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Abstract

We are interested in inferring object segmentation by

leveraging only object class information, and by consider-

ing only minimal priors on the object segmentation task.

This problem could be viewed as a kind of weakly super-

vised segmentation task, and naturally fits the Multiple In-

stance Learning (MIL) framework: every training image is

known to have (or not) at least one pixel corresponding to

the image class label, and the segmentation task can be

rewritten as inferring the pixels belonging to the class of

the object (given one image, and its object class). We pro-

pose a Convolutional Neural Network-based model, which

is constrained during training to put more weight on pix-

els which are important for classifying the image. We show

that at test time, the model has learned to discriminate the

right pixels well enough, such that it performs very well on

an existing segmentation benchmark, by adding only few

smoothing priors. Our system is trained using a subset of

the Imagenet dataset and the segmentation experiments are

performed on the challenging Pascal VOC dataset (with no

fine-tuning of the model on Pascal VOC). Our model beats

the state of the art results in weakly supervised object seg-

mentation task by a large margin. We also compare the per-

formance of our model with state of the art fully-supervised

segmentation approaches.

1. Introduction

Object segmentation is a computer vision tasks which

consists in assigning an object class to sets of pixels in an

image. This task is extremely challenging, as each object

in the world generates an infinite number of images with

variations in position, pose, lightning, texture, geometrical

form and background. Natural image segmentation systems
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Figure 1: A schematic illustration of our method. Top:

(1) The model is trained using weakly annotated data (only

image-level class information) from Imagenet. (2) The

CNN generates feature planes. (3) These planes pass

through an aggregation layer to constrain the model to put

more weight on the right pixels. (4) The system is trained

by classifying the correct image-level label. Bottom: Dur-

ing test time, the aggregation layer is removed and the CNN

densely classifies every pixel of the image (considering only

few segmentation priors).

have to cope with these variations, while being limited in

the amount of available training data. Increasing computing

power, and recent releases of reasonably large segmentation

datasets such as Pascal VOC [7] have nevertheless made the

segmentation task a reality.

We rely on Convolutional Neural Networks (CNNs)

[13], an important class of algorithms which have been

shown to be state-of-the-art on large object recognition

tasks [12, 24], as well as on fully supervised segmenta-

tion task [8]. One advantage of CNNs is that they learn

sufficiently general features, and therefore they can excel
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in transfer learning: e.g. CNN models trained on the Ima-

genet classification database [6] could be exploited for dif-

ferent vision tasks [10, 11, 20]. Their main disadvantage,

however, is the need of a large number of fully-labeled

dataset for training. Given that classification labels are

much more abundant than segmentation labels, it is natu-

ral to find a bridge between classification and segmentation,

which would transfer efficiently learned features from one

task to the other one.

Our CNN-based model is not trained with segmentation

labels, nor bounding box annotations. Instead, we only con-

sider a single object class label for a given image, and the

model is constrained to put more weight on important pixels

for classification. This approach can be seen as an instance

of Multiple Instance Learning (MIL) [14]. In this context,

every image is known to have (or not) – through the image

class label – one or several pixels matching the class label.

However, the positions of these pixels are unknown, and

have to be inferred.

Because of computing power limitations, we built our

model over the Overfeat feature extractor, developed by

Sermanet et al. [21]. This feature extractor correspond

to the first layers of a CNN, well-trained over ImageNet.

Features are fed into few extra convolutional layers, which

forms our “segmentation network”.

Training is achieved by maximizing the classification

likelihood over the classification training set (subset of Ima-

genet), by adding an extra layer to our network, which con-

strains the model to put more weight on pixels which are

important for the classification decision. At test time, the

constraining layer is removed, and the label of each image

pixel is efficiently inferred. Figure 1 shows a general illus-

tration of our approach.

The paper is organized as follows. Section 2 presents

related work. Section 3 describes our architecture choices.

Section 4 compares our model with both weakly and fully

supervised state-of-the-art approaches. We conclude in Sec-

tion 5.

2. Related Work

Labeling data for segmentation task is difficult if com-

pared to labeling data for classification. For this reason, sev-

eral weakly supervised object segmentation systems have

been proposed in the past few years. For instance, Vezh-

nevets and Buhmann [25] proposed an approach based on

Semantic Texton Forest, derived in the context of MIL.

However, the model fails to model relationship between su-

perpixels. To model these relationships, [26] introduced a

graphical model – named Multi-Image Model (MIM) – to

connect superpixels from all training images, based on their

appearance similarity. The unary potentials of the MIM are

initialized with the output of [25].

In [27], the authors define a parametric family of struc-

tured models, where each model carries visual cues in a dif-

ferent way. A maximum expected agreement model selec-

tion principle evaluates the quality of a model from a fam-

ily. An algorithm based on Gaussian processes is proposed

to efficiency search the best model for different visual cues.

More recently, [30] proposed an algorithm that learns

the distribution of spatially structural superpixel sets from

image-level labels. This is achieved by first extracting

graphlets (small graphs consisting of superpixels and en-

capsulating their spatial structure) from a given image. La-

bels from the training images are transfered into graphlets

throughout a proposed manifold embedding algorithm. A

Gaussian mixture model is then used to learn the distri-

bution of the post-embedding graphlets, i.e. vectors output

from the graphlet embedding. The inference is done by

leveraging the learned GMM prior to measure the structure

homogeneity of a test image.

In contrast with previous approaches for weakly super-

vised segmentation, we avoid designing task-specific fea-

tures for segmentation. Instead, a CNN learns the features:

the model is trained through a cost function which casts the

problem of segmentation into the problem of finding pixel-

level labels from image-level labels. As we will see in Sec-

tion 4, learning the right features for segmentation leads

to better performance compared to existing weakly super-

vised segmentation system. Another difference from our

approach is that we train our model in a different dataset

(Imagenet) from the one we validate the results (Pascal

VOC).

Transfer Learning and CNNs In the last few years, con-

volutional networks have been widely used in the context

of object recognition. A notable system is the one from

Krizhevsky et al. [12], which performs very well on Im-

agenet. In [17] the authors built upon Krizhevsky’s ap-

proach and showed that a model trained for classification

on Imagenet dataset can be used for classification in a dif-

ferent dataset (namely Pascal VOC) by taking into account

the bounding box information. In a recent yet unpublished

work [18], the authors adapt an Imagenet-trained CNN to

the Pascal VOC classification task. The network is fine-

tuned on Pascal VOC, by modifying the cost function to in-

clude a final max-pooling layer. Similar to our aggregation

layer, the max-pooling outputs a single image-level score

for each of the classes. In contrast, (1) we not limit our-

selves to the Pascal VOC classification problem, but tackle

the more challenging problem of segmentation and (2) our

model is not fine-tuned on Pascal VOC.

In the same spirit, Girshick et al. [10] showed that a

model trained for classification on Imagenet can be adapted

for object detection on Pascal VOC. The authors proposed

to combine bottom-up techniques for generating detection

region candidates with CNNs. The authors achieved state-



of-the-art performance in object detection. Based upon this

work, [11] derived a model that detects all instances of a

category in an image and, for each instance, marks the pix-

els that belong to it. Their model, entitled SDS (Simulta-

neous Detection and Segmentation), uses category-specific,

top-down figure-ground predictions to refine bottom-up de-

tection candidates.

As for these existing state-of-the-art approaches, our sys-

tem leverages features learned over the Imagenet classifica-

tion dataset. However, our approach differs from theirs in

some important aspects. Compared to [10, 17], we consider

the more challenging problem of object segmentation and

do not use any information other than the image-level anno-

tation. [18] consider a weakly supervised scenario, but only

deals with the classification problem. Compared to [11],

we consider only the the image-level annotation to infer the

pixel-level one. In that respect, we do not use any segmenta-

tion information (our model is not refined over the segmen-

tation data either), nor bounding box annotation during the

training period. One could argue that a classification dataset

like Imagenet has somewhat already cropped properly ob-

jects. While this might true for certain objects, it is not the

case for many images, and in any case the “bounding box”

remains quite loose.

3. Architecture

As we pointed out in Section 1, CNNs are a very flex-

ible model which can be applied on various image pro-

cessing tasks, as they alleviate the need of task-specific

features. CNNs learn a hierarchy of filters, which extract

higher level of representations as one goes “deeper” in the

hierarchy [29]. The type of features they learn is also suf-

ficiently general that CNNs make transfer learning (to an-

other task) quite easy. The main drawback of these models,

however, is that a large amount of data is necessary during

training.

Since the number of image-level object labels is much

bigger than pixel-level segmentation labels, it is thus natu-

ral to leverage image classification datasets for performing

segmentation. In the following, we consider a problem of

segmentation with a set of classes C. We assume the clas-

sification dataset contains at least the same classes. Extra

classes available at classification time, but which are not

in the segmentation dataset are mapped to a “background”

class. This background class is essential to limit the number

of false positive during segmentation.

Our architecture is a CNN, which is trained over a sub-

set of Imagenet, to produce pixel-level labels from image-

level labels. As shown in Figure 2, our CNN is quite stan-

dard, with 10 levels of convolutions and (optional) pooling.

It takes as input a 400 × 400 RGB patch I , and outputs

|C| + 1 planes (one per class, plus the background class)

corresponding to the score of the 12-times downsampled

image pixels labels. During training, an extra layer, de-

scribed in Section 3.1, aggregates pixel-level labels into an

image-level label. For computational power reasons, we

“froze” the first layers of our CNN, to the ones of some al-

ready well-trained (over Imagenet classification data) CNN

model.

We pick Overfeat [21], trained to perform object clas-

sification on the ILSVRC13 challenge. The Overfeat

model generates feature maps of dimensions 1024×hi×wi,

where hi and wi are functions of the size of the RGB input

image, the convolution kernel sizes, convolution strides and

max-pooling sizes. Keeping only the first 6 convolution lay-

ers and 2 pooling layers of Overfeat, our RGB 400×400
image patch I is transformed into a 1024× 29× 29 feature

representation.

We add four extra convolutional layers (we denote H
6

for feature planes coming out from OverFeat). Each of

them (but the last one Y) is followed by a pointwise rectifi-

cation non-linearity (ReLU) [16]:

H
p = max(0,Wp

H
p�1 + b

p) , p ∈ {7, 8, 9} ,

Y = W
10
H

9 + b
10 .

(1)

Parameters of the pth layer are denoted with (Wp,bp). On

this step, we do not use any max-pooling. A dropout regu-

larization strategy [23] is applied on all layers. The network

outputs |C| + 1 feature planes of dimensions ho × wo, one

for each class considered on training, plus background.

3.1. Multiple Instance Learning

The network produces one score ski,j = Y k
i,j for each

pixel location (i, j) from the subsampled image I , and for

each class k ∈ C. Given that at training time we have

only access to image classification labels, we need a way to

aggregate these pixel-level scores into a single image-level

classification score sk = aggregi,j(s
k
i,j), that will then be

maximized for the right class label k?. Assuming an aggre-

gation procedure aggreg() is chosen, we interpret image-

level class scores as class conditional probabilities by ap-

plying a softmax [3]:

p(k|I, θ) =
es

k

P

c2C
es

c
, (2)

where θ = {Wp,bp ∀p} represents all the trainable pa-

rameters of our architecture. We then maximize the log-

likelihood (with respect to θ), over all the training dataset

pairs (I, k?):

L(θ) =
X

(k?,I)

"

sk
?

− log
X

c2C

es
c

#

. (3)

Training is achieved with stochastic gradient, backpropa-

gating through the softmax, the aggregation procedure, and

up the to first non-frozen layers of our network.
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Figure 2: Outline of our architecture. The full RGB image is forwarded through the network (composed of Overfeat and

four extra convolutional features), generating output planes of dimension (|C| + 1) × ho × wo. These output planes can be

seen as pixel-level labels of a sub-sampled version of the input image. The output then passes through the Log-Sum-Exp layer

to aggregate pixel-level labels into image-level ones. The error is backpropagated through layers C10-C7.

Aggregation The aggregation should drive the network

towards correct pixel-level assignments, such that it could

perform decently on segmentation tasks. An obvious ag-

gregation would be to take the sum over all pixel positions:

sk =
X

i,j

ski,j ∀k ∈ C. (4)

This would however assigns the same weight on all pixels

of the image during the training procedure, even to the ones

which do not belong to the class label assigned to the image.

Note that this aggregation method is equivalent as apply-

ing a traditional fully-connected classification CNN with a

mini-batch. Indeed, each value in the ho × wo output plane

corresponds to the output of the CNN fed with a sub-patch

centered around the correspond pixel in the input plane. At

the other end, one could apply a max pooling aggregation:

sk = max
i,j

ski,j ∀k ∈ C. (5)

This would encourage the model to increase the score of the

pixel which is considered as the most important for image-

level classification. In our experience, this type of approach

does not train very well. Note that at the beginning of the

training all pixels might have the same (wrong) score, but

only one (selected by the max) will have its score increased

at each step of the training procedure. It is thus not surpris-

ing it takes an enormous amount of time to the model to

converge.

We chose instead a smooth version and convex approxi-

mation of the max function, called Log-Sum-Exp (LSE) [2]:

sk =
1

r
log

2

4

1

ho wo

X

i,j

exp(r ski,j)

3

5 . (6)

The hyper-parameter r controls how smooth one wants the

approximation to be: high r values implies having an ef-

fect similar to the max, very low values will have an effect

similar to the score averaging. The advantage of this aggre-

gation is that pixels having similar scores will have a similar

weight in the training procedure, r controlling this notion of

“similarity”.

3.2. Inference

At test time, we feed the padded and normalized RGB

test image I (of dimension 3×h×w) to our network, where

the aggregation layer has been removed. We thus obtain

|C| + 1 planes of pixel-level scores ski,j (1 ≤ i ≤ ho, 1 ≤

j ≤ wo). For convenience (see Section 3.2.1), we transform

these scores into conditional probabilities pi,j(k|I) using a

softmax over each location (i, j).
Due to the pooling layers in the CNN, the output planes

labels correspond to a sub-sampled version of the input test

image. As shown in [15, 19], one can efficiently retrieve

the label of all pixels of the image using a CNN model, by

simply shifting the input image in both spatial directions,

and forwarding it again through the network.

3.2.1 Adding Segmentation Priors

Given we do not fine-tune our model on segmentation data,

we observed our approach is subject to false positive. To

circumvent this issue, we consider simple post-processing

techniques, namely image-level prior (ILP) and three differ-

ent smoothing priors (SP), with increasing amount of infor-

mation. Figure 3 summarizes the pipeline of our approach

during inference time.

Image-Level Prior The model makes inference using lo-

cal context based on the patch surrounding a pixel. In order

to improve the overall per-pixel accuracy, we add the global

context information of the scene into play. We propose the

use of an image-level prior (ILP) [22, 25] based on the out-

put feature planes. This prior, which is extracted from the

trained network, is important to reduce the number of false
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Figure 3: Inference Pipeline. The test image is forwarded through the segmentation network to generate a (|C|+1)×h×w

output, one plane for each class. The image-level prior is extracted from these planes and the class of each pixel is selected

by taking the maximum probability for each pixel. A smoothing prior is also considered to generate a smoother segmentation

output.

positives generated by hte model. As at training time, the

probability p(k|I) of each class k ∈ C to be present in the

scene can be computed by applying the softmax in the LSE

score of each label plane. This probability is used as the

image-level prior to encourage the likely categories and dis-

courage the unlikely ones.

The ILP is integrated into the system by multiplying each

conditional probability pi,j(k|I) by its class ILP, that is:

ŷ0i,j(k) = pi,j(k|I)× p(k|I) , (7)

for each location (i, j) and class k ∈ C.

Smoothing Prior Predicting the class of each pixel inde-

pendently from its neighbors yields noisy predictions. In

general, objects have smooth boundaries and well defined

shapes, different from the background which tends to be

amorphous regions. At test time we considered three differ-

ent approaches (of increasing prior knowledge) to impose

local regions with strong boundaries to be assigned to the

same label:

(i) SP-sppxl smooths the output using standard superpix-

els. We followed the method proposed by [9], which

largely over-segments a given image into a set of dis-

joint components. Prediction smoothing is achieved by

simply picking the label that appears the most in each

superpixel.

(ii) SP-bb leverages bounding box candidates to improve

the smoothing. We picked the BING algorithm [5] to

generate a set of 104 (possibly overlapping) bounding

box proposals given an image, each bounding box hav-

ing a score. These scores are normalized to fit the [0, 1]
interval. Each pixel (i, j) in the image is assigned a

score (of belonging to an object) by summing the score

of all bounding box proposals that contains the pixel.

The score at each pixel is then converted into a prob-

ability p((i, j) ∈ Obj) by normalizing the sum by the

number of boxes containing the pixel. Label smooth-

ing for each pixel (i, j) is then achieved with:

ŷi,j =

(

k, if max
k2C

ŷ0i,j(k)× p((i, j) ∈ Obj) > δk

0, otherwise
,

where δk (0 ≤ δk < 1) is a per-class confidence

threshold and ŷi,j = 0 means that background class

is assigned to the pixel.

(iii) SP-seg is a smoothing prior which has been trained

with class-independent segmentation labels. We con-

sider the Multiscale Combinatorial Grouping (MCG)

algorithm [1], which generates a serie of overlapping

object candidates with a corresponding score. Pixel la-

bel smoothing is then achieved in the same way as in

SP-bb.

The smoothing prior improves our algorithm in two ways:

(i) it forces pixels with low probability of being part of an

object to be labeled as background and (ii) it guarantees lo-

cal label consistency. While the former reduces the number

of false positives, the latter increases the number of true

positives. We will see in Section 4 that (as it can be ex-

pected) more complex smoothing priors improves perfor-

mance accuracy.

4. Experiments

Given that our model uses only weak supervision la-

bels (class labels), and is never trained with segmentation

data, we compare our approach with current state-of-the-art

weakly supervised segmentation systems. We also compare

it against state-of-the-art fully supervised segmentation sys-

tems, to demonstrate that weakly supervised segmentation

is a promising and viable solution.

4.1. Datasets

We considered the Pascal VOC dataset as a benchmark

for segmentation. This dataset includes 20 different classes,



Conv. Layer 1 2 3 4

# channels 1024 768 512 21

Filter Size 3× 3 3× 3 3× 3 3× 3

Input Size 29× 29 27× 27 25× 25 23× 23

Table 1: Architecture Design. Architecture of the seg-

menter network used in our experiments.

and represents a particular challenge as an object segmenta-

tion task. The objects from these classes can appear in many

different poses, possibly highly occluded, and also possess

a very large intra-class variation. The dataset was only used

for testing purposes, not for training.

We created a large classification training set from the

Imagenet dataset containing images of each of the twenty

classes and also an extra class labeled as background –

set of images in which none of the classes appear. We con-

sider all the sub-classes located below each of the twenty

classes in the full Imagenet tree, for a total of around

700, 000 samples. For the background, we chose a subset of

Imagenet consisting of a total of around 60, 000 images not

containing any of the twenty classes1. To increase the size

of the training set, jitter (horizontal flip, rotation, scaling,

brightness and contrast modification) was randomly added

to each occurrence of an image during the training proce-

dure. Each image was then normalized for each RGB chan-

nel. No other preprocessing was done during training.

4.2. Experimental Setup

Each training sample consists of a central patch of size

400 × 400 randomly extracted from a deformed image in

the training set. If the image dimensions are smaller than

400 × 400, it is rescaled such that its smaller dimension is

of size 400.

The first layers of our network are extracted (and

“frozen”) from the public available Overfeat2 model. In

all our experiments, we use the slow Overfeat model, as de-

scribed in [21]. With the 400 × 400 RGB input image, the

Overfeat feature extractor outputs 1024 feature maps of

dimension 29 × 29. As detailed in Section 3, these feature

maps are then fed into 4 additional convolutional layers fol-

lowed by ReLU non-linearity. A dropout procedure with a

rate of 0.5 is applied on each layer. The whole network has

a total of around 20 million parameters. Table 1 details the

architecture used in our experiments.

160K background images might look surprisingly not large, but we

found not easy to pick images where none of the 20 Pascal VOC classes

were not present.
2http://cilvr.nyu.edu/doku.php?id=software:

overfeat:start

Model VOC2008 VOC2009 VOC2010

MIM 8.11% 38.27% 28.43%

GMIM 9.24% 39.16% 29.71%

PGC 30.12% 43.37% 32.14%

aggreg-max 44.31% 45.46% 45.88%

aggreg-sum 47.54% 50.01% 50.11%

aggreg-LSE 56.25% 57.01% 56.12%

Table 2: Comparison with weakly supervised. Averaged

per-class accuracy of weakly supervised models and ours

for different Pascal VOC datasets. We consider three differ-

ent aggregation layers.

The final convolution layer outputs a 21 feature maps

of dimension 21 × 21. These feature maps are passed

through the aggregation layer (in the case of LSE, we con-

sider r = 5), which outputs 21 scores, one for each class.

These scores are then transformed into posterior probabili-

ties through a softmax layer.

Design architecture and hyper-parameters were chosen

considering the validation data of the Pascal VOC 2012 seg-

mentation dataset. We considered a learning rate λ = 0.001
which decreases by a factor of 0.8 for every 5 million ex-

amples seen by the model. We trained our model using

stochastic gradient descent with a batch size of 16 exam-

ples, momentum 0.9 and weight decay of 0.00005.

The optimal class confidence thresholds δk for smooth-

ing priors (see Section 3.2.1) were chosen through a grid

search. The AP changes in function of the confidence

threshold for each class. The different values for the thresh-

old is due to the variability of each class in the training data

and how their statistics approach the Pascal VOC images

statistics.

Our network takes about a week to train on a Nvidia

GeForce Titan GPU with 6GB of memory. All the exper-

iments were conducted using Torch73.

4.3. Experimental Results

Compared to weakly supervised models We com-

pare the proposed algorithm with three state-of-the-art

approaches in weakly supervised segmentation scenario:

(i) Multi-Image Model (MIM) [26], (ii) a variant, Gener-

alized Multi-Image Model (GMIM) [27] and (iii) the most

recent Probabilistic Graphlet Cut (PGC) [30, 31]. Note that

there are variations in the experimental setup on the exper-

iments. The compared models use Pascal VOC for weak

supervision while we use Imagenet. Also, (iii) considers

3http://torch.ch

http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
http://torch.ch
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Fully Sup.

O2P 86.1 64.0 27.3 54.1 39.2 48.7 56.6 57.7 52.5 14.2 54.8 29.6 42.2 58.0 54.8 50.2 36.6 58.6 31.6 48.4 38.6 47.8

DivMBest 85.7 62.7 25.6 46.9 43.0 54.8 58.4 58.6 55.6 14.6 47.5 31.2 44.7 51.0 60.9 53.5 36.6 50.9 30.1 50.2 46.8 48.1

SDS 86.3 63.3 25.7 63.0 39.8 59.2 70.9 61.4 54.9 16.8 45.0 48.2 50.5 51.0 57.7 63.3 31.8 58.7 31.2 55.7 48.5 51.6

Weak. Sup.

Ours-sppxl 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8

Ours-bb 76.2 42.8 20.9 29.6 25.9 38.5 40.6 51.7 49.0 9.1 43.5 16.2 50.1 46.0 35.8 38.0 22.1 44.5 22.4 30.8 43.0 37.0

Ours-seg 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6

Table 3: Comparison with fully supervised. Per class average precision and mean average precision (mAP) on Pascal VOC

2012 segmentation challenge test set. We consider different smoothing priors in our model.

additional labels on the data. In our training framework, the

Pascal VOC dataset was used only for selecting the thresh-

olds on the class priors. Our system learns features that are

independent of the Pascal VOC data distribution and would

a priori yields similar results in other datasets.

Table 2 reports the results of the three compared models

and our approach. In our experiments, we consider the SP-

sppxl smoothing prior, which does not take into account any

segmentation or bounding box information. We consider

the three aggregation layers described in Section 3.1. This

result empirically demonstrates our choice of the Log-Sum-

Exp layer.

The results for the compared models reported on this ta-

ble are from Zhang et al. [30]. We use the same metric and

evaluate on the same datasets (Pascal VOC 2008, 2009 and

2010) as the authors. The metric used, average per-class ac-

curacy, is defined by the ratio of correct classified pixels of

each class. We show that our model achieves significantly

better results than the previous state-of-the-art weakly su-

pervised algorithms, with an increase from 30% to 90% in

average per-class accuracy.

Compared to fully supervised models In table 3, we

compare the performance of our model against the best

performers in Pascal VOC 2012 segmentation competition:

Second Order Pooling (O2P) [4], DivMBest [28] and Simul-

taneous Detection and Segmentation (SDS) [11]. Average

precision metric4, as defined by the Pascal VOC competi-

tion, is reported. We show results using all three smooth-

ing priors (as described in 3.2.1). The performance of our

model increases as we consider more complex priors.

We reach near state-of-the-art performance for several

classes (even with the simplest smoothing prior SP-sppxl,

which is object and segmentation agnostic) while some

other classes perform worse. This is not really surprising,

given that the statistics of the images for some classes (e.g.

4AP =
TruePositive

TruePositive+FalsePositive+FalseNegative

dog, cat, cow) are closer in the two different datasets than

for some other classes (e.g. bird, person). The results

on the specific Pascal VOC challenge could be improved by

“cheating” and considering training images that are more

similar to those represented on the test data (e.g. instead of

choosing all bird images from Imagenet, we could have

chosen the bird breeds that are similar to the ones presented

on Pascal VOC).

Effect of Priors Table 4 shows the average precision of

each class on the Pascal VOC 2012 validation set con-

sidering the inference assuming no prior was used (base),

only the image-level prior (base+ILP) and the image-level

together with different smoothing priors (base+ILP+SP-

sppxl, base+ILP+SP-bb, base+ILP+SP-seg). Figure 4 illus-

trates inference in Pascal VOC images assuming different

steps of inference. Priors have a huge importance to reduce

false positives, and smooth predictions.

5. Conclusion

We proposed an innovative framework to segment ob-

jects with weakly supervision only. Our algorithm is able

to distinguish, at a pixel level, the differences between dif-

ferent classes, assuming only few simple prior knowledge

about segmentation. This is an interesting result as one

might circumvent the necessity of using the very costly seg-

mentation datasets and use only image-level annotations.

Our approach surpasses by a large margin previous state-

of-the-art models for weakly supervised segmentation. We

also achieve competitive performance (at least for several

classes) compared to state-of-the-art fully supervised seg-

mentation systems.



Figure 4: Inference results. For each test image (left), we show the output assuming the image-level prior (center) and

image-level and SP-seg smoothing prior (right).
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base 37.0 10.4 12.4 10.8 5.3 5.7 25.2 21.1 25.15 4.8 21.5 8.6 29.1 25.1 23.6 25.5 12.0 28.4 8.9 22.0 11.6 17.8

base+ILP 73.2 25.4 18.2 22.7 21.5 28.6 39.5 44.7 46.6 11.9 40.4 11.8 45.6 40.1 35.5 35.2 20.8 41.7 17.0 34.7 30.4 32.6

base+ILP+SP-sppxl 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6

base+ILP+SP-bb 78.6 46.9 18.6 27.9 30.7 38.4 44.0 49.6 49.8 11.6 44.7 14.6 50.4 44.7 40.8 38.5 26.0 45.0 20.5 36.9 34.8 37.8

base+ILP+SP-seg 79.6 50.2 21.6 40.6 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0

Table 4: Effect of priors on segmentation. Per class average precision on Pascal VOC 2012 validation set. We consider

the inference with no priors (base), with image-level prior (base+ILP) and different smoothing priors (base+ILP+SP-sppxl,

base+ILP+SP-bb, base+ILP+SP-seg).
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