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Abstract. Methods are needed to help using formal specifications in
a practical way. We herein present a method for the development of
mixed systems, i.e. systems with both a static and a dynamic part. Our
method helps the specifier providing means to structure the system in
terms of communicating subcomponents and to give the sequential com-
ponents using a semi-automatic concurrent automata generation with
associated algebraic data types. These components and the whole sys-
tem may be verified using common set of tools for transition systems
or algebraic specifications. Furthermore, our method is equipped with
object oriented code generation in Java, to be used for prototyping con-
cerns. In this paper, we present our method on a small example: a transit
node component in a communication network.

Keywords: Concurrent systems, specification method, automata, object
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1 Introduction

The use of formal specifications is now widely accepted in software develop-
ment. Formal specifications are mainly useful to provide an abstract, rigorous
and complete description of a system. They are also essential to prove prop-
erties, to prototype the system and to generate tests. The need for a method
that helps and guides the specifier is another well-known fact. A last point is
the need for mixed specifications: i.e. specifications able to describe both the dy-
namic (process control) and the static aspects (data types). We think that mixed
specifications also enable, at a specification level, to have a clear separation of
concerns between these two aspects of systems that should be orthogonal as
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advocated (at the implementation level) by recent Concurrent Object Oriented
Programming (COOP) research.

We herein present a method based on LOTOS [7, 20] and SDL1 [11] expe-
riences [25, 24]. Our method was first presented in [26] and is here elaborated
in terms of agenda and extended to Java code generation. We chose to describe
our method in terms of the agenda concept [17, 16] because it describes a list of
activities for solving a task in software engineering, and is developed to provide
guidance and support for the application of formal specification techniques. Our
method mixes constraint-oriented and state oriented specification styles [33] and
produces a modular description with a dynamic behaviour and its associated
data type.

The dynamic behaviour extraction is based on a guarded automaton that
is progressively and rigorously built from requirements. Type information and
operation preconditions are used to define states and transitions. The dynamic
behaviour is computed from the automaton using some standard patterns. The
last improvement is the assisted computation of the functional part. Our method
reuses a technique [3] which allows one to get an abstract data type from an au-
tomaton. This technique extracts a signature and generators from the automa-
ton. Furthermore, the automaton drives the axiom writing so that the specifier
has only to provide the axioms right hand sides.

Our method is extended here to code generation. Code generation is a really
useful tool from a practical point of view. It allows to generate from a speci-
fication a prototype which may be used as the basis for the future system, to
validate client requirements or to test the system. We use Java [15] as a target
language for the static part and we focus on the dialect ActiveJava [1] for the
dynamic part.

The paper is structured as follows. We briefly present the case study: a transit
node case in a telecommunications network [5]. In Section 3, the general process
of our method is given. Section 4 is devoted to code generation, namely it consists
in two subsections: the static generation part in Java and the dynamic generation
part in ActiveJava. The conclusion summarizes the main points of our method.

2 Case-Study Presentation

This case study was adapted within the VTT project [5] from one defined in the
RACE project 2039 (SPECS : Specification Environment for Communication
Software). It consists of a simple transit node where messages arrive, are routed,
and leave the node. The informal specification reads as follows:

clause 1 The system to be specified consists of a transit node with: one Control
Port-In, one Control Port-Out, N Data Ports-In, N Data Ports-Out, M Routes
Through. The limits of N and M are not specified.

1 Both are used for the specification of distributed systems and are mixed specification
languages.
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clause 2 (a) Each port is serialized. (b) All ports are concurrent to all others.
The ports should be specified as separate, concurrent entities. (c) Messages
arrive from the environment only when a Port-In is able to treat them.

clause 3 The node is “fair”. All messages are equally likely to be treated, when
a selection must be made,

clause 4 and all data messages will eventually transit the node, or become
faulty.

clause 5 Initial State : one Control Port-In, one Control Port-Out.

clause 6 The Control Port-In accepts and treats the following three messages:

(a) Add-Data-Port-In-&-Out(n) gives the node knowledge of a new Port-In(n)
and a new Port-Out(n). The node commences to accept and treat messages
sent to the Port-In, as indicated below on Data Port-In.

(b) Add-Route(m,ni) , associates route m with Data-Port-Out(ni).
(c) Send-Faults routes some messages in the faulty collection, if any, to Control

Port-Out. The order in which the faulty messages are transmitted is not
specified.

clause 7 A Data Port-In accepts only messages of the type : Route(m).Data.

(a) The Port-In routes the message, unchanged, to any one (non determinate)
of the open Data Ports-Out associated with route m. If no such port exists,
the message is put in the faulty collection.

(b) (Note that a Data Port-Out is serialized – the message has to be buffered
until the Data Port-Out can process it).

(c) The message becomes a faulty message if its transit time through the node
(from initial receipt by a Data Port-In to transmission by a Data Port-Out)
is greater than a constant time T.

clause 8 Data Ports-Out and Control Port-Out accept messages of any type
and will transmit the message out of the node. Messages may leave the node in
any order.

clause 9 All faulty messages are eventually placed in the faulty collection where
they stay until a Send-Faults command message causes them to be routed to
Control Port-Out.

clause 10 Faulty messages are (a) messages on the Control Port-In that are
not one of the three commands listed, (b) messages on a Data Port-In that
indicate an unknown route, or (c) messages whose transit time through the
node is greater than T.
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clause 11 (a) Messages that exceed the transit time of T become faulty as soon
as the time T is exceeded.
(b) It is permissible for a faulty message not to be routed to Control Port-Out
by a Send-Faults command (because, for example, it has just become faulty, but
has not yet been placed in a faulty message collection),
(c) but all faulty messages must eventually be sent to Control Port-Out with a
succession of Send-Faults commands.

clause 12 It may be assumed that a source of time (time-of-day or a signal each
time interval) is available in the environment and need not be modeled within
the specification.

3 A New Specification Method

Overall Presentation

1 informal

description

2 concurrent

activity

3 sequential

components

4 data

types

Fig. 1. The step dependencies at the overall level

Our method is composed of four steps for obtaining the specification (cf. Fig.
1): the informal description of the system to be specified, the concurrent
activity description, the sequential component descriptions by an automa-
ton, the data type specifications. Two validation steps may also be associated
to the specification steps but they are not detailed here. Each step is described
below with a proper agenda and is briefly described. A more complete presenta-
tion of our method may be found in [25] and the whole application to the case
study in [24].

Step 1: Informal description (Fig. 2)

step expression / schema validation conditions

1.1: system functionalities Fi: text
◦ no redundancy

1.2: system constraints Ci: text ◦ consistency

1.3: system data Di: sort

Fig. 2. Informal description agenda

The aim of this first step is to sketch out the system characteristics.
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Step 1.1: Description of the system functionalities. In this substep all
possible operations are inventoried, given a name (Fi in Fig. 2) and described.
For instance, in our example, some operations are given by clauses 6 and 7:

– at the Control Port In: the reception of a command message (in cmde)

– at the Data Ports In: the reception of a data message (in data).

Step 1.2: System constraints description. The system constraints relative
to orders, operations ordering, size limits, . . . are expressed here and should be
consistent, i.e. without contradiction.

Step 1.3: System data description. The point of view is very abstract here.
The system data are given a name (and a sort name).

The transit node data are a list of open ports numbers (clause 6a), a list of
routes (clauses 6b and 7a) and a list of faulty messages (clauses 4, 6c, 7a and 9).

Step 2: Concurrent activity

In this step the components that are executed in parallel are identified. Each
one is modeled by a process. The process decomposition into subprocesses is
inspired by the constraint-oriented and the resource-oriented specification styles
[32, 33]. For each process there is a control part (dynamic part). Moreover, a
data type (static part) may be associated with sequential processes and a variable
of this type used as a formal parameter for the process. This unifies with the
object-oriented encapsulation concept used later on. This step is decomposed
in the following way: 2.1 communications, 2.2 decomposition and distribution,
2.3 parallel composition. As shown in Fig. 3, the substeps 2.2 and 2.3 may be
iterated.

2.32.22.1

Fig. 3. Step dependencies for the concurrent activity

Step 2.1: Communications.

step 2.1.1: communication ports and data. The components interactions are
modeled by communications on formal ports that represent the component ser-
vices. Both communication ports and data are given by the informal description
(step 1) or a previous decomposition (step 2).
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step expression / schema validation conditions

2.1.1: communication
ports and data Di

...

...

... ...Fi

PROCESS

: sort

◦ no omission: the Fi and Di

from 1.1 and 1.3 are all taken
into account

2.1.2: communications
typing

Fi: ?xj:sj !xk:sk

◦ no omission: the Fi from 1.1
are all taken into account
◦ emission sorts are available

Fig. 4. Communications agenda

step 2.1.2: communications typing. The data that are either emitted (denoted by
!x:T) or received (denoted by ?x:T) on the ports are typed. The communication
typing is used to describe the processes interface, and also to specify the static
part.

A validation criteria is to make sure that the emission sorts of a process are
“available”. A sort s is available for a process when:

– either it is directly available, that is predefined and imported, defined within
the process, or received by the process

– or there exists an imported operation f: d∗ → s such that all sorts in d∗

are available. Since the data specification is achieved at step 4 this criteria
validation may not be completed at this level.

We use a type Msg as an abstraction to represent the different messages in
the transit node:

– reception of a command message: in cmde : ?m:Msg

– reception of a data message: in data : !id:PortNumber ?m:Msg ?r:

RouteNumber

– emission of a list of faulty messages: out cmde : !l:List[Msg]

– emission of a data message: out data : !m:Msg

Step 2.2: Decomposition and distribution. The process decomposition into
subprocesses is done using pieces of information (constraints) from the informal
description (or a previous decomposition), using the data and/or functionalities.
The decomposition may be done in such a way that already specified components
may be reused.

Clause 1 leads to consider four components in the transit node: the Control
Port In (CPI), the Data Ports In (DPI), the Control Port Out (CPO) and the
Data Ports Out (DPO). The CPI manages the declared routes and the open
ports (clause 6). The DPI needs access to information about which ports are
related to which routes (clause 2a). Given the pieces of information collected
from the preceding steps, the system may be represented as in Fig. 6 (see also
Fig. 8).
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step expression / schema validation conditions

2.2.1: data distribution Di
...

...
a

Dj ...

...
b

... ...

: sort : sort

PROCESS PROCESS

Fk

◦ all data should be dis-
tributed in the subpro-
cesses (cf. 2.1.1)

2.2.2: functionalities dis-
tribution

Di
...

...
a

Dj ...

...
b

c

: sort : sort

PROCESS

PROCESS PROCESS

k
F
m

n F
l F

n

F

F

◦ functionalities and re-
lated data
◦ all functionalities should
be distributed in the sub-
processes (cf. 2.1.1)

Fig. 5. Decomposition and distribution agenda

Control Port In Data Port In

out_data !m:Msg

?m:Msg ?r:RouteNumber
in_data !id:PortNumberin_cmde ?m:Msg

ports : List[PortNumber]

routes : List[Route] faulties : List[Msg]

Control Port Out

out_cmde !l:List[Msg]
Data Port Out

Fig. 6. Transit node external view (from Step 2.2)

Step 2.3: Parallel composition (Fig. 7). Processes composition often fol-
lows already known patterns, such as the synchronization schemata or the ar-
chitectural styles given in [21, 18, 31]. Therefore we suggest to use a library of
“composition schemata” that may be extended as needed. The specification of
the subprocesses parallel composition may be derived from the set of the compo-
sition schemata using language specific features such as LOTOS operators [25]
or SDL block structure and channels [24].

The process composition may lead to create new (internal) communications
and possibly new data that have to be specified. Let us note that the process
parallel composition is a way to express some constraints between the processes.
Thus, clause 2b leads to a constraint on the parallel composition between the
different ports. In order to take this into account, the DPI (resp. DPO) should
be rather composed by interleaving than by synchronization.

Faulty messages. They are saved in the CPO collection (clause 9). They are
(clause 10) either incorrect command messages (wrong cmde, received by the
CPI), or data messages with an unknown route (wrong route, received by a
DPI), or obsolete messages (timeout, from a DPO).

Information on routes. The DPI needs information on the transit node routes
(whether a route is declared, and what are its associated ports). These pieces of
information are held by the CPI, and will be transmitted to the DPI through
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step expression / schema validation conditions

2.3.1: composition
schema choice PROCESS

Di: sort

c

...

...
a

: sortDj ...

...

PROCESS
b

PROCESS

2.3.2: schema applica-
tion (cf. steps 2.2 and
2.3.1)

Di
...

...
a

Dj ...

...
b

c
PROCESS

: sort : sort

PROCESS PROCESS

F
k

F
m

Fn
F
l

◦ relations between the
process constraints and
the constraints obtained
through the subprocesses
composition

Fig. 7. Parallel composition agenda

question/answer communications between the DPI and the CPI (ask route and
reply route).

Message routing. When the data message route is correct, the message is routed
(correct communication) by the DPI to one of the corresponding DPOs (clause
7a).

New ports. When the CPI receives the Add-Data-Port-In-&-Out command, it
creates the corresponding ports (clause 6). In our modelization, this is taken into
account by the fact that the Data Ports are enabled (enable communication)
by the CPI on reception of this command.

New data. New data may arise from decomposition (or recomposition). Here,
the DPOs are serialized (clause 7b) and have a buffer for messages. The Data
Ports have an identifier used in enabling and routing communications.

Step 2 was iterated until obtaining the Fig. 8 schema. In the sequel, we shall
focus on the DPI communication typing which is the following:

correct : !ident:PortNumber !m:Msg ask route : !r:RouteNumber

wrong route : !m:Msg enable : !ident:PortNumber

reply route : !r:RouteNumber ?l:List[PortNumber]

in data : !id:PortNumber ?m:Msg ?r:RouteNumber

Step 3: Sequential components (Fig. 9)

Each sequential component is described by a guarded finite state automaton.
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i : PortNumber

in_data !id:PortNumber
?m:Msg ?r:RouteNumber

out_data !m:Msgout_cmde !l:List[Msg]

in_cmde ?m:Msg

CPI

routes : List[Route]

ports : List[PortNumber]

CPO

faulties : List[Msg]

s
e
n
d
_
f
a
u
l
t

w
r
o
n
g
_
c
m
d
e

DPI

DPO

ask_route

reply_route

timeout

wrong_route

enable

e
n
a
b
l
e

c
o
r
r
e
c
t

i : PortNumber

l : List[Msg]

Fig. 8. Transit node internal view (from Step 2.3)

Steps 3.1 to 3.4: Conditions. The ports are put in four disjoint sets depending
on whether they modify (C and CC) or not (O and OC) the state of the process
and whether they are conditioned (CC and OC) or not (C and O). The names
stand for Constructor (C), Conditioned Constructor (CC), Observer (O) and
Conditioned Observer (OC).

The term “condition” refers to preconditions required for a communication
to take place, and also to conditions that affect the behaviour when a commu-
nication takes place.

It should be checked that all conditions mentioned in step 1.2 are taken into
account. However, some of them will be taken into account when dealing with
the parallel composition of processes (step 2.3).

Applying the steps 3.1 and 3.2 to the DPI leads to identify the following
conditions: enabled (the port is enabled), received (a message is received and
not yet routed), requested (routing information was requested), answered (the
answer on routing information is received), and routeErr2 (routing error).

For instance, the wrong route operation in CC has the following conditions:
enabled ∧ received ∧ requested ∧ answered ∧ ¬routeErr.

Relationships between conditions are expressed by formulas (⊢ φi(Cj)). The
relationship formula have to be consistent and may lead to simplify some con-
ditions (possibly eliminating some).

In the DPI example, we have: answered ⇒ requested, requested ⇒ re-

ceived, received ⇒ enabled. This is consistent and leads to: answered ∧

¬routeErr when applied to the condition on wrong route.

Steps 3.5 to 3.7: States retrieval. Whether a process may perform a service
(through a communication on a port) depends on which abstract state the pro-
cess is in. The states are thus retrieved by composition of the communications
conditions (these conditions were identified in steps 3.2 to 3.4, and a truth table
is constructed in 3.5). The formulas (φi(Cj)) expressing relationships between

2 The routeErr condition bears on the value of the variable l of reply route after the
communication took place (see the communication typing at the end of step 2).
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step expression / schema validation conditions

3.1: obtaining ports of O,
OC, C, CC

O, OC, C, CC ◦ disjoint sets

3.2: conditions on ports of
OC or CC
category: precondition or
behaviour

Fi : Cj(category) ◦ 1.2 (cf also 2.3)

3.3: relationships between
conditions

⊢ φi(Cj)
⊢λ consistency:
⊢ ∧iφi(Cj)

3.4: simplification of condi-
tions

⊢λ simplifications

3.5: creating the conditions
table

...
iC... interpretation reference

3.6: elimination of impossi-
ble cases

...
iC... interpretation reference

⊢λ φi(Cj) (3.3)

3.7: states
Ei =< ..., v(Cj), ... >

v(Cj) ∈ {T, F}

3.8: operations precondi-
tions

Pk =< ..., v(Cj), ... >

v(Cj) ∈ {T, F,∀}

⊢λ consistency of pre-
conditions w.r.t. φi(Cj)
⊢ correction w.r.t. 3.2

3.9: operations postcondi-
tions

Qk =< ..., Φi(C’j), ... > C’ : C + new conditions

3.10: relationships between
conditions

⊢ φi(C’j)

⊢λ consistency:
⊢ ∧iφi(C’j)
⊢λ consistency of
postconditions w.r.t.
φi(C’j)

3.11: computing the transi-
tions

T = f(E ,P ,Q)

3.12: choice of an initial
state from possible (Oi) and
impossible (Oj) operations

Einit

⊢λ consistency of
∧iPOi

∧j ¬POj

⊢λ only one initial state
3.13: automaton simplifica-
tions

⊢ equivalences

3.14: translating the au-
tomaton to the target lan-
guage

⊢ automaton / specifi-
cation

3.15: simplifying the speci-
fication

⊢ correct simplifica-
tions

Fig. 9. Sequential components agenda
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these conditions are used to eliminate incoherent states (3.6). Table 1 gives the
DPI coherent states.

Table 1. State conditions table for the Data Port In

enabled received requested answered routeERR state

T T T T T IR (Incorrect Route)
T T T T F CR (Correct Route)
T T T F F WA (Waiting for Answer)
T T F F F RfR (Ready for Request)
T F F F F RfI (Ready for Input)
F F F F F NA (Not Authorized)

Steps 3.8 to 3.11: Transitions retrieval. To retrieve the transitions, we
shall define each operation in terms of possible source states (preconditions)
and corresponding target states (postconditions). Therefore, preconditions (P ,
3.8) and postconditions (Q, 3.9) are expressed in terms of the conditions values,
respectively before and after the communications take place. The case where the
condition value is not relevant is denoted by ∀, and = denotes the case where the
value is not modified after the communication. Verifications and simplifications
may be achieved on both preconditions and postconditions [25].

Examples of preconditions and postconditions for some DPI operations are
given below with the following notation: en for enabled, rec for received, req
for requested, rep for answered, and rerr for routeErr.

ask route en rec req rep rerr
P T T ∀ F ∀

Q = = T = =

reply route en rec req rep rerr
P T T T F ∀

Q = = = T l=[]
There are generally critical cases [25] and some postconditions may not be

expressed using only state conditions. It is thus necessary to use new conditions
to check whether the process data type is in a critical state. Informally, critical
state conditions act as transition guards to avoid infinite state automata.

Operationally to retrieve the transitions, and for each operation:
– start from a given state e (a condition boolean tuple)
– if this tuple yields the operation precondition, find the tuple for the corre-

sponding postcondition and the associated state f
– there is therefore a transition from e to f
– start over with another state.

Some improvements of this operational method are given in [25]. This automatic
method leads to deal with cases that might not have been detected otherwise,
as the critical cases.

Step 3.12: Initial state. In order to determine the initial state, it is necessary
to identify the services (associated to some ports) the process should give or not
in that state (constraints). It is a requirement based choice. The potential initial
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states are found from the ports preconditions and the state table. If no initial
state is found, this means that the specifier gave inconsistent constraints for it.
In order to be able to generate code, a single initial state is needed. When several
potential initial states are found, it possible to choose one of them arbitrarily or
by adding some constraint on the services. The DPI automaton is given in Fig.
10.

RfI

WARfR

enable

i
n
_
d
a
t
a

enable

r
e
p
l
y
-
r
o
u
t
e
 
[
l
<
>
[
]
]

wrong_route

ask_route

r
e
p
l
y
_
r
o
u
t
e

[
l
=
[
]
]

enableinit(id)
NA IR

<F,F,F,F,F> <V,F,F,F,F>

<V,V,F,F,F> <V,V,V,F,F>

<V,V,V,V,V>

enable

ask_route

enable

<V,V,V,V,F>

CR

correct

enable

Fig. 10. Data Port In automaton

Steps 3.13 to 3.15: Simplifications and translation. It is possible to trans-
late the automaton to various specification languages by applying translation
schemata. This technique was applied to LOTOS [25] and to SDL [24]. When-
ever the translation is not optimal, some simplifications may possibly be applied
[25, 24]. The automaton may also be simplified before the translation, for in-
stance by hierarchical grouping of states achieved using the conditions [24].

Step 4: Data types

The last step is the specification of the abstract data types associated to each
process, and of the data types used within the processes. As regards the data
types associated to each process, the work achieved in the preceding steps yields
most of the signature (cf. [25] from a description of the automatic processing).
Thus, the operations names and profiles are retrieved automatically from the
communication typing, and from the conditions identified upon building the
automata. Let us note that with each communication m, one or several algebraic
operations may be associated (Fig. 11).

Some additional operations may be needed to express the axioms. Most of
the axioms are written in a “constructive” style which requires to identify the
generators. [3] describes a method to retrieve the data type associated to an au-
tomaton and to compute a minimal set of operations necessary to reach all states.
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for emissions:
m !e:T m-c : DPI → DPI

m-o : DPI → T
for receptions:

m ?e:T m-c : DPI × T → DPI
m-o : DPI → T (optional)

Fig. 11. Correspondence between communications and algebraic operations

In our example, this set is init, enable, in data, ask route, reply route.
[3] uses Ω-derivation [6] to write the axioms (conditional equations). In order
to extract the axioms describing the properties of the operation op(dpi:DPI),
the states where this operation is allowed should be identified together with the
generators to reach these states, thus yielding the premises and the axioms left
hand sides.

Part of this automatic processing is shown here for the axioms of the cor-
rect c operation, the internal operation associated with the correct transition.
The premises express conditions on the source states and on the l variable.

% correct-c : DPI -> DPI

CR(dpi) => correct-c(enable-c(dpi)) = correct-c(dpi)

WA(dpi) /\ not(l=[]) => correct-c(reply-route-c(ask-route-c(dpi),l)) =

correct-c(reply-route-c(dpi,l))

WA(dpi) /\ not(l=[]) => correct-c(reply-route-c(enable-c(dpi),l)) =

correct-c(reply-route-c(dpi,l))

RfR(dpi) /\ not(l=[]) =>

correct-c(reply-route-c(ask-route-c(enable-c(dpi)),l)) =

correct-c(reply-route-c(ask-route-c(dpi),l))

RfI(dpi) /\ not(l=[]) =>

correct-c(reply-route-c(ask-route-c(in-data-c(dpi,m,r)),l)) = dpi

The algebraic specification may then be used for proving properties needed
for the specification verification and validation.

4 Code Generation

Once we get a formal specification it is not necessarily executable. Often the
dynamic part is executable because it is based on operational models (state
transition diagrams). This is not always true for the static part (algebraic ab-
stract data type).

We will illustrate assisted code generation in Java, however the method is
suitable for other object-oriented languages.

The general method is depicted on Fig. 12 and is split in two parts: the static
part (on the right of Fig. 12) and the dynamic part (on the left of Fig. 12).

4.1 Static Part Generation

Java classes are generated for each abstract data type in the specification, and
this process is achieved by four intermediate steps (cf. Fig. 12). The translations



952 Pascal Poizat, Christine Choppy, and Jean-Claude Royer

Java Code

Formal Specification

Guarded Automaton and Compositions Algebraic Abstract Data Types

Executable Specifications

Specification   Refinement

Choice of  a Hierarchy

Single Generator Specifications

Object   Translation

Formal Class Design

Automatic   Translation

Static Classes (pure Java)Active Classes (ActiveJava)

Controller structures

Sequential components

encapsulated Static Parts

Active Classes

Fig. 12. Object code generation scheme

are partly automatic, for instance to get a simpler or a more efficient result may
require some specifier (or programmer) interaction. The first step is to obtain an
executable specification (possibly through refinements). Then, code generation
is decomposed into (i) the choice of a hierarchy for representing the specification
generators, (ii) the translation into formal classes (i.e. abstractions of classes
in object-oriented languages), from which (iii) a generation in a given language
(e.g. Java) may be done.

Executable Specification. The “constructive” style adopted for the specifica-
tions associated with the automatons is likely to yield executable specifications
(e.g. through rewriting, where tools, e.g. [14], may be used to check the con-
vergence). However, other specification modules may be introduced (e.g. for the
data managed by the processes) with other specification styles (e.g. observational
style). A refinement process (abstract implementation [12]) is then needed to add
elements for executability such as algorithmic choices, etc.

Single Generator Specifications. In object-oriented languages, classes have
a single generation operation called for instance “new” (or the class name), while
algebraic specifications allow several generators. The problem addressed here is
how to represent these generators within classes, or more precisely how to trans-
form (e.g. by abstract implementation) the original algebraic specifications into
single generator specifications from which classes may be derived. We propose
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several solutions to this issue. A first solution is to associate to the several gen-
erators of the algebraic specification a single generator with a “switch” (to each
original generator), we refer to this solution as the “flat organization”. Another
solution is to use the associated class as an interface to subclasses, where each
subclass is associated to one generator of the original specification, this will be
denoted as the “two level hierarchy organization”. Then, of course, it is possible
to mix these two solutions as appropriate.

Several frameworks are available for abstract implementation [12], a first
sketch is to follow the general framework of Hoare’s representation [19]. It con-
sists into defining an abstraction function, to prove it is an onto function and to
prove the implementation of operations. These aspects are not detailed here.

In the following, we present the alternative organizations for single generator
specifications. When the abstract data type has only one generator we directly
apply the simple representation described below to get a class.

Flat Organization. In this organization, a specification module with several
generators is transformed into a single generator specification module with a
“switch” to each original generator. For example, in the DPI specification mod-
ule, the generators are init, enable, in data, ask route, reply route. We de-
fine SwitchDPI = {init, enable, in data, ask route, reply route} and the sin-
gle generator newSDPI (SDPI stands for Switch DPI) with the profile newSDPI

: Switch PortNumber Msg RouteNumber List SDPI -> SDPI (note that this profile
may be easily computed from the DPI generators profiles). The abstraction func-
tion Abs is defined as usual, e.g.:
Abs(newSDPI(reply route, Bport, Bmsg, Broute, Z, T)) == reply route c(T, Z)...
Terms beginning by B are don’t care values. We also introduce selectors associ-
ated to relevant arguments occurring in the single generator, e.g.:
switch(newSDPI(S, X, Y, R, Z, T)) = S

(S = reply route ∧ WA(T)) => selRoutes(newSDPI(S, X, Y, R, Z, T)) = Z...

The axioms are then transformed within this framework to complete the speci-
fication.

Two Level Hierarchy Organization. In this approach, several specification mod-
ules are associated with the original specification module: one module that is
just an interface to modules that introduce (each) one of the original generators
together with the appropriate subsort. Clearly, this approach may yield seman-
tics issues (depending on the framework adopted), and may not be as practical
and straightforward as the previous one. However, in some cases the specification
style may be more legible.

Mixed Organization. Of course between these two previous extrema there are
many other ways to transform the type depending of the chosen hierarchy. We
studied in [2] how to get a better hierarchy and we presented a general process for
it. However some important problems remain: metrics to define a best hierarchy
and problems linked with inheritance of properties.
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In case of abstract data types with less than five generators, the flat organi-
zation is acceptable but with more complex ones this will not be the case.

Another way to solve this problem is to introduce a kind of inheritance or
subsort (OBJ subsort) in the method. This problem is known to be difficult in
itself and rather complex with concurrent systems.

Formal Class Design: The Model. This model [4] defines the notion of
formal class as an abstraction of a concrete class in languages like C++, Eiffel,
Java or Smalltalk. A formal class is an algebraic specification (as abstract data
type) with an object-orientation. This general model is functional and unifies the
major concepts of object-oriented programming. It can be used both to build
formal specifications and to design a system. An abstract operational semantics
[4] was given to this model using conditional term rewriting [10].

Figure 13 shows a formal class example associated to the SDPI specification
module obtained with the flat organization.

FCDPI

field selectors
switch : FCDPI −→ Switch

ident : FCDPI −→ PortNumber

requires: switch(Self) = init

selRoutes : FCDPI −→ List

requires: switch(Self) = reply route ∧ WA(previous(Self))

...

methods
correct c : FCDPI −→ FCDPI

;; correct c : internal operation associated to a correct route
(switch(Self) = enable ∧ CR(previous(Self))) =>

correct c(Self) = correct c(previous(Self))

(switch(Self) = reply route ∧ switch(previous(Self)) = ask route

∧ WA(previous(Self)) ∧ is empty(list(Self))) =>

correct c(Self) = correct c(new(reply route, Bport, Bmsg, Broute,

selRoutes(Self), previous(previous(Self))))

...

Fig. 13. Formal Class FCDPI

The translation into (purely functional) Java code is straightforward. A for-
mal class is translated to an interface (corresponding to the signature) and an
implementation class. We use abstract methods and classes when needed (de-
pending on the chosen organization). The structure is represented by private
instance variables. Fields selectors are coded by a public accessor to the corre-
sponding instance variable with a condition corresponding to the precondition.
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A tool to generate Java classes is not available yet, but experimental tools have
been done for Eiffel and Smalltalk.

Formal Class Design: A Simple Representation. The simple representa-
tion allows one to translate a single generator type into a formal class, denoted by
FCADT. This generator will be the newFCADT instantiation function of the object
model. We must identify selectors, i.e. operations seli such that seli(new(X1,

..., Xn)) = Xi. These field selectors yield the instance variables of the class.
We assume that the specification (axioms and preconditions) has no variable
named Self. A term is said to be in a receiver position if it appears at first
position in an operation different from the generator. If a variable appears in a
receiver position in the left conclusion term then it will be replaced by Self. In
our model this variable denotes the object receiver. An important translation
rule is to replace newSADT(e1, ..., en) by V with V : FCADT. This leads to a
set of equations: seli(V) = ei.

1. This rule is applied on every newSADT occurrence in a receiver position in
the left conclusion term, where V is named Self. If ei is a variable then it
is replaced by seli(Self) in axioms. If ei is neither a variable nor a don’t
care term, the equation seli(Self) = ei is added to the axiom condition.

2. This rule is applied on all other occurrences in the left conclusion term with
any variable other than Self.

This representation was processed over the single generator specification
SDPI and the result is the above formal class (Fig. 13).

4.2 Dynamic Part Generation

This part deals with the code generation for the dynamic part in an object
oriented language. The language we aim at is ActiveJava [1], a Java dialect
(pre-processed into pure Java) based on ATOM [23].

The ActiveJava model defines abstract states, state predicates, methods ac-
tivation conditions and state notification. Its main advantages are that: (i) its
syntax is defined as a Java extension, (ii) it permits to model both inter and intra-
object concurrency, and (iii) it supports both asynchronous and synchronous
message passing. ActiveJava presents a good adequation between reusability of
components (through separation of concerns into a dynamic and a static part)
and expressivity.

The dynamic part generation is build upon (i) coding subsystems structura-
tion and LOTOS-like communication semantics, (ii) coding sequential automata,
and (iii) integrating dynamic and static parts.

Structuration and Communication Semantics. LOTOS communication
semantics is more strict than the ActiveJava (object oriented) one. For this
purpose and for better structuration matters, we choose to model each subsystem
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structuration with a controller. This approach is close to Coordinated Roles
[22] and aims at the same properties: a better structuration and reusability of
composition patterns.

The system specification is taken as a tree with sequential components at the
leaves and controllers at the nodes where the LOTOS structuring mechanisms
are encoded. The subtrees under a given controller will be called its sons. Struc-
turation for the transit node is given in Fig. 14 where coordinators are drawn
as square boxes and sequential components as round boxes. This is another
representation of Fig. 8.

enable, correct, wrong_route]
[in_data, ask_route, reply_route, ...

CPI CPO

Control Ports Data Ports |[correct]|

Transit Node

|||||| DPOSDPIS

DPI 1 DPI n DPO 1 DPO n...

Fig. 14. Sketch of structuration and coordinators of the transit node

We have three main communication mechanisms for structuration: interleav-
ing, synchronization and hidden synchronization.

Common mechanisms. The communication is achieved in three phases as shown
in Fig. 15. In the run phase, controllers dispatch calls to a run method to their
non waiting sons. Thus, in Fig. 15-1, C sends a run method to P but not to E.
When these calls reach non controller components (i.e. the leaves, as P in Fig.
15-1) or controller with all sons blocked, then the second phase, return phase
begins.

In this return phase, sons return the communications they are ready to get
involved with in a runnable list: a list of tuples containing the communication
name and its arguments, with values for emission arguments and a special indica-
tor ( ) for reception arguments. P returns [(‘‘m’’, ,4),(‘‘n’’,3)] to assess
it is ready for a m or n communication (Fig. 15-2). The controller then computes
a common intersection of the runnable lists and sends it up. Here, n from P does
not match with anything from E whereas two m elements match to make the
intersection that C sends upwards. Since some E and P runnable lists elements
are in the common intersection, E and P are called participants. Elements with
the same communication name have to match in the same way LOTOS offers
match. Matching cases are given in Table. 2. All other cases mismatch.

The second phase ends when there is no intersection (this yields a blocking
status) or at the root where a final intersection in computed. The controller
where the second phase ends is called temporary root.

In the third phase (Fig. 15-3), the temporary root sends down the message
corresponding to the final intersection it has previously computed. This message
has to be unique, and non determinism (whether a received value has not been
bound or there is communication non determinism) is solved by the temporary
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Table 2. Matching elements and intersections

element 1 element 2 common intersection

(“m”, :T) (“m”,value:T) (“m”,value:T)
(“m”,value:T) (“m”, :T) (“m”,value:T)
(“m”,value:T) (“m”,value:T) (“m”,value:T) – same values
(“m”, :T) (“m”, :T) (“m”, :T)

root controller [27]. Controllers send the message only to participants (both P
and E for C) and then erase their table entry. Non participant sons are left
waiting. To end, the temporary root controller relaunches the first phase by
sending again the run method to its non waiting sons.

("m",3,_)

P : [("m",_,4),
("n",3)]

waiting on

3. Application Phase

C.run()

P.run()

P [m,n]

C |[m,n]|

E : ("m",3,_)

P: ?

E |[m]| P [m,n]

C |[m,n]|

E : ("m",3,_)

m ?x !4  []  n !3

E |[m]|

[("m",3,4)]

[("m",_,4), ("n",3)]

P.m(3,4)

C |[m,n]|

P [m,n]

C.m(3,4)

E: ?
P: ?

temporary
root

E |[m]|

E.m(3,4)

2. Return Phase1. Run Phase

Fig. 15. A communication scheme example

Interleaving. As soon as a controller receives a non synchronized element in a
runnable list, it transmits it up.

Synchronization. When two sons are composed in order to synchronize on a
given method, their parent controller will transmit the corresponding element in
runnable lists only if it has received this element in both sons runnable lists.

Hidden synchronization. In the return phase, when the runnable lists reach a
node, elements referring to hidden messages are not returned upwards but are
kept at this node level. When only hidden messages reach a controller which
has to block them, this controller acts as the temporary root controller. If there
are also non hidden messages, the controller chooses whether to transmit them
upwards or to act as the temporary root (this choice simulates non determinism).
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Coding the Automata in ActiveJava. The precondition and postcondition
tables are used to code the automaton. But this has to be slightly modified to
take into account run message receptions. The schema given in Fig. 16 is applied
to each state.

m1

m2

A

B

C

b) with run

m1

m2

B

C

A
run

a) without run

Fig. 16. Adding run in the automata

Operation preconditions are defined as “activation conditions” in ActiveJava.
Optionally, condition variables may be set (postconditions) in the “post actions”
methods of ActiveJava. In the class constructor, initial values for the conditions
are set according to the automaton initial state. Fig. 17 illustrates this on a part
of the DPI example.

active class DPI(CPI cpi, FC fc, DPO dpo) {

boolean v_a, v_r, v_d, v_rep, v_rerr;

PortNumberList received_l; ...

abstract state definitions {a as is_a(); ...}

activations conditions {

reply_route(RouteNumber r, PortNumberList l)

with reply_route_precondition(); ...}

synchronization actions {

reply_route(RouteNumber r, PortNumberList l) with

post_actions reply_route_postcondition(); ...}

implement synchronization {

boolean is_a() {return v_a;}

...

boolean reply_route_precondition() {

return v_a==TRUE && v_r==TRUE && v_d==TRUE && v_rep==FALSE;}

...

void reply_route_postcondition() {

v_rep=TRUE; v_rerr=received_l.isEmpty();}

...

}}

Fig. 17. (Part of) Active Class for DPI



From Informal Requirements to COOP: A Concurrent Automata Approach 959

Integrating the Static and the Dynamic Parts The integration of the
static and the dynamic part is done using encapsulation of a static class instance
into the dynamic class with static methods called into dynamic methods bodies
(Fig. 18). Observers are called in the run method to compute some of the run
list elements arguments. Statics methods are also called in each corresponding
dynamic method.

import StaticClass;

active class DynamicClass {

StaticClass nested;

< ActiveClass part >

public methods {

public DynamicClass( < arguments > ) {

nested = new StaticClass( < arguments > );

< dynamic initialization (initial state) >

}

public RunnableList run() {

// uses nested.observers return values in runnable list

}

public void otherMethod( < arguments > ) {

nested.otherMethod( < arguments > );

}}}

Fig. 18. Integration of static and dynamic parts

5 Conclusion

While there are good motivations for the use of formal specifications in soft-
ware development, the lack of methods may restrict it to “few experts”. There
are several points which may cause problems: the use of formal notation, the
structure of the system, the proofs of properties and the code generation (or
refinement for others) are some of the most important. In this paper, we address
a specification method for systems where both concurrency and data types is-
sues have to be taken into account. One important feature is the help provided
to the user: help to build dynamic behaviours, help to decompose the system,
help to extract the data types and help to generate code. Our method takes
advantage of both the constraint and state oriented approaches that are used
for LOTOS or SDL specifications. The system is described in terms of parallel
components with well defined external interfaces (the gates and communication
typing). The behaviour of the component is described by a sequential process as-
sociated with an internal data type. The study of the communications and their
effect on this data type allows one to build, in a semi-automatic way, an automa-
ton describing the process internal behaviour. The automaton is then translated
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into a specification language (LOTOS or SDL). The data type is extracted by a
semi-automatic method from this automaton.

The components and the whole system may then be verified using common
set of tools for transition systems [13] or algebraic specifications [14].

Our specification method is equipped with a prototype generation. Object-
oriented languages are another major phenomenon in software engineering. One
cannot ignore the qualities of such code, however writing such code may be a
hard task. We choose to generate Java code but our method may be applied
to other object oriented languages. This code generation is mainly automatic
and modular. We plan to experiment code generation on other frameworks for
concurrent object oriented programming such as [8].

One future research direction is the extension of this approach to other spec-
ification languages, like Raise [30] or Object-Z [28]. Other connected areas of
research are about object-oriented analysis and design methods. We currently
work on the use of UML [29] diagrams to improve system architecture and to
validate the automaton behaviour (with communication diagrams for instance).
Therefore, we plan to provide our specification model with inheritance, more
complete communication (experimenting new controller semantics) and struc-
turation mechanisms as in related models [9].
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en Informatique de Nantes), Juillet 1995.
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dinated Roles: Promoting Re-usability of Coordinated Active Objects Using Event
Notification Protocols. In Paolo Ciancarini and Alexander L. Wolf, editors, Third
International Conference, COORDINATION’99, volume 1594 of Lecture Notes in
Computer Science, Amsterdam, The Nederlands, April 1999. Springer-Verlag.
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pour la spécification en LOTOS. Research Report 170, Institut de Recherche en
Informatique de Nantes, Février 1998. /papers/rr170.ps.gz in Poizat’s web page.

[26] Pascal Poizat, Christine Choppy, and Jean-Claude Royer. Concurrency and Data
Types: A Specification Method. An Example with LOTOS. In J. Fiadeiro, editor,
Recent Trends in Algebraic Development Techniques, Selected Papers of the 13th
International Workshop on Algebraic Development Techniques WADT’98, volume
1589 of Lecture Notes in Computer Science, pages 276–291, Lisbon, Portugal,
1999. Springer-Verlag.

[27] Pascal Poizat, Christine Choppy, and Jean-Claude Royer. From Informal Require-
ments to Object Oriented Code using Structured Concurrent Sequential Commu-
nicating Automata. Research Report, Institut de Recherche en Informatique de
Nantes, 1999.

[28] Graeme Smith. A Fully-Abstract Semantics of Classes for Object-Z. Formal
Aspects of Computing, 7(E):30–65, 1995.

[29] Rational Software and al. Unified Modeling Language, Version 1.1. Technical
report, Rational Software Corp, http://www.rational.com/uml, September 1997.

[30] The Raise Method Group. The RAISE Development Method. The Practitioner
Series. Prentice-Hall, 1995.

[31] K. Turner. Relating architecture and specification. Computer Networks and ISDN
Systems, 29(4):437–456, 1997.

[32] Kenneth J. Turner, editor. Using Formal Description Techniques, An introduction
to Estelle, Lotos and SDL. Wiley, 1993.

[33] C.A. Vissers, G. Scollo, M. Van Sinderen, and E. Brinksma. Specification styles
in distributed systems design and verification. Theoretical Computer Science,
(89):179–206, 1991.


	Introduction
	Case-Study Presentation
	A New Specification Method
	Code Generation
	Static Part Generation
	Dynamic Part Generation

	Conclusion

