Hindawi

Wireless Communications and Mobile Computing
Volume 2020, Article ID 8816023, 13 pages
https://doi.org/10.1155/2020/8816023

WILEY

Hindawi

Research Article

From Hardware to Operating System: A Static Measurement
Method of Android System Based on TrustZone

Xinhong Hei, Wen Gao (), Yichuan Wang (), Lei Zhu, and Wenjiang Ji

School of Computer Science and Technology, Xi'an University of Technology, Xi’an, China
Correspondence should be addressed to Yichuan Wang; chuan@xaut.edu.cn

Received 21 April 2020; Revised 27 July 2020; Accepted 7 September 2020; Published 21 September 2020
Academic Editor: Qi Jiang

Copyright © 2020 Xinhong Hei et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Android system has been one of the main targets of hacker attacks for a long time. At present, it is faced with security risks such as
privilege escalation attacks, image tampering, and malicious programs. In view of the above risks, the current detection of the
application layer can no longer guarantee the security of the Android system. The security of mobile terminals needs to be fully
protected from the bottom to the top, and the consistency test of the hardware system is realized from the hardware layer of the
terminal. However, there is not a complete set of security measures to ensure the reliability and integrity of the Android system
at present. Therefore, from the perspective of trusted computing, this paper proposes and implements a trusted static
measurement method of the Android system based on TrustZone to protect the integrity of the system layer and provide a
trusted underlying environment for the detection of the Android application layer. This paper analyzes from two aspects of
security and efficiency. The experimental results show that this method can detect the Android system layer privilege escalation
attack and discover the rootkit that breaks the integrity of the Android kernel in time during the startup process, and the

performance loss of this method is within the acceptable range.

1. Introduction

In recent years, with the rapid development of mobile Inter-
net technology, the number of users using Android mobile
devices has increased rapidly. By 2018, the share of the
Android system in the global smartphone has reached 85%
[1]. According to CVE details [2], in 2017 and 2016, the vul-
nerability of the Android operating system was 842 and 523,
respectively. According to the classification of these vulnera-
bilities in literature [3], the ratio of kernel vulnerabilities and
standard libraries is the largest, accounting for 41% and 32%,
respectively. At present, the Android system is mainly faced
with cross script attack, privilege promotion attack, malware
attack, privacy stealing attack, replay attack, communication
attack, NFC attack, denial of service attack, etc. [4-9]. How-
ever, for the protection of attacks, most of the current
research is in the application layer [10-16], but these solu-
tions cannot fundamentally solve the security problems
encountered by the current mobile terminal, and the termi-
nal may still be threatened by malicious attackers and mal-
ware, so we should start from the system layer of the

mobile intelligent terminal and build a secure and reliable
mobile terminal system from bottom to top to ensure the
security of intelligent terminal.

At present, there are three main methods for the security
research of the Android system layer: SEAndroid, hardware-
assisted virtualization technology, and TrustZone technology
based on ARM. The introduction of SEAndroid has largely
prevented malicious applications from attacking the system,
but SEAndroid needs to rely on a trusted kernel and cannot
defend against direct attacks from enemies [17]. For the
hardware virtualization technology, L4Android [18] adopts
the hardware virtualization technology to isolate the Android
system on each occasion, but the attack on the system cannot
be stopped. The Droid Visor [19] protects the integrity of the
static key objects of the kernel and detects the rootkits of pro-
cesses and modules, but it cannot detect the rootkits that
modify the dynamic entropy pool resources. [20] can detect
the integrity of the Android system kernel, but it cannot
defend against the rights raising attack. For TrustZone tech-
nology, Zhang et al. proposed that T-Mac used TrustZone
technology to strengthen Mac [21] but did not consider other

https://orcid.org/0000-0002-1505-8956
https://orcid.org/0000-0001-6575-1954
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8816023

factors affecting kernel security, such as not measuring the
control flow in the kernel. Ahmed proposed a real-time ker-
nel protection mechanism based on the advantage of Trust-
Zone’s hardware isolation. Although it has achieved some
results against kernel level attacks, it has made significant
modifications to the kernel. Ge et al. proposed a core code
integrity measurement architecture SPROBES [22] based on
the TrustZone architecture. Although it can measure rootkit,
the performance loss of single instruction measurement is
large. [23, 24] can implement a side-channel cache attack
on the Android operating system using TrustZone. There-
fore, in order to solve the security problem of the Android
system layer, there is an urgent need for a more reliable and
secure solution. Because SEAndroid needs to rely on a trusted
kernel, hardware virtualization technology is currently con-
sidered too expensive and low versatility [25]. Therefore, this
paper uses TrustZone technology to study the Android sys-
tem layer kernel.

From the perspective of trusted computing, this paper
proposes and implements a trust static measurement method
for the Android system based on TrustZone, which takes
bll.bin image in ARM trusted firmware (ATF) as the trusted
root, combines TrustZone technology with the Android sys-
tem, and measures the kernel modules and executable files in
the system startup process statically, and finally, extends the
trusted root to the Android system application framework
layer that provides a reliable underlying environment for
the detection of the Android system application layer. This
method can detect the elevated privilege attack of the
Android system layer and discover the rootkit that breaks
the integrity of the Android kernel in time during the startup
process, and the performance loss of this method is within
the acceptable range.

To sum up, our main contributions are as follows:

(1) Using the idea of trusted computing, according to the
MTM specification, the hardware device is regarded
as the source of trust, and the trust chain for Android
system startup is designed to solve the problem of
trust from the source

(2) A static measurement method for the Android oper-
ating system kernel is designed, which transfers the
trust of the trusted root to the Android application
framework layer through the trust chain

The rest of the paper is arranged as follows. The second
section introduces the related knowledge of the technology
used in this paper. The third section introduces our overall
design. After that, the fourth section introduces the imple-
mentation process and gives the evaluation results in the fifth
section. Finally, in the sixth section, we summarize this paper
and look forward to the future work.

2. Related Work

2.1. Android Trust Chain. Since the establishment of the
trusted computing organization (TCG), trusted computing
has made rapid development. The establishment and trans-
mission of the trust chain are the basic problems of trusted

Wireless Communications and Mobile Computing

computing, which involve three points: trust root, trust trans-
mission, and trust measurement. Trust root is the corner-
stone of system trust and also the starting point of trust
transmission. Trust transmission refers to the function of
providing complete trust to the upper layer. The implemen-
tation of each layer of the system is based on the trust of
the next layer, and the extension of the system’s trusted range
can be realized through trusted transmission [26, 27].
Trusted measurement refers to the integrity verification of
files and their related configuration information to prevent
them from being tampered with. The trust chain constructed
by these three points gives trust from bottom to top and
reduces the trust management of a large-scale system to the
root of trust.

2.2. Android Framework Layer. As the middle layer of the
application layer and underlying code, the Android frame-
work layer encapsulates standardized modules to provide
Java API for the application layer and also includes the JNI
method to call underlying library functions to provide some
system services; for example, Cameraservice and Media-
playerservice are closely related to the user’s privacy data.
In the /system/framework directory of the Android system,
there are mainly three types of files: jar package, ODEX file,
and boot.art and boot.oat. Jar package provides support for
various libraries in the framework layer for some functions
of Android; for example, when executing the AM command,
the am.jar file will be loaded. From Android version 4.4, Goo-
gle has migrated the ART virtual machine to Android. After
version 5.0, the ART virtual machine completely replaces the
original Dalvik virtual machine. To run ART, the boot.art
and boot.oat files in the directory are required. When compil-
ing the Android source code, some common classes will be
packaged into boot.oat; boot.art contains the pointer to the
method code in boot.oat, which is the boot image of the
ART virtual machine. The ODEX file in system/framewor-
k/oat/arm directory is the result of optimizing some jar pack-
ages when compiling source code. For example, services.odex
will be loaded when creating system services.

Our goal is to measure the complete Android framework
layer, so all files in the /system/framework directory are our
goal.

2.3. Selection of Experimental Technology. At present, there
are three main methods for the security research of the
Android system layer: SEAndroid, virtualization technology,
and TrustZone technology based on ARM. Because SEAn-
droid relies on a trusted kernel and cannot guarantee the
security of the underlying system, we will not discuss it in this
part. Therefore, we compare virtualization technology with
TrustZone technology. The comparison results are shown
in Table 1.

2.3.1. Security. All code resources in the trusted execution
environment (TEE) are protected, and the management of
this code requires certain permissions based on hardware
control. The downloading and installation of trusted applica-
tions are also based on a certain trust. Particularly for trusted
applications developed by third parties, the source of the

Wireless Communications and Mobile Computing

TaBLE 1: Contrast result.

TrustZone Virtualization technology
Safety Higher Lower
SOC implementation Easily Difficulty
Ecology Universal No standardization

Application scenario Sensitive applications

Applications that need to improve efficiency

application must be identified and certified before the appli-
cation is downloaded and installed, so as to reduce malicious
software, the attack of Trojan program on a safe operating
system.

Compared with the security function of the TEE, virtua-
lization technology allows multiple operating systems to exe-
cute on a host processor. Although these operating systems
are isolated from each other, they do not make these operat-
ing systems have security features. Virtualization does not
provide the corresponding interface to deal with security
functions, let alone separate security hardware. From the per-
spective of isolating operating systems from each other to
ensure the security of some operating systems, virtualization
technology highlights the weakening.

2.3.2. SOC Implementation. For the SOC system, the TEE has
the ability to control all hardware peripherals and filter the
access to these peripherals under different CPU states, so
the system itself needs to be clear about which execution
environment is currently accessing which resources. For vir-
tualization technology, the controller is only a software com-
ponent, which can be directly connected to peripheral
devices. The system itself does not perceive virtual machines.
Because virtualization is only used to organize software run-
ning on the ARM core, it is very difficult to build a complete
security system relying on it.

2.3.3. Ecological Creation and Maintenance. At present, the
TEE has been deployed in a large number, and the platform
it depends on can be completely transparent, and the TEE
has the operating system agnostic. No matter what operating
system is used by the mobile platform, it will have a set of
standard communication interface to ensure that the operat-
ing system and the trusted application running in the TEE
communicate with each other. On the contrary, virtualiza-
tion products on mobile platforms do not have a standard-
ized ecosystem to focus on the security needs of the
industry. In addition, virtualization will be more intrusive
at the following two levels: one is the virtual machine level,
and the other is that the controller driver needs to adapt to
each new platform monitor version.

2.3.4. Application Scenario. The TEE is generally used to
implement sensitive applications, such as DRM, mobile
financial payment, and enterprise mobile office. Virtualiza-
tion technology enables multiple software environments to
run on shared physical resources, so its use scenarios are
more suitable for those application scenarios that improve
efficiency.

In conclusion, TrustZone technology can better achieve
the trusted static measurement of the Android system in this
experiment.

2.4. TrustZone and OP-TEE. TrustZone is a group of hard-
ware security extensions for ARM. The TrustZone space
controller can divide DRAM into different memory areas
and specify the memory area as safe or normal. The world
executed by the processor is represented by an ns bit, which
propagates through the system bus. The trusted bus struc-
ture ensures that normal world components cannot access
any secure world resources [28]. The Open-source Portable
Trusted Execution Environment (OP-TEE) project is
implemented by the TEE open source launched by Linaro,
which fully complies with the specifications and standards
issued by the GP organization for TEE and supports all
APIs of document specifications such as TEE client API
v1.0 [29].

Therefore, this paper chooses a secure world os(optee_
os) in OP-TEE as a trusted execution environment.

2.5. File Encryption Key of OP-TEE. FEK is the file encryption
key used by OP-TEE when encrypting data. Each secure file
of trusted application has a FEK to encrypt the data of the
corresponding file. The generation process is shown in
Figure 1.

Secure storage key (SSK): the value of the secure storage
key is different in different devices. After the OP-TEE is
started, the chip ID and hardware unique key (HUK) will
be used to calculate the value through HMAC for use when
generating other keys.

Storage Trusted Storage Key (TSK): TSK is the key used
to generate file encryption key (FEK). TSK is calculated by
HMAC using SSK as the key to the UUID of trusted applica-
tion. TSK will be used to generate FEK finally.

The generation process of FEK is as follows:

SSK = HMAC(HUK, message),
Message = concatenate(chip_id, string_for_ssk_gen),
TSK = HMAC(SSK, TA_UUID),
FEK = AES_CBC(TSK, in_key),
(1)

where in_key is the random number needed to generate
FEK.

4 Wireless Communications and Mobile Computing
HUK HMAC UUID
SSK HMAC Random (PEK)
TSK AES_CBC
Encryption
PEK
FiGure 1: File encryption key (FEK) generation process.
Secure world | | Normal world |
Application layer
Boot ROM-BLI | Setwpwizard | [smsmms | [Bmal | [|
Application framework
Trusted boot Activity Window | | Content View N L
firmware-BL2 manager manager provider || [| 77
Libraries L Android runtime

OP-TEE

SSL SGL | | . - ART }—l Core

library
Service rooter

Android Initialize Daemon “.\RT Executable

OS kernel rofile rocess virtual file

module P P machine
PSCI test

Component measurement module
Linux kernel
EL3 firmware-BL31 (secure monitor)
I SMC interface
FIGURE 2: System architecture design.
3. System Design measurement in the process of Android system startup, we

In this part, we first introduce the design of the system archi-
tecture, then describe the trusted verification process and the
trusted static measurement method in detail during the
startup of the Android system.

3.1. Architecture Overview. According to the MTM standard
of a trusted system, to establish the whole system’s trust, we
need to establish a trusted root first, then form a trusted chain
according to the detection, and transfer the trust to each
module of the system. In order to achieve the trusted static

combine ARM trusted firmware with OP-TEE which imple-
ments TrustZone technology with the Android system, take
bl1.bin image as the trusted root and OP-TEE as the trusted
storage root, and add the degree module in the Android sys-
tem kernel layer to design a trusted static measurement
method for the Android system. The overall framework of
the system is as shown in Figure 2.

3.2. Trust Delivery Process. According to the architecture
chart we designed, the flow of the system integrity verifica-
tion mechanism we designed is bll — bl2 — bl31 — optee_

Wireless Communications and Mobile Computing

os — Bootloader — kernel — Android system — APP. The
whole process of trusted authentication is shown in Figure 3.

The startup process is divided into trusted execution
environment (TEE) side startup and Rich Execution Envi-
ronment (REE) side startup, which are described in the fol-
lowing two aspects.

3.2.1. TEE Side Start Process. After the system is powered on,
it will start to execute the code in chip ROM. Chip ROM will
first jump to the bl1.bin image of ATF for execution. After bll
completes the operation of loading the bl2.bin image into
RAM and setting the interrupt vector table, it will perform
the signature verification operation on the bl2 image file. Dur-
ing the compilation of ATF, the system will perform the
SHA256 calculation on all levels of images in ATF and then
sign the generated summary. The private key is the RSA2048
key under the directory file. If the verification is passed, call
the EL3, exit function to realize the jump from bll to bl2,
and enter b2 to start execution. In bl2, the signature verifica-
tion module of the image file will be initialized first.

If the signature verification passes, the image file of the
bootloader of bl31, OP-TEE, and Android system will be loaded
into the memory with corresponding permission. Among them,
bl31 is the execution software of EL3, whose function is to call
security monitoring mode (SMC) instructions and interrupt
processing. After triggering the security monitoring mode call
in bl2, bl31 starts to run. bl31 determines whether to load OP-
TEE by parsing whether there is an entry function of OP-TEE
and verifying the validity of the OP-TEE image signature. If
the entry function exists and the image signature verification
is passed, OP-TEE will be started. After OP-TEE, the security
monitoring mode call will be triggered to reenter bl31 for fur-
ther execution. bl31 obtains the bootloader image file of the next
Android system that needs to be loaded into the Rich Execution
Environment (REE) side by querying the link list and verifies
the validity of the bootloader file. If the verification is passed,
then set the CPU state and running environment when the
REE side is running and exit EL3 to enter the bootloader image
startup of the Android system. At this time, the trust of the
trusted root is transferred from bll to the bootloader of the
Android system. If any part of the above process fails to be ver-
ified, it will directly cause the system to hang up.

3.2.2. REE Side Start Process. When the bootloader starts to
start, it enters into the normal world of Android system
startup. In the startup of the REE side, as shown in the archi-
tecture design in Figure 1, we add a measurement module to
the kernel layer of the Android system. In order to formally
describe and verify the startup process of the REE side, we
refer to the PKI trust model on the basis of reference [30]
and first give the following definitions:

Definition 1. Let e* be the set of all components involved in
the safe startup, and m be the OP-TEEVc;c;¢€e”,

where i, j € N. The following are the propositions:

(1) Integrity measurement
capability: TrustCapa(c;, ¢;, Integ) | <p;,, >. It indi-
cates that when the constraint condition p,,, is satis-

fied, component c; believes that ¢; has the trusted
integrity measurement capability; p;,, refers to the
trusted measurement capability that component c;
can communicate with OP-TEE

(2

~

Integrity credibility: Trusted(c;, c;, Integ) indicates
that component ¢; believes that c; has a trusted integ-
rity measurement attribute

(3) Integrity measurement: Meas(c;, ¢;, Integ) | <RIM >
indicates that component ¢; measures the integrity
value of ¢, which is the same as the reference integ-
rity value (RIM) stored in OP-TEE

Definition 2. Let e* be the set of all components involved in
the safe startup, and m be the OP-TEE, Vc;, ¢;, ¢, € e”. The
following are the propositions:
Rule 1. Integrity measurement capability transfer
rule:-
TrustCapa(c;, ¢;, Integ) | <p;,, > ATrustCapa(c;, ¢;, Integ)| <
Pim> — TrustCapal(c;, ¢, Integ)| < p;,. >
Rule 2. Trust
rule:-
TrustCapa(c;, ¢;, Integ) | <p;,, > AMeas(c;, ¢;, Integ)| < RIM
> — Trusted(c;, ¢, Integ)

delivery

At the start of trusted start, the external observer ¢, thinks
that only bootloader (c;) in the mobile intelligent terminal is
trusted and has integrity measurement capability, so there
are initialization conditions as follows:

Trusted(c, ¢,, Integ),

(2)

TrustCapa(c;, ¢;, Integ)| < p,,, > .

Android kernel integrity measurement module is respon-
sible for measuring the kernel module loaded in Android
intelligent mobile terminal, initialization configuration file,
daemons, ART virtual machine initialization process, and
all executable files under the framework layer. The measure-
ment process is as follows.

The measurement module measures the Android OS ker-
nel module (¢,) and compares the measurement value with
the expected measurement value stored in OP-TEE. If the
measurement result is consistent, the next measurement will
be continued. At this time,

TrustCapa(cy, ¢;, Integ)|<p,,,>AMeas(c,, ¢,, Integ)||[<RIM> — Trusted(c, c,, Integ)).

(3)

Since ¢, has started and initialized m, it can be seen from
the assumption that

Meas(c,, ¢,, Integ)| < RIMCert > — TrustCapa(c,, ¢,, Integ)| < p,,,, > .

(4)

(Power on boot

v
Jump to bll
image

bl2 legal?

Yes

Running bl2
image

A

Wireless Communications and Mobile Computing

Start complete

Load android
system

Android is
integrity?

Start kernel

i

Start
Bootloader

System
hangs

Bootloader
legal?

Running bl31
image

Y
OP-TEE legal?

Start OP-TEE

FIGURE 3: Start process trusted authentication process.

The measurement module measures the Android initial-
ization configuration file (c;) and compares the measurement
value with the expected measurement value stored safely in
OP-TEE. If the measurement result is consistent, continue
to the next measurement, and the same can be obtained from
the above derivation. At this time,

Trusted(cy, ¢35, Integ), TrustCapa(c,, c;, Integ)| < p,,,, > .

(5)

According to the above method, the daemons (c,) are
measured and the measurement values are verified. If the
results are consistent, then

Trusted(c, ¢, Integ), TrustCapa(c;, c,, Integ)| < p,,,, > .

(6)

The measurement module measures the initialization
process of the ART virtual machine (c;) and verifies the mea-
surement value. If the result is consistent, then

Trusted(c, cs, Integ), TrustCapa(c,, cs, Integ)| < ps,, > .

(7)

Finally, measure and verify all executable files under the
framework layer of the Android system. If the results are con-

sistent, then

Trusted(c,, ¢4, Integ), TrustCapa(cs, ¢4, Integ)| < pg,, > -

(8)

It can be seen from the derivation that in the process of
building the trusted start on the REE side, the trust relation-
ship extends from ¢, to the boundary ¢, of the trusted base,
indicating that the components on the trust chain in the
trusted base are all trusted under the premise that the con-
straints are met. Therefore, the following conclusions can
be drawn:

Trusted(co, ¢;, Integ),Vc; €e* 1 <i<6i€N. 9)

By using the initial conditions and the formal deduction
of the above formula, it can be seen that the safe startup pro-
cess on the REE side is safe and reliable, which meets the
requirements of integrity and trust verification. At this point,
the trusted startup process of the whole system is completed,
and the trust is extended from the root of trust for measure-
ment to the framework layer of the Android system.

4. Detailed Description of Scheme

In order to realize the architecture we designed in the previ-
ous section, this part describes the process of our specific
implementation architecture from the aspects of environ-
ment construction, trusted image production, image integrity

Wireless Communications and Mobile Computing

F1Gure 4: Kirin 960 SOC.

verification, measurement methods, and storage of expected
metrics.

In this paper, in terms of the experimental hardware, the
Huawei Kirin hikey960 development board based on Kirin
960 SOC shown in Figure 4 is used. The experimental envi-
ronment is the Ubuntu 14.04 system.

4.1. Environment Building. First, get the latest Android AOSP
and OP-TEE code of Google and then carry out MD5 detec-
tion and compare it with the official MD5 value to ensure the
purity of the code. Then, add the TEE supplicant service in
the init.common.rc file of Android source code and add the
optee-packages.mk configuration file in the linaro/hikey
directory. Add the configuration of OP-TEE in the device-
common.mk configuration file and modify conf.mk and plat-
form_config.h files of OP-TEE source code. The purpose is to
identify and call the services provided by OP-TEE and pro-
vide a trusted environment for the next trusted measurement
and safe storage in the Android system startup process. Then,
obtain the source code of the underlying firmware ATF offi-
cially provided by ARM. The source code of ATF is divided
into five parts: bll, bl2, bl31, bl32, and bl33. bll, bl2, and
bl31 are fixed firmware; bl31 will execute the runtime service
init function, which will call the initialization functions regis-
tered to all services in EL3. One of them is the TEE service.
After the service is initialized, we modify the bl32 init code
in bl31 to make the bl32 executed function jump to OP-
TEE and start the startup of OP-TEE. After the initialization
of OP-TEE, bl31 finds the bootloader of Android that needs
to be executed by obtaining the link list of bl2, exits EL3,
and enters the bootloader image for execution.

4.2. Production of Trusted Image. According to the Android
system startup process framework described in the previous
section, ARM trusted firmware, as a newly added stage of
the secure startup architecture, not only completes the func-
tions similar to some boot loader functions but also includes
the module to verify the image in the next stage and the
decryption public key at the time of verification. In order to
realize the startup image integrity authentication, we recreate
the bl2, bl31, OP-TEE, and bootloader images to be detected
and make the trusted startup integrity verification image as
shown in Figure 5.

Hash engine

SHA-256 computing

Executable image

RSA private key

Encryption

Executable image
hash summary

A 4
Signature encrypted
executable hash
summary

A

Image

Signature encrypted

Executable i
executable hash summary xecutable Image

F1GURE 5: Production of the integrity verification image.

The steps are as follows: first, prepare the source code
transplanted in each stage according to the requirements and
compile and generate the executable image file; in the local
computer, hash the executable image with the hash engine,
which uses the public hash algorithm SHA-256. Get the hash
result corresponding to the executable image: the hash sum-
mary of the image; then, use the RSA private key provided
by the trusted firmware to sign and encrypt the asymmetric
algorithm of the hash summary of the image. The encryption
algorithm adopts the RSA asymmetric public key encryption
algorithm; get the result after signature encryption; finally,
the hash summary after signature encryption is relinked with
the original executable image to generate the final image file.

4.3. Image Integrity Verification. In order to achieve image
integrity verification, it is necessary to verify the source and
integrity of the image in the next stage. After power on and
startup, the system performs integrity detection to ensure
the safe and tamper-free behavior of the image at startup.
Figure 6 shows the opverification process in each stage.

Wireless Communications and Mobile Computing

RSA public
key
Decr)liption
!
Executable image
hash summary after g;ccré’g)eli
I image header image hash
mage signature encryption sur;g]mar
Signature to be detected v
encrypted Executable Contrast result
executable image
hash Executable image at I:iz{lc;l]:lt:
summary the end of the image imace hash
to be detected surimary

SHA-256 (tzomputing
|

Hash engine

FIGURE 6: Image integrity verification diagram.

The verification process is as follows:

(1) First, copy the image of the next stage to the desig-
nated memory location according to the require-
ments of the design startup process

(2) The image is divided into two parts: one is the image
head: the encrypted executable image hash summary;
the other is the image tail: the executable image

(3) The encrypted executable image hash digest is
decrypted according to the public key stored in the

executing domain

(4) If it can be decrypted, it means that the image header
data source is trusted, and the decrypted result can be
obtained: the image hash summary can be executed,
if it cannot be decrypted; it means that the image
source is illegal and untrusted, and the operation of
shutdown can be performed

(5) Then, hash the executable image at the end of the
image. The hash algorithm is a public hash algorithm
and must be consistent with the algorithm adopted in
the local image production to get the recalculated
executable image hash summary

(6) Compare the recalculated executable image hash
summary with the result of the previous decryption
operation

(7) If the two hash values are the same, it means that the
image is reliable and complete, and the verification is
passed; if the two hash values are different, it means
that the image is incomplete, and the shutdown oper-
ation is performed

4.4. Implementation of the Measurement Method. We trans-
plant and modify IMA of the Linux kernel to realize kernel
measurement during startup. The full name of IMA is integ-

rity measurement architecture; this component uses the hook
function provided by LSM to detect files and application
codes completely before they are executed or mapped to
memory and generates a detection list. By reconstructing
IMA code, we use the SHA-1 algorithm to measure kernel
module, initialization configuration file, daemons, ART vir-
tual machine initialization process, and executable files under
the framework layer; the kernel is configured through mak-
ing menuconfig; the kernel is recompiled; and the IMA ser-
vice is started before the mount system partition.

4.5. Storage of Expected Measure List. Use the above measure-
ment method to measure the kernel module, initialization
configuration file, daemons, ART virtual machine initializa-
tion process, and the executable file of the framework layer
of pure Android and generate the measurement list as the
expected measurement value. Some expected measurement
values generated are shown in Table 2.

Then, we store the generated measure list into the secure
file system of the secure operating system as the expected
metric list, which is used to start the comparison template
for generating the metric list in the future. The security stored
procedure steps are as follows:

(1) The REE side initiates the encryption request, and the
client CA that executes the TEEC_InitializeContext
function initializes the context of the TEE

(2) CA calls the TEEC_OpenSession function opens the
session and establishes a connection with the corre-
sponding trusted encryption and decryption pro-
gram TA in the TEE

(3) CA implements TEEC_RegisterSharedMemory reg-
isters a piece of shared memory for communication
between CA and TA, which is used to transfer data
and commands to the security service in the TEE
and receive the results returned by the security

Wireless Communications and Mobile Computing

TaBLE 2: Expected measure list.

/system/lib64/libjavacore.so
/system/lib64/libopenjdk.so
/system/lib64/libvixl-arm.so
[system/framework/core-oj.jar
/system/framework/core-libart.jar

/system/framework/okhttp.jar

Shal:825341bd045d62c15fd7bdc4ec026932ccff4178
Shal:fc483a0156f5bafe26bbcc9c90cd38b190516c89
Shal:8e6b91186c4239a9bbd38df88fc1b91c5387f1d
Shal:811d092eec40e1922af7aaf6189363de0f8a975f
Shal:d2e8e403c1d0ddfecadc2c3ac51197f593e84dc0
Shal:e26a028a129bd9¢779667d03e2eeedf9eabee6b7

service. If the memory allocation is successful, step
(4) is executed; otherwise, step (6)

(4) CA calls TEE_CreatePersistentObject interface,
TEE_OpenPersistentObject interface, and TEE_Wri-
teObjectData function, respectively, and writes the
data to be transferred into the registered shared
memory. After receiving the command, the security
service in the TEE first reads the data information
in the shared memory, and then OP-TEE sends an
RPC request to notify tee_supplicant to complete
the operation of the file system on the REE side and
stores the security files in the data/TEE directory

(5) Execute the TEEC_ReleaseSharedMemory function
to release shared memory

(6) Execute the TEEC_CloseSession function to close the
session; the storage result is shown in Figure 7

4.6. Secure Transfer of Measure List. In the nonsecure envi-
ronment, before the measure list file generated during the
startup of the Android system on the REE side is transferred
to the TEE security environment for comparison, the mea-
surement data in this stage is also very easy to be intercepted
by malicious programs. Therefore, we establish a secure met-
ric list transmission channel between optee_os and Android
systems through the TrustZone driver module to ensure that
the metric list is transmitted to optee_os security. Figure 8
shows the framework of the security transmission channel
of the measure list.

First of all, after generating the measurement list during
the startup process of the Android system, REE obtains the
key from the security environment and then encrypts the
metric list with the aes-256 symmetric encryption algorithm.
Then, it calls the CallTrustZone function through the Trust-
Zone driver module to fall into the monitor environment.
The monitor switches the execution environment of the sys-
tem to the secure environment protected by TrustZone, the
decryption module is called to decrypt the transmitted
ciphertext, and then, the obtained metric list file is compared
for the next operation.

4.7. Comparison of Measure List. The comparison phase is
divided into two parts: first, decrypt the expected measure list
file of the security storage, calling the read interface in TA
and calling the syscall_storage_obj_read function to read
the data of the security file in the OP-TEE kernel space.
The function first obtains the TA session ID, the running
context and checks the permissions, and then calls the ree_

fs_read function to realize the operation of reading data.
The second part is the comparison of measurement list files.
SHA-1 operation on the decrypted expected measure list file
is performed, and at the same time, SHA-1 operation is also
performed on the measure list file decrypted in part 4.6. If
the two results are consistent, the result will be returned to
the REE side, and the Android system will start normally. If
the results are different, a warning will pop up after the
Android system starts.

5. Evaluation

In this part, we discuss the experimental results about the
functional effectiveness and performance of our method.
All experiments are carried out on the hikey 960 develop-
ment board.

5.1. Security Assessment. In the five attacks, the first two mod-
ified several bytes of the syscall table subroutine to achieve
the attack, the third one modifies the system’s exception vec-
tor table, the fourth one injects malicious code into the trig-
ger mechanism onTouchEvent() function to enhance the
permissions of the kernel layer, and the fifth one removes
the process from the list of processes in the kernel to hide
the process. Reference [20] proposes an android kernel mea-
surement method based on the ARM virtualization extension
called DIMDroid. This experiment is compared with the
static measurement method in DIMDroid, and the results
are shown in Table 3.

From the measurement results, it can be seen that both
tampering with kernel static measurement objects such as
system call table and interrupt call table and process hiding
can be detected. However, DIMDroid measurement cannot
detect the privilege attack of the application framework layer
and kernel layer.

In the measurement list storage process, we compare our
secure storage scheme with the traditional scheme that mea-
sure list is stored in ordinary Android files. The results are
shown in Table 4.

As the template resource of the Android system startup
process measurement list, the expected measure list is the
benchmark and basis of the whole comparison process.
Because the list of expected measures is stored in a secure iso-
lated area, it can block security threats from nonsecure envi-
ronments. In addition, in order to prevent other security
services in optee_os from obtaining the expected measure list
file, the asymmetric encryption algorithm combined with the
key stored in the isolated area is used to complete the encryp-
tion protection of the expected measure list file.

10 Wireless Communications and Mobile Computing
M/TA: [WRITE] start to write file: wen.txt
D/TC:® tee_ta_init_pseudo_ta_session:293 Lookup pseudo TA 59e4d3d3-0199-4f74-b94
d-53d3daas57d73
D/TC:0 tee_ta_init_user_ta_session:637 Lookup user TA 59e4d3d3-0199-4f74-b94d-53
d3daa57d73 (Secure Storage TA)
D/TC:0 tee_ta_init_user_ta_session:637 Lookup user TA 59e4d3d3-0199-4f74-b94d-53
d3daas57d73 (REE)
D/TC:0 ta_load:317 ELF load address 0x103000
M/TA: Sec storage TA_CreateEntryPoint
FIGURE 7: Storage of expected measure list.
REE TEE
Component measurement module Secure storage system
| Measurement list file | | Expected measurement values |
Measurement list file |
| Encryption module | T
Decryption module |
{
| TrustZone driver module |<——>| Monitor program |
FIGURE 8: Secure transport framework.
TABLE 3: Attack experiment measurement results.
. . Measurement results of . .
Rootkit Attack function category . . DIMDroid metric
this experiment
Rootkitl Modify some bytes of syscall subroutine v v/
Rootkit2 Modify some items of syscall Y, v
Rootkit3 Modify SWT software interrupt jump offset v v
. Inject malicious code into the onTouchEvent() function and
Rootkit4 . N X
elevate the kernel layer permissions to complete attack
Rootkit5 Intercept the proc_lookup function to hide the process v v

TABLE 4: Compare results.

Measure list Our scheme Traditional scheme
Storage location Single file optee_os
Safety Weak Strong
Encryption process Unsafe Safe

The attack of the Android system starting process metric
list transmission process mainly occurs in the stage of trans-
mitting the metric list from the Android environment to the
TEE system. The TrustZone driver module will request
memory space at the kernel layer and copy the list of metrics
generated during startup. Since the list of measurements gen-
erated in the whole stage exists in ciphertext, the security of
the process is guaranteed.

5.2. Efficiency Evaluation. In the experiment, we need to hash
the image file and the file that the Android system needs to be
measured. However, which hash algorithm to choose is our
first consideration. Therefore, we choose four files with dif-
ferent sizes from the image file that need to hash and the file
that the Android system needs to measure and do SHA-256,

SHA-1, and MD5 operations on them, respectively. The
results are shown in Figure 9.

It can be seen from Figure 8 that with the increase of file
size, SHA-256 has the longest calculation time and the largest
growth rate for the file, while MD5 has the smallest overall
calculation time and the least impact on the calculation rate
by the file size. SHA-1 is between the two.

SHA-256, SHA-1, and MD?5 are all unidirectional func-
tions, which are almost irreversible. The information that will
generate a complete summary is entered. However, it is pos-
sible for different information to generate the same sum-
mary, which is called a collision. The security of the hash
function depends on the ability to resist strong conflict to a
great extent. Therefore, to evaluate the security of the hash
function, it is necessary to check whether the attacker can
find a pair of conflicts under the existing conditions.
Table 5 lists the conflict thresholds of three hash functions.

According to Table 5, SHA-256 has the highest security,
while MD5 has the worst. Considering the above time and
security results, for the hash operation of the image, since
the number of images that need to be hash operation is four
(bl2.bin, bl31.bin, op-tee os, and uboot..img), the number of
images that need to be calculated is small, and we have high

Wireless Communications and Mobile Computing 11
18
16.8093
16
14 1 13.3247
- 124
g 10.2716
v 10
e 8.7919
= 7.946
£ 84
=
£
2 .
4.7340
4 Bw04
4.0261
L] i 3.6753
0 T T T T
File 1 File 2 File 3 File 4
(10136 bytes) (23248 bytes) (34261 bytes) (47104 bytes)
File
—*—SHA-256
—6—SHA-1
—&—MD5
FIGURE 9: MD5, SHA-1, and SHA-256 encryption time.
TaBLE 5: The collision thresholds for four commonly used hash TaBLE 6: Time required to start components.
functions.
. Bl1, BI2, OP- Android
Hash function Function collision threshold Unit (ms) Bl31 TEE Bootloader Kernel (O]
64 _ 19
MD5 27 ~18+10 ﬁormal start— 0 1226 5331 15052
SHA-1 280~ 1.2 % 10% Tp .
ruste
SHA-256 2128 _ 3 441038 startup 1219 2127 1352 5774 16484

security requirements for the image, so we choose the SHA-
256 algorithm to generate a summary value for the image.
For the measurement of Android system layer files, because
the number of files to be measured is hundreds, if SHA-256
is selected, it will cause a lot of performance loss, so we choose
SHA-1 operation to measure Android system layer files.

In this paper, for the scheme of trusted measurement of
the Android system startup process, its performance impact
mainly lies in the signature verification of image, the startup
of OP-TEE, the SHA-1 operation on the set file, and the
interaction time between the Android system and the OP-
TEE. We have done 20 experiments on startup and take the
average value of the results, as shown in Table 6.

In 20 experiments, the bootloader, kernel, and Android
OS startup time is 10.2%, 8.3%, and 14.8% longer than that
of the general Android. Because the startup of the trusted
Android involves the time required for the startup of the
trusted firmware and OP-TEE, compared with the normal
Android startup process, the trusted startup process also
increases the additional time overhead for the startup of
ATF and OP-TEE. As shown in Figure 10, the starting time
range of native Android is 21.1s-22.8 s, and the starting time
range of Android added to this experimental method is
26.35-27.6s. The average starting time of this experiment is
23.4% longer than that of native Android.

In order to judge the impact of the kernel measurement
module added on the REE side on the performance of the
Android system, this paper uses the AnTuTu benchmark
software, which is specialized in scoring Android device
phones and tablets. Compared with the performance index
of the unused kernel measurement module, the performance
index mainly selects several mainstream options at this stage:
ram speed, CPU floating-point calculation performance, and
CPU integer calculation performance. Use the AnTuTu soft-
ware test module to measure the kernel 100 times and take
the average value. The performance loss ratio is the percent-
age of the difference between the score of the performance
index item measured by the measurement module and the
score of the index item measured by the measurement mod-
ule, as shown in Table 7.

It can be seen from Table 6 that there is a certain perfor-
mance loss in using the measurement module compared with
not using the measurement module, but within the accept-
able range, it shows that this method has certain reference
significance for ensuring the integrity of the Android kernel.

6. Conclusion

In this paper, we propose and implement a TrustZone-based
method to measure the trustworthiness of the Android

12

Wireless Communications and Mobile Computing

40

35

i8] W
v [=)
1 1

Startup time (s)

N8
S
1

154

10 T T

—#— Native Android Q

6 7

oo
el

10 11

Test times

—©— Android Q in this experiment

F1GuURre 10: Startup time comparison.

TasLE 7: Using AnTuTu to test measurement module results.

Test item Performance loss rate (%)
RAM speed 2.86
CPU floating-point calculation 2.58
CPU integer calculation 6.21

system. We use the bll image in ARM trusted firmware
(ATF) as the trusted root, combine TrustZone technology
with the Android system to measure the kernel modules
and executable files in the system startup process, and finally,
extend the trusted root to the entire Android platform. The
next step is to give different weight values to different files
according to the startup relationship, judge the security of
the system according to the sum of the weight values, and
give a more comprehensive and reasonable measurement
verification to the Android system.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research work is supposed by the National Key R&D
Program of China (2018YFB1201500), the National Natural
Science Foundation of China (61602376, 61773313,
61602374, and 61702411), the National Natural Science
Foundation of Shaanxi Province (2017JQ6020,

2016JQ6041), the Key Research and Development Program
of Shaanxi Province (2020GY-039, 2017ZDXM-GY-098,
and 2019TD-014).

References

[1] Statista, Global mobile OS market share in sales to end users
from Istquarter 2009 to 2nd quarter 2018[EB/OL], 2018,
August 2018, https://www.statista.com/statistics/266136/
global-market-share-held-bysmartphone-operating-systems/.

[2] MITRE, Cve details: Android vulneratbilities.[OL], 2018, June
2018, https://www.cvedetails.com/product/19997/Google-
Android.html.

[3] M. Linaresvasquez, G. Bavota, and C. Escobarvelasquez, “An
empiri-cal study on android-related vulnerabilities,” 14th
International Conference on Mining Software Repositories,
pp- 2-13, 2017.

[4] Z. Xiaojing, “An autonomous protection algorithm for
android malware attacks based on multiple features,” Proceed-
ings of 2019 International Conference on Information Science,-
Medical and Health Informatics(ISMHI 2019).Institute of
Management Science and Industrial Engineering, pp. 573-
576, 2019.

[5] G. Ye, Z. Tang, D. Fang et al, “A video-based attack for
Android pattern lock,” ACM Transactions on Privacy and
Security (TOPS), vol. 21, no. 4, 2018.

[6] M. Youn-A, C. Tae-Mu, and J. M. Kim, “Astudy on Android
attack by drive Management,” Advanced Science Letters,
vol. 23, no. 10, pp. 9926-9929, 2017.

[7] B. Kong, L. Ying, and L.-P. Ma, “PtmxGuard: An Improved
Method for Android Kernel to Prevent Privilege Escalation
attack,” ITM Web of Conferences, vol. 12, p. 05010, 2017.

[8] A.H.N.Woo Hyun, P. A. R. K. Sanghyeon, O. H. Jaewon, and
L. I. M. Seung-Ho, “Inishing: a UI phishing attack to exploit
the vulnerability of inotify in Android smartphones,” The

https://www.statista.com/statistics/266136/global-market-share-held-bysmartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-bysmartphone-operating-systems/
https://www.cvedetails.com/product/19997/Google-Android.html
https://www.cvedetails.com/product/19997/Google-Android.html

Wireless Communications and Mobile Computing

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

Institute of Electronics, Information and Communication Engi-
neers, vol. E99, 2016.

J. Gu, C. Li, D. Lei, and Q. Li, “Combination attack of android
applications analysis scheme based on privacy leak,” in 2016
4th International Conference on Cloud Computing and Intelli-
gence Systems (CCIS), Beijing, China, 2016.

F. M. Faqiry, R. Rahman, and D. S. Tomar, “Scrutinizing per-
mission based attack on android os platform devices,” Interna-
tional Journal, vol. 8, no. 7, 2017.

W. Bao, W. Yao, M. Zong, and D. Wang, “Cross-site scripting
attacks on Android hybrid applications,” Proceedings of the
2017 International Conference on Cryptography, Security and
Privacy, pp. 56-61, 2017.

S. Heuser, M. Negro, P. K. Pendyala, and A.-R. Sadeghi, “Droid
auditor: forensic analysis of application-layer privilege escala-
tion attacks on Android,” Proceedings of the 20th International
Conference on Financial Cryptography and Data Security,
2016.

J. Vila and R. J. Rodriguez, “Practical experiences on NFC relay
attacks with android,” in International Workshop on Radio
Frequency Identification: Security and Privacy Issues, pp. 87-
103, Springer International Publishing, 2015.

M. Kato and S. Matsuura, “A dynamic countermeasure
method to android malware by user approval,” in Computer
Software and Applications Conference (COMPSAC), 2013 IEEE
37th Annual, pp. 730-731, Kyoto, Japan, July 2013.

S. Y. Shin, Y. W. Kang, and Y. G. Kim, “Android-GAN:
Defending against android pattern attacks using multi-modal
generative network as anomaly detector. Expert Systems with
Applications,” Journal of Engineering, vol. 141, Article ID
112964, 2020.

S.-Y. Shin, Y.-W. Kang, and Y.-G. Kim, “Android-GAN:
defending against android pattern attacks using multi-modal
generative network as anomaly detector,” Expert Systems with
Applications, vol. 141, p. 112964, 2020.

S. Xinlong, “Mobile device management system based on
AOSP and SELinux,” in 2017 IEEE Second International Con-
ference on Data Science in Cyberspace (DSC), pp. 111-114,
Shenzhen, China, June 2017.

M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and
M. Peter, “L4Android: a generic operating system framework
for secure smartphones,” Proceedings of the 1st ACM Work-
shop on security and Privacy in Smartphones and Mobile
Devices, , pp. 39-50, ACM, New York, 2011.

Y. Yang, Z.J. Qian, and H. Huang, “A lightweight monitor for
Android kernel protection,” Computer Engineering, vol. 40,
no. 4, pp. 48-52, 2014.

L. Zicong, X. Kaiyong, G. Song, and X. Jingxu, “Dynamic mea-
surement method of Android kernel based on ARM virtualiza-
tion extension,” Computer application, vol. 38, no. 9, pp. 2644
2649, 2018.

D. Zhang, L. Chen, F. Xue, H. Wu, and H. Huang, “T-MAC:
protecting mandatory acces control system integrity from
malicious execution environment on ARM-based mobile
devices,” in International Conference on Information Security,
pp. 348-365, Springer, Cham, 2017.

X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: enforcing ker-
nel code integrity on the TrustZone architecture,” Computer
Science, vol. 25, no. 6, pp. 1793-1795, 2014.

B. Lapid and A. Wool, “Cache-attacks on the ARM TrustZone
implementations of AES-256 and AES-256-GCM via GPU-

[24]

(25]

[26]

(27]

(28]

[29]

(30]

13

based analysis,” 25th international conference on selected areas,
2018.

A. M. Azab, K. Swidowski, R. Bhutkar et al., “SKEE: a light-
weight secure kernel-level execution environment for ARM,”
in Proceedings of Network and Distributed System Security
Symposium, San Diego, CA, USA, 2016.

R. B. Yehuda and N. J. Zaidenberg, “Protection against reverse
engineering in ARM,” International Journal of Information
Security, vol. 19, no. 1, 2020.

F. Dengguo, Q. Yu, W. Dan, and C. Xiaobo, “Research on
trusted computing technology,” Journal of Computer Research
and Development, vol. 48, no. 8, pp. 1332-1349, 2011.

C. X. Shen, H. G. Zhang, D. G. Feng, Z. F. Cao, and J. W.
Huang, “Survey of information security,” Science in China
Series F: Information Sciences, vol. 50, no. 3, pp. 273-298, 2007.
N. Asokan, J. E. Ekberg, K. Kostiainen et al., “Mobile trusted
computing,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1189-1206, 2014.

Global Platform Device Technology, TEE Client API Specifica-
tion Version 1.0, 2010.

C. Shuyi, W. Yingyou, and Z. Hong, “Modeling trusted com-

puting,” Wuhan University Journal of Natural Sciences,
vol. 11, no. 6, pp. 1507-1510, 2006.

	From Hardware to Operating System: A Static Measurement Method of Android System Based on TrustZone
	1. Introduction
	2. Related Work
	2.1. Android Trust Chain
	2.2. Android Framework Layer
	2.3. Selection of Experimental Technology
	2.3.1. Security
	2.3.2. SOC Implementation
	2.3.3. Ecological Creation and Maintenance
	2.3.4. Application Scenario

	2.4. TrustZone and OP-TEE
	2.5. File Encryption Key of OP-TEE

	3. System Design
	3.1. Architecture Overview
	3.2. Trust Delivery Process
	3.2.1. TEE Side Start Process
	3.2.2. REE Side Start Process

	4. Detailed Description of Scheme
	4.1. Environment Building
	4.2. Production of Trusted Image
	4.3. Image Integrity Verification
	4.4. Implementation of the Measurement Method
	4.5. Storage of Expected Measure List
	4.6. Secure Transfer of Measure List
	4.7. Comparison of Measure List

	5. Evaluation
	5.1. Security Assessment
	5.2. Efficiency Evaluation

	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

