
VOLUME 78, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 16 JUNE 1997

From High Dimensional Chaos to Stable Periodic Orbits: The Structure of Parameter Space
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Regions in the parameter space of chaotic systems that correspond to stable behavior are often
referred to as windows. In this Letter, we elucidate the occurrence of such regions in higher dimensional
chaotic systems. We describe the fundamental structure of these windows, and also indicate under
what circumstances one can expect to find them. These results are applicable to systems that exhibit
several positive Lyapunov exponents, and are of importance to both the theoretical and the experimental
understanding of dynamical systems. [S0031-9007(97)03367-X]

PACS numbers: 05.45.+b

A characteristic feature of one dimensional chaotic
dynamical systems is the appearance of stable behavior as
system parameters traverse chaotic regions. For example,
in the bifurcation diagram of the quadratic map x ! x2 2
a, large areas of chaotic behavior are visible, but are

punctuated by parameter intervals in which stable periodic
behavior is observed. These intervals, commonly called
windows, have long been believed to be present arbitrarily
close to every parameter value that leads to chaos. Only
recently has this been proven to be true [1].

In this Letter, we address the fundamental problem of
the occurrence of stable periodic behavior amid high di-
mensional chaos. We propose a conjecture that describes
the nature of parameter space for chaotic maps, and, fur-
thermore, indicates under what circumstances one may rea-
sonably expect to have numerous parameter space regions
that lead to stable periodic behavior (i.e., windows). This
conjecture can be of considerable practical importance for
experimentalists, since it is often desirable to establish non-
chaotic behavior in the vicinity of parameter values that
give rise to chaos.

We begin by describing the content of our conjecture
in practical terms. We then motivate the work, and
conclude with a precise mathematical statement of our
result. Most chaotic systems discussed in the scientific
literature are almost certainly “fragile” in the sense that a
slight alteration of a large number N of parameters will
destroy the chaos and replace it by a stable periodic orbit.

Let k be the number of positive Lyapunov exponents of a
chaotic attractor, but suppose that only n , N parameters
can be varied in an experiment. We conjecture that if

n $ k, then typically a slight change applied to these n

parameters can destroy the chaos. If, however, n , k,
then the chaos typically cannot be so destroyed. In this
case, we expect that for an experimentally significant
parameter space region near the original setting, the
chaotic attractor will persist.

For example, if k  1, then as one parameter is slightly
varied, numerous stable regions will be observed. If k 

2, then slight changes to a single parameter will typically
not destroy the chaos. However, if two parameters are

available, then the parameter space can be systematically
searched in two dimensions, and many windows can be
located.

Knowledge of these windows may be helpful in
controlling the system, even in the presence of noise.
Alternatively, if the location of a desired window is to be
calculated, our conjecture indicates that one must typically
solve for at least n  k parameters.

We now motivate the work. Our conjecture is based
on the idea that a window is constructed around a spine

locus. For simplicity, we consider maps that contain
critical points [2]. For one dimensional maps, the spine
locus corresponds to parameter values that give rise to
superstable orbits. To illustrate, consider a map x !
Fsx; ad, where a is a scalar parameter. The stability

of a period p orbit is governed by m 

d

dx Fpsxd 

d

dx Fsxpd
d

dx Fsxp21d · · ·
d

dx Fsx1d, where the derivatives
are evaluated at each point in the orbit. The orbit
is asymptotically stable if jmj , 1, and an orbit that
contains a critical point of F, where dFydx  0, has
m  0 and is called a superstable orbit. As the parameter
varies in the vicinity of the spine, m sweeps through the
interval s21, 1d. In this way, the extent of the window
is delineated. For the quadratic family x ! x2 2 a, the
windows are intervals in the (one dimensional) parameter
space built around isolated spine points.

For maps with more parameters, bifurcation diagrams
are usually drawn entirely in parameter space, with points
shaded differently to represent the type of dynamics
generated. In the case of the two parameter quadratic
family x ! sx2 2 ad2 2 b, the spine locus consists of
two parabolas; see Fig. 1. The black curves, defined by
the condition m  0, are the spine locus; these clearly
determine the shape of the window.

Of importance for our purposes is the dimension of
the spine locus. In particular, we note that the condition
m  0 is a single constraint, and hence the spine locus is
of codimension one in the parameter space (i.e., one less
than the parameter space dimension).

The dimension of the spine determines the geometry
of the window in the following sense. If the spine is a
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FIG. 1. The bifurcation diagram for x ! sx2 2 ad2 2 b.
The axes represent a, b [ f22, 3g. White areas lead to stable
periodic orbits, while light grey points lead to divergent
trajectories. Dark grey points give rise to chaos with one
positive Lyapunov exponent. Superimposed in black is the
spine locus, which delineates the shape of the window.

point, then the window will typically have limited extent.
We call such windows limited. This is to be contrasted
with windows that have spines of higher dimension. In
this case, the window extends along the entire length of
the spine, as in Fig. 1. We call such windows extended.

(These notions are made more precise below.)
For two dimensional maps, the identification of the

spine locus is more involved. Let x ! Fsx; ad, where
x is a two dimensional state vector, and assume that
there are n parameters so that a [ Rn. A period p

orbit is asymptotically stable if jlij , 1, i  1, 2 where
the l’s are the eigenvalues of M, the Jacobian matrix
of the p-times iterated map: M  DFpsxd  DFsxpd ?
DFsxp21d ? · · · ? DFsx1d.

First, consider a region of parameter space that exhibits
only one positive Lyapunov exponent h1 . 0, such that
h1 1 h2 , 0. Here, the map is asymptotically area
contracting, and on average, jdetsDFdj , 1 over the
course of a trajectory. For a periodic orbit, we have
D  detfMsxdg  l1l2 ø 0 for sufficiently high p, and
thus at least one eigenvalue is close to zero. The
stability requirements therefore reduce to one condition
for stability, and the spine loci in this region are of
codimension one.

Now consider parameter regions that correspond to
two positive Lyapunov exponents. For this case, it is
advantageous to recast the stability conditions in terms
of the trace T  l1 1 l2 and determinant D  l1l2 of
M. Stability implies that these numbers must fall within
a triangular region in D versus T space, shown in Fig. 2.
We refer to this region as the stability triangle. Every

FIG. 2(color). The stability triangle. The trace T [ f22, 2g
is graphed horizontally, and the determinant D [ f21, 1g is
graphed vertically.

parameter space point that leads to a stable orbit maps to
a particular point within the stability triangle.

Of central importance is the point where D  T  0.
We refer to this point and the corresponding parameter
space points as nilpotent points. The spine locus for
windows in this case consists of nilpotent parameter
values. By coloring points within a window according
to their corresponding location in the stability triangle as
in Fig. 2, the above construction makes nilpotent points
in parameter space easily discernible as points where the
colors come together. Note that the restriction of D and
T to the stability triangle represents two constraints, and
therefore the spine locus is of codimension two.

We illustrate these ideas with a two dimensional,
two parameter map (see also [3]): sx, yd ! sssaxs1 2

xd 1 s1 2
a
4 dy, bys1 2 yd 1 s1 2

b
4 dxddd. A physically

motivated map, the kicked double rotor [4], has been
observed to have a similar parameter space structure.

Figure 3(a) shows a region of parameter space dom-
inated by area-contracting chaos with one positive
Lyapunov exponent. The spines in this region are one
dimensional, and we find very many extended windows.

Figure 3(b) shows a region of area-expanding chaos
with one positive Lyapunov exponent. The spines are
again one dimensional, and we see many extended win-
dows. We note that in this region, the windows are quali-
tatively different than those in 3(a) [5]. Nevertheless, the
windows are consistent with our conjecture.

Of primary interest for this Letter are regions where
two positive Lyapunov exponents are found. Here the
spines consist of isolated nilpotent points, and we find a
large number of limited windows in the two dimensional
parameter space. Figure 4(a) shows a section of this
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FIG. 3. (a) A region in parameter space sa, bd [
f3.4722, 3.4857g 3 f1.078, 1.316g dominated by area-
contracting chaos with one positive Lyapunov exponent
(light grey). White areas lead to asymptotically stable orbits.
As predicted by our conjecture, a dense set of extended win-
dows is seen. In (b) sa, bd [ f2.876, 3.288g 3 f1.932, 2.46g,
and dark grey areas indicate area-expanding chaos with one
positive Lyapunov exponent. Again, a dense set of extended
windows is seen, as predicted.

region, and the windows indeed appear to be dense and
limited. (The long, thin windows at the top and right of
the figure are limited in extent, and qualitatively similar
to other windows in the region.) Figure 4(b) shows a
blowup of a period five window with the interior colored
according to Fig. 2. It is immediately apparent that the
window is constructed around the two isolated nilpotent
points at the top and bottom of the central blue region.
Other windows from this region are similarly constructed;
some contain only one nilpotent point.

The identification of the spine locus can be expanded
to d dimensional maps. In this case the matrix M is
d 3 d, and hence has a characteristic polynomial of
degree d in l. The coefficients ci can be written as

FIG. 4(color). (a) A parameter space region sa, bd [
f3, 4g 3 f3, 4g dominated by chaos with two positive Lyapunov
exponents (black). The shading is otherwise as in Fig. 3. A
dense set of limited windows is seen, as predicted by our
conjecture. In (b) a window from within (a) is magnified,
sa, bd [ f3.375, 3.42g 3 f2.87, 2.9825g, and the interior of
the period five region is colored according to Fig. 2. Two
nilpotent points, forming the spine, are evident at the top and
bottom of the central blue region.

the sum of all possible distinct product combinations of
the eigenvalues taken i at a time, for i  1, 2, . . . , d.
The stability requirements jli j , 1, i  1, 2, . . . , d then
determine a volume in the coefficient space, and stability
occurs if the numbers c1, c2, . . . , cd lie within this volume.
The spines of windows are given by points in parameter
space that correspond to the center of this volume,
where c1  c2  · · ·  cd  0. These equations may be
solved numerically to locate particular windows.

As described above for the two dimensional case, some
of the conditions restricting the parameter space may be
automatically satisfied by the dynamics being considered.
In an attractor on which all invariant measures yield k posi-
tive Lyapunov exponents, unstable periodic orbits have at
most k expanding directions. Therefore, the transition to
stability involves satisfying at most k requirements, and
hence the spines of windows are of codimension k in the
parameter space.

Knowledge of the dimension of the spine locus gives
information about when one may expect to find windows.
Assume that one has available n parameters. Varying
these parameters defines an n dimensional accessible
parameter manifold within the full parameter space. In
order to observe windows, this accessible parameter
manifold must intersect (or come close to) a spine locus
for some period p. (For maps without critical points,
e.g., the Hénon map, the determinant is bounded away
from zero, but can nevertheless come very close to zero
for high p.) If the codimension of the spine locus is
k, then typically the accessible parameter manifold must
be of dimension at least n  k for point intersections to
generically occur. In this case the windows, as viewed
in the accessible parameter space, are constructed around
isolated spine points, and therefore are limited. If the
accessible parameter manifold is of a higher dimension,
typical intersections occur in higher dimensional sets, and
therefore we expect extended windows in the accessible
parameter space. Finally, because unstable periodic orbits
are dense in a chaotic attractor, we expect that arbitrarily
small perturbations to k parameters can stabilize one of
these orbits (as occurs in the one dimensional case). Thus
we expect windows to be dense when n $ k.

We now state our conjecture more precisely, beginning
by introducing a few definitions that facilitate the presen-
tation. Let f be a smooth map from a region S , Rd

to itself that exhibits a chaotic attractor L with k positive
Lyapunov exponents (we assume for simplicity that all in-
variant measures supported on L yield the same k). Let g

be a map close to f (by which we mean that fsxd and gsxd
are close and that all first partial derivatives of g are close
to those of f). We say that L is dispelled for g if almost all
points in a neighborhood of L belong to basins of attracting
periodic orbits of g. The situation is illustrated in Fig. 5
using the Hénon map sx, yd ! sssr 2 x2 1 s0.3dy, xddd. If
there exist (possibly rare) functions arbitrarily close to f

for which the attractor L is dispelled, we say that L is
fragile [6]. Finally, consider an n-parameter family of
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FIG. 5. Illustration of a dispelled chaotic attractor, using
the Hénon map as in the text. The figures show sx, yd [
f22.5, 2.5g 3 f22.5, 2.5g. In (a) r  1.22 and the white
region is the basin of the chaotic attractor shown in black.
The grey region is the basin of infinity. In (b) r  1.23 and
trajectories originating in the vicinity of the attractor in (a) now
converge to the attracting period seven orbit shown (crosses).
We say that the chaotic attractor in (a) is dispelled for the map
with r  1.23.

functions fa, where a [ Rn, such that f0  f and fa de-
pends smoothly on a. We define the window set W to be
the set of a values such that L is dispelled for fa.

Windows conjecture.—Let f be a smooth map from
a region S , Rd to itself that exhibits a fragile chaotic
attractor L with k $ 1 positive Lyapunov exponents,
where all invariant measures supported on L yield the
same k. Let W be the window set corresponding to
a typical family fa, where a [ Rn and f0  f. (1) If
n , k, there exists a neighborhood of a  0 entirely
outside of W . (2) If n  k, W is dense in a neighborhood
of a  0 and the components of W are limited. (3) If
n . k, W is dense in a neighborhood of a  0 and the
components of W are extended.

The number d represents the dimension of the state
vector, and n is the number of accessible parameters. We
expect that in cases (2) and (3), W consists of a union of
connected subsets wi ; these are the individual windows.
By limited in case (2) we mean intuitively that the subsets
wi get smaller and smaller as they converge to 0. That
is, as we look in successively smaller neighborhoods of 0,
the diameters of the wi decrease to zero [7]. In case (3),
we expect that this property does not hold, and we call
the components wi extended. In this case, the wi may be
quite long in the vicinity of 0 (as in Fig. 1).

Our conjecture describes the local structure of parame-
ter space in the vicinity of a point a  0 that gives rise
to chaos. We believe, however, that it has important im-
plications for the global structure as well. For the one
dimensional quadratic family, it is known that the set of
parameter values that give rise to chaos has a nonzero

Lebesgue measure [8]. In this sense, chaos is common.
We expect that in more general higher dimensional situa-
tions, chaos with several positive Lyapunov exponents is
similarly common. If this is so, then by applying our con-
jecture at every such point, we can infer global properties
of the parameter space. We leave a rigorous treatment of
our results to future efforts in light of the extreme diffi-
culty of the proof in Ref. [1].
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