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Abstract. The concept of the Ricci soliton was introduced by R. S.Hamilton. The Ricci
soliton is defined by a vector field and it is a natural generalization of the Einstein metric.
We have shown earlier that the vector field of the Ricci soliton is an infinitesimal harmonic
transformation. In our paper, we survey Ricci solitons geometry as an application of the
theory of infinitesimal harmonic transformations.
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1. Harmonic diffeomorphisms and infinitesimal harmonic

transformations

A smooth mapping f : (M, g) → (M ′, g′) between two Riemannian manifolds

is called harmonic (see [4]) if f provides an extremum of the Dirichlet functional

EΩ(f) = 1
2

∫
Ω

‖df‖2 dV with respect to the variations of f that are compactly sup-

ported in a relatively compact open subset Ω ⊂ M . (Here, dV is the volume element

of the metric g.) The following theorem is true (see [4]).

Theorem 1.1. A smooth mapping f : (M, g) → (M ′, g′) is harmonic if and only

if it satisfies the Euler-Lagrange equations

(1.1) gij(∂i∂jf
β − Γk

ij∂kfβ + ∂if
β∂jf

γ(Γ′α

βγ ◦ f)) = 0

The paper was supported by grant P201/11/0356 of The Czech Science Foundation and
by the Council of the Czech Government MSM 6198959214.
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where yα = fα(x1, . . . , xn) is the local representation of f ; gij are local contravariant

components of the metric tensor g; Γk
ij and Γ′α

βγ are the Christoffel symbols of (M, g)

and (M ′, g′), respectively; i, j, k = 1, . . . , n = dimM and α, β, γ = 1, . . . , n′ =

dimM ′.

If we suppose that dim M = dimM ′ = n and f : (M, g) → (M ′, g′) is a diffeomor-

phism then f is locally represented by the equations yi = xi for i, j, k, . . . = 1, 2, . . ., n

and therefore the Euler-Lagrange equations (1.1) take the form

(1.2) gij((Γ′k
ij ◦ f) − Γk

ij) = 0

where Γk
ij and Γ′k

ij are the Christoffel symbols of the Levi-Civita connection ∇ on

(M, g) and ∇′ on (M ′, g′), respectively.

Suppose that we have a local one-parameter group of infinitesimal point transfor-

mations ft(x) = x′(xk + tξk) generated by a vector field ξ = ξk∂k on (M, g) for the

so-called canonical parameter t such that t ∈ (−ε, +ε) ⊂ R for ε > 0. In this case

the Lie derivative of the Christoffel symbols Γk
ij of the Levi-Civita connection ∇ has

the form (see [22], pp. 8–9)

(1.3) (LξΓ
k
ij)t = Γ′k

ij − Γk
ij = ∇i∇jξ

k − Rk
ijlξ

l

where Γ′k
ij(x) = f∗

t (Γk
ij(x

′)).

Definition 1.1 (see [15]; [20]). A vector field ξ on (M, g) is called an infinitesi-

mal harmonic transformation if the one-parameter group of local transformations of

(M, g) generated by ξ consists of local harmonic diffeomorphisms.

By the definition and (1.3) we deduce the equation

(1.4) ∆θ = 2 Ric∗ ξ

where ξ is an infinitesimal harmonic transformation and θ = g(ξ, ·) is its dual 1-form;

∆ := dd∗ + d∗d is the Hodge Laplacian on the space 1-forms Ω1(M); Ric∗ is the

linear Ricci operator defined by the identity g(Ric∗ X, ·) = Ric(X, ·) for the tensor

Ricci Ric and an arbitrary vector field X on M .

Theorem 1.2 (see [15], [20]). The equality ∆θ = 2 Ric∗ ξ is a necessary and

sufficient condition for a vector field ξ to be an infinitesimal harmonic transformation

on a Riemannian manifold (M, g).
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2. Examples of infinitesimal harmonic transformations

In this section we will give four examples of infinitesimal harmonic transformations

on Riemannian, nearly Kählerian and Kählerian manifolds.

E x am p l e 2.1. An infinitesimal isometric transformation on a Riemannian mani-

fold is an infinitesimal harmonic transformation.

A vector field ξ on an n-dimensional Riemannian manifold (M, g) is an infinites-

imal isometric transformation if Lξg = 0 where Lξ is the Lie derivative in the

direction of ξ. By direct computation, we can deduce the equalities ∆θ = 2 Ric∗ ξ

and d∗θ = 0 for θ = g(ξ, ·). Moreover, these equalities are a necessary and suffi-

cient condition for a vector field ξ to be an infinitesimal isometric transformation

on a compact Riemannian manifold (M, g) (see [22], p. 221). By Theorem 1.2, an

arbitrary infinitesimal isometric transformation on a compact Riemannian manifold

must be an infinitesimal harmonic transformation.

E x am p l e 2.2. An infinitesimal conformal transformation on a two-dimensional

Riemannian manifold is a harmonic transformation.

Recall that a vector field ξ is an infinitesimal conformal transformation if Lξg =

−2n−1(d∗θ)g for θ = g(ξ, ·). By direct computation, we can deduce the equality

∆θ + (1 − 2/n)dd∗θ = 2 Ric∗ ξ. Moreover, by virtue of the Lichnerowicz theorem

(see [14]) this equality is a necessary and sufficient condition for a vector field ξ

to be an infinitesimal conformal transformation on a compact Riemannian manifold

(M, g). In particular, for n = 2 we have the equality ∆θ = 2 Ric∗ ξ. Therefore,

any infinitesimal harmonic transformation on a two-dimension compact Riemannian

manifold is an infinitesimal conformal transformation.

E x am p l e 2.3 (see [20]). A holomorphic vector field on a nearly Kählerian mani-

fold is an infinitesimal harmonic transformation.

Let a triplet (M, g, J) be a nearly Kählerian manifold (see [7]) where J ∈ T ∗M ⊗

TM is such that J2 = − idM , g(J, J) = g and (∇XJ)Y + (∇Y J)X = 0 for any

X, Y ∈ TM and let ξ be a holomorphic vector field on (M, g, J), i.e. LξJ = 0. In this

case, as we have proved in [20], the equality ∆θ = 2 Ric∗ ξ holds.

R em a r k 2.1. On a compact Kählerian manifold (M, g, J), where it is well known

that ∇J = 0, a vector field ξ is holomorphic if and only if ∆θ = 2 Ric∗ ξ (see [22],

p. 280). Therefore, in particular, a vector field ξ on a compact Kählerian manifold

is an infinitesimal harmonic transformation if and only if ξ is holomorphic.

E x am p l e 2.4 (see [21]). A vector field ξ that makes a Riemannian metric g into

a Ricci soliton metric is necessarily an infinitesimal harmonic transformation.
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Definition 2.1 (see [2], pp. 22–23). Let M be a smooth manifold. A Ricci

soliton (g, ξ, λ) is a Riemannian metric g together with a vector field ξ on M and a

constant λ that satisfies the equation −2 Ric = Lξg + 2λg.

The Lie derivative of ∇ has the form (see [22], p. 52)

(2.1) LξΓ
k
ij =

1

2
gkl(∇iLξgjl + ∇jLξgil −∇lLξgij).

Substituting the identity Lξg = −2(Ric +λg) in (2.1) we find LξΓ
k
ij = gkl(−∇iRjl −

∇jRil + ∇lRij) for the local components Rij of the Ricci tensor Ric. From the

last equation we have gij(LξΓ
k
ij) = gkl(−2∇jR

j
l + ∇ls) = 0 for the scalar curvature

s = gijRij . Here we have taken advantage of Schur’s lemma 2∇jR
j
l = ∇ls.

R em a r k 2.2. If θ = dF for a smooth function F : M → R then the equation of

an infinitesimal harmonic transformation∆θ = 2 Ric∗ ξ can be written as ∆(∇kF ) =

2Rj
k∇jF where ∆(∇kF ) = ∇k(∆F ). On the other hand, if we put ξ = gradF then

from the equation of a Ricci soliton we conclude ∆F = s+nλ and hence the equation

∇k(∆F ) = 2Rj
k∇jF is equivalent to ∇ks = 2Rj

k∇jF . The last equation was proved

by Hamilton for a gradient Ricci soliton (see [9]).

3. The Yano Laplacian

Let (M, g) be a compact Riemannian manifold. We may also assume that (M, g)

is orientable; if (M, g) is not orientable, we have only to take an orientable twofold

covering space of (M, g). Denote by SpM the bundle of symmetric bilinear forms

on (M, g), by δ∗ the symmetric differentiation operator δ∗ : C∞SpM → C∞Sp+1M

and by δ the linear differential operator δ : C∞Sp+1M → C∞SpM as the adjoint

operator to δ∗ with respect to the global scalar product on SpM

〈ϕ, ϕ′〉 =

∫
M

1

p!
g(ϕ, ϕ′) dV,

which we get by integrating the pointwise inner product g(ϕ, ϕ′) for all ϕ, ϕ′ ∈

C∞SpM .

Definition 3.1 (see [18]; [19]). A differential operator � : C∞SpM → C∞SpM

is called the Yano differential operator if � = δδ∗ − δ∗δ.

The Yano operator � and the Bochner Laplacian ∇∗∇ are connected by the

Weitzenbock formula � = ∇∗∇ + ℜp for the symmetric endomorphism ℜp of the

bundle SpM such that ℜp can be algebraically (even linearly) expressed through the

curvature and the Ricci tensors of (M, g) (see [18]; [19]). In particular, for p = 1 we

have ℜ1 = −Ric∗ and hence � = ∆ − 2 Ric∗ (see [19]).
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R em a r k 3.1. This form of the operator � was used by K.Yano (see [23], p. 40)

for the investigation of local isometric transformations of (M, g). Therefore we have

named � the Yano operator. Moreover, Yano has named a vector field ξ geodesic if

� ξ = 0 (see [24]).

In view of what we have told above we can formulate the following theorem.

Theorem 3.1 (see [20]). A necessary and sufficient condition for a vector field ξ

on a Riemannian manifold (M, g) to be an infinitesimal harmonic transformation is

that ξ ∈ Ker� for the Yano operator �.

From the equality 〈�ϕ, ϕ′〉 = 〈ϕ, � ϕ′〉 we conclude that � is a self-adjoint differ-

ential operator (see [18]). In addition, the symbol σ of the Yano operator � satisfies

(see [18]) the condition σ(�)(ϑ, x)ϕx = −g(ϑ, ϑ)ϕx for an arbitrary x ∈ M and

ϑ ∈ T ∗

xM −{0}. Hence the Yano operator � is a self-adjoint Laplacian operator and

its kernel is a finite-dimensional vector space on the compact (M, g). In addition,

we recall that the vector spaces Ker� and Im � are orthogonal complements of each

other with respect to the global scalar product defined on the compact (M, g), i.e.

the vector space Ωp(M) of smooth section of SpM has an orthogonal decomposition

Ωp(M) = Ker�⊕ Im �. In particular, for p = 1 we can formulate the following

Theorem 3.2. The vector space Ker� of all infinitesimal harmonic transfor-

mations on the compact Riemannian manifold (M, g) is a finite-dimensional vector

space and the orthogonal decomposition Ω1(M) = Ker�⊕ Im� holds.

For any conformal Killing vector field ζ and its dual 1-form ω on the compact

smooth manifold (M, g) we have 〈∆ω + (1− 2n−1)dd∗ω − 2 Ric∗ ζ, ω〉 > 0 (see [10]).

From this inequality we conclude that 〈δ∗ω, δ∗ω〉 > 2n−1〈δω, δω〉 > 0 and hence

〈� ω, ω〉 > 0 for n > 2.

4. Two decomposition theorems

In this section we will consider the vector space Ker� of all infinitesimal harmonic

transformations on a compact Riemannian manifold. The following theorem is true.

Theorem 4.1. If the vector field ξ is an infinitesimal harmonic transformation on

a compact Riemannian manifold (M, g) then ξ is decomposed in the form ξ = ξ′ +ξ′′

where ξ′ is an infinitesimal isometric transformation and ξ′′ is a gradient infinitesimal

harmonic transformation on (M, g). This decomposition is necessarily orthogonal

with respect to the global scalar product defined on (M, g).
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P r o o f. The vector space Ker�∩Ker d∗ of all infinitesimal isometric trans-

formations on a compact Riemannian manifold (M, g) is a subspace of the finite-

dimensional Euclidean vector space Ker� (see Exp. 2.1). On the other hand, it is

well known (see [17], p. 205) that by virtue of the Fredholm alternative the vec-

tor spaces Im d and Ker d∗ are orthogonal complements of each other with re-

spect to the global scalar product on the compact Riemannian manifold (M, g),

i.e. Ω1(M) = Ker d∗ ⊕ Im d. Therefore the vector space Ker�∩Ker d of all in-

finitesimal gradient harmonic transformations must be an orthogonal complement of

Ker�∩Ker d∗ with respect to the whole space Ker�. This vector subspace consists

of all gradient vector fields ∇F such that ∇i(∆F ) = 2Rj
i∇jF for smooth scalar

functions F : M → R. �

R em a r k 4.1. The last result has been known (see [24]) in the case of a compact

Einstein n-dimensional (n > 2) manifold (M, g) with constant scalar curvature s.

In view of Example 2.2 we can formulate the following corollary.

Corollary 4.1. On a compact Riemannian manifold (M, g) of dimension 2 an

arbitrary infinitesimal conformal transformation ξ has the form ξ = ξ′+gradF where

ξ′ is an infinitesimal isometric transformation and F is a smooth scalar function on

(M, g) such that the vector field gradF is an infinitesimal harmonic and a conformal

transformation simultaneously. Moreover, if Lgrad F s = 0 then the manifold (M, g)

is isometric to the sphere S2 in the Euclidean space R3.

P r o o f. By virtue of Example 2.3 an arbitrary infinitesimal conformal trans-

formation ξ is an infinitesimal harmonic transformation on a two-dimensional com-

pact Riemannian manifold (M, g) and therefore the following decomposition is true:

ξ = ξ′+gradF where ξ′ is an infinitesimal isometric transformation and F is a smooth

scalar function on (M, g) such that the vector field ξ′′ = gradF with local coordinates

gik∇kF is an infinitesimal harmonic transformation. Then by direct computation,

we obtain Lξg = Lξ′g + Lgrad F g = Lgrad F g = 2∇∇F and div ξ = −∆F . As a result

we obtain the equality Lgrad F g = 2∇∇F = −(∆F )g from which we can conclude

that the vector field ξ′′ = gradF is an infinitesimal conformal transformation as well.

It as well known, if a compact Riemannian manifold (M, g) of dimension n > 2

admits a nonconstant scalar function F such that ∇∇F = n−1(−∆F )g then (M , g)

is conformal to the sphere Sn in the Euclidean space Rn + 1 (see [12]). Therefore if

we suppose that Lgrad F s = 0 then our (M, g) must be isometric to the sphere S2. �

R em a r k 4.2. The vector space of infinitesimal conformal transformations on

(S2, g) has dimension equal to 6 and admits decomposition into the sum of two sub-

spaces (see [5]). Three of the dimensions arise from ∇F where F is a spherical
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harmonic. The other three dimensions come from the infinitesimal isometric trans-

formations for the standard metric g on S
2. Therefore our decomposition of the

vector space of infinitesimal conformal transformations on a compact Riemannian

manifold is an analog of the above decomposition on the sphere S2.

Now we shall formulate the decomposition theorem for an arbitrary infinitesimal

harmonic transformation on a compact Kählerian manifold.

Theorem 4.2. If ξ is a holomorphic vector field on a compact Kählerian manifold

(M, g, J) then ξ is decomposed in the form ξ = ξ′ + Jξ′′ where both ξ′ and ξ′′ are

infinitesimal isometric transformations. This decomposition is necessarily orthogonal

with respect to the global scalar product defined on (M, g, J).

P r o o f. On a compact Kählerian manifold (M, g, J), where it is well known that

∇J = 0, a vector field ξ on a compact Kählerian manifold is an infinitesimal harmonic

transformation if and only if ξ is a holomorphic vector field (see Ex. 5). Therefore, by

virtue of Theorem 4.1 we have the orthogonal decomposition ξ = ξ′ + gradF where

ξ′ is an infinitesimal isometric transformation and grad F is a holomorphic vector

field for some smooth scalar function F on (M, g). On the other hand, it is well

known (see Theorem 6.8 of Chapter IV in [25]) that JX is an infinitesimal isometric

transformation if a holomorphic vector field X is closed. Therefore we can state that

ξ = ξ′ +gradF = ξ′ + Jξ′′ where ξ′′ is an infinitesimal isometric transformation. �

R em a r k 4.3. Lichnerowicz proved the following theorem (see [26]): A holomor-

phic vector field ξ on a compact Kählerian manifold (M, g, J) with constant scalar

curvature is decomposed in the form ξ = ξ′ + Jξ′′ where both ξ′ and ξ′′ are infinites-

imal isometric transformations. Theorem 4.2 is a generalization of this theorem.

5. Ricci solitons

Let (g, ξ, λ) be a Ricci soliton on a smooth n-dimensional manifoldM (see Ex. 2.3),

where g is a Riemannian metric and ξ is a smooth vector field on M such that the

identity

(5.1) −2 Ric = Lξg + 2λg

holds for some constant λ (see [2], p. 22; [3], p. 353). A Ricci soliton is called steady

if λ = 0, shrinking if λ < 0, and, finally, expanding if λ > 0.

In the case ξ = gradF for some smooth function F : M → R the equation can be

rewritten as

(5.2) −Ric = ∇∇F + λg
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and (g, ξ, λ) is called a gradient Ricci soliton (see [2], p. 22; [3], p. 353). Moreover,

(M, g) is called a trivial Ricci soliton if F = const and hence (M, g) is an Einstein

manifold.

By Example 2.3 a vector field ξ that makes a Riemannian metric g into a metric

of a Ricci soliton is necessarily an infinitesimal harmonic transformation. In addi-

tion, by the first decomposition theorem a harmonic transformation ξ on a compact

Riemannian manifold (M, g) has the form ξ = ξ′ + ξ′′ where ξ′ is an infinitesimal

isometric transformation and ξ′′ is a gradient infinitesimal harmonic transformation

on (M, g). By these propositions we can rewrite the identity (5.1) as

−2 Ric = Lξg + 2λg = Lξ′+ξ′′g + 2λg = 2∇∇F + 2λg

where ξ′′ = gradF for some smooth scalar function F . Now we can formulate the

following result:

Theorem 5.1. Every Ricci soliton on a compact smooth manifoldM is a gradient

Ricci soliton.

R em a r k 5.1. By means of Perelman’s work [16] and some previous ones by

others authors, see Hamilton [8] for dimension two and Ivey [11] for dimension 3 we

know that every compact Ricci soliton is a gradient Ricci soliton. And hence the

Perelman-Hamilton-Ivey proposition is a corollary of our theorem about infinitesimal

harmonic transformations on a compact smooth manifold.

For the vector field ξ of the Ricci soliton (g, ξ, λ), by using the equation (5.2) we

get ∫
M

Lξs dV = 〈ξ, ds〉 = 〈ξ, d(s + nλ)〉 = 〈ξ, dδξ〉 = 〈δξ, δξ〉 > 0

which is equivalent to
∫

M
Lξs dV =

∫
M

(∆F )2 dV > 0.

By means of this inequality we can formulate the following theorem:

Theorem 5.2. If a shrinking Ricci soliton (g, ξ, λ) on a compact smooth manifold

M satisfies the condition Lξs 6 0 then this soliton is trivial.

R em a r k 5.2. It is well known that a compact steady or expanding Ricci soliton

(g, ξ, λ) is a gradient soliton (see [16]) and, on the other hand, a compact gradient

steady or expanding Ricci soliton is a trivial soliton (see [9]). On the other hand,

every shrinking compact Ricci soliton when n > 3 and the Weyl tensor is zero is

trivial (see [6] and [27]). But there is an open problem (see [6], p. 11): Are the

special conditions in dimension n > 4 ensuring that a shrinking compact Ricci soliton

is trivial? Our Theorem 5.2 may be one of possible answers to this question.
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6. Infinitesimal harmonic transformations and Ricci solitons in

negative Ricci curvature

We define the function f = ‖ξ‖2 := 2−1g(ξ, ξ) for any smooth vector field ξ on M

and by direct calculation we find the equality

(6.1) ∆f :=

n∑
i=1

∇2f(Xi, Xi) = −g(� ξ, ξ) − Ric(ξ, ξ) + ‖∇ξ‖2

where X1, . . . , Xn is an orthonormal basis in TxM for any point x ∈ M .

Theorem 6.1. Suppose (M, g) is compact and has Ric 6 0. Then every infinites-

imal harmonic transformation is parallel. Furthermore, if Ric < 0, then there are no

nontrivial infinitesimal harmonic transformations.

P r o o f. If we define f = 2−1‖ξ‖2 for an infinitesimal harmonic transformation ξ,

then using Stokes’s theorem and the condition Ric 6 0 yields

0 =

∫
M

∆f dV =

∫
M

(−Ric(ξ, ξ) + ‖∇ξ‖2) dV >

∫
M

‖∇ξ‖2 dV > 0.

Thus ‖∇ξ‖ ≡ 0 holds and ξ must be parallel. In addition, Ric(ξ, ξ) 6 0 and∫
M

Ric(ξ, ξ) dV = 0, so Ric(ξ, ξ) ≡ 0. If Ric < 0 this implies that ξ ≡ 0.

R em a r k 6.1. Theorem 6.1 is a generalization of Bochner’s result about infinites-

imal isometric transformations (see [1]) and was formulated in [18].

Let ξ be a parallel vector field of the Ricci soliton (g, ξ, λ). This condition follows

from (5.1) and the Ricci identities that λξ = 0. Hence λ = 0 or λ 6= 0 and ξ ≡ 0. If,

in addition, assume that (g, ξ, λ) is a non trivial Ricci soliton then from the equation

λξ = 0 we can conclude that λ = 0 and as a corollary of this equation that Ric = 0.

Therefore Theorem 6.1 allows us to formulate the following corollary.

Corollary 6.1. A Riemannian metric g on a compact smooth manifold M cannot

be the metric of a Ricci soliton (g, ξ, λ) such that Ric(ξ, ξ) < 0. If Ric(ξ, ξ) 6 0 then

one of the following two conditions holds: either (g, ξ, λ) is a trivial Ricci soliton or

(g, ξ, λ) is a steady Ricci soliton with a Ricci flat metric g.

The result about the non existence of infinitesimal harmonic transformations can

be slightly improved to yield
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Theorem 6.2. Suppose (M, g) is a compact manifold with quasi-negative Ricci

curvature, i.e., Ric 6 0 and Ric(X, X) < 0 for all X ∈ TxM − {0} for some x ∈ M .

Then (M, g) admits no nontrivial infinitesimal harmonic transformations.

P r o o f. We already know that any infinitesimal harmonic transformation is

parallel. Thus an infinitesimal harmonic transformation is either always zero or

never zero. If the latter holds, then Ric(ξ, ξ) < 0, but this contradicts

0 = ∆f(x) = −Ric(ξ, ξ)(x) > 0.

�

In addition, we can formulate the following result as a corollary of Theorem 6.2.

Corollary 6.2. Suppose (M, g) is a compact manifold with quasi-negative Ricci

curvature, i.e. Ric 6 0 and Ric(X, X) < 0 for all X ∈ TxM − {0} for some x ∈ M .

Then (M, g) admits no nontrivial Ricci soliton (g, ξ, λ).

Let x ∈ M be a local maximum of the function f = 2−1‖ξ‖2 where ξ is an

infinitesimal harmonic trasformation. Then

∆f(x) = −Ric(ξ, ξ)(x) + ‖∇ξ‖2(x) 6 0.

If this point is non-zero for ξ and Ric < 0 everywhere on a neighborhood Ux of

x ∈ M then (see also the proof of Theorem 4.6 in [13]) there is a neighborhood Vx

of x ∈ M such that Vx ⊂ Ux and ξ = 0 everywhere on Vx. The following theorem is

true.

Theorem 6.3. Let (M, g) be a noncompact Riemannian manifold. If the function

f = 2−1‖ξ‖2 for an infinitesimal harmonic transformation ξ has a local maximum

point x ∈ M and Ric < 0 everywhere on a neighborhood Ux of x ∈ M then there is

a neighborhood Vx of x ∈ M such that Vx ⊂ Ux and ξ ≡ 0 everywhere on Vx.

This theorem allows us to formulate a corollary about Ricci solitons.

Corollary 6.3. Let (g, ξ, λ) be a Ricci soliton on a noncompact smooth mani-

fold M. If the function f = 2−1‖ξ‖2 has a local maximum point x ∈ M and Ric < 0

everywhere on a neighborhood Ux of x ∈ M then there is a neighborhood Vx of

x ∈ M such that Vx ⊂ Ux and (g, ξ, λ) is a trivial Ricci soliton everywhere on Vx.

R em a r k 6.2. Yau formulated and proved a generalized version of the Stokes

theorem for an (n−1)-form on an n-dimensional complete noncompact Riemannian
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manifold (M, g) (see [25]). As applications of this result, he obtained a series of

propositions. In particular, he proved that each non negative smooth subharmonic

function f on an n-dimensional complete noncompact Riemannian manifold (M, g)

is nonconstant if
∫

M
fp dV < ∞ for all p > 1.

Now we assume that Ric(ξ, ξ) 6 0 everywhere on (M, g) for an infinitesimal har-

monic transformation ξ. Then ∆f > 0 and hence f = 2−1|ξ‖2 is a subharmonic

nonnegative function. If, in addition,
∫

M
‖ξ‖2p dV < ∞ for all p > 1, then by

the above Yau result we have f = const. By virtue of (6.1), we conclude that

Ric(ξ, ξ) = ‖∇ξ‖2 > 0. Therefore necessarily Ric(ξ, ξ) = ‖∇ξ‖2 = 0. If in ad-

dition we suppose that (M, g) is locally irreducible, then necessarily ξ ≡ 0. The

following theorem is true.

Theorem 6.4. Let ξ be an infinitesimal harmonic transformation on a complete

noncompact Riemannian manifold (M, g). If Ric(ξ, ξ) 6 0 and
∫

M
‖ξ‖2p dV < ∞ for

all p > 1, then ∇ξ = 0. If, in addition, g is a locally irreducible Riemannian metric,

then ξ ≡ 0.

In particular, let ξ be a parallel vector field of the Ricci soliton (g, ξ, λ). It follows

from (5.1) and the Ricci identities that λξ = 0. Then either λ = 0 or λ 6= 0 and

ξ ≡ 0. If, in addition, we assume that (g, ξ, λ) is a non trivial Ricci soliton then from

the equation λξ = 0 we can conclude that λ = 0 and as a corollary of this equation,

Ric = 0. Therefore, as a corollary of Theorem 6.4 we can formulate the following

result.

Corollary 6.4. Let M be a non compact smooth manifold and (g, ξ, λ) a non

trivial Ricci soliton onM with a complete Riemannian metric g. If Ric(ξ, ξ) 6 0 and∫
M

‖ξ‖2p dV < ∞ for all p > 1, then (g, ξ, λ) is a steady Ricci soliton with a Ricci

flat metric g.
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