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From ImageNet to Mining: Adapting Visual

Object Detection with Minimal Supervision

Alex Bewley and Ben Upcroft

Abstract This paper presents visual detection and classification of light vehicles

and personnel on a mine site. We capitalise on the rapid advances of ConvNet based

object recognition but highlight that a naive black box approach results in a signif-

icant number of false positives. In particular, the lack of domain specific training

data and the unique landscape in a mine site causes a high rate of errors. We exploit

the abundance of background-only images to train a k-means classifier to comple-

ment the ConvNet. Furthermore, localisation of objects of interest and a reduction

in computation is enabled through region proposals. Our system is tested on over

10km of real mine site data and we were able to detect both light vehicles and per-

sonnel. We show that the introduction of our background model can reduce the false

positive rate by an order of magnitude.

1 Introduction

While the mining industry pushes for greater autonomy, there still remains a need for

human presence on many existing mine sites. This places significant importance on

the safe interaction between human occupied and remotely operated or autonomous

vehicles. In this work, we investigate a vision based technique for detecting other

vehicles and personnel in the workspace of heavy vehicles such as haul trucks.

Traditionally, methods for detecting light vehicles and personnel from heavy

mining equipment have relied on radio transponder based technologies. Despite

Alex Bewley

School of Electrical Engineering and Computer Science, Queensland University of Technology,

Brisbane, Australia, e-mail: aj.bewley@qut.edu.au

Ben Upcroft

ARC Centre of Excellence for Robotic Vision, School of Electrical Engineering and Computer

Science, Queensland University of Technology, Brisbane, Australia. http://www.roboticvision.org/,

e-mail: ben.upcroft@qut.edu.au

1



2 Alex Bewley and Ben Upcroft

transponder based sensors being mature and reliable for ideal conditions, in practise

their reliability is circumvented by practical issues around their two way active na-

ture, portable power requirements, limited spatial resolution and human error. Using

computer vision offers a unique alternative that is passive and readily available on

existing remotely operated vehicles.

Vision based object recognition has made tremendous progress as measured by

standard benchmarks [4, 16]. The major advancements in this area can be attributed

to both the availability of huge annotated datasets [7, 26, 4, 16] and developments in

data driven models such as deep convolutional networks (ConvNets) [13, 24]. In this

work we utilise the ConvNet of [13] which has shown astonishing performance on

the ImageNet recognition benchmark [4] and extend it to data collected from mine

sites with minimal training.

Using ConvNets in different domains requires a large training set relevant to the

target task [29]. When the amount of training data is small, data driven approaches

tend to over-fit the training samples and not generalise to unseen images. In this

work we utilise a pre-trained ConvNet using millions of images from ImageNet and

address how to map the original ImageNet classes to mining classes with minimal

training effort.

Another consideration regarding this application is that cameras are rigidly cou-

pled to the vehicles orientation and configured with a fixed focal length. This distin-

guishes it from the ImageNet recognition problem where typical images collected

were implicitly pointed at regions of interest and appropriately zoomed. Addition-

ally, due to the wide field of view the majority of the images are background with

zero to potentially multiple objects of interest visible in any given frame. To locate

the objects, we follow a similar strategy to [10] and apply an initial step for finding

likely object locations through a region proposal process before performing object

recognition with the ConvNet.

Given that the majority of the images collected in a mine site dataset have zero

objects of interest in them, we can provide a standard classifier with a huge amount

of labelled background data. Using this newly trained classifier in conjunction with

the ConvNet ensures robustness and drastically reduces spurious detections. This

classifier is based on k-means clustering offering a convenient way to partition the

background data into different categories. This approach accurately captures the

characteristics of the background, enabling the discovery of novel non-background

objects.

The contributions of this paper are:

• adapting ConvNets to new scenes in a mining context,

• complementing the powerful classification provided by ConvNets with a simple

classifier trained on background mine data for increased robustness,

• a novelty detector using ConvNet feature clustering.

This paper is organised with a short review of related literature before describing

the proposed method in greater detail. We then analyse the performance of the pro-

posed method on a challenging set of mining videos and conclude with a discussion

of the learnt outcomes and avenues for future improvement.
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2 Related Work

Here we briefly review object detection methods that are not reliant on two way

communication before covering some related work using ConvNets for generic ob-

ject detection. Early work has focused on range based techniques such as LiDAR

[22, 17] commonly used for mapping fixed obstacles such as buildings or under-

ground tunnel walls. Applying these sensors to detecting personnel and vehicles

fitted with retro-reflectors, is found to be sensitive to the dynamics of the sensor

platform [20]. In this work we focus specifically on detecting potentially dynamic

obstacles including vehicles and particularly people from vision based data. To this

end, the more relevant prior work is that of [18] which exploits the standardised re-

quirement for personnel on mine sites to wear high-visibility clothing equipped with

retro-reflector strips. This enables a single IR camera with active flash to highlight

personnel in view which can then be used for tracking [19].

Recent popularity of big data and deep learning have dominated the object recog-

nition problem. Among these data driven approaches, deep convolutional neural net-

works (ConvNets) with recognition performance quickly approaching human levels

[13, 5, 21, 23] are selected for use in this work. ConvNets themselves have been

used for over 20 years [14] for tasks such as character recognition. Over recent

years ConvNets have made an astonishing impact on the computer vision commu-

nity [13, 6, 21, 10, 5] thanks to the availability of huge labelled image sets such as

ImageNet [3].

Recognising what objects are in an image is only half of the object detection

problem. The other half is locating the objects within the image. Sermanet et al.

[23] sample over multiple scales and exploit the inherently spatially dense nature

of the convolutions within ConvNets to identify regions with high responses. Simi-

larly, [6] also perform convolutions over multiple scales and combine the responses

over superpixel segmentation [9]. Another popular approach and the one that we

base this work off is the region convolutional neural network (RCNN) of [10]. The

RCNN framework efficiently combines the ConvNet of [13] with an object proposal

method: selective search [27]. Generic object proposal methods aim to efficiently

scan the entire image at different scales and aspect ratios to reduce potentially mil-

lions of search windows down to hundreds [11] of the most likely candidates. In

this work we use edge box object proposals [30] as the accuracy is higher while also

running at an order of magnitude faster [11].

3 Methodology

In this section we outline our detection pipeline and how it differs from [10]. Our

method consists of three key phases: 1) Region proposals with non-maximum sup-

pression (NMS), 2) ConvNet recognition and finally, 3) Detections are validated

by checking for novelty against the background model. See Fig. 1 for a high-level

overview of this pipeline. We bypass the problem of over-fitting on a small dataset
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Fig. 1 An illustration of the detection pipeline used in this work. The system parameters are high-

lighted in blue and green which are learnt offline from an off-the-shelf network and background

only images respectively. Note the red output layer of the ConvNet outputs are ImageNet classes

(200 different). Any car or person is suppressed if it also matches the background model to min-

imise the number of false positives.

by using a pre-training ConvNet and map its output to mining relevant classes. This

method is then extended with our proposed background modelling technique to sig-

nificantly reduce the number of false positives generated by the system.

3.1 Region Proposals

The aim of region proposals is to efficiently scan the image to eliminate millions

of potential windows, keeping only the regions that are likely to contain an ob-

ject of interest. We use the EdgeBoxes region proposal method [30] over the

selective search [27] used in the original RCNN work as this method is

orders of magnitude faster with comparable accuracy. For a detailed comparison of

region proposal methods we refer the reader to [11].

The default parameters for EdgeBoxes were adjusted to return a fixed 1000

proposals. These region proposals are then further reduced to approximately 100

regions through a process of non-maximum suppression (NMS). The NMS pro-

cess considers the score produced by the EdgeBoxes method and the overlap with

other bounding boxes. As the name suggests it then greedily suppresses all but the
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maximum scoring proposal for all adjacent regions overlapping by 30% or more. In

contrast to applying NMS after the ConvNet [10], this way we can speed up the de-

tection pipeline by reducing the number of proposals going into the ConvNet while

maintaining comparable coverage over the image.

3.2 Region Classification

Having selected regions of the image that have the general characteristics of an ob-

ject, we now perform object recognition to distinguish the object category. For this

we apply the ConvNet from RCNN [10] which is based on the winning architecture

[13] for the ImageNet Large Scale Recognition challenge in 2012. For this work,

we used the RCNN implementation provided with the Convolutional Architecture

for Fast Feature Embedded (caffe) [12] framework out-of-the-box.

The original detection task for RCNN was to predict one of 200 classes that

represent common objects found in images taken from the internet. For this appli-

cation we are only interested in distinguishing between three high level categories,

namely: background, person and light vehicles(LV). Using this model

in a mining context raises several issues that need addressing:

1. Most of the 200 classes are irrelevant, e.g. jellyfish, miniskirt, unicycle etc.

2. How to associate mining classes with ImageNet classes?

3. Semantically the background is significantly different from many of the ex-

isting object specific classes.

To gain some insight, we use a small validation set of 200 images to investigate

the output of the ConvNet out-of-the-box. This set is made up of cropped mine-

site images containing the classes person and LV along with 90 interesting re-

gion proposals extracted from background only images. We also included a few

heavy vehicles (HV) images in this set but keep them as a separate class to

identify any correlations. In Fig. 2 we show the results of naively applying the pre-

trained RCNN model to this image set. To better visualise the output we applied

a soft-max transform to approximate the output class prediction as a probabilistic

estimate. 1

Not surprisingly, the person and LV classes are well represented and can be

directly mapped from the person and car ImageNet classes used to train the

original ConvNet. On the other hand, the background closely resembles uniform

random sampling of classes as there are no relevant classes in the existing model

such as trees, buildings, or road signs etc. Similarly, the HV class prediction also

mostly resembles a uniformly random distribution with a slight bias towards the

ImageNet classes snowplow, cart and bus. As for this application, we are only

1 It is important to note that this is for visualisation purposes only and that the y-axis does not rep-

resent the true probability since the final SVM layer of RCNN was not calibrated for probabilistic

outputs.
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Fig. 2 The average class estimate for a set of mining related images. Notice that person (class

123) and light vehicle/car (class 36) are existing classes for the pre-trained network and can be

used directly. The background and the heavy vehicle classes are novel and show a wider spread as

they are not modelled with the pre-train ConvNet.

concerned with distinguishing person and LV from the background, we simply

assign all 198 non person or car outputs as background.

With this simple class mapping approach and assuming that falsely picking one

of the positive classes is in fact uniformly random, we expect to eliminate 99% of all

the proposed background regions. However, when processing around 100 proposals

per frame, the expected false positive rate is once per frame. Next we propose a

simple background model that reuses the ConvNet computation to provide a back-

ground likelihood estimate for reducing this false positive rate.

3.3 Background Modelling

While on a mine-site the landscape is constantly changing from a geometric per-

spective, the bleak visual appearance of the background is generally constant. For

this, we model the background regions as belonging to one of an arbitrary set of

categories, such as the semantic categories of rock, sky, tree etc. If a sample dif-

fers significantly from any of these background classes then we can assume it is an

object of interest.

Rather than using supervised techniques that require a set of manually annotated

images, we instead partition the background data without explicit semantic labels.
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Fig. 3 An illustration showing six of the most common types of background region proposals. The

rows represent different clusters while the columns show a random background region which is a

member of the associated cluster. Each cluster gathers samples with similar visual appearance such

as centred on a tree (top row) or centred on sky with an adjacent vertical structure (second row).

To do this, we exploit the assumption that intra-category samples generally appear

visually similar to each other, yet may be distinctively different to other background

categories. Put another way, the background regions form natural clusters enabling

us to employ unsupervised techniques to model their visual appearance. See Fig. 3

for an illustration of the natural background clusters found by applying this method

to a mining dataset.

To describe the visual appearance of each region, the intermediate layers of the

ConvNet provide a free and compact representation suitable for this task. Addition-
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ally, these features have been shown to be robust against lighting and viewpoint

changes without any re-training [25]. We refer the interested reader to [13] for an

illustration of the ConvNet’s inner workings. In general, the first layer of a ConvNet

extracts simple colour and texture features in the first layer, and through subsequent

layers, these features eventually transition to the learnt specific task [29] such as

classifying the 200 ImageNet classes. Along the way irrelevant visual information

for the original task (e.g. features describing sky) are lost once it reaches the final

layer. With this intuition we reuse the transformed data from one of the ConvNet’s

intermediate layers as an input to our background model.

To learn this cluster based model, a reservoir of negative samples is required.

Gathering background data is a relatively simple task since only inspection for the

presence of target objects is necessary. Specifically any image sequence not con-

taining any of the target objects can be used to build an extremely large reservoir

by extracting proposals from each frame. Furthermore, we only focus on difficult

regions by perform hard-negative-mining [8] of background samples by running

the ConvNet detection pipeline over these sequences. By lowering the confidence

threshold, near false positive background regions can also be added to build a suffi-

ciently large reservoir.

After extracting an intermediate layer of the ConvNet for each background patch,

we then cluster these samples using k-means clustering. At test time, each person

or LV predicted patch is verified by measuring the Euclidean distance between its

intermediate feature and each cluster centre. If the nearest background cluster is

close in this feature space, i.e. is visually similar, then we suppress the detection

and regard it as background.

In building this background model the following choices are to be made: Which

layer from the ConvNet? How many clusters? At what distance should a sample be

considered background? In the following section we address these design choices

through experimental validation.

4 Experiments

4.1 Mining Dataset

The dataset we use for evaluating this work was collected from a light vehicle

mounted camera operating in an active mine-site, see Fig. 4. While the motivation

is to put vision based sensing on a heavy vehicle, a light vehicle is more practical

for gathering a diverse set of visual sequences. The dataset contains both static and

dynamic instances of a person, LV or HV.

Continuous video was gathered with and without the camera in motion and on

various haul roads and a few light vehicle only zones to capture variation in the

environment. This video data was captured at 10 fps and partitioned into various

sequences. In this work we use 5 sequences where no people or vehicles are visible
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Fig. 4 The experimental dataset gathering vehicle with cameras mounted to the bullbar. Note: all

images used in this paper were captured from the camera on the left hand side of the vehicle.

to build our background model. Collectively these background sequences make up

8952 frames in total (approximately 14km).

To evaluate the performance we use another 5 sequences with several instances

of person, LV or HV, that we personally annotated using the tool developed by

Vondrick et al [28]. These annotated sequences contain 9405 frames in total (ap-

proximately 10km). In addition to these sequences we made a small validation set

of 200 using other images collected on a mine site from various sources including a

few captured at night. This set was used to generate Fig. 2.

4.2 Background Model Validation

Here we describe the experiments performed to design our background modelling

system explained in the previous section. From the 5 background sequences, we

applied the region proposal and ConvNet detection framework to find challenging

region proposals from every tenth frame. While some of the false objects may be

observed in multiple frames, the time difference is sufficient to capture a variety

of view points for these distracting objects. We lowered the detection threshold to

collect region proposals if the ConvNet predicted either a person or car in the

top 5 out of 200 class responses. With this configuration we collect around 8000
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hard negatives for our background reservoir. We held out 90 of the most interesting

background regions and added them to the validation set.

To address the design decisions for this model, we perform an empirical study

using the reservoir containing only negatives and the validation set with both nega-

tive and positives. We jointly test different combinations of ConvNet layer features

and number of clusters by evaluating their performance on the validation set. For the

distance threshold we set this to the distance corresponding to a 95% recall on the

positive set. With the recall fixed, the overall performance of the background model

is measured by the precision at which it can identify a true negative.

Fig. 5 shows the relative performance of sweeping the number of clusters for

different ConvNet layers. While fc6 layer with 2048 clusters achieved the highest

precision of 90% we instead opted to use only 128 clusters with a precision of 89%

which is significantly faster to compute. A detailed view of the distances between

the validation samples and the cluster centres can be seen in Fig. 6.
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Implementation Detail

The first 5 ConvNet layers produce dense tensor representations which gradu-

ally reduce in size. Then there are two fully connected layers fc6 and

fc7 before the final prediction layer. Again we refer the interested reader to

[13] for details of the ConvNet structure. Due to the density of data and the

computational complexity of computing distances in such high dimensional

feature spaces we only evaluate the ConvNet layers 3-7 and compress convo-

lutional layers 3-5 by pooling all filter responses across the feature map for

each tensor in [15] this is referred to global average pooling. In Fig. 5 these

are marked as pool{3-5}_gap.
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Fig. 7 Validation samples where the background model failed. Images are shown in their warped

form, representing the ConvNet input. The four right false negatives were collected at night.

The false negatives and some of the false positives are also shown in Fig. 7. The

false negatives are mostly night images which can be put down to the fact that sim-

ilar images are rare if not non-existent in the ImageNet samples used to train the

ConvNet. For the false positives, these are mostly signs which make up a minor-

ity of the scene. From these samples we can describe our background model as a

form of novelty detection where interesting parts of the scene such as signs are dis-

tinguished from the general background. This finding along with the unsupervised

clustering shown in Fig. 3 are a testament to the ConvNet’s expressive capabilities

in representing visual similarity.

4.3 Detection Evaluation

We now evaluate the system on the set of 5 sequences with person or LV where

the task is to locate objects of interest. In this evaluation we consider a true de-

tection if at least 50% of the detection region is covered by a single ground truth

object. This differs from the intersection-over-union (IOU) definition of overlap, as

we accept detecting a person’s head and shoulders without their whole body while

IOU would count this as both a miss detection and a false positive. It should be also

noted that any detection or miss detection of a person or LV labelled as partially

occluded in the ground truth is ignored in this evaluation. While the system is not

designed to detect HV we consider any detections which overlap with HV objects as

neither true or false and are excluded from the evaluation. Additionally, if multiple

detections overlap a single ground truth instance, we count this as a single true pos-

itive and neither of the overlapping detections are false. An example would be if a

person’s head is covered by a single detection and their body another.
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Table 1 shows the performance of the system before and after applying back-

ground suppression. From these results we can see that while there is a slight drop

in recall our method for suppressing background regions reduces the false positive

rate by an order of magnitude.

Table 1 System Comparison before and after Background Suppression (BGS) on Mining Se-

quences

Sequence F1 Scorea(Precision, Recall) Mostly Hitb Mostly Missedb False Positives

(frames) baseline with BGS3 - BGS - BGS - BGS

1 (1462) 0.38

(0.57,0.29)

0.40

(0.77,0.27)

2 2 16 16 242 87

2 (2950) 0.94

(0.96,0.91)

0.93

(0.97,0.89)

3 3 6 6 73 47

3 (599) 0.02

(0.01,0.09)

0.06

(1.00,0.03)

0 0 2 2 349 0

4 (2826) 0.64

(0.56,0.74)

0.80

(0.95,0.69)

2 1 4 5 186 9

5 (1568) 0.68

(0.78,0.61)

0.43

(0.92,0.28)

4 1 3 6 177 24

Total 11 7 31 35 1027 167

a F1, Precision and Recall is computed treating each frame as independent.
b Mostly indicates where a single object instance was detected or missed 50% of the time.
c The proposed background suppression (BGS) is applied to the baseline EdgeBox and ConvNet

detector.

5 Conclusions and Future Work

In this paper we presented a vision only system that takes advantage of recent devel-

opments in computer vision and machine learning to detect both personnel and light

vehicles. We circumvented the problem of ConvNet over-fitting on small datasets

by reusing a pretrained model directly and mapping its output to mining classes. We

further presented a method for exploiting the abundance of background only im-

ages to learn a background cluster model leading to a significant reduction in false

positives. This sensing approach was evaluated in an active open-pit mine site en-

vironment. The experiments show that the in-pit environment is suitable for object

proposals along with background modelling techniques such as the one presented

here.

While this work is only concerned with single camera based sensor data we see

many opportunities to combine techniques incorporating stereo [2] or range-based

sensors [20] for improved robustness. As an initial investigation of vision as a possi-

ble sensor on a mine we see many opportunities to further improve on the results. As
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more labelled mining image data becomes available we expect to be able to design

and fine-tune a ConvNet that performs better in this domain than the existing net-

work. We also plan to extend this work to fuse information from multiple frames by

combining the ConvNet appearance model with recent motion segmentation tech-

niques [1].
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