ∗ with ε = 0.2 in a graph G with n ≥ 5 vertices, then for any set U ⊂ V ,

Pr[|T ∩ δ(U)| > βz ∗(δ(U))] ≤ n−2.5z ∗(δ(U)),

where β = 4 lnn/ ln lnn.

Proof. Note that by definition, for all edges e ∈ E, Pr[e ∈ T ] ≤ (1 + ε)z∗e , where
ε = 0.2 is our desired accuracy parameter. Hence,

E[|T ∩ δ(U)|] =
∑

e∈δ(U))

Pr[e ∈ T ] = z̃ (δ(U)) ≤ (1 + ε)z ∗(δ(U)),

where we define z̃ (δ(U)) :=
∑

e∈δ(U)) Pr[e ∈ T ]. Applying Theorem 6.4.2 with

1 + δ =
βz ∗(δ(U))

z̃ (δ(U))
≥ β

1 + ε
,
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we derive that Pr[|T ∩ δ(U)| > βz ∗(δ(U))] can be bounded from above by

Pr[|T ∩ δ(U)| > (1 + δ)E[|T ∩ δ(U)|]]

≤
(

eδ

(1 + δ)1+δ

)z̃ (δ(U))

≤
(

e

1 + δ

)(1+δ)z̃ (δ(U))

=

(
e

1 + δ

)βz ∗(δ(U))

≤
[(

e(1 + ε)

β

)β
]
z
∗(δ(U))

≤ n−4(1−1/e)z ∗(δ(U)),

where, in the last inequality, we have used that

ln

[(
e(1 + ε)

β

)β
]

= 4
lnn

ln lnn
[1 + ln(1 + ε)− ln(4)

− ln lnn+ ln ln lnn]

≤ −4 lnn
(
1− ln ln lnn

ln lnn

)

≤ −4
(
1− 1

e

)
lnn ≤ −2.5 lnn,

since e(1 + ε) < 4 and ln ln lnn
ln lnn

≤ 1
e

for all n ≥ 5 (even for n ≥ 3).

We are ready to prove the main theorem of this section.

Theorem 6.5.3. Let n ≥ 5 and ε = 0.2. Let T1, . . . , T⌈2 lnn⌉ be ⌈2 lnn⌉ independent

sampled λ̃-random trees where λ̃es are as given in Theorem 6.4.1. Let T ∗ be the tree
among these samples that minimizes c(Tj). Then, T ∗ is (4 lnn/ ln lnn, 2)-thin with
high probability.

Here, high probability means probability at least 1−1/n, but probability 1−1/nk

can be achieved by sampling 2k lnn trees.

Proof. We start by showing that for any 1 ≤ j ≤ ⌈2 lnn⌉, Tj is β-thin with high
probability for β = 4 lnn/ ln lnn. From Lemma 6.5.2 we know that the probability of
some particular cut δ(U) violating the β-thinness of Tj is at most n−2.5z ∗(δ(U)). Now,
we use a result of Karger [85] that shows that there are at most n2l cuts of size at most
l times the minimum cut value for any half-integer l ≥ 1. Since, by the definitions of
the Held-Karp relaxation and of z ∗, we know that z ∗(δ(U)) ≥ 2(1 − 1/n), it means
there is at most nl cuts δ(U) with z ∗(δ(U)) ≤ l(1 − 1/n) for any integer l ≥ 2.
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Therefore, by applying the union bound (and n ≥ 5), we derive that the probability
that there exists some cut δ(U) with |Tj ∩ δ(U)| > βz ∗(δ(U)) is at most

∞∑

i=3

nin−2.5(i−1)(1−1/n),

where each term is an upper bound on the probability that there exists a violating
cut of size within [(i− 1)(1− 1/n), i(1− 1/n)]. Fo n ≥ 5, this simplifies to:

∞∑

i=3

nin−2.5(i−1)(1−1/n) ≤
∞∑

i=3

n−i+2 =
1

n− 1
,

Thus, indeed, Tj is a β-thin spanning tree with high probability.
Now, the expected cost of Tj is

E[c(Tj)] ≤
∑

e∈E

z̃e ≤ (1 + ε)
n− 1

n

∑

a∈A

x∗
a ≤ (1 + ε)OPTHK.

So, by Markov inequality we have that for any j, the probability that c(Tj) > 2OPTHK

is at most (1 + ε)/2. Thus, with probability at most (1+ε
2
)2 lnn < 1

n
for ε = 0.2, we

have c(T ∗) > 2OPTHK. This concludes the proof of the theorem.

6.6 Transforming a Thin Spanning Tree into an Eu-

lerian Walk

As the final step of the algorithm, we show how one can find an Eulerian walk with
small cost using a thin tree. After finding such a walk, one can use the metric property
to convert this walk into an Hamiltonian cycle of no greater cost (by shortcutting).
In particular, the following theorem justifies the definition of thin spanning trees.

Theorem 6.6.1. Assume that we are given an (α, s)-thin spanning tree T ∗ with
respect to the LP relaxation x ∗. Then we can find a Hamiltonian cycle of cost no
more than (2α + s)c(x ∗) = (2α + s)OPTHK in polynomial time.

Before proceeding to the proof of Theorem 6.6.1, we recall some basic network
flow results related to circulations. A function f : A → R is called a circulation if
f(δ+(v)) = f(δ−(v)) for each vertex v ∈ V . Hoffman’s circulation theorem [120, The-
orem 11.2] gives a necessary and sufficient condition for the existence of a circulation
subject to lower and upper capacities on arcs.

Theorem 6.6.2 (Hoffman’s circulation theorem). Given lower and upper capacities
l, u : A → R, there exists a circulation f satisfying l(a) ≤ f(a) ≤ u(a) for all a ∈ A
if and only if

1. l(a) ≤ u(a) for all a ∈ A and
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2. for all subsets U ⊂ V , we have l(δ−(U)) ≤ u(δ+(U)).

Furthermore, if l and u are integer-valued, f can be chosen to be integer-valued.

Proof of Theorem 6.6.1. We first orient each edge {u, v} of T ∗ to argmin{c(a) : a ∈
{(u, v), (v, u)} ∩ A}, and denote the resulting directed tree by ~T ∗. Observe that by
definition of our undirected cost function, we have c(~T ∗) = c(T ∗). We then find
a minimum cost augmentation of ~T ∗ into an Eulerian directed graph; this can be
formulated as a minimum cost circulation problem with integral lower capacities (and
no or infinite upper capacities). Indeed, set

l(a) =

{
1 a ∈ ~T ∗

0 a /∈ ~T ∗,

and consider the minimum cost circulation problem

min{c(f) : f is a circulation and f(a) ≥ l(a) ∀a ∈ A}.

An optimum circulation f ∗ can be computed in polynomial time and can be assumed
to be integral, see e.g. [120, Corollary 12.2a]. This integral circulation f ∗ corresponds
to a directed (multi)graph H which contains ~T ∗. Every vertex in H has an indegree
equal to its outdegree. Therefore, every cut has the same number of arcs in both
directions. As H is weakly connected (as it contains ~T ∗), it is strongly connected and
thus, H is an Eulerian directed multigraph. We can extract an Eulerian walk of H
and shortcut it to obtain our Hamiltonian cycle of cost at most c(f ∗) since the costs
satisfy the triangle inequality.

To complete the proof of Theorem 6.6.1, it remains to show that c(f ∗) ≤ (2α +
s)c(x ∗). For this purpose, we define

u(a) =

{
1 + 2αx∗

a a ∈ ~T ∗

2αx∗
a a /∈ ~T ∗.

We claim that there exists a circulation g satisfying l(a) ≤ g(a) ≤ u(a) for every
a ∈ A. To prove this claim, we use Hoffman’s circulation theorem 6.6.2. Indeed, by
construction, l(a) ≤ u(a) for every a ∈ A; furthermore, Lemma 6.6.3 below shows
that, for every U ⊂ V , we have l(δ−(U)) ≤ u(δ+(U)). Thus the existence of the
circulation g is established. Furthermore,

c(f ∗) ≤ c(g) ≤ c(u) = c(~T ∗) + 2αc(x ∗) ≤ (2α + s)c(x ∗),

establishing the bound on the cost of f ∗. This completes the proof of Theorem
6.6.1.

Lemma 6.6.3. For the capacities l and u as constructed in the proof of Theorem
6.6.1, the following holds for any subset U ⊂ V :

l(δ−(U)) ≤ u(δ+(U)).
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Proof. Irrespective of the orientation of T ∗ into ~T ∗, the number of arcs of ~T ∗ in δ−(U)
is at most αz ∗(δ(U)) by definition of α-thinness. Thus

l(δ−(U)) ≤ αz ∗(δ(U)) < 2αx ∗(δ−(U)),

due to (6.4) and (6.5). On the other hand, we have

u(δ+(U)) ≥ 2αx ∗(δ+(U)) = 2αx ∗(δ−(U)) ≥ l(δ−(U)),

where we have used the fact that x ∗ itself is a circulation (see (6.4)). The lemma
follows.

Theorem 6.6.4. For a suitable choice of parameters, the algorithm given in Figure 6-
1 finds a (2+8 lnn/ ln lnn)-approximate solution to the asymmetric traveling salesman
problem with high probability and in time polynomial in the size of the input.

Proof. The algorithm start by finding an optimal extreme-point solution x ∗ to the
Held-Karp LP relaxation of ATSP of value OPTHK. Next, using the algorithm of
Theorem 6.4.1 on z ∗ (which is defined by (6.5)) with ε = 0.2, we obtain λ̃es. Since x ∗

was an extreme point, we know that z∗min ≥ e−O(n lnn); thus, the algorithm of Theorem
6.4.1 indeed runs in polynomial time.

Next, we use the polynomial time sampling procedure described in section 6.4.1
to sample Θ(lnn) λ̃-random trees Tj, and take T ∗ to be the one among them that
minimizes the cost c(Tj). By Theorem 6.5.3, we know that T ∗ is (β, 2)-thin with high
probability.

Now, we use Theorem 6.6.1 to obtain, in polynomial time, a (2 + 8 lnn/ ln lnn)-
approximation of our ATSP instance.

The proof also shows that the integrality gap of the Held-Karp relaxation for the
asymmetric TSP is bounded above by 2+8 lnn/ ln lnn. The best known lower bound
on the integrality gap is only 2, as shown in [36]. Closing this gap is a challenging
open question, and this possibly could be answered using thinner spanning trees. In
particular, we formulate the following conjecture.

Corollary 6.6.5. There always exists a (C1, C2)-thin spanning tree where C1 and C2

are constants. Therefore, the integrality gap of the ATSP Held-Karp linear program-
ming relaxation (6.1) is a constant.

6.7 A Combinatorial Algorithm for Finding λ̃s

In this section, we provide a combinatorial algorithm to efficiently find λ̃es such that
the λ̃-random tree approximately preserves the marginal probabilities given by a point
z in the spanning tree polytope and therefore prove Theorem 6.4.1. To this end, let
us fix some accuracy parameter ε > 0 and, for presentation reasons, let us focus on
finding γ̃ such that λ̃ := eγ̃ will have the desired properties.
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Given a vector γ, for each edge e, define qe(γ) :=
∑

T∋e exp(γ(T ))∑
T exp(γ(T ))

, where γ(T ) =∑
f∈T γf . For notational convenience, we have dropped the fact that T ∈ T in these

summations; this shouldn’t lead to any confusion. Restated, qe(γ) is the probability
that edge e will be included in a spanning tree T that is chosen with probability
proportional to exp(γ(T )).

We compute γ̃ using the following simple algorithm. Start with all γe equal, and
as long as the marginal qe(γ) for some edge e is more than (1 + ε)ze, we decrease
appropriately γe in order to decrease qe(γ) to (1 + ε/2)ze. More formally, here is a
description of the algorithm.

1. Set γ = ~0.

2. While there exists an edge e with qe(γ) > (1 + ε)ze:

• Compute δ such that if we define γ′ as γ′
e = γe − δ, and γ′

f = γf for all
f ∈ E \ {e}, then qe(γ

′) = (1 + ε/2)ze

• Set γ ← γ′

3. Output γ̃ := γ.

Clearly, if the above procedure terminates then the resulting γ̃ satisfies the re-
quirement of Theorem 6.4.1. Therefore, what we need to show is that this algorithm
terminates in time polynomial in n, − ln zmin and 1/ε, and that each iteration can be
implemented in polynomial time.

We start by bounding the number of iterations - we will show that it is

O(
1

ε
|E|2[|V | ln(|V |)− ln(εzmin)]).

In the next lemma, we derive an equation for δ, and prove that for f 6= e the proba-
bilities qf (·) do not decrease as a result of decreasing γe.

Lemma 6.7.1. If for some δ ≥ 0 and an edge e, we define γ′ by γ′
e = γe − δ and

γ′
f = γf for all f 6= e, then

1. for all f ∈ E \ {e}, qf (γ′) ≥ qf (γ),

2. qe(γ
′) satisfies 1

qe(γ′)
− 1 = eδ

(
1

qe(γ)
− 1
)
.

In particular, in the main loop of the algorithm, since qe(γ) > (1 + ε)ze and we
want qe(γ′) = (1+ ε/2)ze, we get δ = ln qe(γ)(1−(1+ε/2)ze)

(1−qe(γ))(1+ε/2)ze
> ln (1+ε)

(1+ε/2)
> ε

4
for ε ≤ 1 (for

larger values of ε, we can simply decrease ε to 1).
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Proof. Let us consider some f ∈ E \ {e}. We have

qf (γ
′) =

∑
T∈T :f∈T exp(γ′(T ))
∑

T∈T exp(γ′(T ))

=

∑
T :e∈T,f∈T eγ

′(T ) +
∑

T :e/∈T,f∈T eγ
′(T )

∑
T∋e e

γ′(T ) +
∑

T :e/∈T eγ′(T )

=
e−δ
∑

T :e∈T,f∈T eγ(T ) +
∑

T :e/∈T,f∈T eγ(T )

e−δ
∑

T∋e e
γ(T ) +

∑
T :e/∈T eγ(T )

=
e−δa+ b

e−δc+ d

with a, b, c, d appropriately defined. The same expression holds for qf (γ) with the e−δ

factors removed. But, for general a, b, c, d ≥ 0, if a
c
≤ a+b

c+d
then xa+b

xc+d
≥ a+b

c+d
for x ≤ 1.

Since
a

c
=

∑
T∈T :e∈T,f∈T eγ(T )

∑
T∈T :e∈T eγ(T )

≤ qf (γ) =
a+ b

c+ d

by negative correlation (since a/c represents the conditional probability that f is
present given that e is present), we get that qf (γ′) ≥ qf (γ) for δ ≥ 0.

Now, we proceed to deriving the equation for δ. By definition of qe(γ), we have

1

qe(γ)
− 1 =

∑
T :e/∈T eγ(T )

∑
T∋e e

γ(T )
.

Hence,

1

qe(γ′)
− 1 =

∑
T :e/∈T eγ

′(T )

∑
T∋e e

γ′(T )

=

∑
T :e/∈T eγ(T )

e−δ
∑

T∋e e
γ(T )

= eδ
(

1

qe(γ)
− 1

)
.

Before bounding the number of iterations, we collect some basic results regarding
spanning trees which we need for the proof of the number of iterations.

Lemma 6.7.2. Let G = (V,E) be a graph with weights γe for e ∈ E. Let Q ⊂ E be
such that for all f ∈ Q, e ∈ E \ Q, we have γf > γe + ∆ for some ∆ ≥ 0. Let r be
the size of a maximum spanning forest of Q. Then

1. For any T ∈ T , we have |T ∩Q| ≤ r.

Define T= := {T ∈ T : |T ∩Q| = r} and T< := {T ∈ T : |T ∩Q| < r}.
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2. Any spanning tree T ∈ T= can be generated by taking the union of any spanning
forest F (of cardinality r) of the graph (V,Q) and a spanning tree (of cardinality
n− r − 1) of the graph G/Q in which the edges of Q have been contracted.

3. Let Tmax be a maximum spanning tree of G with respect to the weights γ(·), i.e.
Tmax = argmaxT∈T γ(T ). Then, for any T ∈ T<, we have γ(T ) < γ(Tmax)−∆.

Proof. These properties easily follow from the matroidal properties of spanning trees.
To prove 3., consider any T ∈ T<. Since |T ∩ Q| < r, there exists an edge f ∈
(Tmax ∩Q) \ T such that (T ∩Q)∪ {f} is a forest of G. Therefore, the unique circuit
in T ∪ {f} contains an edge e /∈ Q. Thus T ′ = T ∪ {f} \ {e} is a spanning tree. Our
assumption on Q implies that

γ(Tmax) ≥ γ(T ′) = γ(T )− γe + γf > γ(T ) + ∆,

which yields the desired inequality.

We proceed to bounding the number of iterations.

Lemma 6.7.3. The algorithm executes at most O(1
ε
|E|2[|V | ln(|V |) − ln(εzmin)]) it-

erations of the main loop.

Proof. Let n = |V | and m = |E|. Assume for the sake of contradiction that the
algorithm executes more than

τ :=
4

ε
m2[n lnn− ln(εzmin)]

iterations. Let γ be the vector of γe’s computed at such an iteration. For brevity, let
us define qe := qe(γ) for all edges e.

We prove first that there exists some e∗ ∈ E such that γe∗ < − ετ
4m

. Indeed, there
are m edges, and by Lemma 6.7.1 we know that in each iteration we decrease γe of
one of these edges by at least ε/4. Thus, we know that, after more than τ iterations,
there exists e∗ for which γe∗ is as desired.

Note that we never decrease γe for edges e with qe(·) smaller than (1 + ε)ze, and
Lemma 6.7.1 shows that reducing γf of edge f 6= e can only increase qe(·). Therefore,
we know that all the edges with γe being negative must satisfy qe ≥ (1 + ε/2)ze. In
other words, all edges e such that qe < (1+ ε/2)ze satisfy γe = 0. Finally, by a simple
averaging argument, we know that

∑
e qe = n−1 < (1+ε/2)(n−1) = (1+ε/2)

∑
e ze.

Hence, there exists at least one edge f ∗ with qf∗ < (1 + ε/2)zf∗ and thus having
γf∗ = 0.

We proceed now to exhibiting a set Q such that:

(I): ∅ 6= Q ⊂ E, and

(II): for all e ∈ E \Q and f ∈ Q, γe + ετ
4m2 < γf .

We construct Q as follows. We set threshold values Γi = − ετi
4m2 , for i ≥ 0, and define

Qi = {e ∈ E |γe ≥ Γi}. Let Q = Qj where j is the first index such that Qj = Qj+1.
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Clearly, by construction of Q, property (II) is satisfied. Also, Q is non-empty since
f ∗ ∈ Q0 ⊆ Qj = Q. Finally, by the pigeonhole principle, since we have m different
edges, we know that j < m. Thus, for each e ∈ Q we have γe > Γm = − ετ

4m
. This

means that e∗ /∈ Q and thus Q has property (I).

Observe that Q satisfies the hypothesis of Lemma 6.7.2 with ∆ = ετ
4m2 . Thus, for

any T ∈ T<, we have
γ(Tmax) > γ(T ) +

ετ

4m2
, (6.9)

where Tmax and r are as defined in Lemma 6.7.2.

Let Ĝ be the graph G/Q obtained by contracting all the edges in Q. So, Ĝ
consists only of edges not in Q (some of them can be self-loops). Let T̂ be the set

of all spanning trees of Ĝ, and for any given edge e /∈ Q, let q̂e :=
∑

T̂∈T̂ ,T̂∋e
exp(γ(T̂ ))

∑
T̂∈T̂

exp(γ(T̂ ))

be the probability that edge e is included in a random spanning tree T̂ of Ĝ, where
each tree T̂ is chosen with probability proportional to eγ(T̂ ). Since spanning trees of
Ĝ have n− r − 1 edges, we have

∑

e∈E\Q

q̂e = n− r − 1. (6.10)

On the other hand, since z satisfies z(E) = n− 1 and z(Q) ≤ r (by definition of
r, see Lemma 6.7.2, part 1.), we have that z(E \ Q) ≥ n − r − 1. Therefore, (6.10)
implies that there must exist ê /∈ Q such that q̂ê ≤ zê.

Our final step is to show that for any e /∈ Q, qe < q̂e +
εzmin

2
. Note that once we

establish this, we know that qê < q̂ê +
εzmin

2
≤ (1 + ε

2
)zê, and thus it must be the case

that γê = 0. But this contradicts the fact that ê /∈ Q, as by construction all e with
γe = 0 must be in Q. Thus, we obtain a contradiction that concludes the proof of the
Lemma.

It remains to prove that for any e /∈ Q, qe < q̂e +
εzmin

2
. We have that

qe =

∑
T∈T :e∈T eγ(T )

∑
T∈T eγ(T )

=

∑
T∈T=:e∈T eγ(T ) +

∑
T∈T<:e∈T eγ(T )

∑
T∈T eγ(T )

≤
∑

T∈T=:e∈T eγ(T )

∑
T∈T=

eγ(T )
+

∑
T∈T<:e∈T eγ(T )

∑
T∈T eγ(T )

≤
∑

T∈T=:e∈T eγ(T )

∑
T∈T=

eγ(T )
+

∑

T∈T<:e∈T

eγ(T )

eγ(Tmax)
, (6.11)

the first inequality following from replacing T with T= in the first denominator,
and the second inequality following from considering only one term in the second
denominator. Using (6.9) and the fact that the number of spanning trees is at most
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nn−2, the second term is bounded by:

∑

T∈T<:e∈T

eγ(T )

eγ(Tmax)
≤ nn−2e−ετ/4m2

(6.12)

<
1

2
nne−ετ/4m2

=
εzmin

2
,

by definition of τ . To handle the first term of (6.11), we can use part 2. of Lemma
6.7.2 and factorize:

∑

T∈T=

eγ(T ) =


∑

T̂∈T̂

eγ(T̂ )



(
∑

T ′∈F

eγ(T
′)

)
,

where F is the set of all spanning forests of (V,Q). Similarly, we can write

∑

T∈T=,T∋e

eγ(T ) =


 ∑

T̂∈T̂ ,T̂∋e

eγ(T̂ )



(
∑

T ′∈F

eγ(T
′)

)
.

As a result, we have that the first term of (6.11) reduces to:
(∑

T̂∈T̂ eγ(T̂ )
) (∑

T ′∈F eγ(T
′)
)

(∑
T̂∈T̂ ,T̂∋e e

γ(T̂ )
) (∑

T ′∈F eγ(T ′)
) =

∑
T̂∈T̂ eγ(T̂ )

∑
T̂∈T̂ ,T̂∋e e

γ(T̂ )
= q̂e.

Together with (6.11) and (6.12), this gives

qe ≤ q̂e +
εzmin

2
,

which completes the proof.

To complete the analysis of the algorithm, we need to argue that each itera-
tion can be implemented in polynomial time. First, for any given vector γ, we can
compute efficiently the sums

∑
T exp(γ(T )) and

∑
T∋e exp(γ(T )) for any edge e -

this will enable us to compute all qe(γ)’s. As
∑

T exp(γ(T )) =
∑

T

∏
e∈T λe and∑

T∋e exp(γ(T )) =
∑

T∋e

∏
e∈T λe, we can compute these terms by using Fact 2.5.2

and Fact 2.5.3. Observe that we can bound all entries of the weighted Laplacian
matrix we are dealing with here, in terms of the input size, since the proof of Lemma
6.7.3 actually shows that − ετ

4|E|
≤ γe ≤ 0 for all e ∈ E and any iteration of the

algorithm. Therefore, we can compute these terms, in time polynomial in n, − ln zmin

and 1/ε, as desired. Finally, δ can be computed efficiently from Lemma 6.7.1.
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Chapter 7

Generation of an Uniformly Random
Spanning Tree

In this chapter, we set forth a new algorithm for generating uniformly random span-
ning trees in undirected graphs.1 Our algorithm produces a sample from the uniform
distribution over all the spanning trees of the underlying graph in expected time
Õ(m

√
n). This improves the sparse graph case of the best previously known worst-

case bound of O(min{mn, n2.376}).
To achieve this result, we exploit the connection between random walks and electri-

cal flows (cf. Section 2.5.2) to integrate the traditional random-walk-based techniques
for this problem with combinatorial graph partitioning primitives and fast Laplacian
system solvers discussed in Section 2.7.

7.1 Introduction

The topic of this chapter is generation of uniformly random spanning trees in undi-
rected graphs. Random spanning trees are among the oldest and most extensively
investigated probabilistic objects in graph theory, with their study dating back to
Kirchhoff’s work in the 1840s [92]. However, it is only in the past several decades
that researchers have taken up the question of how best to generate uniformly random
spanning trees algorithmically. This question became an active area of research in
the 1980s and 1990s, during which a long string of papers appeared that provided
successively faster algorithms for this task (e.g.,[77, 96, 44, 45, 33, 4, 82, 138]).

Previous algorithms for this problem broadly fall into two categories: determinant-
based algorithms and random-walk-based algorithms. The starting point for the
determinant-based algorithms was Kirchhoff’s Matrix Tree Theorem, which reduces
counting the number of spanning trees in a graph to the evaluation of a determinant
[92] (see, e.g., Ch.2, Thm. 8 in [31]). The first such algorithm produced a random
spanning tree in time O(mn3) [77, 96]. After sequence of improvements ([44, 43]),
this line of research culminated in the algorithm of Colbourn, Myrvold, Day, and Nel

1This chapter is based on joint work with Jonathan Kelner and James Propp, and contains
material from [90].
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[45], which runs in the amount of time necessary to multiply two n× n matrices, the
best known bound for which is O(n2.376) [46].

The random-walk-based algorithms began with the following striking theorem due
to Broder [33] and Aldous [4]

Theorem 7.1.1. Suppose you simulate a random walk in an undirected graph G =
(V,E), starting from an arbitrary vertex s and continuing until every vertex has been
visited. For each vertex v ∈ V \ {s}, let ev be the edge through which v was visited
for the first time in this walk. Then, T = {ev |v ∈ V \ {s}} is a uniformly random
spanning tree of G.

This immediately yields an algorithm for generating a random spanning tree whose
running time is proportional to the cover time of G. If G has n vertices and m
edges, the cover time can be Θ(mn) in the worst case, but it is often much smaller.
For sufficiently sparse graphs, this yields a better worst-case running time than the
determinant-based algorithms. Now, since one clearly needs to see every vertex in G,
it would seem unlikely that such methods could run in less than the cover time of the
graph. However, in the last major breakthrough in this line of research, Wilson [138]
showed that, by using a different random process, one could actually generate span-
ning trees in expected time proportional to the mean hitting time of the graph, which
can be much smaller than the cover time (but has the same worst-case asymptotics).

The worst-case running time bound of O(mn) has stood for twenty years. In
this chapter, our main result is a new algorithm that offers a better worst-case time
bound:

Theorem 7.1.2. Let G be a graph with n vertices and m edges. We can generate an
uniformly random spanning tree of G in expected time Õ(m

√
n).

Beyond the classical applications of generating random spanning trees that mo-
tivated the original work on the problem, there have been some developments that
further motivate their study. In particular, Goyal, Rademacher, and Vempala [74]
showed how to use random spanning trees to generate efficient sparsifiers of a graph,
and they then explained how this could be used to provide a scalable and robust
routing scheme.

7.1.1 Random Spanning Trees and Arborescences

Formally, we consider the following problem: given an undirected graph G = (V,E)
with n vertices and m edges, find a randomized algorithm A that, for each spanning
tree T of G, outputs T with probability 1/|T (G)|, where T (G) is the set of all spanning
trees of G.

For technical reasons that will arise later, it will be useful to consider arborescences
in addition to trees. For a given s ∈ G, an arborescence T rooted at s is a directed
spanning tree of G in which all vertices in G \{s} have exactly one incoming arc. We
use the notation r(T ) to denote the root of an arborescence, and we use eT (v), for
any v ∈ G \ {r(T )}, to denote the unique arc incoming to v in T .
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We say that a procedure A generates a conditionally random arborescence if it
outputs a vertex s and an arborescence T rooted at s such that the probability,
conditioned on some s being a root, of outputting a particular arborescence T rooted
at s is 1/|Ts(G)|, where Ts(G) is the set of all arborescences in G rooted at s.2 Note
that in this definition we do not make any restrictions on the probabilities pA(s) that
the generated arborescence output by A is rooted at s. Now, it is easy to see that, once
we fix some s ∈ G, there is one-to-one correspondence between spanning trees of G
and arborescences rooted at s. Indeed, given any spanning tree, there is a unique way
of directing its edges to make it a valid arborescence rooted at s; conversely, given
any arborescence rooted at s, we can obtain a spanning tree by just disregarding
the direction of the edges. As a result, if we have a procedure A that generates a
random arborescence then, for a given spanning tree T , the probability that it will
be generated is exactly

∑
s∈G pA(s)/|Ts(G)| =∑s∈G pA(s)/|T (G)| = 1/|T (G)|. This

means that if we interpret the arborescence returned by A as a spanning tree then
we get in this way a random spanning tree.

7.1.2 An Outline of Our Approach

To describe our approach, let us consider a random walk X in G whose starting
vertex is chosen according to the stationary distribution of G. If we just simulate
X step-by-step until it covers the whole graph G, Theorem 7.1.1 asserts that from
a transcript X(ω) of this simulation we can recover a random arborescence that is
rooted at the starting vertex s(ω) of X(ω). However, while the whole transcript can
have an expected length of Ω(mn), we utilize only a tiny fraction of entries—the
O(n) entries that allow us to recover arcs ev for v ∈ V \ {s(ω)}. It is thus natural
to wonder whether the generation of the whole transcript is necessary. The random
walk may spend long periods of time walking around regions of the graph that have
already been covered, which seems quite wasteful. One may ask whether it is possible
to identify and avoid such situations by somehow skipping such unnecessary steps.
That is, one may ask whether there is a way of shortcutting the walk X such that
the corresponding transcripts are much shorter, can be generated efficiently, and still
retain the information that we need to recover the desired arborescence. We note
that this intuition is quite reasonable for many of the standard examples of graphs
that have large cover time, which consist of regions that are covered very quickly but
in which the walk spends much of its time.

A tempting way to obtain such a shortcutting would be to try to just cut out
from X all of its parts that correspond to visiting already explored parts of G. This
shortcutting yields transcripts of length O(n) and contains all of the information that
we need. Unfortunately, it is not clear whether an efficient way of generating such
transcripts exists—it is quite possible that the fastest way to find the next edge to an

2For brevity, we will hereafter omit the word “conditionally” when we refer to such an object.
We stress that this is an object that we are introducing for technical reasons, and it should not be
confused with the different problem of generating a uniformly random arborescence of a directed

graph.
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unvisited vertex traversed by the walk is to generate the whole trajectory of X inside
the previously visited parts of G step-by-step.

The core of our approach is showing that there indeed exists an efficient way of
shortcutting X. At a high level, the way we obtain it is as follows. We start by
identifying a number of induced subgraphs D1, . . . , Dk of G such that the cover time
of each Di is relatively small, and the set C of edges of G that are not inside any of
the Dis constitutes a small fraction of the edges of G. Now, we shortcut the walk
X in G by removing, for each i, the trajectories of X inside Di that occur after X
has already explored the whole Di.3 Such shortcut transcripts clearly retain all of the
information that we need. Moreover, we show that the fact that Dis have small cover
time and C has very small size imply that the expected length is also small. Finally,
by exploiting the connection between random walks and electrical flows (namely, Fact
2.5.1) together with the linear system solver discussed in Section 2.7, we provide an
efficient procedure to approximately generate such shortcut transcripts of X. All
together, this yields the desired procedure for generating random arborescences.

7.1.3 Outline of This Chapter

The outline of this chapter is as follows. In section 7.2, we formally define the decom-
positions of G in which we are interested. We then relate the structure of the random
walk X to these decompositions. Next, in Section 7.3, we show how these ideas can
be used to develop an algorithm that generates (conditionally) random arborescence
in expected time Õ(m3/2). Finally, in Section 7.4, we prove Theorem 7.1.2 by refining
the previous algorithm to make it run in expected time Õ(m

√
n).

7.2 The Structure of the Walk X

In this section, we shall formally define the decomposition of G that will be the basis
of our algorithm and prove several important facts about the structure of the walk
X with respect to this decomposition.

7.2.1 (φ, γ)-decompositions

While the algorithm sketched in the previous section could be made to use only edge
cuts, our faster algorithm in Section 7.4 will require both vertex and edge cuts. To
facilitate this, we shall use a decomposition that permits us to keep track of a both
a set of edges C and a set of vertices S in the cut.

To this end, let (D1, . . . , Dk, S, C) denote a partition of G such that S ⊆ V (G),⋃
i V (Di) = V (G) \ S, the Di are disjoint induced subgraphs of G, and C = E(G) \⋃
i E(Di) is the set of edges not entirely contained inside one of the Di. For a given

Di, let U(Di) be the set of vertices of Di incident to an edge from C, and let C(Di)
be the subset of C incident to Di.

3Later we modify this procedure slightly to get better running time for dense graphs.
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Definition 7.2.1. A partition (D1, . . . , Dk, S, C) of G is a (φ, γ)-decomposition of
G if:

1. |C| ≤ φ|E(G)|,

2. for each i, the diameter γ(Di) of Di is less than or equal to γ, and

3. for each i, |C(Di)| ≤ |E(Di)|.

Note that this definition does not constrain the size of S explicitly, but |S| is
implicitly bounded by the fact that all edges incident to vertices of S are included in
C.

Intuitively, the above decomposition corresponds to identifying in G induced sub-
graphs D1, . . . , Dk that have diameter at most γ and contain all but a φ fraction of
edges of G. We bound the diameters of the Dis and ensure (by the third condition)
that they are not too “spread out” in G, since these properties will allow us to prove
that X covers each of them relatively quickly. We will do this using the approach of
Aleliunas et al. [5] that proved that the cover time of an unweighted graph G′ with
diameter γ(G′) is at most O(|E(G′)|γ(G′)).

For now, let us assume that we have been given some fixed (φ, γ)-decomposition
(D1, . . . , Dk, S, C) of G (for some γ and φ that we will determine later). In Lemma 7.3.3,
we will show that such decompositions with good parameters exist and can be con-
structed efficiently.

7.2.2 The Walk X

Let X = (Xi) be a random walk in G that is started at a vertex chosen according to
the stationary distribution of G, where Xi is the vertex visited in the i-th step. Let
τ be the time corresponding to the first moment when our walk X has visited all of
the vertices of G. Clearly, E(τ) is just the expected cover time of G, and by the fact
that G has m edges and diameter at most n, the result of Aleliunas et al. [5] yields

Fact 7.2.2. E[τ ] = O(mn).

Let Z be the random variable corresponding to the number of times that some
edge from C was traversed by our random walk X, i.e., Z is the number of i < τ
such that Xi = v, Xi+1 = v′, and (v, v′) ∈ C. Since, by Fact 7.2.2, the expected
length of X is O(mn), and we choose the starting vertex of X according to stationary
distribution of G, the expected number of traversals of edges from C by X is just
proportional to its size, so, on average, every m/|C|-th step of X corresponds to an
edge from C. Therefore, the fact that in our decomposition |C| ≤ φ|E(G)| implies

Fact 7.2.3. E[Z] = O(φmn).

Let Zi be the random variable corresponding to the number of times that some
edge inside Di is traversed by our walk. By definition, we have that τ =

∑
i Zi + Z.

Now, for each Di, let τi be the time corresponding to the first moment when we reach
some vertex in U(Di) after all the vertices from Di have been visited by our walk X.

165



Finally, let Z∗
i be the random variable corresponding to the number of times that

some edge from E(Di) is traversed by our walk X until time τi occurs, i.e., until X
explores the whole subgraph Di. The following lemma holds:

Lemma 7.2.4. For any i, E[Z∗
i ] = Õ(|E(Di)|γ(Di)).

Before we proceed to the proof, it is worth noting that the above lemma does not
directly follow from the result of Aleliunas et al.[5]. The reason is that [5] applies
only to a natural random walk in Di, and the walk induced by X in Di is different.
Fortunately, the fact that |C(Di)| ≤ |E(Di)| allows us to adjust the techniques of [5]
to our situation and prove that a bound similar to the one of Aleliunas et al. still
holds.

Proof. Let us fix D = Di. For a vertex v ∈ V (D), let dG(v) be the degree v in G, and
let dD(v) be the degree of v in D. Clearly, dG(v) ≥ dD(v), and dC(v) ≡ dG(v)−dD(v) is
the number of edges from C incident to v. For u, v ∈ U(D), let pDu,v be the probability
that a random walk in G that starts at u will reach v through a path that does not
pass through any edge inside D.

Consider a (weighted) graph D′, which we obtain from D by adding, for each
u, v ∈ U(D), an edge (u, v) with weight dG(u) · pDu,v. (All edges from D have weight 1
in D′. Note that we do not exclude the case u = v, so we may add self-loops.) By the
fact that the Markov chain corresponding to the random walk X in G is reversible,
dG(u) · pDu,v = dG(v) · pDv,u, so our weights are consistent.

Now, the crucial thing to notice is that if we take our walk X and filter out of
the vertices that are not from D, then the resulting “filtered” walk YD will just be a
natural random walk in D′ (with an appropriate choice of the starting vertex). In
other words, the Markov chain corresponding to the random walk in D′ is exactly the
Markov chain induced on V (D) by the Markov chain described by our walk X. As a
result, since Z∗

i depends solely on the information that the induced random walk YD

retains from X, it is sufficient to bound Z∗
i with respect to YD. However, it is easy to

see that, in this case, E[Z∗
i ] can be upper-bounded by the expected time needed by a

random walk in D′, started at arbitrary vertex, to visit all of the vertices in D′ and
then reach some vertex in U(D). We thus can conclude that E[Z∗

i ] is at most twice
the cover time of D′. (More precisely, it is the cover time plus the maximum hitting
time.)

Now, it is well-known (e.g., see [102]) that the cover time of any undirected graph
G′ is at most 2 log |V (G′)|Hmax, where Hmax(G

′) is the maximal hitting time in G′.
Our aim is therefore to show that Hmax(D

′) = O(|E(D)|γ(D)), where γ(D) is the
diameter of D. We will do this by applying the approach of Aleliunas et al., who
proved in [5] that for an unweighted graph G′, Hmax(G

′) ≤ |E(G′)|γ(G′).
To achieve this goal, let K be some number such that all weights in D′ after

multiplication by K become integral (which we can do since all of the weights in D′

have to be rational). Let K · D′ be the unweighted multigraph that we obtain from
D′ by multiplying all of its weights by K and then interpreting the new weights as
multiplicities of edges. Note that the natural random walk in K · D′ (treated as a
sequence of visited vertices) is exactly the same as in D′.
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Now, we prove that for two vertices v and w of D′ such that an edge (v, w) exists
in D, the expected time Hv,w(K · D) = Hv,w(D

′) until a random walk in K · D′

that starts at v will reach w is at most 4|E(D)|. To see this, note that the long-run
frequency with which an copy of an edge is taken in a particular direction is 1/(2M),
where M is total number of edges of K · D′ (and we count each copy separately).
Thus one of the K copies of edge (v, w) is taken in the direction from v to w every
K/(2M)-th step on average. This in turn means that Hv,w(D

′) ≤ 2M/K. Now, to
bound M , we note first that M ≤ K(|E(D)| +∑u,v∈U(D) dG(u)p

D
u,v). Thus, since

for a given u ∈ U(D) the probability
∑

v p
D
u,v of going outside D directly from u

is equal to dC(u)/dG(u), we obtain that M ≤ K(|E(D)| +∑u dC(u)) ≤ 2K|E(D)|
by the property of a (φ, γ)-decomposition that requires that |C(D)| ≤ |E(D)|. We
can thus conclude that Hv,w(D

′) ≤ 2M/K ≤ 4|E(D)|, as desired. Having obtained
this result, we can use a simple induction to show that Hv,w(D

′) ≤ 4|E(D)|∆(v, w),
where ∆(v, w) is the distance between v and w in D. From this, we can conclude
that Hmax(D

′) = 4|E(D)|γ(D) and E[Z∗
i ] ≤ 16 log n|E(Di)|γ(Di), as desired.

7.3 Our Algorithm

Let us now focus our attention on some particular Di from our (φ, γ)-decomposition
of G. The idea of our algorithm is based upon the following observation. Suppose
we look at our random walk X just after time τi occurred. Note that this means
that we already know for each v ∈ V (Di) which arc ev we should add to the final
arborescence. Therefore, from the point of view of building our arborescence, we gain
no more information by knowing what trajectory X takes inside Di after time τi.
More precisely, if, at some step j, X enters Di through some vertex v ∈ V (Di) and,
after k steps, leaves through some edge (u, u′) ∈ C, where u ∈ V (Di) and u′ /∈ V (Di),
the actual trajectory Xj, . . . , Xj+k does not matter to us. The only point of simulating
X inside Di after time τi is to learn, upon entering Di through v, through which edge
(u, u′) ∈ C we should leave.

Let Pv(e) be the probability of X leaving Di through e after entering through
vertex v. If we knew Pv(e) for all v ∈ V (Di) and all e ∈ C(Di), then we could just,
upon entering v, immediately choose the edge e through which we will exit according
to distribution Pv(e) without computing the explicit trajectory of X in Di. That is,
if we consider a shortcutting X̃ of X that cuts out from X all trajectories inside Di

after it was explored, then Pv(e) would be all that we need to simulate X̃ in time
proportional to the length of X̃ (as opposed to the length of X).

Now, the point is that we can efficiently compute Pv(e)s to arbitrarily good pre-
cision, as we will show in Section 7.3.1, which in turn will enable us to simulate such
a shortcut walk X̃ sufficiently fast.

Furthermore, as we will see shortly, the analysis of structure of X that we per-
formed in the previous section shows that the computation of these “unnecessary”
trajectories constitutes the bulk of the work involved in a faithful simulation of X,
and therefore X̃ has much smaller length – and thus can be simulated much more
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efficiently – while yielding the same distribution on random arborescences.
Therefore, in the light of the above discussion, all we really need to focus on

now is showing that we can simulate a shortcut walk X̃ as above within the desired
time bounds (and that we can indeed find the underlying (φ, γ)-decomposition of G
efficiently).

7.3.1 Simulation of the Shortcutting

We consider now the task of efficient simulation of the walk X̃. Let us start by formal-
izing the description of the walk X̃ that we provided above. To this end, let X̃ = (X̃ i)
be a random walk obtained in the following way. Let X(ω) = X0(ω), . . . Xτ(ω)(ω) be
some concrete trajectory of X, and let X(ω) = X1(ω), . . . , Xk(ω)(ω) be decomposition
of X(ω) into contiguous blocks Xj(ω) that are contained inside Dij for some sequence
ij ∈ {0, . . . , k}, where we adopt the convention that D0 = S. We define X̃(ω) as fol-
lows. We process X(ω) block-by-block and we copy a block Xj(ω) to X̃(ω) as long
as τij has not occurred yet or ij = 0, otherwise we copy to X̃(ω) only the first and
last entries of the block. (We shall refer to the latter event as a shortcutting of the
block.)

Clearly, the only steps of the walk X̃ that are non-trivial to simulate are the one
corresponding to the shortcutting of the blocks. All the remaining steps are just the
simple steps of a random walk in G. Recall that if we knew what are the probabilities
Pv(e) for each relevant vertex v and edge e, then these steps could be simulated
efficiently too.

Unfortunately, it is not clear how to compute all of these probabilities within the
desired time bounds. However, it turns out that we can use the connections between
random walks, electrical flows, and fast Laplacian system solvers – as discussed in
Chapter 2 – to compute a very good approximation of these probabilities fast. This
is described in the following lemma.

Lemma 7.3.1. We can compute additive δ-approximations of all of the probabilities
Pv(e) in time Õ(φm2 log 1/δ).

Proof. Let us fix some D = Di and an edge e = (u, u′) ∈ C(D) with u ∈ U(D).
Consider now a graph D′ that we obtain from D as follows. First, we add vertex
u′, and some dummy vertex u∗ to D, and then, for each (w,w′) ∈ C(D) \ {e} with
w ∈ U(D), we add an edge (w, u∗). (Note that w′ can be equal to u′.) Finally, we
add the edge e = (u, u′). The crucial thing to notice now is that for any given vertex
v ∈ D, Pv(e) is exactly the probability that a random walk in D′ started at v will hit
u′ before it hits u∗. We can compute such probabilities quickly using electrical flows.

More precisely, if we treat D′ as an electrical circuit and look at the vertex poten-
tials φ corresponding to the electrical u′-u∗ flow of value 1 in D′, then – by Fact 2.5.1
– the probability Pv(e) will be equal to φv−φu∗

φu′−φu∗
. Furthermore, by exploiting the fact

that the task of finding such a vertex potentials φ corresponds to solving a Laplacian
system (cf. (2.10)), we can compute a δ-approximation of Pv(e) for each v ∈ V (D), in
time Õ(|E(D′)| log 1/δ) by applying the fast Laplacian system solver from Theorem
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2.7.1. (Note that the error term ε‖φ‖L(D′) = ε
√

φTL(D′)φ in (2.16) is – by (2.12) –
at most ε times the energy of the electrical u′-u∗ flow of value 1 in D′. However, as
all the resistances in D′ are equal to 1, this energy can be only polynomial in n (in
fact, at most n) and thus it suffices to take ε = δ/nO(1) to get the desired accuracy.)

So, our algorithm performs the above computations for each edge e. (Note that we
might have to two such computations per edge – one for each endpoint of e – if they
each lie in different Di.) From each computation, we store the probabilities Pv(e) for
all vertices v that we are interested in. The running time of this algorithm is bounded
by Õ(|C|∑i |E(Di)| log 1/δ) = Õ(φm2 log 1/δ), where we use the fact that for each D,
|E(D′)| = |E(D)|+ |C(D)| ≤ 2|E(D)| by the definition of a (φ, γ)-decomposition.

Since the algorithm from the above lemma gives us only δ-approximations to the
values of the Pv(e)s, we need to show now that it is still sufficient for our purposes.
Namely, in the following lemma we show how to utilize such an imperfect values of
Pv(e)s to obtain a faithful simulation of the walk X̃.

Lemma 7.3.2. If one can obtain δ-approximate values of Pv(e)s in expected time

T (φ, γ,m, n) log 1/δ then we can simulate the walk X̃ (until it covers the whole graph)

in expected time Õ(m(γ + φn) + T (φ, γ,m, n)).

Note that if we plug for T (φ, γ,m, n) the bound offered by Lemma 7.3.1, the time
of the simulation of the walk X̃ would be Õ(m(γ + φn) + φm2).

Proof. We start by bounding the expected length of the walk X̃. By Fact 7.2.3 and
Lemma 7.2.4, we have that this quantity is at most

∑

i

E[Z∗
i ] + 3E[Z] = Õ(m(γ + φn)), (7.1)

where we amortized the number of shortcutting steps by tying them to the transitions
over an edge in C that each of the shortcutting steps has to be followed or preceded
by.

Now, we note that all we really need to do to simulate the walk X̃ is to be
able to obtain, for each v ∈ ⋃i V (Di), mn samples from the probability distribution
corresponding to the probabilities {Pv(e)}e. To see why this is the case, consider an
algorithm that simulates up to mn first steps of the walk X̃ using these samples and
then simulates any further steps of X̃ by just simulating the original walk X and
shortcutting the blocks appropriately. Clearly, the expected cost of simulating the
steps of X̃ beyond the first mn steps, can be bounded by the expected length E[τ ]

of the walk X until it covers the whole graph, times the probability that the walk X̃
will cover the whole graph in less than mn steps. By Fact 7.2.2, Markov’s inequality
and (7.1) we have that this cost is at most:

O(mn)Õ(m(γ + φn))/mn = Õ(m(γ + φn)),

in expectation and thus fits within our desired time bound.
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In the light of the above, we just need to focus now on obtaining the above-
mentioned samples efficiently enough.

To this end, let us first describe how these samples could be obtained if we some-
how knew all the values Pv(e). The way one could proceed then would be as follows.
First, for each i and v ∈ C(Di), one would fix some ordering e1, . . . , e|C(Di)| of the
edges from C(Di). Next, for each v ∈ U(Di), one would create in Õ(|C(Di)|) time
an array Av where Av(i) :=

∑
1≤j≤i Pv(ej).

Clearly, the total time to compute the arrays Av for all the relevant vs would be
at most ∑

i

Õ(|V (Di)| · |C(Di)|) = Õ(m|C|) = Õ(φmn). (7.2)

Now, to obtain the samples, one would choose a collection of random numbers rlv,
for each 1 ≤ l ≤ mn and relevant v, where each rlv is chosen uniformly at random from
the interval [0, 1]. Next, one would find for each v and l via binary search an entry
j in Av(i) – for the corresponding i – such that Av(j) ≥ rlv > Av(j − 1), and output
elv := ej as the sample corresponding to rlv. It is easy to verify that the obtained
samples {elv}v,l would have the desired distribution.

Obviously, the problem in implementing the above approach in our case is that
Lemma 7.3.1 gives us access to only δ-approximate values of Pv(e)s. Therefore, if we
repeated the above procedure with these values then the obtained entries Av(i)

′ in
the arrays might differ by as much as δi ≤ δn from the true value of Av(i) and thus
the obtained samples {e′lv}v,l might have different distribution than {elv}v,l.

The explain how we deal with this problem consider the situation when we have
some {rlv}v,l chosen and are finding the corresponding edges {e′lv}v,l using the inac-
curate values of Av(i)

′s instead of Av(i)s. The key observation to make here is that
as long as rlv chosen, for some v and l, differs by more than δn from all the entries in
the array A′

v (we will call such a situation that the sample rlv is clear), then we know
that the edge e′lv that we output is equal to the edge elv that would be output if we
used the true values of Av(i). In other words, whenever our sampling of rlv is clear, it
does not matter that we are using only approximate values of Pv(e)s – the obtained
sample is the same.

So, the way our sampling procedure will work is the following. Once the num-
bers {rlv}v,l are chosen, we find the smallest value k∗ of k such that if we use the
algorithm from Lemma 7.3.1 to compute the εk-approximate values of Pv(e)s with
εk = 1/2k+1m3n2, then all the rlvs are clear. We find such k∗ by just starting with
k = 0 and incrementing it each time there is some sample rlv that is still not clear.
Once such k∗ is found, it is easy to see that the samples {elv}v,l produced from them
using εk∗-approximate values of Pv(e)s have the desired distribution. So, the algo-
rithm produces the right samples and indeed it provides the desired simulation of the
walk X̃.

Now, to bound its expected running time, we just need to bound the running time
required to find k∗ and compute the final samples {e′lv} corresponding to it. To this
end, note that the cost of computing the εk-approximate values of Pv(e)s and the
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corresponding edge samples is, by Lemma 7.3.1 and (7.2), at most

Õ(φmn) + T (φ, γ,m, n) log 1/εk = Õ(T (φ, γ,m, n)k + φmn).

On the other hand, the probability that for a given v and l the sample rlv differs by less
than εkn from a given Av(i)

′ is at most 4εkn, as Av(i)
′ is within εkn of the true value

of Av(i) and thus rlv would need to fall within the interval [Av(j)−2εkn,Av(j)+2εkn]
for this to happen.

So, by union-bounding over all (at most m) values of i we get that the probability
of rlv being not clear is at most εkmn. Finally, by union-bounding over all v and l,
we get that a probability that there is at least one rlv that is not clear is at most

4εkm
3n2 ≤ 2k−1.

As a result, the total expected time of obtaining the needed edge samples is at
most

∞∑

k=0

2k−1Õ(T (φ, γ,m, n)k + φmn) = Õ(T (φ, γ,m, n) + φmn),

as desired. The lemma follows.

We now proceed to the final ingredient of our algorithm—finding good (φ, γ)-
decompositions quickly.

7.3.2 Obtaining a Good (φ, γ)-decompositions Quickly

By using the ball-growing technique of Leighton and Rao [100] one can obtain the
following result

Lemma 7.3.3. For any G and any φ = o(1), there exists a (φ, Õ(1/φ))-decomposition

of G. Moreover, such a decomposition can be computed in Õ(m).

As we will We omit the proof, as we shall prove a stronger statement in Lemma 7.4.2.

7.3.3 Generating a Random Arborescence in Time Õ(m3/2)

We can now put these results together to generate a random arborescences in expected
time Õ(m3/2). Note that this bound is worse than the one stated in Theorem 7.1.2—
we shall improve it to obtain the better time bound in Section 7.4.

Let us set φ = 1/m1/2. By Lemma 7.3.3, we can get a (1/m1/2, Õ(m1/2))-
decomposition of G in Õ(m) time. As we explained already, all that we need to sample
the desired arborescence is to be able to simulate the walk X̃ until it covers the whole
graph. By Lemma 7.3.1 and Lemma 7.3.2 this can be done in Õ(m(γ+φn)+φm2) =

Õ(m3/2) time.
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7.4 Obtaining an Õ(m
√
n) Running Time

In this section, we show how to modify the Õ(m3/2 running time algorithm obtained
above to make it run in Õ(m

√
n) time and thus prove Theorem 7.1.2.

To understand what needs to modified to get this improvement, one should note
that the main bottleneck in the algorithm presented above is the computation of
the approximations to probabilities Pv(e), i.e., Lemma 7.3.1 —everything else can
be done in time Õ(m

√
n) (if one would choose φ = 1/

√
n). Unfortunately, it is not

clear how we could improve the running time of these computations. To circumvent
this problem, we will alter our algorithm to use slightly different probabilities and a
slightly different random walk that will end up yielding a faster simulation time.

To introduce these probabilities, let us assume that there is no edges in G between
different Dis (we will ensure that this is the case latter) and let Ci(u) for a vertex
u ∈ S be the set of edges incident both to u and the component Di. Now, for a given
i, some v ∈ V (Di), and u ∈ S with |Ci(u)| > 0, we define Qv(u) to be the probability
that u is the first vertex not in V (Di) that is reached by a random walk that starts
at v. We will use these probabilities to simulate a new random walk X̂ that we are
about to define. For given trajectory X(ω) of walk X, X̂(ω) is equal to X̃(ω) (as
defined before) except that whenever X̃(ω) shortcuts some block visited by X, X̂(ω)
contains only the first vertex visited in this block (as opposed to both first and last
vertices retained in X̃(ω)). Clearly, X̂ is a certain shortcutting of X̃ and is thus a
shortcutting of X as well.

It is not hard to see that by using of Qv(u) in a way completely analogous to the
way we used Pv(e) before, we can simulate the walk X̂ efficiently, and the expected
length of this walk is bounded by the expected length of the walk X̃. However, unlike
X̃, X̂ does not necessarily posses all of the information needed to reconstruct the
final arborescence. This shortcoming manifests itself whenever some u is visited for
the first time in X̂ directly after X̂ entered some Di after τi has already occurred. In
this case, we know that the corresponding trajectory of the walk X visited u for the
first time through some edge whose other end was in Di (and thus we should add it
to our arborescence as eu), but we don’t know which one it was.

To deal with this problem, we will define a stronger decomposition of G whose
properties will imply that the above failure to learn eu will occur only for a small
number of vertices u. Then, at the end of our simulation of the walk X̂, we will
employ a procedure that will compute the missing arcs in a manner that will not
distort the desired distribution over output arborescences.

We proceed now to formalizing the above outline.

7.4.1 Strong (φ, γ)-decompositions

The number of probabilities Qv(u) that we need to compute now depends on the
number of vertices that are connected to the Dis through some edge from C, rather
than just the number of edges of C. To control this, we introduce the following
stronger graph decomposition:
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Definition 7.4.1. A partition (D1, . . . , Dk, S, C) of G is a strong (φ, γ)-decomposition
of G if:

1. (D1, . . . , Dk, S, C) is a (φ,γ)-decomposition,

2. there is no edges between different Dis (i.e. S is a vertex multiway cut),

3. |C(S)| ≤ φ|V (G)|, where C(S) is the set of vertices from S that are connected
by an edge to some Di.

We prove the following

Lemma 7.4.2. For any G, and any φ = o(1) there exists a strong (φ, Õ(1/φ))-

decomposition of G. Moreover, such a decomposition can be computed in Õ(m).

Proof. We will use a slightly modified version of the ball-growing technique of Leighton
and Rao [100] as presented by Trevisan [134]. For a graph H, let BH(v, j) be the ball
of radius j around the vertex v in H, i.e., let BH(v, j) consist of the subgraph of H in-
duced by all vertices in H that are reachable by a path of length at most j from v. Fur-
thermore, let RH(v, j) be the set of vertices that are at distance exactly i from v in H.
Finally, let R+

H(v, j) (R−
H(v, j) respectively) be the set E(BH(v, j + 1)) \E(BH(v, j))

(the set E(BH(v, j)) \ E(BH(v, j − 1)) respectively).
Consider now the following procedure:

• Set H = G, S = ∅, C = ∅, D = {}, i = 1 and t = φ/(1− φ)

• While H 6= ∅

• (* Ball-growing *)

– Choose an arbitrary v ∈ H, set j = 0

– (∗) As long as |RH(v, j+1)| > t|V (BH(v, j))|, |R+
H(v, j+1)| > t|E(BH(v, j))|

or |R−
H(v, j + 1)| > t|E(BH(v, j))|:

– j = j + 1

– Let ji be the j at which the above loop stops. Add RH(v, ji+1) to S, add
all the edges incident to RH(v, ji + 1) (i.e. R+

H(v, ji + 1) ∪ R−
H(v, ji + 1))

to C, and add BH(v, ji) as component Di to D.

• output the resulting partition (D1, . . . , Dk, S, C) of G

First, we note that the above procedure can be implemented in nearly-linear time,
since each edge is examined at most twice before it is removed from H. More-
over, an elementary charging argument shows that in the resulting partition |C| ≤
(1/(1 + 1/t))|E(G)| = φ|E(G)|, and similarly |C(S)| = |S| ≤ φ|V (G)|. By construc-
tion, there is no edges between distinct Dis. We want to argue now that for all i,
ji ≤ 3(1 + log |E(G)|/ log(1 + t)), which in turn would imply that all the Dis have
diameter at most 3(1 + log |E(G)|)/ log(1 + t) = 3(1 + log |E(G)|)/ log(1/(1− φ))) =

173



O(logm/(− log(1−φ))) = O(logm/φ), where we used Taylor expansion of log(1−x)
around x = 0 to get this estimate. To see why the above bound on ji holds, as-
sume that it was not the case for some i and v. Then, during the corresponding
ball-growing procedure, a particular one of the three conditions from (∗) must have
been triggered more than ji/3 = 1 + log |E(G)|/ log(1 + t) times. If this condition
was |RH(v, j + 1)| > t|V (BH(v, j))|, then, since we never remove vertices from our
ball that is being grown and BH(v, 0) has one vertex, the final ball BH(v, ji) has to
have at least (1 + t)ji/3 > |E(G)| ≥ |V (G)| vertices, which is a contradiction. Simi-
larly, if |R+

H(v, j + 1)| > t|E(BH(v, j))| (|R−
H(v, j + 1)| > t|E(BH(v, j))| respectively)

was the condition in question, then |E(BH(ji, v))| > (1 + t)ji/3 ≥ |E(G)|, which is a
contradiction as well. Thus we may conclude that the above bound on ji holds, and
thus all Dis have diameter Õ(1/φ), as desired.

At this point, we know that the partition of G that we obtained satisfies all of the
properties of a strong (φ, Õ(1/φ))-decomposition except possibly the one that asserts
that there is no Di such that |E(Di)| is smaller than the number |C(Di)| of edges
from C incident to Di. However, if such Di exist then we can just add them to our
cut, i.e., we add V (Di) to S, and E(Di) to C. Note that the size of C can at most
triple as a result of this operation, since an edge that is initially in C can be incident
to at most two of the Di, and edges E(Di) are by definition not incident to any other
Dj. Similarly, C(S) does not increase as a result of adding V (Di) to S. Thus, we
may conclude that the decomposition returned by this algorithm is indeed a strong
(φ, Õ(1/φ))-decomposition of G.

From now on we fix some strong (φ, γ)-decomposition of G.

7.4.2 Computating of Qv(u)

By using the similar approach to the one that we used when computing the Pv(e)
values, we get the following lemma.

Lemma 7.4.3. Given a strong (φ, γ)-decomposition of G, we can compute an additive

δ-approximations of all Qv(u) in time Õ(φmn log 1/δ).

Proof. Let us fix some D = Di, let S ′ be the set of vertices in w ∈ S with |Ci(w)| > 0,
and let us fix some u ∈ S ′. Consider now a graph D′

u that we obtain from D ∪ S ′

by merging all vertices in S ′ \ {u} into one vertex called u∗. For any given vertex
v ∈ D, Qv(u) is exactly the probability that a random walk in D′

u started at v will
hit u before it hits u∗. Once again, as in Lemma 7.3.1, we can quickly compute such
probabilities using the connection of random walks to electrical flows (cf. Fact 2.5.1)
and fast Laplacian system solver as discussed in Section 2.7 – see the proof of Lemma
7.3.1 for details.

Note that we will need to run Laplacian system solver per each vertex u in C(S)
and a component Di such that |Ci(u)| > 0. Thus the total running time of the
resulting algorithm is bounded by Õ(|C(S)|∑i |E(Di)| log 1/δ) = Õ(φmn log 1/δ) as
desired.
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7.4.3 Coping with Shortcomings of X̂

As mentioned above, the walk X̂ can be simulated more efficiently than the walk
X̃, but it does not have all the information needed to construct the arborescence
that would be generated by the walk X that X̂ is meant to shortcut. This lack
of information occurs only when some vertex u is visited for the first time by X̂
immediately after X̂ visited a component Di after time τi has already occurred. Note
that, by the properties of the strong (φ, γ)-decomposition that we are using, it must
be the case that u ∈ C(S) and |C(S)| ≤ φn. This shows that X̂ fails to estimate the
arcs eu for a small fraction of vertices of G. We prove now that, in this case, these
missing arcs can be reconstructed efficiently and in a way that preserves the desired
distribution over arborescences.

Lemma 7.4.4. For a trajectory X̂(ω) that starts at vertex s, let F (X̂(ω)) be the set
of arcs ev for v /∈ C(S) ∪ {s} corresponding to this walk. Let F ∗ be the set of all
arborescences H rooted at s such that eH(v) = ev for v /∈ C(S)∪{s}. Then, given F ,
we can generate a random arborescence from F ∗ in time O(m+ (φn)2.376).

Proof. Let H1, . . . , Hr, s ∈ H1 be the decomposition of F into weakly connected
components. We construct a directed graph G(F, s) as follows. G(F, s) has a vertex
hj for each Hj. E(G(F, s)) is the set of all arcs (hj, hl) such that there exists v, u ∈ G
with v ∈ Hj, u ∈ Hl and u ∈ C(S) \ {s}. By definition, if H ′ is an arborescence in
G(F, s) rooted at h1, then H ′∪F is an arborescence in G rooted at s and H ′∪F ∈ F ∗.
Moreover, for any arborescence H ∈ F ∗, H ′ = {eH(v) | v ∈ C(S) \ {s}} is an
arborescence in G(F, s) rooted at h1. So, if we use the algorithm of Colbourn et al.
[45] to generate random arborescence H ′ in G(F, s) rooted at h1, then H ′ ∪ F is a
random arborescence from F ∗. Since |V (G(F, s))| = |C(S)| ≤ φn and the algorithm
from [45] works in time O(|V (G(F, s))|2.376), the lemma follows.

7.4.4 Proof of Theorem 7.1.2

By the connection explained in the introduction (section 7.1.1), it is sufficient to
devise a procedure that generates a random arborescences. We do this as follows. We
fix φ = 1/

√
n, and using Lemma 7.4.2 we get a strong (1/

√
n, Õ(

√
n))-decomposition

of G in Õ(m) time. Now, we use completely analogous reasoning to the one used in
Lemma 7.3.2 – together with the algorithm offered by Lemma 7.4.3 – to prove that
we can simulate (δ-approximately) the walk X̂ in expected time Õ(m

√
n) (we use in

particular the fact that X̂ is a shortcutting of X̃ and thus of X). Having done this,
we look at the directed forest F consisting of arcs ev for v /∈ C(S)∪{s} as defined by
our simulation of X̂. We use the procedure from Lemma 7.4.4 to get an arborescence
T of G in time O(m + n2.376/2) = O(m

√
n). The whole algorithm therefore runs in

expected time Õ(m
√
n).

To see that the above algorithm generates a (conditionally) random arborescence,
let us consider some arborescence T of G rooted at some vertex s and condition
what will follow on event that the algorithm outputs an arborescence rooted at s.
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Let F (T ) = {eT (v) | v /∈ C(S) ∪ {s}}. By the fact that X̂ is a a shortcutting
of the walk X and by Theorem 7.1.1, we know that F (X̂(ω)) = F (T ) for exactly
|F (T )∗|/|Ts(G)| fraction of trajectories. But since the procedure from Lemma 7.4.4
generates a random arborescence from F (T )∗, T is generated with probability exactly
1/|Ts(G)|. This concludes the proof of Theorem 7.1.2.
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Chapter 8

Conclusions

In this thesis, we developed new approaches to obtaining fast approximation algo-
rithms for a variety of fundamental graph problems. These approaches draw upon a
diverse set of modern algorithmic techniques such as sparsification, low-stretch span-
ning trees, the multiplicative-weights-update method, and dynamic graph algorithms;
as well as, fast Laplacian system solvers and various tools of spectral graph theory.
The paradigm that played an especially key role in establishing our results was con-
necting combinatorial properties of graphs to linear-algebraic properties of associated
Laplacians. In particular, we were using electrical flows and the related objects to
probe the cut/flow structure of the underlying graph.

These ideas led not only to obtaining faster algorithms for cut- and flow-based
graph problems. They also allowed us to understand better and make progress on a
basic optimization task: approximation of the asymmetric traveling salesman prob-
lem; as well as, provided us with a faster algorithm for a basic algorithmic problem
of spectral graph theory: the generation of an uniformly random spanning tree.

We believe that the research presented in this thesis opens up a lot of interesting
directions to pursue. We survey some of them below.

Maximum s-t Flow Problem: Given the fundamental nature of the maximum
s-t flow problem, it is natural to ask whether one can refine further the approach we
presented in Chapter 3, to make it give us an algorithm for the undirected maximum
s-t flow problem that runs in nearly-linear time and computes an exact answer. Note
that by the connection we described in Section 3.6, having such an algorithm for
undirected graphs would also yield a nearly-linear time algorithm for the directed
setting.

One observation to keep in mind when investigating the above question is that
it is known [14, 94] that the multiplicative-weight-update routine we described in
Section 2.8 and employed in Chapter 3, is fundamentally unable to guarantee better
than polynomial in 1/ε dependence of the running time on the error parameter ε.
Therefore, to make our electrical-flow-based approach lead to exact answers, one
would need to change the way the electrical flow computations are combined to form
the final answer. One promising approach to doing that is to use the ideas underlying
the interior point methods. It is known that the running time of the generic interior
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point method algorithms can be sped up significantly in the context of flow problems
[51]. So, one could wonder if it is possible to obtain further improvement here by
utilizing the insight gained from understanding the interplay between electrical flows
and the combinatorial structure of graphs.

Unifying the Landscape of Algorithmic Graph Theory: As our ultimate
goal is to develop fast and well-performing algorithms for all the fundamental graph
problems, one could consider taking a more principled approach towards this goal
than just designing algorithms for each particular problem separately.

One way of pursuing this direction might be by trying to develop a general method
of obtaining efficient algorithms for some broad family of graph problems that is
similar in spirit to our framework from Chapter 5. Ideally, such a method would
allow us to reduce the task of designing good algorithms for general instances of the
problems in this family, to a task of designing good algorithms for instances of these
problems that correspond to some structurally simpler class of graphs (e.g., trees).
One concrete example where obtaining such a result might be possible, would be
extending the framework from Chapter 5 to flow-based problems.

Another approach that might lead to a more unified picture of the structure of
close-to-linear-time graph algorithms is based on reducibility. More precisely, in the
spirit of the theory of NP-completeness, one could try to relate various algorithmic
tasks to each other by establishing formal reductions between them. These reductions
would aim at examining how fast a given task can be performed if one has an efficient
algorithm that solves some other task.

A particular direction in this vein that one could pursue is tying the complexity of
various fundamental graph problems to the complexity of the maximum s-t flow prob-
lem. It is already known that a variety of optimization tasks (e.g., bipartite matching
and graph partitioning [122]) can be reduced to maximum s-t flow computations.
Therefore, the hope would be that by following this direction more systematically, we
would establish the maximum s-t flow problem as the central problem of the algorith-
mic graph theory. In this case, we could focus our attention on understanding this
particular problem, as developing a fast algorithm for it would immediately imply a
fast algorithms for all the tasks that were reduced to it.

Further Study of the Connections Between the Combinatorial Algorithms
and Linear Algebra: Given the presented in this thesis benefits of integration of
linear-algebraic and combinatorial views on graphs, a natural direction to pursue is
understand further the extent to which this paradigm can be applied. In particular,
one might try to examine the known applications of the traditional spectral methods
and investigate whether the additional insight granted by the usage of electrical flows
leads to some improvements there.

For example, one of the classical applications of spectral graph theory is using
Cheeger’s Inequality (cf. Section 2.5.1) to obtain efficient graph partitioning prim-
itives. The performance of these primitives is very good on graphs that have very
good connectivity properties, i.e., on graphs having fairly large conductance, but de-
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grades quickly as this connectivity worsens. It would be interesting to understand if
basing the partitioning procedure on electrical flows – instead of basing it just on the
eigenvector corresponding to the second-smallest eigenvalue of the Laplacian – could
mitigate this problem.

Yet another possible application of electrical flows might be making further progress
on understanding thin trees. As explained in Chapter 6, obtaining (α,O(1))-thin
trees, for α = o(log n/ log log n), would allow us to obtain an improved, O(α) factor,
approximation to the asymmetric traveling salesman problem. As electrical-flow-
based techniques were already useful in establishing our (O(log n/ log log n), O(1))-
thinness bound, it is possible that a deeper understanding of the interplay of electrical
flows and the cut structure of graphs will lead to further improvement.
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