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There are many ways in which the human visual system works to reduce the inherent

redundancy of the visual information in natural scenes, coding it in an efficient way.

The non-linear response curves of photoreceptors and the spatial organization of the

receptive fields of visual neurons both work toward this goal of efficient coding. A related,

very important aspect is that of the existence of post-retinal mechanisms for contrast

enhancement that compensate for the blurring produced in early stages of the visual

process. And alongside mechanisms for coding and wiring efficiency, there is neural

activity in the human visual cortex that correlates with the perceptual phenomenon of

lightness induction. In this paper we propose a neural model that is derived from an

image processing technique for histogram equalization, and that is able to deal with all the

aspects just mentioned: this new model is able to predict lightness induction phenomena,

and improves the efficiency of the representation by flattening both the histogram and the

power spectrum of the image signal.

Keywords: neural model, Wilson-Cowan equation, efficient coding, redundancy reduction, contrast enhancement,

lightness induction

1. INTRODUCTION

The human visual system works in many ways in order to

efficiently encode the visual information coming from natural

environments, reducing its inherent redundancy, as proposed in

the seminal work of Barlow (1961) (see Olshausen and Field,

2000 for a review). For instance, while natural scenes have lumi-

nance distributions which are very lopsided, with a high peak

and a very rapid fall-off, photoreceptors encode this information

with signals that have a much more even distribution: indeed,

photoreceptors perform histogram equalization, as demonstrated

by Laughlin (1981). And the receptive fields of visual neurons,

both retinal and post-retinal, compensate the 1/f 2 decay of the

power spectrum of natural images, whitening the spectrum of

the resulting signal and thus minimizing interpixel redundancies

and increasing coding efficiency (see Atick, 1992; Dan et al., 1996

where the existence of whitening at the local geniculate nucleus is

demonstrated for natural images).

Apart from efficiency in coding, another very important aspect

is that of biological efficiency in terms of wiring. The resolution

of retinal mosaics is limited by the number of axons that can pass

through the optic nerve, which acts as a bottleneck (Olshausen,

2003). But the visual system is able to achieve a visual acuity

beyond the limit imposed by the number of photoreceptors at the

retina: in their classical paper on contrast constancy, Georgeson

and Sullivan (1975) suggest that there are cortical mechanisms for

contrast enhancement that compensate for the blurring produced

in early stages of the visual process. Very recently Martinez et al.

(2014) have confirmed that contrast enhancement takes place at

the lateral geniculate nucleus (LGN) and, remarkably, the authors

point out that this contrast enhancement procedure is very much

alike the common techniques used in image processing.

Alongside mechanisms for coding and wiring efficiency, there

is neural activity in region V1 of the human visual cortex that

correlates with the perceptual phenomenon of lightness induc-

tion, as proven by Pereverzeva and Murray (2008). The term

lightness induction or achromatic induction designates the visual

phenomenon by which the perceived reflectance of an object

depends on its surround. It can take the form of lightness contrast,

when the object’s lightness shifts away from that of its surround-

ings: a dark object on a light background appears even darker,

or a light object in a dark surround becomes even lighter. The

reverse is called lightness assimilation, in which case the appear-

ance of the object shifts in the direction of the lightness of its

surround. As pointed out by Shevell (2003), lightness assimila-

tion occurs in situations of high spatial frequency while lightness

contrast is associated with relatively lower spatial frequencies.

Our contribution in this paper is to propose a neural activ-

ity model, a partial differential equation (PDE) in the form of

a Wilson-Cowan equation (Wilson and Cowan, 1972), which

takes care simultaneously of the four aspects mentioned above: it

performs histogram equalization, spectrum whitening, contrast

enhancement, and it also predicts lightness induction. The pro-

posed model is based on a state of the art method for color and

contrast enhancement from the image processing literature, so we

start the following section reviewing some key image processing

concepts.

2. IMAGE PROCESSING FOR CONTRAST ENHANCEMENT

2.1. HISTOGRAM EQUALIZATION

Histogram equalization is a classical, very basic image process-

ing technique dating at least to the early 1970s (see Pratt, 2007

and references therein), aiming at enhancing the contrast and
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improving the appearance of images by way of re-distributing

their levels uniformly accross the available range. In this sense, an

image would be optimal if its histogram were flat or “equalized,”

meaning that all the range is used and all levels are represented

by the same amount of pixels. Therefore, when an image has a

flat histogram its cumulative histogram is simply a ramp, and this

allows for a very straightforward computation for the histogram

equalization procedure: assuming we are working on a graylevel

image in the range [0,1], we have to substitute each level g in

the original image by the value of its normalized cumulative his-

togram, H(g). The solution is computed very fast using a look-up

table (LUT). An example result can be seen in Figure 1 (notice

that, while the range has been expanded and the resulting image

has a more even histogram, it’s not actually uniform).

While in Figure 1 histogram equalization improves the visual

appearance of the image, Figure 2 shows an example where the

image is actually made worse, which Pratt (2007) points out is

often the case when the image is overexposed, as it is here. This

is aggravated by the fact that the equalization procedure is a one-

shot technique, that only produces a final result, without any “in-

between,” so if the resulting image shows any type of unpleasant

artifact there is nothing to do about it. This issue was addressed

by Sapiro and Caselles (1997), who proved that the minimization

of the energy functional

E(I) = 2
∑

x

(

I(x) −
1

2

)2

−
1

AB

∑

x

∑

y

|I(x) − I(y)| (1)

produces an image I with a flat histogram. The range of I is [0, 1],

x, y are pixels and A, B are the image dimensions. While the result

of histogram equalization is very often unsatisfactory and can’t be

altered, Sapiro and Caselles (1997) propose to start with an input

image I0 and apply to it step after step of the minimization of

Equation 1, letting the user decide when to stop. If the user lets

FIGURE 1 | Left: image and associated histogram. Right: after histogram

equalization.

FIGURE 2 | Left: original image. Right: after histogram equalization.

the minimization run to convergence, she’ll get the same result

as with a LUT, but otherwise a better result can be obtained if

the iterative procedure stops before the appearance of severe arti-

facts. The squared differences in the first term of Equation 1 and

the absolute differences in the second one are required to ensure

that the minimization yields an image with equalized histogram,

see Sapiro and Caselles (1997) for details. The energy in Equation

1 can be interpreted as the difference between two positive and

competing terms,

E(I) = D(I) − C(I). (2)

The first term measures the dispersion around the average value

of 1
2 , as in the gray world hypothesis for color constancy, stating

that our visual system estimates the illuminant as one half the

average of the colors of the scene, an observation made by Judd

(1940, 1979a) and formalized by Buchsbaum (1980). The second

term measures the contrast as the sum of the absolute value of the

pixel differences.

2.2. PERCEPTUALLY-BASED CONTRAST ENHANCEMENT

The abovementioned measure of contrast is global, not local, i.e.,

the differences are computed regardless of the spatial locations of

the pixels. This is not consistent with how we perceive contrast,

which is in a localized manner, at each point having neighbors

exert a higher influence than far-away points. Using the concepts

introduced by the popular perceptually-based color correction

method ACE of Rizzi et al. (2003), the authors of Bertalmío et al.

(2007) propose an adapted version of the functional of Equation

1 that complies with some very basic visual perception principles,

namely those of locality, color constancy and white patch (the

latter stating that the brightest spot in the image is perceived as

white, an observation that is often attributed, incorrectly, to the

Retinex theory of Land (1977), but which has a long history that

dates back at least to the works of Helmholtz, as explained by Judd

(1979b,c)):

E(I) =
α

2

∑

x

(

I(x) −
1

2

)2

− γ
∑

x

∑

y

w(x, y)|I(x)

−I(y)| +
β

2

∑

x

(I(x) − I0(x))2, (3)

where w is a distance function such that its value decreases as

the distance between x and y increases, I0 is the original image

and α, β and γ are positive weights (which can be chosen so as

to guarantee the white patch property, see Bertalmío et al., 2007

for details). The gradient descent equation for the functional in

Equation 3 is the following, and its numerical implementation is

essentially equivalent to the method of Rizzi et al. (2003):

It(x) = −α

(

I(x) −
1

2

)

+ γ
∑

y

w(x, y)sgn(I(x) − I(y))

−β(I(x) − I0(x)). (4)

Starting from I = I0, we iterate Equation 4 until we reach a steady

state, which will be the result of this algorithm.
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By minimizing the energy in Equation 3 we are locally enhanc-

ing contrast (second term) and promoting color constancy by

discounting the illuminant (first term), while preventing the

image from departing too much from its original values (third

term). We could also say that the minimization of Equation 3

approximates local histogram equalization.

The method of Bertalmío et al. (2007) has several good

properties:

1. It yields very good color constancy results, being able to

remove strong color casts and to deal with non-uniform illu-

mination (a challenging scenario for most color constancy

algorithms, see Bertalmío, 2014).

2. It increases the dynamic range of the image (i.e., it tends to

“flatten” its histogram).

3. It has a very good local contrast enhancement performance,

producing results without halos, spurious colors or any other

kind of visual artifact.

4. It can deal with both underexposed and overexposed pictures.

5. It reproduces visual perception phenomena such as simultane-

ous contrast and the Mach Band effect.

But regarding color constancy, there is also a very interesting and

close connection with the classical approach of Retinex. In their

kernel-based Retinex (KBR) formulation, Bertalmío et al. (2009)

take all the essential elements of the Retinex theory of Land (1977)

(channel independence, the ratio reset mechanism, local averages,

non-linear correction) and propose an implementation that is

intrinsically 2D, and therefore free of the issues associated with

the 1D paths used in the original Retinex algorithm. The results

obtained with this algorithm comply with all the expected prop-

erties of Retinex (such as performing color constancy while being

unable to deal with overexposed images) but don’t suffer from

the usual shortcomings such as sensitivity to noise, appearance of

halos, etc. In Bertalmío et al. (2009) it is proven that there isn’t

any energy that is minimized by the iterative application of the

KBR algorithm, and this fact is linked to its limitations regard-

ing overxposed pictures. Using the analysis of contrast performed

by Palma-Amestoy et al. (2009), Bertalmío et al. (2009) are able

to determine how to modify the basic KBR equation so that it

can also handle overexposed images, and the resulting, modified

KBR equation turns out to be essentially the gradient descent of

the energy given by Equation 3. In other words, the method of

Bertalmío et al. (2007) can be seen as an iterative application of

Retinex, although in a modified version that allows to produce

good results also in the case of overexposed images.

3. A NEW NEURAL MODEL

3.1. CONNECTION WITH NEUROSCIENCE

The activity of a population of neurons in the region V1 of the

visual cortex evolves in time according to the Wilson-Cowan

equations (see Wilson and Cowan, 1972, 1973; Bressloff et al.,

2002). Treating V1 as a planar sheet of nervous tissue, the state

a(r, φ, t) of a population of cells with cortical space coordenates

r ∈ R
2 and orientation preference φ ∈ [0, π) can be modeled

with the following PDE (Bressloff et al., 2002):

∂a(r, φ, t)

∂t
= −αa(r, φ, t)

+µ

∫ π

0

∫

R2
ω(r, φ‖r′, φ′)σ (a(r′, φ′, t))dr′dφ′

+h(r, φ, t), (5)

where α,µ are coupling coefficients, h(r, φ, t) is the external

input (visual stimuli), ω(r, φ‖r′, φ′) is a kernel that decays with

the differences |r − r′|, |φ − φ′| and σ is a sigmoid function. If

we ignore the orientation φ and assume that the input h is con-

stant in time, it can be shown that Equation 5 is closely related to

the gradient descent Equation 3, where neural activity a plays the

role of image value I, sigmoid function σ behaves as the derivative

of the absolute value function, and the visual input h is the initial

image I0. This connection was already pointed out by Bertalmío

et al. (2007), and Bertalmío and Cowan (2009) use it to argue

that the Wilson-Cowan equations could therefore be the gradient

descent of a certain energy, and also that there would appear to be

a physical substrate at the cortex for the Retinex theory.

3.2. LIGHTNESS INDUCTION

Looking closely at Equation 4, we can see that the spatial arrange-

ment of the image data plays no role in it. Therefore, we

can expect that the local contrast enhancement procedure of

Bertalmío et al. (2007) will always produce lightness contrast,

not assimilation, since as we mentioned earlier assimilation is

linked to high spatial frequencies (Shevell, 2003). Figure 3 con-

firms this: (Figure 3A) produces lightness assimilation, because

all gray bars have the same value but they are perceived darker

when surrounded by black and lighter when surrounded by white;

on the other hand, the result produced by Bertalmío et al. (2007)

FIGURE 3 | (A) Original image, example of lightness assimilation: the gray

bars have all the same value but appear different over black and white

backgrounds. (B) Result of applying the model of Bertalmío et al. (2007) to

image (A). (C) Profile of a line from image (A). (D) Profile of a line from image

(B): notice how the model of Bertalmío et al. (2007) actually emulates

lightness contrast rather than assimilation.
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in Figure 3B actually emulates lightness contrast rather than

assimilation, as the line profiles in Figures 3C,D show.

Rudd (2010) studies lightness induction using a disk-and-ring

(DAR) display for matching experiments, see Figure 4 (left). The

intensity of the background B, of the left ring RM and of the disk

on the right DT is kept constant; the intensity of the right ring

RT is modified, and the observer has to adjust the intensity of the

left disk DM so as to match the appearance of the right disk DT .

Using the model of Bertalmío et al. (2007), the predicted value

of DM as a function of the varying RT can be computed, and it

is shown in Figure 4 (right). We can see that as RT increases DM

always decreases, so according to this model we should only have

lightness contrast in this situation. But the data from the percep-

tual experiments of Rudd (2010) says otherwise, see Figure 5: as

RT increases DM also increases (lightness assimilation) until RT

reaches some value, beyond which DM decreases (lightness con-

trast). These plots are well approximated by parabolas and, as the

ring widths become larger, the resulting parabolas have their cur-

vature decrease, implying that “assimilation is more likely to be

observed with narrow surrounds” (Rudd, 2010).

3.3. PROPOSED MODEL

In order to overcome the intrinsic limitations of Bertalmío et al.

(2007) with respect to lightness induction, we should introduce

spatial frequency in the energy functional. We propose a new

model consisting in the following PDE, a modification of the

gradient descent Equation (4):

It(x) = −α(I(x) − µ(x)) + γ (1 + (σ (x))c)
∑

y

w(x, y)sgn(I(x)

−I(y)) − β(I(x) − I0(x)), (6)

where µ(x) is the mean average of the original image data com-

puted over a neighborhood of x, σ (x) is the standard deviation

of the image data computed over a small neighborhood of x, and

the exponent c is a positive constant. The differences with respect

to Equation 4 are that now the average in the first term is no

longer global (the 1/2 value of Equation 4) but local, and that

the weight for the second term is no longer a constant, but it

changes both spatially and with each iteration, according to the

local standard deviation σ : if the neighborhood over which it is

computed is sufficiently small, standard deviation can provide a

simple estimate of spatial frequency. But also, the standard devi-

ation is commonly used in the vision literature as an estimate of

local contrast. We have this contrast σ (x) raised to a power c, and

this is also the case with other neural models where a power law

is applied to the contrast, as we will briefly discuss later.

Again, this is a Wilson-Cowan type of neural activity model,

where I0 is the visual input. We take I0 as a non-linear mod-

ification of the radiance stimulus, e.g., I0 could be the result

of applying the Naka-Rushton equation, which models photore-

ceptor responses (see Shapley and Enroth-Cugell, 1984), to the

radiance stimuli. As we did with Equation 4, we start with an

image I = I0 and iterate Equation 6 until convergence, obtaining

a result which we’ll see is able to predict perceptual phenomena as

well as improve the efficiency of the representation.

4. THE PROPOSED MODEL PREDICTS INDUCTION AND

IMPROVES EFFICIENCY

4.1. PREDICTING LIGHTNESS INDUCTION

Using this new model, now we can qualitatively predict the results

of Rudd (2010). We fix B, DT, RM and for each value of RT we

FIGURE 5 | Value of DM as a function of RT : results of perceptual

matches for different ring widths, from Rudd (2010).

FIGURE 4 | Left: diagram of the disk-and-ring display used by Rudd (2010), taken from that paper. Right: value of DM as a function of RT , predicted with the

model of Bertalmío et al. (2007).
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find the steady state of Equation 6 at the center of the right disk,

at the middle of the right ring and at the middle of the left ring:

these would be our model’s predictions of the perceived values for

DT, RT and RM . Next, we compute the difference between the first

two values and add it to the third, yielding the prediction of the

perceived (lightness) value for DM , from which we can recover the

actual luminance value DM using again Equation 6 (see Appendix

for implementation details). From these results we can derive

the following conclusions, that corroborate the findings of the

perceptual experiments of Rudd (2010):

• As shown in Figure 6 (left), the predicted match luminance

plots are no longer linear but quadratic, with an initial lightness

assimilation regime for low values of RT followed by a lightness

contrast part.

• The curvature of these parabolas decreases with increasing ring

width.

• The previous experiments were for a double-decrement dis-

play: B > RT > DT . If we now make the ring have a value in

between disk and background, B > RT < DT , the plot cur-

vature remains negative as in the double-decrement case, see

Figure 6 (right). As reported by Rudd (2010), this behavior can

not be predicted with some other neural models, like that of

Rudd and Arrington (2001), with which the curvature changes

sign in this situation.

We can also predict lightness assimilation in the previous exam-

ple of the alternating gray bars of Figure 3, as we now show in

Figure 7.

It is interesting to note that the shape of the curves in Figure 6

does vary with extent of the neighborhood over which the stan-

dard deviation is computed, as Figure 8 shows: when the neigh-

borhood covers disk, ring and some background we have an

inverted parabola as before (red curve), but if we decrease the

neighborhood size so that it only covers disk and ring but no

background then the parabola concavity is reversed (green curve),

and if the neighborhood is further reduced so that it only covers

the disk then the curve is no longer parabolic but linear.

Finally, we may point out that some recent models which also

predict lightness induction based on neural attributes of the visual

system can be found in Otazu et al. (2008) and Penacchio et al.

(2013).

4.2. EFFICIENCY: REDUNDANCY REDUCTION AND CONTRAST

ENHANCEMENT

In this section we argue that the proposed model of Equation 6,

which as we have seen has the form of a Wilson-Cowan equa-

tion, performs local contrast enhancement and is closely related

to basic image processing techniques, is a good candidate for a

neural model providing the contrast constancy effects described

by Georgeson and Sullivan (1975) and Martinez et al. (2014). But

furthermore we will now see how this new neural model, applied

to signals already encoded by photoreceptors, further improves

efficiency by reducing redundancy: flattening the histogram and

whitening the power spectrum.

Figure 9A shows a high dynamic range (HDR) image or radi-

ance map, linearly scaled to the range [0, 1]. Clearly this kind of

FIGURE 6 | Left: predicted value of DM as a function of RT , using the

proposed model, for different ring widths; the plots are well

approximated by parabolas, whose curvature decreases as the ring

width increases. Right: prediction when the disk is a luminance

increment with respect to the ring; the sign of the curvature remains

negative.

FIGURE 7 | (A) Original image, example of lightness assimilation: the gray

bars have all the same value but appear different over black and white

backgrounds. (B) Result of applying the proposed model to image (A).

(C) Profile of a line from image (A). (D) Profile of a line from image (B):

notice how the proposed model is capable of emulating lightness

assimilation.
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mapping is useless, which is a way to explain the need for light

adaptation and gain control mechanisms in our photoreceptors.

Figure 9B shows the result of applying the Naka-Rushton equa-

tion to the previous HDR image. Figure 9C shows the result of

applying our proposed model to Figure 9B. As we can see, the

original radiance image has a very lopsided histogram, which is

made considerably more uniform by applying the Naka-Rushton

equation and even more flat if we apply our proposed method to

FIGURE 8 | The shape of the curves that predict the value of DM as a

function of RT , using the proposed model, depend on the extent of the

neighborhood over which the standard deviation is computed. In red:

the neighborhood covers disk, ring and some background. In green: the

neighborhood covers disk and ring but no background. In blue: the

neighborhood covers just the disk.

the Naka-Rushton output. Local contrast is clearly enhanced as

well, see for instance the window frames, the book cases behind

the windows, etc. For the implementation details we refer the

reader to the Appendix.

Figure 10A shows the result of applying the Naka-Rushton

equation to a high dynamic range image. Figure 10B shows

the result of applying the model of Bertalmío et al. (2007)

to Figure 10A (this is roughly equivalent to the tone mapping

approach proposed by Ferradans et al. (2011) in an image pro-

cessing/computer graphics context). Figure 10C shows the result

of applying our proposed model to Figure 10A. Figure 10D com-

pares the power spectrum of the three previous images. We can

see that our model improves spectrum whitening over the other

two results. In this image the contrast enhancement is more sub-

tle but still noticeable, especially in the interior of the tree-trunk

and on the leaves and grass in the foreground.

An interesting aspect is given by the constant c in Equation

6 and its relationship to the whitening of the power spectrum.

Given a Naka-Rushton output, we compute the rotational aver-

age of its power spectrum which, in log-log coordinates, can be fit

by a line with a certain slope. We do the same for the output of our

model, that has been applied to the Naka-Rushton output using

some value for c, and obtain a new linear fit with a new slope. Let

us estimate the “increase in whitening” provided by our model as

the difference between these two slopes, call it W . The value of W

is a function of the constant c used in our model. If we now vary

c in the interval [0, 1] we can plot the resulting function W(c),

as shown in Figure 11. Disregarding the spikes for low values of c,

we can see that there is an optimum value for c, with which we can

obtain the maximum power spectrum whitening that our model

can provide. In our model c is the power to which we raise the

local standard deviation σ (x), and this standard deviation is one

of the possible measures that are commonly used to estimate local

FIGURE 9 | (A) High dynamic range (HDR) image, linearly scaled. (B) Result of applying the Naka-Rushton equation to the HDR image. (C) Result of applying

proposed model to image (B). (D) Histogram of (A). (E) Histogram of (B). (F) Histogram of (C). Original image courtesy of Max Planck Institute.
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FIGURE 10 | (A) Result of applying the Naka-Rushton equation to a high dynamic range image. (B) Result of applying the model of Bertalmío et al. (2007) to

image (A). (C) Result of applying proposed model to image (A). (D) Power spectrum of images (A–C). Original image property of Industrial Light and Magic.

FIGURE 11 | Increase in spectrum whitening as a function of the

constant c in Equation 6, for the image in Figure 10.

contrast. Because of this reason we are currently investigating the

possible connections of our model with the works of Mante et al.

(2008) and Kay et al. (2013), since both of them apply a static

power-law non-linearity to the contrast. In particular, Kay et al.

(2013) computed the value of the exponent of this power law and

found that while it varies accross the visual cortex, it is in the

range [0, 0.35] with a value of around 1/3 in the case of V1: this is

all consistent with the tests we have performed so far for different

high dynamic range images.

5. CONCLUSION AND FUTURE WORK

In this paper we have proposed a neural model, in the form of a

Wilson-Cowan equation, that is derived from an image process-

ing technique for local histogram equalization. This new model is

able to predict lightness induction phenomena, and improves the

efficiency of the representation by flattening both the histogram

and the power spectrum of the image signal and increasing local

contrast.

We are very much interested in finding evidence of neural

responses following our proposed model. Our method performs

contrast enhancement, so we would like to explore whether there

is any relationship with the work of Martinez et al. (2014), who

have very recently confirmed that contrast enhancement takes

place at the LGN and is much alike the common techniques used

in image processing. Our model has a term where a power law is

applied to the contrast, and we can optimize the exponent of this

power law so as to maximize the whitening of the spectrum; for

the limited tests that we have performed so far, our results appear

to be in agreement with what is reported by Mante et al. (2008)

and Kay et al. (2013), so we also want to investigate possible con-

nections with those works. And as immediate future work, we will

extend our formulation to the color case in order to predict color

induction as well.

Last but not least, we believe we can use our proposed

model to go back to some image processing and computer

vision applications, which could benefit from the insights gained

in the visual neuroscience domain. In particular, we are cur-

rently working in extending this new model for problems such

as tone mapping, gamut mapping and computational color

constancy.
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APPENDIX

In this section we give the implementation details for the results

reported in the paper.

For the examples in Figure 6 we computed explicitly the steady

state solution of Equation 6, with α = β = γ = 1, the second

term of the equation with a weight γ (1 + 5σ c), and a compres-

sion constant of c = 1/3 (Figure 6, left) or c = 0.75 (Figure 6,

right).

For the example in Figure 7 we have adapted the fast numeri-

cal implementation of Bertalmío et al. (2007), with a polynomial

approximation of degree 7 for the sign function, time step 
t =

0.15 and the stopping condition being fulfilled when the differ-

ence between the images of the current and the previous iteration

falls below 0.1%. The original image is of size 100 × 200 and the

parameter values were: α = β = γ = 1, c = 1/3, stencil size for

the computation of the standard deviation σ (x) : 21 × 21, effec-

tive radius of the locality kernel w(x, y) : 75, and of the neighbor-

hood over which we compute the mean average µ(x) : 19.

For the examples in Figures 9, 10 we have also used the

same fast numerical implementation of Bertalmío et al. (2007),

where now the stopping condition is fulfilled when the differ-

ence between the images of the current and the previous iteration

falls below 0.5%. The parameter values were: α = β = γ = 1,

c = 1/3, stencil size for the computation of the standard deviation

σ (x) : 3 × 3, effective radius of the locality kernel w(x, y), effec-

tive radius of the neighborhood over which we compute the mean

average µ(x): 1/3 of the numbers of rows or columns, whichever

is larger.
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