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Abstract

Feelings of hunger and satiety are the key determinants for maintaining the life of humans and animals. Disturbed

appetite control may disrupt the metabolic health of the host and cause various metabolic disorders. A variety of

factors have been implicated in appetite control, including gut microbiota, which develop the intricate interactions

to manipulate the metabolic requirements and hedonic feelings. Gut microbial metabolites and components act as

appetite-related signaling molecules to regulate appetite-related hormone secretion and the immune system, or act

directly on hypothalamic neurons. Herein, we summarize the effects of gut microbiota on host appetite and

consider the potential molecular mechanisms. Furthermore, we propose that the manipulation of gut microbiota

represents a clinical therapeutic potential for lessening the development and consequence of appetite-related

disorders.
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Introduction

Feelings of hunger and satiety are principal involun-

tary motivations for feeding behavior in humans and

animals [1–4]. Appetite, governed by the central ner-

vous system (CNS), corresponds to a short-term sig-

nal from gastrointestinal hormones to control food

intake and a long-term signal from adipose tissue as-

sociated with energy stores and environmental cues

[5]. The CNS, hormones, and vagal afferents develop

an intricate appetite system to initiate or inhibit food

intake, while lack of physiological control of appetite

generally results in eating disorders, such as anorexia

nervosa (AN) and bulimia nervosa (BN), as well as

metabolic diseases, such as obesity, which are poten-

tial threats to human host health [6–9].

Gastrointestinal tract is home to microbiota, which

mutually interact with the host to modulate gut physi-

ology and extraintestinal functions. Energy metabolism

serves as a key point for microbiota and host interaction,

as the gut microbiota not only receive energy from the

host to maintain normal growth, but also supply the

host with energy by releasing enzymes and metabolites,

such as short-chain fatty acids (SCFAs), amino acids, bile

acids (BAs), caseinolytic proteasB (ClpB), and lipopoly-

saccharide (LPS) [10]. To date, numerous studies are

supporting the notion that gut microbiomes exert a pro-

found influence on eating behavior in humans and ani-

mals [11–17]. Firstly, eating disorders are accompanied

with alterations of gut microbiota. For example, AN pa-

tients have lower fecal microbial α-diversity and different

fecal bacterial compositions [11, 18–20], while BN
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patients are characterized by a higher abundance of bac-

terial ClpB protein [21]. Secondly, gut microbial alter-

ations further affect appetite and feeding behavior

evidenced by a piglet model that lysine restriction-

shaped microbial communities are associated with de-

creased circulating satiety hormones and increased feed

intake [22]. Together, the gut microbiota and appetite

system are highly associated and energy metabolism and

microbial metabolites may serve as the potential mecha-

nisms. Indeed, a review in 2017 has expertly summarized

the integrative homeostatic model of appetite control re-

lated to the gut microbial metabolites mediated by bac-

terial growth cycle [10]. Diet interventions may

dominate over host genetics to influence the incidence

and development of metabolic diseases [23, 24], which

is, at least in part, due to the modulations of gut micro-

bial communities and metabolism. Thus, understanding

the effects of nutrient-altered microbial metabolites on

host metabolism and the potential molecular

mechanisms provide an opportunity for the application

of dietary interventions in metabolic diseases.

In this review, we further discuss the most recent in-

sights regarding how the gut microbiota and its metabo-

lites that are implicated in food consumption may link

to appetite-related hormonal and neural signals.

Microbiota-derived metabolites and components are fo-

cused on the appetite regulation via modulating hor-

mone secretion and immune system function (Figs. 1

and 2). van de Wouw et al. have reviewed mechanistic

insights into the pathway of how gut microbial metabol-

ite, including GABA, BAs, and SCFAs, may contribute

to host metabolism and appetite [25]. Notably, microbial

metabolites related to appetite control are not limited to

these. We herein evaluate a series of recently discovered

gut microbial metabolites, such as succinate, branched-

chain amino acids (BCAAs), and bacterial proteins, and

their potential role as messengers between the gut

microbiota and host energy homeostasis in appetite

Fig. 1 Gut microbiota-associated mechanisms involved in host appetite control. Firstly, gut microbial metabolites can stimulate enteroendocrine

cells to release anorexigenic hormones (PYY, GLP-1, and CCK) and neurotransmitter (5-HT) and promote the secretion of peripheral hormones

(leptin, ghrelin, and insulin). Secondly, Igs are involved in modulating the biological activity of appetite-regulating hormones, such as leptin and

ghrelin. In addition, gut microbiota can produce identical protein sequences with appetite-regulating peptides, such as ClpB, that might directly

act on anorexigenic neurons or bind to Igs to modulate the secretion of anorexigenic hormones from enteroendocrine L cells
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control. Based on the importance of organic acids,

amino acids, and fatty acids related to gut microbiota

metabolism, we also provide insights for microbiome-

targeted therapies to treat or prevent appetite-related

disorders (Fig. 3).

Gut microbiota and appetite-related hormones

The physiological control of appetite is mediated by cir-

culating orexigenic and anorexigenic hormones (e.g.,

leptin, insulin, and ghrelin) produced by peripheral or-

gans, including gut, adipose tissue, and pancreas. Here,

we summarize the impacts of specific changes in the mi-

crobial compositions on appetite-related hormones,

which play a key role in modulating brain behavior and

function through the humoral or the neural pathway.

Leptin

Leptin, secreted mostly from the white adipose tissues,

reflects the body’s energy stores [26, 27]. The stomach

and intestine are also sources of leptin and contain lep-

tin receptors [28, 29]. Leptin can cross the blood-brain

barrier (BBB) and then activates leptin receptors on the

two subsets of neurons in the hypothalamic arcuate nu-

cleus (ARC). Specifically, leptin can activate the anorexi-

genic neurons expressing proopiomelanocortin (POMC)

and inhibit orexigenic neurons expressing neuropeptide

tyrosine (NPY) and agouti-related protein (AgRP), which

collectively inhibit host appetite [30–34].

Evidence from rodent experiments suggests that gut

microbial abundance and richness are related to the lep-

tin signaling. For example, in human with and without

obesity, lower bacterial richness is associated with higher

circulating leptin concentrations [35]. In addition,

in vivo and in vitro studies showed that the translocation

of living gut microbiota to adipose tissues induced by in-

creased intestinal permeability influences energy metab-

olism through inhibiting the leptin signaling in obese

humans and mice [36, 37]. Leptin treatment decreases

the hypothalamic NPY and AgRP expression in germ

free (GF) mice, whereas has no effect in WT mice [38],

suggesting an important role of gut microbiota in leptin

signaling. Furthermore, the depletion of gut microbiota

Fig. 2 Gut microbial metabolites derived from amino acids influence host appetite control. Microbiota-derived amino acids mediate a variety of

effects on appetite control. (1) Trp can be metabolized by commensal bacteria to produce tryptamine that affect the production and secretion of

5-HT, and some indole derivatives that are associated with maintaining intestinal permeability. 5-HT can act as neurotransmitter that conveys

signals from the gut to the brain and mediate appetite control. (2) Glu can be metabolized by gut microbiota to produce GABA, which is

considered a neurotransmitter to regulate the secretion of appetite-related hormones and intestinal motility. (3) Gut microbiota are involved in

the biosynthesis and transport of BCAAs. The imbalance of BCAAs: non-BCAAs ratio can influence the 5-HT production in the hypothalamus. In

addition, BCAAs can control appetite through mediating intestinal amino acid receptors and hypothalamic NCG2/eIF2α signaling. The sensory,

hormonal, and neural signals are sent to the brain through vagal afferents or bloodstream to regulate appetite
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inhibits leptin signaling and food intake in mice fed with

the normal diet, whereas inhibits food intake but with-

out affecting leptin signaling in mice fed with the high-

fat diet [39, 40], demonstrating that the effect of gut

microbiota on leptin signaling is dependent on the diet.

Interestingly, probiotics or prebiotics supplementation

has different and even contrary effects on the leptin sig-

naling and food intake in genetically and diet-induced

obese mice [41–44]. These conflicting results may be be-

cause the functional consequences of the microbial taxa

shift have inconsistent outcomes to the leptin signaling

[41], and the precise outcomes of specific microbiota

need further investigations. Furthermore, whether the

prebiotics and probiotics have comparable influence in

animals and humans with eating disorders is still

unclear.

Ghrelin

Contrary to leptin, ghrelin is mainly a stomach-derived

hunger hormone that acts as a ligand for the growth

hormone secretagogue receptor (GSHR). In addition to

the stomach, the fetal islets and adults’ duodenum also

synthesize and secret ghrelin, but the quantity appears

to be small [45, 46]. Ghrelin can transmit starvation sig-

nals to the brain via binding to its receptor on vagal af-

ferent neurons [47]. Ghrelin is also able to cross the

BBB and directly activate AgRP/NPY and inhibit POMC

neurons through binding to GSHR in the brain, which

will lead to increased food intake and decreased energy

expenditure [48–51]. Furthermore, recent studies have

shown that the gut microbiota are involved in regulating

appetite through modulating ghrelin-related signaling

pathways [52, 53]. For example, administration of prebi-

otics, such as inulin and oligofructose, inhibits feed in-

take via enhancing the synthesis of glucagon-like peptide

(GLP-1) and peptide YY (PYY), as well as inhibiting the

ghrelin production in obese and healthy adults [54, 55].

However, another intervention study with oligofructose-

enriched inulin for 16 weeks in obese children decreased

food intake and enhanced blood fasting ghrelin concen-

tration, while has no significant effects on the GLP-1

and PYY, and insulin concentration [56]. The investiga-

tors suspected that increased ghrelin may act as a

defense against diet-inhibited caloric intake. These con-

flicting experimental results call for studies in which the

ghrelin signal and appetite are tested after prebiotics or

probiotics interventions to explore the potentially dietary

strategies for abnormal eating behavior treatment. In

addition to metabolic needs, the hedonic effects of food

can also induce food intake in individuals, which may be

because eating food can make them feel better and re-

lieve stress [57]. Studies have demonstrated that leptin

and ghrelin are responsible for both homeostatic and he-

donic aspects of feeding by regulating dopamine signal-

ing [57–60]. Overall, these results show that the gut

microbiota may regulate feed intake by regulating leptin-

related signaling pathways.

Insulin

In addition to controlling glucose and energy homeosta-

sis, insulin can function as a satiety signal [61]. Various

studies have shown that insulin-related signaling path-

ways are associated with decreased food intake in in-

sects, mice, and humans [62, 63]. Similar to leptin and

Fig. 3 Potential clinical applications related to gut microbiota in appetite-related disorders. Gut microbial composition and metabolites contribute

appetite control through altering the production and secretion of appetite-related hormones and influencing the immune system. Modulation of

gut microbial composition is feasible via various strategies, including dietary interventions, probiotics, prebiotics, next-generation probiotics, FMT,

and FVT. In addition, postbiotics can specifically and precisely change the microbial metabolites
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ghrelin, insulin can also cross the BBB and control appe-

tite by acting on the POMC/CART and NPY/AgRP neu-

rons after binding with its receptor [38, 62]. In addition,

insulin and leptin treatment decrease food intake by in-

creasing the expression of angiopoietin-like protein 14

(Angpt14) and inhibiting hypothalamic AMPK signaling

in mice [64]. As demonstrated in humans and mice, in-

sulin signaling is influenced by the gut microbial com-

munities. For example, humans with low gut bacterial

richness have higher insulin resistance [35], whereas

mice with deficient and deleted gut microbiota have

higher insulin sensitivity [65, 66]. Furthermore, altered

gut microbiota induced by probiotics inhibits food intake

by alleviating insulin resistance and inhibiting NPY ex-

pression in diet-induced obese mice [44, 67]. These ob-

servations suggest that the gut microbiota could

participate in modulating appetite by influencing central

insulin signal.

In summary, hormones derived from peripheral organs

participate in various metabolism processes involved in

appetite, such as energy homeostasis and hedonic feed-

ing. It remains possible that altered gut microbiota may

have an influence on host appetite through regulating

the secretion of appetite-related hormones, pending con-

firmed evidence from more rigorous tests in clinical

trials.

Gut microbial metabolites and appetite

It has long been suggested that gut microbial metabo-

lites play a key role in generating energy and mediating

microbiota-gut-brain communication, which may affect

the physiological and psychological functions of mam-

mals [68, 69]. A better understanding of the interaction

between gut microbial metabolites and appetite will help

to design personalized nutritional strategies for treating

eating disorders. We will hereafter update the molecular

mechanisms, and we also reviewed some other microbial

metabolites that are related to appetite control.

SCFAs

The SCFAs (i.e., acetate, propionate, and butyrate) are

generated by the gut bacterial fermentation of low-

digestible polysaccharides, such as dietary fibers. In

addition to providing energy, SCFAs widely act as signal-

ing molecules and play a key role in appetite control. A

piglet study observed both negative (Ruminococcaceae

and Lactobacillus) and positive (Prevotella) relationships

between the SCFAs and lactic acid-producing gut micro-

biota and feed intake [70]. SCFAs exhibit their metabolic

and appetite-related functions by binding to the G-

protein-coupled receptors in various tissues and organs,

including free fatty acid receptor 3 (FFAR3, GRP41) and

free fatty acid receptor 2 (FFAR2, GRP43). Signaling via

these receptors has contrary effects (reviewed in detail

elsewhere [71]). On one hand, SCFAs can activate

ghrelin-related signaling and inhibit the insulin secretion

by activating free fatty acid receptor 3 (FFAR3, GRP41)

in islets, but the effects of SCFAs on appetite through

activating GRP41 are unclear [71–73]. On the other

hand, SCFAs can inhibit appetite by binding to the free

fatty acid receptor 2 (FFAR2, GRP43), which further ac-

tivates the release of GLP-1, PYY, insulin, and leptin to

signal to appetite system (Fig. 1) [74–77]. GLP-1 and

PYY, two anorexigenic hormones [48, 78–82], can cross

the BBB and act as direct brain neuropeptides to activate

POMC [49, 83]. In addition, GLP-1 and PYY help to in-

crease insulin sensitivity and slow gastric emptying and

intestinal motility to affect appetite [84–87]. Intriguingly,

acute colonic propionate delivery decreases food intake

and stimulates the secretion of PYY and GLP-1, while

long-term colonic propionate delivery has little effects

on PYY and GLP-1 release in humans [74], which may

be associated with propionate resistance. Besides, a clin-

ical study indicated that the reward processing and he-

donic response rather than the secretion of PYY and

GLP-1 contribute to the inulin-propionate-caused en-

ergy intake reduction [88]. Furthermore, gut-derived

SCFAs entering the bloodstream can also cross the BBB

and directly affect appetite-related neurons in the brain

[89]. For example, intraperitoneal injection of acetate

significantly decreases food intake by increasing the

expression of POMC and inhibiting agouti-related

peptide (AgRP) in the hypothalamus, but without af-

fecting the concentration of circulating PYY and

GLP-1, suggesting that acetate may directly regulate

appetite by generating an anorectic signal in the

hypothalamic ARC [89]. Moreover, findings in hu-

man and animal studies suggested that increased in-

testinal permeability, partially induced by microbial

alterations, is associated with the eating disorders

[90–95], which may be due to the elevated circulat-

ing ClpB and LPS levels [96–99]. A recent study

showed that the FMT-enhanced SCFA levels contrib-

ute to the decreased intestinal permeability and in-

creased food intake in mice with neurological

disability [100]. Taken together, these results suggest

that gut-derived SCFAs are involved in appetite con-

trol through hormonal and central effects. However,

different dietary fiber supplementation has different

influence on host appetite and energy intake, which

is due to the complex effects of different SCFAs on

energy metabolism (reviewed in detail elsewhere [25,

101]). These conflicting results suggest that further

mechanistic research is needed to investigate the in-

fluences of each SCFA or in combination on appetite

control in order to precisely and systematically ex-

plore the relationship between SCFAs and appetite

control.
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Succinate

Succinate is a common product produced by gut micro-

bial carbohydrate fermentation, which was not noticed

in van de Wouw and co-workers’ review [25]. Evidence

from human studies suggests that the microbiota-

derived succinate contributes to the host energy homeo-

stasis. The obese individuals display increased circulating

succinate concentrations, which could be attributed to

those with obesity produce more gut microbiota-derived

succinate as compared with healthy individuals [102].

Meanwhile, in obese patients, dietary weight loss inter-

vention alters gut microbiota and decreases circulating

succinate concentration [102]. Nevertheless, the results

from studies investigating the effects of succinate on

appetite-related signaling are inconsistent. One series of

studies suggested that succinate treatment improves glu-

cose and insulin tolerance and elevates energy expend-

iture, but without affecting the food intake in mice fed

with high-fat/high-sucrose and high-fat diet [103, 104].

Interestingly, another study demonstrated that supple-

mentation with succinate reduces food intake and

plasma insulin concentration in genetic obese (ob/ob)

mice [105], which might be due to the succinate-

promoted intestinal gluconeogenesis that can be de-

tected by the hepatoportal glucose sensor and then send

an anorectic signal to the brain [106]. Overall, these out-

comes derived from mice models indicated that succin-

ate might be involved in appetite control. However,

studies in humans that investigate the effects of succin-

ate on appetite regulation are currently lacking.

Tryptophan (Trp)

The gut microbiota plays an important role in control-

ling the availability and metabolism of Trp, which dir-

ectly or indirectly regulates metabolic homeostasis and

even appetite [107–110]. Trp can both affect the gut

hormone secretion and cross the BBB to directly activate

satiety circuits in the brain [111]. Amounting studies

have been performed to explore the effects of dietary

supplementation and reduction of Trp on appetite con-

trol, whereas the results are inconsistent and contradict-

ory. For example, animal studies showed that Trp

administration can stimulate food intake by enhancing

ghrelin, 5-HT, neuropeptide Y (NPY), and the pituitary

growth hormone-insulin-like growth factor (GH-IGF)

signaling [112, 113]. However, intragastric or intraduo-

denal Trp dose dependently inhibits appetite and pro-

motes the production of CCK, GLP-1, and PYY in the

healthy men, whereas failed to affect appetite in the

obese men [114–116]. In line with this, an animal study

also showed that the supplementation of 5% Trp in-

creases satiety and reduces feed intake in healthy rats

[117]. Moreover, severe Trp restriction decreases the

plasma leptin and ghrelin concentrations and increases

the plasma GLP-1 and PYY concentrations, which leads

to decreased feed intake and body weight, while moder-

ate Trp restriction increases energy expenditure in

obesity-prone rats [118]. These results suggest that the

effects of Trp on appetite are complex and depend on

the dosage of dietary Trp and the host metabolic

conditions.

In terms of metabolites produced by the gut micro-

biota, indole can serve as a molecular signal to regulate

food intake and appetite by stimulating GLP-1 secretion

in enteroendocrine L cells [119–121]. A recent study

found that the derivatives of indole, including indole-3-

ethanol (IEt), indole-3-pyruvate (IPyA), and indole-3-

aldehyde (I3A), also can decrease intestinal permeability

by binding to their receptor, ary hydrocarbon receptor

(AhR) [122], which may contribute to the intestinal bar-

rier function and appetite control. Moreover, Trp is the

precursor of 5-HT and dominates the synthesis rate of

intestinal and central 5-HT [108, 123, 124]. Studies

using GF mice, gnotobiotic mice recolonized with spore-

forming microbiota from SPF mice, and healthy humans

showed that the gut microbiota participates in the 5-HT

production and influences the serotonergic neuronal

networks [125, 126]. Mechanistically, some studies have

revealed that gut microbiota-derived SCFAs increase the

circulating 5-HT concentration via promoting trypto-

phan hydroxylase (Tph) 1 transcription in ECs [126,

127], whereas Martin et al. reported that acetate or bu-

tyrate treatment fails to affect the 5-HT secretion in

duodenal and colonic ECs [128]. Additionally, a recent

study showed that indole and its derivate, indole-3-

carboxaldehyde (IA1d), produced by Edwardsiella tarda,

form Trp that can bind with transient receptor potential

ankyrin Aa (Trpa1) to enhance 5-HT secretion from

enteroendocrine cells, and in turn stimulates intestinal

motility and regulates CNS function in both human and

mouse models [129]. Moreover, other microbial metabo-

lites, such as deoxycholate, α-tocopherol, p-

aminobenzoate, and tyramine, also can stimulate the 5-

HT secretion from ECs and enteric neurons [122, 126,

130]. Approximately 90% of the circulating 5-HT is pro-

duced from enterochromaffin cells (ECs) in the host gut

and then stored in circulating platelets that convey 5-

HT into every organ and tissue, including the brain

[126]. Thus, although 5-HT cannot cross the BBB dir-

ectly, platelet-derived 5-HT is able to increase the level

of CNS 5-HT, which might link the intestinal 5-HT with

brain function [131]. Various studies have shown that 5-

HT plays a vital role in regulating energy metabolism

and suppressing appetite through various mechanisms,

including improving insulin sensitivity and mediating in-

testinal functions (i.e., motility, secretion, absorption,

and sensory) by directly acting on the enteric nervous

system and hypothalamic AgRP and POMC neurons
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[132–139]. Thus, it is clear that the gut microbiota can

involve in appetite control by modulating intestinal and

central 5-HT signaling.

In summary, gut microbial regulation of Trp metabol-

ism involves in host appetite control (Fig. 2), although

these effects are somewhat inconsistent and the reasons

remain unclear, but might be partially due to whether

the stimulation of Trp reach the “threshold” required to

regulate appetite and energy intake. These findings en-

courage the future investigation of the specific role and

mechanism of Trp and its metabolites derived from gut

microbiota in appetite control.

GABA

GABA is a microbial metabolite from dietary glutamate

and acts as a neurotransmitter that contributes to the

communication between the gastrointestinal tract and

brain [140]. Most Lactobacilli and Bifidobacteria strains

have the Gad genes that can encode glutamate decarb-

oxylase to synthesize GABA [141, 142]. Obese patients

have decreased abundance of glutamate-fermenting

microbiota, as well as increased circulating glutamate

level [143], indicating that the gut microbiota partici-

pates in host energy hemostasis through modulating glu-

tamate metabolism. This hypothesis is further confirmed

by studies using GF, gnotobiotic, and humanized mice

[144–146].

GABA is strongly associated with appetite control as

the disruption of GABA signaling pathways can inhibit

postweaning feeding, blunted NPY-induced hyperphagia,

and hunger-induced appetite [147, 148]. Mechanistically,

GABA has long been known as a molecular signal in-

volved in modulating the gastrointestinal motility and

the secretion of appetite-related hormones (extensively

reviewed elsewhere [149]). In addition, GABA functions

as an inhibitory neurotransmitter in the CNS. GABA is

required, at least in part, to the activation of AgRP neu-

rons [150, 151]. It is noteworthy that due to the vari-

ation of chemicals and compounds and the different

administration methods, the data on whether GABA can

cross the BBB is inconsistent [152–154]. In addition, the

majority of studies demonstrating the effects of GABA

on host health focus on dietary GABA rather than host

endogenic GABA. The rumen-protected GABA supple-

mentation increases feed intake and inhibits CCK signal-

ing in growing lambs and cows [155, 156], which may be

because GABA is co-expressed and shares the similar

signal transduction pathways with CCK [150, 156, 157].

Thus, it does appear to be reasonable to hypothesize that

GABA might be involved in the appetite control via act-

ing on its receptors in the gastrointestinal tract and

brain, which in turn influences the secretion of gut hor-

mones and activates central neurons, respectively. How-

ever, the research on the relationship between the gut

microbial-derived GABA and appetite control is limited;

thus, further studies are needed to investigate the role of

GABA produced by the gut microbiota on host meta-

bolic health and determine whether GABA can cross the

BBB and act on the CNS to regulate appetite.

BCAAs

BCAAs, including leucine, isoleucine, and valine, are de-

rived from the diet as well as can be de novo by the gut

microbiota. The gut microbiota exhibits enriched genes

related to BCAA biosynthesis (Prevotella copri and Bac-

teroides vulgatus), degradation (Bacteroides thetaiotao-

micron and Dorea longicatena), and uptake (Butyrivibrio

crossotus and Eubacterium siraeum) [158, 159]. Human

and animal studies revealed the relationship between gut

microbiota, circulating BCAA level, and insulin resist-

ance [160–164]. There is also growing evidence that

demonstrates that dietary supplementation or reduction

of BCAAs induces alterations in host appetite, yielding

inconsistent results. For example, long-term BCAA sup-

plementation decreases feed intake in high-fat diet-

induced obese rats [165]. Diet containing high ratio of

BCAAs to other AAs (non-BCAAs) induces hyperphagia

in mice, which might be because high BCAAs: non-

BCAAs intake downregulates the synthesis of central 5-

HT [166]. Our recent study also found that supplemen-

tation of BCAAs to low-protein diet increases the rela-

tive abundance of colonic Lactobacillales and promotes

food intake in piglets [167]. Furthermore, in another

study using piglets, long-term dietary deficiency of

BCAAs inhibits food intake which might be associated

with the enhanced expression of intestinal amino acid

receptors, type-1 taste receptors 1 (T1R1) and type-1

taste receptors T1R3, that can activate the CCK secre-

tion and the enhanced hypothalamic GCN2-Eif2α signal-

ing that is involved in the energy metabolism and

inhibiting appetite [168]. We speculate that the incon-

sistent results might be due in part to whether the stud-

ies involve the manipulation of the balance between the

BCAAs and non-BCAAs. Although, the mechanism by

which BCAAs involve in appetite control are complex

and controversial (Fig. 2), these data suggest that target-

ing at gut microbiota for maintaining amino acid metab-

olism and homeostasis might be crucial for improving

appetite control.

BAs

BAs are synthesized in the liver and released into the

gastrointestinal tract and are involved in intestinal ab-

sorption of lipid, as well as metabolic and inflammatory

signaling pathways [169]. Previous studies have shown

that the gut microbiota plays a crucial role in the BA

metabolism by deconjugation, dehydrogenation, and

dihydroxylation of primary BAs [170–172]. The
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synthesis of BAs mainly depends on cholesterol 7α-

hydroxylase (CYP7A1) and sterol-27-hydroxylase

(CYP27A1) that are regulated by the gut microbiota

[173, 174]. Moreover, BAs have been reported to modu-

late appetite by directly binding with their receptors in

the gastrointestinal tract to regulate the secretion of

appetite-associated hormones. For example, altered BA

composition enhances the GLP-1 and PYY secretion

from enteroendocrine cells via activating GRP119 and

Takeda G-protein-coupled bile acid receptor (TGR5) in

ECs, which in turn slows gastric emptying and ultimately

decreases food intake in mice [175, 176]. Collectively, it

is reasonable to conclude that BA metabolism, which is

greatly affected by the gut microbiota, can mediate appe-

tite regulation by modulating appetite-related hormones.

Gut bacterial proteins

The gut microbiota, including the bacteria, fungi, virus,

and archaea, can produce identical protein sequences

with appetite-regulating peptides (i.e., leptin, PYY,

ghrelin, α-MSH, NPY, AgRp) [177]. ClpB, the best stud-

ied bacterial protein, can act as a mimetic of alpha-

melanocyte-stimulating hormone (α-MSH) to result in

similar anorexigenic effects [178]. Briefly, ClpB derived

from Escherichia coli (E. coli) is capable of displaying the

α-MSH-like function, such as enhancing PYY and GLP-

1 secretion, and directly activating anorexigenic neurons,

and subsequently inducing satiety [13, 48]. An in vitro

study showed that protein supplementation stimulates

the secretion of ClpB from E. coli, which can induce sati-

ety signaling by enhancing the PYY production in intes-

tinal mucosal cells [179]. This observation was

translated to rats treated with protein produced by E.

coli showing inhibited host appetite, increased circulat-

ing GLP-1 and PYY concentrations, and activated hypo-

thalamic POMC neurons, which may be due to the

anorexigenic functions of ClpB [13]. In addition, a recent

study revealed that food restriction increases plasma

ClpB levels, which is associated with the increased rela-

tive abundance of Enterobacteriaceae and intestinal per-

meability, and in turn increases satiety by activating

anorexigenic neurons in mice [96]. Altogether, these

data support the possible mechanistic links between gut

microbiota-derived ClpB and host appetite. Whether

other specific gut microbial communities also can pro-

duce ClpB and contribute to appetite control is

unknown.

The gut microbiota play a key role in regulating the

immunoglobulin (Ig) production (reviewed in detail else-

where [180]). Igs can react with α-MSH and then acti-

vate MC4R to involve in appetite control, which can be

diminished by ClpB through neutralizing IgG [180, 181].

IgG has been reported to involve in controlling appetite

by modulating leptin and ghrelin signaling pathways

[182, 183]. Co-administration of ghrelin together with

IgG from obese patients and ob/ob mice increased food

intake in mice, which might be due to the inhibited

ghrelin degradation induced by ghrelin-reactive IgG

[183]. Another study revealed that the levels of plasma

IgG and α-MSH were lower in rats with methotrexate-

induced intestinal inflammation and anorexia, while

anti-α-MSH IgG supplementation led to an attenuation

of feed intake [184]. Besides, AN patients show higher

levels of α-MSH-reactive IgM and α-MSH-IgG com-

plexes that can bind and activate MC4R with a lower

threshold than α-MSH alone than normal controls [185,

186]. Additionally, a recent study revealed that the acti-

vation of the mechanistic target of rapamycin complex 1

(mTORC1) signaling can modulate IgA secretion, which

contributes to decreased Lactobacillus johnsonii Q1-7

abundance and inhibited food intake in mice [187].

These data suggest a link between the gut microbiota,

autoimmune system, and appetite control. These bacter-

ial proteins could be used as biomarkers of eating disor-

ders but needs further confirmation.

Clinical relevance

Abnormal regulation of appetite can cause eating disor-

ders and obesity [188–190], which are severe and life-

threating mental illness. In a study of Australian adoles-

cents, 22.2% of participants suffered from eating disor-

ders [191]. AN, BN, and binge eating disorders (BED)

are the three most common eating disorder diagnoses.

The most common explanation for AN is the constant

fear of becoming overweight and disturbed cognitions

about body perception [192]. Individuals with AN show

severe underweight, and other psychiatric complications

include depression and anxiety [7, 193]. An increasing

number of studies indicate that individuals with BN and

binge eating disorders have higher incidence rates of

obesity and related metabolic diseases, such as type 2

diabetes and cardiovascular disease compared to individ-

uals with no history of eating disorders [194–196].

In recent years, there has been keen interest in explor-

ing the gut-microbiota-brain axis [197–201]. Growing

evidence suggests that the gut microbiota can act as an

effective regulator of host body weight and psychiatric

disorders [140, 202–205]. Fecal microbiota transplant-

ation (FMT) from a healthy individual to an AN patient

has led to weight gain by increasing the production of

SCFAs and composition of beneficial microbiota [69].

Besides, gut viral community contains mostly phages,

which can infect bacteria and lead to cell lysis [206].

Similar to FMT, a recent study has mounted that fecal

virome transplantation (FVT) also has therapeutic po-

tential against metabolic diseases, including obesity and

T2D [207]. Another series of studies demonstrated that

administration of prebiotics and probiotics have the
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ability to regulate food intake and ameliorate obesity and

associated disorders in humans and experimental ani-

mals [208–210] (Table 1). However, the effects of pro-

biotics on appetite-related hormones and appetite in

obese and overweight subjects are inconsistent, which

has been reviewed elsewhere recently [211]. Thus, future

studies with high methodological quality and low risk of

bias are needed to determine precise the effects of pro-

biotics on appetite regulation. In addition to the com-

mon probiotics (mainly include Lactobacillus spp. and

Bifidobacterium spp.), the next-generation probiotics

(i.e. Akkermansia muciniphila, Bacteroides thetaiotaomi-

cron, Bacteroides vulgatus, Faecalibacterium prausnitzii,

Ruminococcus bromii, and Roseburia) have been grad-

ually identified and considered to have the potential for

treating metabolic diseases due to the development of

culturing methodologies and genome and metagenome

sequencing techniques [93, 212–217]. Despite the tech-

nologies limit the use of the new identified probiotics, it

may provide opportunities to use dietary interventions,

such as prebiotics, to treat appetite-related disorders via

modulating specific gut microbiota [218]. In a recent

study, Ortega-Vega et al. found that the gut microbial

diversity and some specific gut microbiota with heritabil-

ity are associated with the variants in these genes encod-

ing ghrelin, MC4R, GLP-1, NPY, and PYY and metabolic

diseases, revealing that, to some extent, the intricate

links between host genetics and gut microbiota are re-

lated to appetite modulation, which expands our under-

standing of the functional attributes of the gut

Table 1 Studies on probiotics/prebiotics and appetite control in human and animals

Human/
animal

Effects References

Probiotics

Lactobacillus paracasei Men Decreased food intake [220]

Lactobacillus acidophilus, Bifidobacterium bifidum,
Bifidobacterium lactis, Bifidobacterium longum, Lactobacillus
rhamnosus, Lactobacillus reuteri, magnesium stearate, and
maltodextrin

Women Decreased hunger score and emotional eating score
by inhibiting NPY

[221]

Lactobacillus acidophilus and Lactobacillus casei Broiler chicken Decreased feed intake [222]

Hafnia alvei HA4597 High-fat-diet-
fed obese
mice

Decreased feed intake by increasing ClpB production [223]

Lactobacillus brevis SBC883 Rats Increasing feed intake by increasing serotonin and
ghrelin production

[224]

Lactobacillus casei Children with
diarrhea

Improved appetite by altering gut microbiota (i.e.
increased Bifidobacteria and Lactobacillus)

[225]

Lactobacillus rhamnosus Larvae Increased feed intake by altering gut microbiota and
neuropeptide production

[226]

Lactobacillus rhamnosus, L. acidophilus, and Bifidobacterium
bifidum

Diet-induced
obese mice

Decreased feed intake by altering gut microbiota and
decreasing intestinal permeability

[227]

Lactobacillus rhamnosus Obese women Decreased desire to eat [228]

Lactobacillus rhamnosus Zebrafish Decreased appetite by altering gut microbiota [229]

Prebiotics

Oligofructose-enriched inulin Children with
overweight/
obesity

Decreased food intake by decreasing ghrelin and
increasing PYY

[56]

Inulin-type fructans and/or whey protein Adults with
overweight/
obesity

Decreased hunger, desire to eat, and prospective food
consumption by altering gut microbiota (i.e., increased
Bifidobacterium)

[230]

Chicory Mice Induced satiety by altering gut microbiota (i.e.,
Firmicutes/Bacteroidetes ratio, Alloprevotella, Blautia) and
increasing CCK and GLP-1

[231]

Mannose oligosaccharide Diet-induced
obese mice

Suppressed appetite by altering gut microbiota (i.e.,
increased Bifidobacterium and Lactobacillus) and
increased SCFAs production

[232]

Digestion-resistant maltodextrin/fructooligosaccharides Diet-induced
obese rats

Decreased energy intake by increasing GLP-1
production

[233]

Han et al. Microbiome           (2021) 9:162 Page 9 of 16



microbiome in metabolic and eating disorders as well as

open new therapeutic manipulation of specific micro-

biota [219].

Although there is as yet no evidence that such treat-

ments would be safe and efficient for feeding-related dis-

eases, these studies provide proof of concept for microbial

interventions in directly or indirectly counteracting eating

disorders (Fig. 3). While the mechanism by which how the

gut microbiota may regulate eating behavior is still elusive,

efforts to alter the commensal microbiota by administra-

tion of probiotic, prebiotic, phage, and even FMT high-

light the potential of microbiota interventions in treating

eating disorders by modulating host appetite and reducing

food-related and body-related fears; the potential of

microbiota as a modifier of metabolic disorders induced

by abnormal appetite control; and the potential of micro-

bial amelioration of psychiatric diseases such as depres-

sion and anxiety caused by eating disorders.

Conclusions

In this review, the direct and indirect molecular mecha-

nisms how the gut microbiota regulates host appetite

were summarized. Although a great number of studies

have already linked the gut microbiota and eating behav-

ior, the precise mechanisms through which the gut

microbiota influence particular eating disorders, such as

anorexia nervosa and food addiction, have not yet been

fully deciphered. Understanding how some specific

members of the gut microbiota are involved in appetite

control may be important to develop novel preventive

and therapeutic interventions and even prediction for

eating disorders. It should be noted that it is extremely

difficult to define the optimal gut microbiota, since indi-

viduals have different gut microbiota composition, and

even in the same host, the gut microbiota have complex

variations and evolutions during the whole life cycle due

to various diets, environments, genes’ expression, and so

on [234–239]. The gut microbiota could be the so-called

healthy microbiota as long as it benefits the individual

who harbors it. Thus, further efforts should be made to

explore the dynamics and effects of gut microbiota

changes and differences, in order to design microbiota-

based therapeutic strategies for different individuals dur-

ing different life stages. To date, our understanding of

the gut microbiota roles in modulating appetite is mainly

based on in vitro studies and rodent models. With re-

gard to this, it will be essential to conduct well-designed

clinical trials or assemble clinical data, in order to fill the

large gaps between clinical and experimental knowledge

and translate the proof of concept acquired from animal

models to the clinical setting. Consequently, these stud-

ies may potentially be applied for probiotics, prebiotics

applications, and FMT, as an effective treatment for

eating-related diseases in the future.
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