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Abstract

In this paper we consider a modification of the classical Fourier expansivereby
in [—1, 1] the sinwnz functions are replaced byinm(n — )z, n > 1. This has a
number of important advantages in the approximation of analytic, nmgiefunctions.
In particular, expansion coefficients decay liRgn ), rather than likeD (n").

We explore theoretical features of thesedified Fourier expansiongrove suitable
versions of Far and de la Va#le Poussin theorems and expand the coefficients into
asymptotic series.

This expansion is a key toward the computation of expansion coefficigrasymp-
totic and Filon-type methods. We explore this issue in some detail and peesember
of algorithms which requir®(m) operations in the computation of the firstexpansion
coefficients.

1 Introduction

By any yardstick, Fourier series are one of the greatest avsl imfluential concepts of con-
temporary mathematics. They have spawned an entire disgjgharmonic analysis, and
their applications range widely, from number theory to &leal engineering, from theoret-
ical computer science to signal and image processirigr#& 1988). The computation of
Fourier coefficients by means of the discrete Fourier tiansfand its numerical manifesta-
tion, the Fast Fourier Transform (FFT), literally transfed modern technology and science
and informed much of modern numerical analysis (Henrici&d9&rguably, the FFT is the



most influential computational algorithm ever. It is thugshnwé measure of trepidation and
humility that we wish to pursue an alternative approach is plaper.

The standard setting of Fourier analysis, which plays tatitsngths, is wherf is ana-
lytic in an open set containing-1, 1] and periodic with period 2. (We could have replaced
[—1,1] by an arbitrary compact interval.) In that case Fourier esf enjoys three crucial
advantages:

1. The Fourier expansion gfis

Z fneinﬂ'z , (l 1)

n=—oo

where

1
fo= [ f@e ™ nez
-1

The expansion (1.1) converges ftgointwise in[—1, 1] and this process is very rapid
indeed: there exist > 0 anda > 0 such that f,,| < ce=*" for all n € Z.

2. Once the integral is replaced by a finite sum,

Fom Fum = = 5 F(E) exp (—m’“ ) , (1.2)

we commit exponentially small erri}, , — fn| < cre™ ™.

3. Suppose thatn is a highly-composite integer: to all intents and purposes,may
assume thatr = 2" for somer > 1. TheDiscrete Fourier Transform (DFTY,,,[f] =
{F7,,7,m}’::/2_m/2+1 can be computed i (mlog, m) operations using FFT (Henrici
1986).

In their totality, these three features account for the phenal success of Fourier expansions
in a wide range of applications. Yet, this success looseshnofidts lustre oncef is not a
periodic function. Specifically,

1. Although (1.1) is pointwise convergent faat all points of analyticity (thus, if—1, 1),
but not at the endpoints), the coefficients decay very slomdged: | f,| = O(n*l),
n> 1.

2. Quadrature (1.2) producesuchlarger error:|Fn,m — fn\ < co/m>.

Once exponential convergence and exponentially-fastydefctne error are no longer valid,
Fourier expansion becomes less attractive. This mightuattdor the ubiquity of periodic
boundary conditions in applications, a phenomenon not\avjastified by the underlying
physical model. This also explains the great deal of attarpiaid to theGibbs phenomenon
and computational devices for its treatment throughouterical and engineering literature.

Matters are considerably worse whgis just anLs[—1, 1] function, but we do not intend
to dwell on this issue. Analyticity makes for the simplestl atearest framework to present
the arguments of this paper, while virtually all of our workgralises t&€"[—1, 1] functions
for suitabler € N in a fairly transparent manner.



Fast Fourier Transform, its many successes notwithstgnélao exhibits a built-in inef-
ficiency: it is not very adaptive. Suppose, thus, the we V\asmproximateﬁl, -m/2+1<
n < m/2, by FFT. How to choose:? If it is too large, we clearly pay a price, e.g. in function
evaluations or (for example, in spectral methods) size ddlgabraic linear system that we
must solve. If it is too small, though, we need to increase ithe next highly-composite
integer (in the simplest implementation, double it), whiiscarding our computations. In an
ideal world, we would have liked an efficient algorithm thabguces Fourier components
consecutively, until we decide that we have had enough. Ofsep oncef is analytic and
periodic, lack of adaptivity is more than offset by the egtdinary precision and speed of
FFT, but this need not be so once periodicity is lost.

Our proposed modification to the Fourier setting is, on tlue faf it, quite minor. We
commence by rewriting (1.1) in the form

o0
15+ Z[f,?coswnx—&-ff? sin Tz,

n=1
where

1 1
o — iD= in .
1= /_1 f(z) cos mnada, fn = /_1 f(z) sinTnzde

We propose to replacén mnaz by sin7(n — %)z, n € N and consider thenodified Fourier
expansion

o0
%foc + Z[Af cos Tnx + ff sinm(n — 3)zl, (1.3)
n=1
wheref¢ remains unamended, while

1
fi= [ f@sinatn - fads,

In the sequel, we intend to prove the following features efrtiodified Fourier expansion.

a. The set
Hy = {cosmnz : n € Zy} U {sinm(n — 1)z : n € N}

consists of orthogonal functions and it is dens&dfi-1, 1];

b. Suitably amended, the classical &eand de la Va#le Poussin theorems remain valid
in this setting and ensure pointwise convergence subjdatrtg general conditions.

c. So far, we have seen that (1.3) shares some of the featlithe olassical Fourier
expansion (1.1). Itis central to our interest in modified fi@uexpansion that it exhibits
superior behaviour once analyticis no longer periodic. At the first instance we note
faster convergence: specificallys|, | f5| = O(n~2) for n > 1.

d. Instead of approximating Fourier coefficients by the Bise Fourier Transform (1.2)
(or by Discrete Cosine and Sine Transforms (Rao & Yip 1990%) expand them into
asymptotic series. This allows for a computation of eacHfiodent, up to accuracy
(’)(n_27"_2) for somer € N, in a constant number of operations. Thus, we can compute

fC andf* to suitably high precision for < m in O(m) operations.



e. Computation of Fourier coefficients can be further imprhvncreasing precision and
reducing cost, once we employ techniques for the computatfchighly oscillatory
integrals introduced by the current authors in (Iserles &J& 2004, Iserles & Ngrsett
2005) and based on Filon-type quadrature.

To our knowledge, the basi¢; has been originally proposed by Mark Krein in his investi-
gation of differential operators (Krein 1935). It also f@@s in nonharmonic Fourier analysis,
in particular in the proof of the Kade§—theorem (Young 1980). However, as far as we are
aware, it has never been analysed in depth or employed asticpfaneans to approximate
functions.

A replacement of the classical Fourier expansion (1.1) gymibdification (1.3) is just
a first step in a longer journey toward a theory of rapid apjnation of functions. Once
the mechanism underlying the increase in the rate of coemeryin (1.3) is understood, it
is possible to generalise it. The outcome is a hierarchy pfagmation base%{, such that
each; approximates analytic functions ja 1, 1] at a rate ot’)(n—s—l). All such bases can
be constructed explicitly. Moreover, the firstexpansion coefficients can be approximated to
high precision inO(m) operations, employing again asymptotic and Filon-typérnejues.
This will be a subject of a forthcoming paper. Another fodhmng paper will address itself to
the challenge of extending our framework to multivariatigisg. Unlike the classical Fourier
approach of Cartesian products, which is valid only in pal@pipeds, we devise a theory
allowing for rapid approximation tailored to general boeddiomains ifR<.

2 The theory of modified Fourier expansions

It is instructive to commence our analysis from a numerigaheple. In Fig. 2.1 we display
pointwise errors generated by classical and modified Foesipansions off (z) = e* —
cosh(1) in the interval[— %, <%]. Two observations stare us in the face. Firstly, modified
Fourier expansion generates substantially smaller e®econdly, oncen, the number of
harmonics, is doubled, the error of classical Fourier diszs by a factor of two (as predicted
by general theory, (Brner 1988)), while the error of (1.3) goes down by a factdioaf.

Fig. 2.1 stays clear from the endpoints, where classicafi€oaxpansion does not con-
verge tof but to 3[f(—1) + f(1)]. Modified Fourier converges t$, albeit slower than in
(—1,1). To explore this, we set

Fulfl(@) = L&+ [fE cosmna + fP sinwnal,

hE

~
Il
_

7

[fC cosmnz + [ sinm(n — 1)l

NE

Mulf)(@) = 5/5 +

3
Il
—

Fig. 2.2 displays (on the left) trecalederrorm| M| f](1)— f(1)|: itis clear that the (unscaled)
error decays likeD (m~"). The remainder of the figure revisits the case when (—1,1).
Specifically, we letr = e~! as a representative ofc (—1, 1) and note from the scaling that,
as we have already intimated, the errors for Fourier and fieddrourier decay lik€ (m ")
andO(m~2), respectively.
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Figure 2.1: Absolute errors for Fourier (top row) and modifi®urier expansions gf(z) =
e® — cosh(1) with m = 100 (left column) andn = 200 (right column).

The coefficients in the present case can be evaluated akpiigth great ease and they
give the game away:

;o 2(—1)"sinh1 :p  2(—1)"T'nrsinh 1 ss  2(=1)"*lcosh1

" 14 m2p2 o 1+ 72n? ’ " 1472(n—1)27

Thus, whilefP? = O(n~'), both £ and /5 decay like© (n~2) for largen. We will see in
the sequel that this is a demonstration of a more generarpatt
2.1 Convergence iny[—1,1]

The density of the set
)xr : n €N}

N|—=

Hy ={cosmnz : n € Zy} U {sinm(n —



Figure 2.2: From left to right, scaled errarg M., [f](1) — f(1)], m|Fn[f](e™) — fle™ )]
andm?| M., [f](e”!) — f(e™1)| respectively.

in Ly[—1, 1] is embarrassingly easy to prove.

Theorem 1 The setH is an orthonormal basis dfs[—1, 1].

Proof We commence from the observation thas 7nz, n € Z., andsinm(n — 1)z,
n € N, are all the eigenfunctions of the Sturm-Liouville operato= d?/dz? with the
Neumann boundary conditiong(—1) = «/(1) = 0. (The corresponding eigenvalues are
—m?n? and—n?(n — 1)? respectively.) Both orthogonality and densitylig[—1, 1] follow at
once from this observation using elementary spectral th@avies 1995), while the fact that

all the terms irf{; share unit Euclidean norm can be confirmed by trivial integna O

2.2 Asymptotic behaviour of the coefficients

A key feature of the technique proposed in this paper is tmate f is analytic, the coefficients
of (1.3) exhibit relatively more rapid decay than those @ Bourier expansion (1.1). More-
over, our method of proof sets the stage for the developnfesdroputational techniques for
rapid approximation of these coefficients.

Integrating the integraff by parts twice leads at once to the identity

o _ (=D"

n n2ﬂ_2

(1) —f(-1)] - # [1 1" (z) cos mnada.

Identifying the integral on the right as a “Fourier-cosimgefficient of f” and iterating this
expression, we have

X —1)" —1)" 1 L

7= C - - S - e [ ) cosnmads

(n7)

(nm)

and, recurring further, it readily follows by induction th%f can be expanded asymptotically
in the form

i ~<—1>”i< CL o) - fesn),  n»1 @)

nTr)ZkJrZ
k=0



We emphasize that (2.1) holds only in an asymptotic sensethier words, for every € Z
it is true that

AS _ (_l)n XT: ( (_l)k [f(2k+1)(1) _ f(2k+1)(_1)] + O<n72r74)

n)2k+2
k=0

for n > 1. It certainly does not mean that the infinite series in (2dijverges in a standard
sense for fixedh. Note that the expansion (2.1) makes sense for analytict(treavery
leastC*°) functions, but can be extended, with obvious amendmeat§;” tfunctions for
sufficiently larger.

The most important observation from (2.1) is tbﬁ = (’)(n*z). Seemingly, this is
at variance with our statement that classical Fourier aoeffts for analytic (nonperiodic)
functions decay likeD(n~"'), but the contradiction is purely illusoryThe O(n~") rate of

decay is exhibited by the “Fourier-sine” coefficienf§. Specifically, proceeding as before,
it is easy to confirm that

i~ (= i (n(ﬂ)ﬁlil W) - DL > (2.2)
k=0

Incidentally, note that wheffi is periodic, the right-hand side of both (2.1) and (2.2) shses.
In other words, botrfnc and /P decay in that case faster thél{n~*) for anys € N: this is
fully consistent with exponential decay.

The slow rate of decay of thﬁ? coefficients is the prime motivation behind the replace-
ment ofsin mnz by sin 7(n — 1)z in our basis. Specifically, revisiting the procedure thdlt le

2
to (2.1) and (2.2), we obtain

~ o —_1)k
B S S ) L @)
k=0 2

Thus,f;f = O(n*2), explaining the superior behaviour of modified Fourier exgians, as
observed in Figure 2.1.

Before we advance further and examine the behaviour of neadifourier expansions in
greater detail, we wish to address a well-known techniqummputational Fourier analysis
which accelerates the convergence of classical Fouriessenereby being an apparent com-
petitor of our approach. Given an analytic (or sufficientiya®th) functionf, we write it in
the form

f(x) = [f(z) — p(z)] + p(2), (2.4)

wherep is a polynomial of degreér + 1 such thap®) (£1) = f*)(+1), k = 0,1,...,2r
—such Hermite interpolation always exists and is uniquaoW follows from (2.1) and (2.2)
that the Fourier coefficients gf—p decay likeO (n~2"~2). Since Fourier coefficients pfcan
be evaluated exactly with great ease, this is a powerfulcéeta accelerate the convergence
of classical Fourier series.

An identical device can be applied to the modified Fourieraggon (1.3), but with an
important difference. Note from (2.1) and (2.3) thath fnc and ff can be expanded asymp-
totically in odd derivatives off. In other words, once we writg in the form (2.4), we need



p to interpolate just odd derivatives. In place of the ‘futitérpolation conditions at the end-
points, we require

¢ (1) = fERFD(£1), E=0,1,...,r—1, (2.5)

and sep(z) = f(0) + [, q(£)d¢. Our contention is that ther conditions (2.5) are satisfied
uniquely by an(2r — 1)-degree polynomial, hence that we can takas a polynomial of
degreer, half of that required in the classical Fourier case.

This is not a trivial statement, since (2.5) iBakhoff-Hermite interpolation problem
(Lorenz, Jetter & Riemenschneider 1983) amgriori there is no certainty that it can be
obeyed by ar{2r — 1)-degree polynomial. This, however, is easy to prove. We destnate
this for» = 3 but a generalization for alt € N is straightforward. Once we expregsn
terms of its coefficients, (2.5) for= 3 becomes a linear system with the< 6 matrix

1 -1 1 -1 1 -1
1 11 1 1 1
0 0 2 -6 12 =20
0 0 2 6 12 20
0 0 0 0 24 —-120
0 0 0 0 24 120

We now replace ever{2: — 1)th and(2:)th row by half their sum and half their difference,
respectively. Next, we arrange first the odd rows and colyrfoll®wed by even rows and
columns. The outcome,

11 1]0 0 0
0 2 1210 0 0
0 0 24]0 O 0
00 01 1 1]’
00 0]0 6 20
00 0]0 0 120

is reducible to twa3 x 3 linear systems with nonsingular upper-triangular masicéhere-
fore the matrix is nonsingular and (2.5) possesses a unigugan with an(2r — 1)-degree
polynomialg.

2.3 Pointwise summability and convergence

In this subsection we intend to generalize to the presetingetvo classical theorems of
harmonic analysis: the Fajtheorem on summability of Fourier series and the de l2&¥all
Poussin theorem on their convergenc@éier 1988).

We commence by decomposirignto its even and odd part$,= f. + f,, where

fe(@) = 3lf(2) + f(=2)l,  fo=3lf(z) = f(~2)].

Sincefof, fef, fe: = 0, we observe that classical and modified Fourier series argiwhl
for f. and the only discernible difference is in their treatmenthef odd functionf,. Since
Fejer and de la Vale Poussin theorems are thus correctfformve assume in this subsection
without loss of generality that is odd.



Givenm € N, we let

n :
m
1
U'm - §

(we reiterate thaf is now odd, hence we need consider only the sine terms). fnere

S

m/ f(¢ 2 1 m—n+1)sinm(n — 3)¢sinm(n — 1)wdé
1 . .
:%[ f(& 2—:1 m —n+1)[cosm(n — 5)(x —§) —cosm(n — 3)(x + &)]dE.
However,
Z(m*nﬁ’l)COS(TL fafReZ —n+1)ein—3)e

— Re Z neia(m«%%fn) — Re ea(er%) zm: ne—ion
n=0
—%ia _ (TL + 1)6—%io¢ + e—ia
(1 — 1)
cos ga—cosa(m+ %) sin famsin 2a(m + 1)
2(1 — cos ) 1 —cosa '

= Ree(m+H) [1C

Proposition 2 For every Riemann integrable odd functidrit is true that
/ £ Fon(e - €)de, (2.6)

where .

1 sin(37ma) sin[37(m + 1)z]
(z) = m ) 1—cosmx ' 2.7)

F’H’L

Proof It follows from our analysis, the oddity of and the evenness &f,, that

4 [ HOlFnle — €~ Pl + ))ag
! / F(E) P — )€ — 4 /_ Pl — e
/ () B — €)de
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Figure 2.3: The kernel$}, for m = 2,3,4,5 on the left and the integralﬁ1 Fp(z)dx
(circles) andfj1 |F,, (z)|dz (pluses) on the right.

and (2.6) follows. |

Thekernel £, bears resemblance to the classicakF&grnel

Fo(z)=— T

m sin =mx

1 {sin ir(m+ l)x}
2

of Fourier analysis, with one important difference: WhHg,(z) > 0 for z € [-1,1] and
f F,,(z)dz = 1, neither statement is true fdr,,. This is evident from Fig. 2.3 and will
cause mlnor difficulties in our generalization of the&eheorem.

Proposition 3 It is true that
1 ~
/ Fm(x)dle—i-(’)(m_l), m > 1.
1

Proof We go back to an intermediate step in our derivatiodr)gf Sincef is odd,

omlf 2m/ Z —n+1)cosm(n— 3)(z — &) —cosm(n — 1) (z + &)]d¢

:%/71 nz::l m—n+1)cosm(n— 1)(z —&)d¢

and we have
1 m
2 m—-n+1
_ 1 — Ypdr = 2 T
/ [ n+1)cosm(n — 5)rdx - E (-1) P

-1 n= 1 n=1 2
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n=0 n=0 2
oS e S 2]

Sinced " (—1)*/(2n+1) = iw, we have

1 mm

g 1 dm+2 & 1 (=pm
— 14— — .
/_F (x)dx +2 g n+1

The proposition follows, since convergent alternatingesewith monotone terms can be
bounded in absolute value by the magnitude of its leading.ter O

Proposition 4 The bound

/J F(@)ldz < 2+ O(m™") (2.8)

is valid for all m > 1.

Proof It follows from (2.7) that, giver € (0, 1),

S U |sin($mma) sin(3(m + 1)z)|
F, d
/_1 | / 1 —cosnx .

/ | sin(3mma) sin(1 (m + 1)z)|
- m 1 —cosmx

dx

/1 | sin(3mma)sin((m + 1)z >|dx:z(l )
m 1 —cosmx me o

Now, the inequality

e
g

1 —cosmx s
is obvious, since
1 dcot($mz) B 1
T dx 1 — cosmx
Moreover, it is trivial to verify that

. l 1
sin(gmmme) sin[zm(m + 1)x] — LUy 1 (cos Lma)Upn (cos L),

1 —cosnx

whereU,, is the degree: Chebyshev polynomial of the second kiSthce|U,,(z)] < n +1
for z € [~1,1] (Rainville 1960), we deduce thas < 1m(m + 1)e. This results in the upper

bound . )
- 2 =
/ (o) lds < 222527 4 (1)

1 mm
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Givenm > 2, we set: = «/m for any« > 0 and this results in

[ Vmtwias < (o 5 ) + O ).

The bound (2.8) follows by setting = 2/7. O

It is evident from Fig. 2.3 that the numbets, = f Fm (z)|dz form a strictly mono-
tonically decreasing sequence. Direct computation shbmsﬁ = 4/7 and the figure seems
to indicate thats,, | 1. Proposition 4 is weaker than this statement, but perfextbquate
for our needs.

Theorem 5 Let f be a Riemann integrable functionfr1, 1]. At everyz € [—1, 1] wheref
is Lipschitz it is true that

lim o, [f](z) = f(z).

m—00

In particular, modified Fourier series (1.3) is summableftat every point of continuity.

Proof Essentially, we rehash the original bipFegr’s proof of the equivalent result for
the classical Fourier series (1.1), except that we needdciese much greater care. Sinfe
is Riemann integrable}/ = || f|l. < oo. We commence by extendingoutside[—1, 1] by
periodicity, whence

/f ;r—df/ df/fa:— (€)de.

Becausef is Lipschitz atz, for everye > 0 there exist® = 6(x, ) such that
e
@)= f@O) < forevery |z—t|<s.

For every|z| > § we have
~ 1 1
[Fm(z)] < —

m1—cosmd’
therefore there exista, € N such that

~ e
Fm < REVE
(@) < o

We now use Proposition 3 to argue that

‘/ fl@ =& Fp(€)d - f()/1 Fm<5>d§‘+0<m1)

-1

m > mg, |z|>0.

ol f](z) — £ ()|
- ‘ / -9~ f(w)]Fm(f)dﬁ‘ L Oo(m™)
< / F(z— &) — F(2)[|Fon(€)de

[€1<é

+ / £z — &) = f(@)||Fn(€)]dE + O(m™)
<l¢]<t
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e ~ e ~
— F()|dé + —(2M Fp(6)d¢+O(m™!
<77 [ @ G [ I ©lds+ o)
1
< 1Fn(©ldg+O(m).
-1

We conclude thalw,,,[f](z) — f(z)| < ¢ by virtue of the inequality (2.8), thereby completing
the proof. O

We progress next mirroring steps in the proof of the de la@dalRoussin theorem {fner
1988). Forevery, = 0,1,...,m — 1 we set

onmlf](x) = : [(m + Do [fl(z) = (n+ Don[f](x)]

m-—-n
Theorem 6 Suppose thaf is Riemann integrable ifi-1, 1] and that
O f5=0m™), n>1 (2.9)

If fis Lipschitz atz € (—1,1) thenS,,[f] — f(x) asm — co. Moreover, this progression
to a limit is uniform in[a, 8], where—1 < o < 8 < 1, provided thatf € C|a, §].

Proof As before, it is enough to prove the theorem for an odd funcfio
Let f be Lipschitz atc € (—1,1). Then for every fixed € Z,

k+1)n[f] (x) — okn[f](2) .

n

g
O et F1(@) = (k + Do ynl () = kown () + =
Therefore, Theorem 5 implies that

lim o, (e41)nlf](7) = f(2).

n—o0

Moreover, if f € C[a, 3] then, by an identical argumenty,, (,+1)»[f] converges uniformly
to f for [, A].

Finally, because of (2.9), there exist> 0 andj, € N such thaﬂfﬂ < ~v/jforj > jo.
Therefore, for any: > 1 and sufficiently largé:, for everym such thatetn < m < (k + 1)n
and a pointz € (—1, 1) wheref is Lipschitz, we have

(k+1)n 5 -
|0k, k1 1n (@) = Sl i) < Y 1fF] < =g 0.
Jj=kn+1
The theorem follows. |

The de la Vakke Poussin-like Theorem 6 also provides an upper bound oratbeof
convergence at Lipschitz points: Subject to (2.9), it i titat

Smlfl(@) = f(z) +O(m™"),  m>1 (2.10)

Note, however, that (at least in an asymptotic sense) agararondition holds for analytic
functions. By virtue of (2.1) and (2.3), we have

iCfS~0omn?),  n> L (2.11)
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Can this be used to argue that in this particular case we qaaceO (m=!) by O(m~2)
in (2.10)? This certainly is a behaviour indicated by Fig. &xd numerous other numerical
experiments.

Had it been true that

omlfl(@) = flx) +O(m™?), m>1, (2.12)

for any analytic functionf andx € (—1,1) (of course, we may no longer assume tlfiat
is odd), it would have been possible, at little additiondbef to strengthen the result of
Theorem 6 and prove that convergence in (2.10) is indé@d*z). Unfortunately, numerical
experiments indicate that (2.12) is wrong. Therefore caltfih we do believe that the stronger
result is true, it must remain a conjecture for the time being

Of course, unlesg is analytic, there is little hope for (2.11) to hold. For exae for the
(odd) sign function

1, x>0,

f(x):{—l, xz <0,
we havef$ = 2/[r(n — 1)] (andf2 = 2[1 — (—1)]/(xn)).

2.4 Convergence at the endpoints

Suppose thaf is analytic in[—1,1]. In that case, by the de la Va# Poussin theorem and
its extension, Theorem 6, both classical and modified Foarpansions converge pointwise
and uniformly in any closed intervék, 3] C (—1,1). Although expansion coefficients decay
faster for the modified expansion, @m~2) compared withO (m '), and numerical results
indicate the superiority of (1.3) over (1.1), the lattettestaent is currently not accompanied
by a valid proof. However, another important advantage efrtiodified expansion is its
behaviour at the endpointsi.

Unlessf is periodic, its classical Fourier expansion at the endpdails to converge to
the exact value of: it is true that

lim Folf)(@) = [ (=1) + F(D). (213)
Recall our partitionf = f. + f, into even and odd functions. It is clear from (2.13) that
the Fourier expansion of, converges to the right valug.(—1) = f.(1) at the endpoints.
SinceM,,,[f.] = Fmlfe], thisis also the case for modified Fourier. Therefore, ggaénare
allowed to restrict our gaze to odd functiofis

In our quest to examine the convergence\df,[f] at the endpoints, we progress in two
stages. Firstly, we examine in detail the functjtia) = 22?*!, p € Z ., denoting its Fourier-
sine coefficients by, , = f,f . Clearly, by straightforward calculation

neN,

and, integrating twice by parts,

o1 2@p+ 1) (2p)(2p+1) "
P = 2 [r(n=3)  [r(n—3)? Prot PR
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Therefore, by induction,

B e (2p+ 1)! 1
Opm =2(=1)""1 ;}(*1)’“ (op — 3)] [ = D n € N. (2.14)

Sincesin(n — 3) = (—1)"~!, letting

S[fl(z) = lim Sp[fl(x), = €[-1,1],

m—00

it follows from (2.14) that

o0

s (e N (2p+1)!
(1) = Z@p"* Z 2p 2k)! _ 2k+2
=0 n=

According to (Abramowitz & Stegun 1964, p. 807),

oo

1 1
;_:0(2”_’_1)(1:<1—2q)§(®7 q>2,

where( is theRiemann zeta functionSince((2k + 2) = (2m)%+2|Bak1a|/[2(2k + 2)!],
whereB; is thejth Bernoulli numbei(Abramowitz & Stegun 1964, p. 807), we deduce that

oo

1 1 k1 gk |Bok 12|

— = LkAlghal gy R

D e B (]

consequently
p
2p+ D! 4 |Bag 2]

74 FLghHl ) R Z. 2.15
Z =20t S ohray  PEL (2.19)

=0
Proposition 7 Itis true thatS[f](1) = 1 = f(1).

Proof Letting |Bario| = (—1)*"'Bgrio, k € Z, in (2.15), we need to prove the
identity

(-

(2p+ 1)! &
BopiodF T4+l — 1) = 1.
(2p — 2k)I(2k + 2)1 2K *2 ( )

This is equivalent to
p

zp: Bok42 16—y Bok2 gt L
22 (2K +2)!(2p — 2h)! 22 (2K +2)!(2p — 2h)! 2p+ 1)

We shift the indices: by one and add an equal term to each sum: the outcome is another
identity equivalent to the statement of the proposition,
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whereq = p + 1 € N. Recall however thaBy,1 = 0, k € Z., except thaB; = —

Therefore
q 2 2q 2
> Boy™ = Biy* N
2 <2k> 2kY 2 <k> kY +qy, qgeN,

1
3

and it is enough to prove that

i (2;) Bj4* = i (2]5) B,.2". (2.16)

k=0 k=0

Let B, (-) be thekth Bernoulli polynomial(Abramowitz & Stegun 1964, p.804) and recall
thatBj; = B (0). Since

n(z4h) = Z() ©)h" % neZ,, =z heC,
=0

(2.16) is equivalent td,,(3) = 49By, (). This follows immediately from the duplication
formula

m—1
B,(mx) =m"! B,(z+ £
k=0
and the identityB,,(1 — z) = (—1)"B,(z) (Abramowitz & Stegun 1964, p.804), letting
n=2q,m=2andx = %. Therefore the proposition is true. O

Thus,S,,[f](1) — f(1) for f(x) = 2?’*! and an identical argument proves convergence
at the other endpoint. But what is the speed of convergence?
We revisit our analysis, replacirgj f] with S,,,[f]. Straightforward algebra confirms that

oo

u (2p+1)!
Smlf1(1) = 22 2p 2k)! Z )|2Rt2 (2.17)

However, it is easy to deduce from (Abramowitz & Stegun 196258) (or just trusiapl e)
that

0o d2k+1w(m+ %)
Z Ly2k+2 da2k+1 ’

k:m

wherey is thedigamma functionSince

By, 1
o 22

|2 — o0, |argz| <7

¥(z) ~ 10gz—f—z

(Abramowitz & Stegun 1964, p.258), differentiation yields

_— (k) (2k+ 1) =R (2r+2)! B,
PR (5) ~ kT T2 LaRir Z (@) Z2reaRt |z| — oo, |arg 2| < .
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Substitution in (2.17) results in the asymptotic expansion

P

(2p+1)! (=1)k (2k)! (2k +1)!
Smlf101) = 2;) (2p — 2k)] 72+ [<n+ TR T 2 g e
2L (2r 4 2k)! Ba,
- Z;( T(2r)! | (n+ é)zr”’““] ' #19

We thus conclude that fof(x) = 22P*! it is true that
Sl f)(£1) ~ S[fI(£1) + O(m ™), m > 1.
Theorem 8 Given an odd analytic functiofi, uniformly convergent ifi-1, 1], it is true that

Splf1(£1) ~ f(£1) — 2f(£1) 1 f(=) 1

™ m4 3 7 (m+ §)?
&) 4"+ 1 4
3 T (m+%)3+(’)(m ),  m>1

Proof Given f(z) = >_° f,z**!, we multiply (2.18) byfs,,; and sum up for
p € Zy. This results in the desired asymptotic expansion-at subject to easy algebraic
manipulation. The expansion at= —1 follows by symmetry. O

Given thatS,,[f](£1) ~ f(£1)+O(m~!) for any evenf analytic in[-1, 1], we deduce
that modified Fourier expansions for all analytic functicosverge at the endpoints, albeit at
the slower rate o (m™!).

3 Computing modified Fourier coefficients

3.1 The asymptotic method

The point of departure for the computation ﬁf and f;f for n > 1 are the asymptotic
expansions (2.1) and (2.3). Thus, givea N, we let

A= (=" Zl m—ﬁl’;[ﬂ%*”( 1) = fEFI (1)), (3.1)
AL =0 Y _(1);]%2 [FEHD(1) 4 fERD (1))
k=0 2
It follows at once that
A ]~ fE+0n272), A5 ~fSr0o(mn™>7?), n>L (3.2)

In Fig. 3.1 we display scaled errors for= 1, 2,3 for f(x) = e* (numerous experiments
with other choices off result in qualitatively identical behaviour). Progressto a limit is
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Figure 3.1: Scaled errors?**2|AC [f] — fC| (circles) ancn?**2| A% [f] — f5| (crosses)
fors =1,2,3andf(x) = e*.

Cosine terms Sine terms
n s=1 s=2 s=3 n s=1 s=2 s=3
1| —2.19_¢9 2.22_03 —2.25_¢4 1 3.61_¢1 —1.46_n 5.93_p2
2 —1.47_03 —3.73_05 9.44_07 2 —5.99_03 2.70_04 —1.21_05
3| —2.95_¢4 3.31_¢g6 —3.73_08 3| —798_pgs —1.29_¢5 2.10_¢7
10 241 _o6 —2.44_q9 2.47_19 10 | —3.89_¢¢ 4.36_g9 —4.90_19

Table 1: Absolute errord$, [f] — f$ (on the left) andd$, [f] — f5 for f(z) = e”.

consistent with our asymptotic estimate but a significamitye valuable observation is that it
occurs fairly rapidly. In other words, for evegyc N, analytic f and given tolerance, there
exists a fairly modest. such tha{ A, [f] — fC|,|AS,[f] — 3| < eforalln > n..

In Table 1 we display absolute errors for the first few coedfits forf(z) = e®. Clearly,
the error is unacceptably large before the onset of asymgiehaviour:we are justified in
using (3.1) only for sufficiently large. In other words, we compute the coefficients for small
values ofn by, say, Gaussian quadrature. However, once we implementf8 n > n for
a suitableny € N, we can obtain very precise approximation of the firstoefficients in
O(m) operations, having we first computgt*+1) (£1) for k = 0,...,s — 1. Subsequently,
for eachn > ny we form the two linear lengtk-combinations (3.1).

Overall, the asymptotic method (3.1) is promising, yet titrerds unacceptably large for
realistic values of and moderate values of It is, however, just the first step on our quest to
approximate modified Fourier coefficients by techniquesftoghly oscillatory quadrature.

3.2 Filon-type methods
The quadrature of highly oscillatory integrals of the foffif; g] = f; f(z)ews@dz, where

g is areal function and > 1, has received much attention in the last few years (Huylsrech
& Vandewalle 2006, Iserles & Ngrsett 2005, Olver 2006). Mahthese methods commence
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from an asymptotic expansion, similar in spirit to (3.1),aagoint of departure to two more
precise algorithms: Filon-type (Iserles & Ngrsett 2005) havin-type methods (Olver 2006).
In the present setting is linear, thus Filon-type and Levin-type methods are idaht For
reasons of presentation, we adopt the terminology of Rijype-methods.

Trivially, we can represent botf” and £ using integrals of the forni[f; g]:

= s I —al), f = gl e 3 a) — I[fe, ]},

with w = n.
Let—1=1c; <cy <--- < ¢, =1 bev givenquadrature nodeand suppose that each
hasmultiplicity m;, € N. We form a polynomiap of degree> ", _, m;, — 1 such that

p(i)(ck) = f(i)(ck)7 k=0,1,....mp—1, k=12,... v,

and consider the quadrature formula

b
Qmmzjmmwmmn (3.3)

(We assume tha[f] can be evaluated explicitly: this is certainly true in theegz) = +x,
which is of our concern in this paper.) In that case it has pered in (Iserles & Ngrsett
2005) that)[f; g] ~ I[f; 9] + O(w™*~1), wheres = min{my,m, }.

Since we seek to optimize the Filon-type method for the aitrsetting, we recall from
(Iserles & Ngrsett 2005) that the above asymptotic estiisgteved by replacing with p— f
in the asymptotic expansion &ff; g in negative powers ab. However, our expansions (2.1)
and (2.3) employ only odd derivatives 6f In other words, oncg(? 1 (£1) = f(2i+1)(£1)
fori = 0,1,...,r — 1, say, then replacing with p — f in (2.1) and (2.3) proves at once
that the asymptotic error of the relevant Filon-type meti:ac(d(n—QT'—Q). In other wordswe
need to interpolate only to odd derivatives!

We can go a step further: Suppose thas a polynomial such that

P () = fEH(¢er),  i=0,1,...,mp—1, k=12,...,1, (3.4)

and sep(z) = f(0) + [ ¢(£)d¢. Thenp 1) matchesf(*+1) at the nodes (and at no extra
pricep(0) = f(0)) and the asymptotic error of the Filon-type method

R 1 B 1
FSCn[f] :/ p(z) cos mnzde, Fssn[f] = / p(z)sinm(n — §)zdx (3.5)

-1 -1

is (’)(n‘Qs_Q). Heres = min{my,m,}.

Itis trivial to observe that = 2 andm; = my = s results in the asymptotic method (3.1)
and nothing is gained. The advantage of (3.5), though, tsthacan use intermediate points
¢, € (—1,1) to boost precision. Firstly, however, we express {for 1) the integrals in (3.5)
in terms of the polynomiap. Specifically, integrating by parts,

O I . ] 1 ' 1
Foulfl=—— [ (z)sinmnadz, FLlf] = 71/ @(x) cosm(n — 5)xda.
| o | o (3.6)
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The method (3.6) cannot be used for approximaﬁﬁgand is less precise for small values
of n, before the onset of asymptotic behaviour. Our proposal istise for such values of
the data in (3.4), together with the valyi€0), in a classical quadrature scheme

v mp—1

Qslh 0+ > ) breih® (e / h(z)dz. (3.7)

k=1 =0

We let h(z) = f(z) for the computation ofo and h(xz) = f(x)cosmnz or h(z) =
f(z)sinm(n — —)x for the approximation of or f, respectively, for small values of
n. The weights,, ; are chosen to maximise the (classical) order of (3.7), @eder it exact
for polynomials of the highest-possible degree.

Other things being equal, we found it a good strategy to abdlos intermediate points
ca2,...,c,—1 to maximise the order of (3.7). It is reasonable to choosensginic setting,
Cyi1-k = —C, andm, 1, = my, whereby it follows at once from symmetry considerations
thatby+1,k’i = _bk,i-

The simplest example with > 3isc¢ = [-1,0,1] andm = [1, 1, 1]. Therefore,

o(x) = f'(0) + 3[f/(1) — f/(=D]x + 3[f' (1) = 2f(0) + f/(=1)]2”

and

The underlying quadrature (3.7) is
Qu[h] = 20(0) + §[1'(1) = I'(~1)]

and itis of order 4. X R

Although numerical experiments indicate tlﬁin produces much smaller error thafm,
we do not pursue this particular choice sin@ﬁn = Alcn Instead, consider th&auss—
Lobatto nodes

853 G LLALF (1) = /(- 0) = VT (4 = /(=)
- ) - £

2

\]‘ﬁ
=

)= [+ DL (38)
The reason for this particular choice of nodes is to maxirtiiseorder of (3.7):
Qul] = 2h(0) + 5355 W' (1) — W (~1)] + 225G 1 (1) — W' (= 4F1)],

of order 8.
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Figure 3.2: Scaled errons®+2|FC, [f] — fC| (circles) andn®*2|FS [f] — f2] (crosses)
for@s =1, ¢=[-1.— YL Y111 m = [1,1,1,1]; (b) s = 2, ¢ = [-1,~a,a,1],

a = 1a51/2937870 — 930v/5879841, m = [2,1,1,2]; and (¢)s = 2, ¢ = [~1,—a,a, 1],
a~ 74158177109, m = [2,2,2,2]; with f(z) = e®.

The errors produced by the method (3.8) for:) = e* have been displayed in Fig. 3.2 (on
the left) and in the first column of Table 2. Comparison witlevant data for the asymptotic
method (withs = 1) in Fig. 3.1 and Table 1 confirms that, while asymptotic eisap (n~*)
and difference is small for > 1, for moderate values of we attain much higher accuracy
with (3.8).

Our first example of a Filon method fer= 2 is

1
c=[-1 —a a 1], where a= %\/2937870— 930v/5879841
andm = [2,1,1,2]. The reason for this choice is that the quadrature formul@) (3 of
order 10, and this is the best we can attain with this configamaf data. The corresponding
Filon-type method is presented underneath: note that ictiped applications one is likely to
use floating point numbers.

(=1)" {40397049 — 273691/5879841

11 = AS 11+ [F'(1) = f'(=1)]

(nr)b 371008
16655545269 + 23030811/5870841 |, .
- S alf(@) = f(~a) 39)
| 16563 ;9\2/5879841 g (_1>]}
s s (—1)"=1 [ 2183363 — 24003+/5879841 ., ,

) 46323 — 3/5879841 ., "
= f'(=a) + f(1)] + 15628 [f"(1) + f (—1)]}-
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Cosine terms

n|m=[,111 m=[2112 m=2222]
0 1.65_¢¢ —1.98_¢g 3.90_1¢
1 —8.87_05 2.38_06 —4.08_¢9
2 1.07_o4 —2.62_06 9.84_1¢
3 2.52_05 2.76_o7 3.62_09
10 2.28 o7 —2.26_10 —5.19_19
Sine terms
n|m=[1111 m=2112 m=][222]
1 —2.49_03 1.13_¢4 —1.35_¢¢
2 1.50_g3 6.90_05 —3.21_¢o7
3 2.17_o4 —3.58_06 —8.26_¢3
10 —1.10_¢g 1.25_09 4.71 11

Table 2: Absolute error8C, [f] — /< (top) andES, [f] — f5 for f(x) = e”. The errors for

s,n

fOC were produced witt@s[f}. Note thats = 1 for the rightmost column, otherwise= 2.

The middle plot in Fig. 3.2 and the middle column of Table 2 desirate that (3.9)
behaves as predicted by theory. Comparison with the middiev of Table 1 confirms that
a remarkable improvement in accuracy can be attained ata pfia single extra derivative
evaluation.

An alternative to (3.9) is to consider

c=[-1 -3 B 1], m=[2 2 2 2],

where we choosg =~ 0.741581771093504943408000 as a zero of the polynomi&ll 150z° —
13693925 + 88847x* — 1837322 4 1331: this ensures that (3.7) is of order 12. We do not
bother to derive”’C, and F%, in an explicit form. Although this can be done in a straight-
forward computation, little additional insight will be geid. The rightmost plot in Figure 3.2
demonstrates conformity witt? (n~¢) decay of the error. More notably, the right column of
Table 2 underscores truly striking performance of the mettloo all », inclusive ofn = 0.
The reason is as follows: while for larges precision is assured by rapid decay of asymptotic
expansion, for smat it is caused by the high order of the underlying classicabigatare.

3.3 Design and implementation of Filon-type methods

All three Filon-type methods of the last subsection shar@manon structural feature. We are
given distinct nodeg € [—1,1]” with ¢; = —1, ¢, = 1 and multiplicitesm € N”, where
s = min{my,m, }. In other words, our methods use the data

£(0), @), i=01,...,mp—1, k=1,2...v (3.10)

The Filon-type method can be written in the form

FOf) = A (1 + SV o () (3.11)



23

where

v mp—1

ECIA =" 05, (ew),
k=1 =0
v mp—1

ES N =00 05,5 (cp).

k=1 =0

Note that the coefficient{’; andff; areindependent of.. This immediately provides us
with an efficient algorithm for the computation of the firgstmodified Fourier coefficients:

1. Compute derivatives (3.10);

2. Form the linear combinatior(s-1)*[f (21 (1) 5 fE*U(1)], k = 0,1,...,s — 1,
Ecnlfl anded, [f];

3. Approximatefoc andfls with the underlying classical quadrature (3.7);

4. Evaluate (3.11) for all remaining coefficients by formiiog each A,? and,f a linear
combination ofs + 1 terms.

The above algorithm require8(m) flops (recall that FFT 'costsO(m log, m) flops).
Moreover, unlike FFT, it igully adaptive:we can go on evaluating modified Fourier coeffi-
cients for as long as we wish or until we decide that they hagoime sufficiently small and
the computation may terminate. There is absolutely no neés the number of coefficients
in advance!

The raison d’etreof (3.11) being an asymptotic expansion, we are justifiedsimgi it
only for sufficiently largen, although numerical experiments demonstrate that for2 and
v > 4 “sufficiently largen” means in this context > 1. Yet, forn = 0 (and perhaps for few
other small values af) we use the underlying classical quadrature (3.7) Wwith) = f(z) or
(forn > 1) h(z) = f(x) cosmnx andh(z) = f(z)sinm(n — §)z. Given multiplicitiesrm,
we choose internal nodes, . . ., c¢,_; to maximise the (classical) order of (3.7). Note that
general theory for this quadrature is missing and in thesalssection we have resortedao
hocorder analysis.

Numerical experiments indicate that even for small values, 0> 1 (3.11) is almost
always superior to (3.7). Thus (compare with the rightmadtmn of Table 2) using (3.7)
to compute modified Fourier coefficients with the third (heenmost precise) method of last
subsection results in the following errors:

n | cosine sine
1| —4.64_0s —2.73_¢p7
2| 137 05 —2.68 0o

The reason is that the error of the 12-order quadrature §8algs like the twelfth derivative
of the underlying function, and the latter grows rapidly &ircoefficients except fof§" and

g
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Intriguingly, Filon-type methods (3.11) lend themselvesah alternative interpretation.
Comparing (3.11) with (3.1), we observe that

FOf]— A%, 1] = (75;)12);2{55n[f] (1) - fC (1,
FS 1] = A5l = — N g 1 (Car () 4 e (1)

(= PP

This implies a design principle for (3.11) which is completifferent to the rationale under-
lying Filon-type methods: we choose the coeﬁ‘icieﬁﬁ§ and@,fﬂ. to ensure that

ECulh = (=1 A (1) — A (1)),
ESulh) = (=1 PR (1) + D (1))

for h € P, (the set of polynomials of degree r) for the largest possible value ofe Z, .
Ideally, we might hope for = ", _, m; — 1, but this simplistic argument, based on counting
the number of degrees of freedom in (3.10), might well be enaivhis issue, as well as the
design of the underlying classical quadrature (3.7), aratienfor future research.

This is perhaps the place to emphasize that a Filon-type adetlith s is not simply
an approximation to the asymptotic method with- 1: as can be confirmed from Tables 1
and 2, it is typically much better! The reason is that Filppet methods are far superior for
small values of:, before the onset of ‘proper’ asymptotic behaviour, sitegytexhibit high
conventional order of approximation for low frequenciesefles 2004).

3.4 Computation without derivatives

An obvious potential shortcoming of both asymptotic andifritype methods is that they
require the computation of derivatives of the functifnAlthough sometimes the data (3.10)
can be computed with ease, whether directly or through aatiordifferentiation, this need
not be the case in many relevant applications.

The current authors considered in (Iserles & Ngrsett 200d)approach of replacing
derivatives with finite differences in Filon-type methodslgroved that, as long as the spac-
ing of finite differences scales inversely with frequencgyraptotic order of error decay is
maintained. Similar approach can be extended to the prestiinig in a fairly transparent
manner. The example of= 1 suffices to convey the general idea. Thus, suppose agaia that
is given and thatn = 1: therefore we need to approximate jystcy), k = 1,2,...,v from
function values. Leb > 0 be a sufficiently small parameter. We approximate derieatlyy
finite differences, distinguishing between endpoints aernal nodes:

F(=1) ~ ﬁ%[—%f(—l) +A8F(—1+8) — 36£(—1 +26) + 16f(—1 + 30)
3 (=1 +46)],
/(ex) 351 (er+8) = Flen—0)] -~ 5

(1) ~ %%[2@0(1) —48f(1 — 0) + 36f(1 — 26) — 16f(1 — 38) + 3f(1 — 46)].

[f(crt28) — flcrn—28)], k=2,...,v—1,

| =

The above formulae are exact fpre P4, at the price oflr + 2 evaluations of the functioifi.
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Figure 3.3: Scaled errors!|A{ ,[f] — /| (on the left) anch?| AT, [f] — /5|, where we have

replaced derivatives by finite differences with- ﬁ with f(z) = e”.

Following the discussion in (Iserles & Narsett 2004), wechechoose) small enough
so thatmo < 1 for the first:n modified Fourier coefficients. In principle, this means that
the method is no longer ‘fully’ adaptive: we need to choaséefore we embark on our
computation and, once we wish to compute beyendwe need to recomputér function
values. Of course, we can choassubstantially smaller tham !, wherem is our initial
upper bound on the number of coefficients, and this is likelgliminate this, rather minor,
shag in most cases.

As a numerical example, we have compuﬁaﬂn andflfn using the above finite differ-
ences instead of derivatives, using- ﬁ. The error matches the leftmost column of Table 1
to two significant digits. As evidenced by Fig. 3.4, t@eﬁn“‘) rate of error decay, charac-
teristic of the original asymptotic method, remains valfita aboutr = 7200, substantially
more thans—!.

4 Conclusions

This paper is devoted to the modified Fourier expansion (its3analytic features and com-
putational aspects of the evaluation of expansion coefisie

Insofar as the analysis of modified Fourier expansions ic@med, this is clearly an
initial foray into a broad subject. Harmonic analysis, cenmed with the conventional Fourier
expansion (1.1) in different settings, has spawned thassafpapers and library-shelves of
monographs. Needless to say, it was not our intention tacaplall this work in a modified
setting in a single paper. Our more modest goal was to estabtjuivalent versions of few
classical mainstays of harmonic analysis and explore aiitids and differences with our
setting.

The computation of modified Fourier coefficients follows @p@ach established in our
previous work on Filon-type methods and highly oscillatquadrature (Iserles & Ngrsett
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2004, Iserles & Ngrsett 2005), but the current setting ldats#df to further simplification,
rationalisation and exploitation of special features talexr computation even more affordable
and precise. Again, we lay no claim to a complete theory. eamwds remain and, we trust,
will be the subject of future research.

Classical Fourier expansion is an immensely powerful nmatitieeal concept and counts
among the most important and fruitful techniques in appilices. This paper, needless to
say, neither attempts nor succeeds to replace or supetdedé¢hie full range of its applica-
tions. Yet, it presents a technique which in specific siaraticonfers genuine advantages over
classical Fourier series and, we believe, is worthy of errgtudy and consideration.
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