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ABSTRACT
There are major trends to advance the functionality of search engi-
nes to a more expressive semantic level. This is enabled by the ad-
vent of knowledge-sharing communities such as Wikipedia and the
progress in automatically extracting entities and relationships from
semistructured as well as natural-language Web sources. Recent
endeavors of this kind include DBpedia, EntityCube, KnowItAll,
ReadTheWeb, and our own YAGO-NAGA project (and others).
The goal is to automatically construct and maintain a comprehen-
sive knowledge base of facts about named entities, their seman-
tic classes, and their mutual relations as well as temporal contexts,
with high precision and high recall. This tutorial discusses state-of-
the-art methods, research opportunities, and open challenges along
this avenue of knowledge harvesting.
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1. INTRODUCTION

1.1 Motivation and Potential Benefits
The Web bears the potential of being the world’s greatest en-

cyclopedic source, but we are far from exploiting this potential.
Valuable scientific and cultural content is all mixed up with huge
amounts of noisy, low-quality, unstructured text and media. Howe-
ver, the proliferation of knowledge-sharing communities like Wiki-
pedia and the advances in automated information extraction from
Web pages open up an unprecedented opportunity: can we systema-
tically harvest facts from the Web and compile them into a compre-
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hensive machine-readable knowledge base about the world’s en-
tities, their semantic properties, and their relationships with each
other. Imagine a “Structured Wikipedia” that has the same scale and
richness as Wikipedia itself but offers a precise and concise repre-
sentation of knowledge, e.g., in the RDF format. This would enable
expressive and highly precise querying, e.g., in the SPARQL lan-
guage (or appropriate extensions), with additional capabilities for
informative ranking of query results.

The benefits from solving the above challenge would be enor-
mous. Potential applications include 1) a formalized machine-rea-
dable encyclopedia that can be queried with high precision like a
semantic database; 2) a key asset for disambiguating entities by
supporting fast and accurate mappings of textual phrases onto na-
med entities in the knowledge base; 3) an enabler for entity-relation-
ship-oriented semantic search on the Web, for detecting entities
and relations in Web pages and reasoning about them in expressive
(probabilistic) logics; 4) a backbone for natural-language question
answering that would aid in dealing with entities and their relation-
ships in answering who/where/when/ etc. questions; 5) a key asset
for machine translation (e.g., English to German) and interpreta-
tion of spoken dialogs, where world knowledge provides essential
context for disambiguation; 6) a catalyst for acquisition of further
knowledge and largely automated maintenance and growth of the
knowledge base.

While these application areas cover a broad, partly AI-flavored
ground, the most notable one from a database perspective is se-
mantic search: finally bringing DB methodology to Web search!
For example, users (or tools on behalf of users) would be able to
formulate queries about succulents that grow both in Africa and
America, politicians who are also scientists or are married to sin-
gers, or flu medication that can be taken by people with high blood
pressure. And the search engine would return precise and concise
answers: lists of entities or entity pairs (depending on the question
structure), for example, Angela Merkel, Benjamin Franklin, etc., or
Nicolas Sarkozy for the questions about scientists. This would be a
quantum leap over today’s search where answers are embedded if
not buried in lots of result pages, and the human would have to read
them to extract entities and connect them to other entities. In this
sense, the envisioned large-scale knowledge harvesting [137] from
Web sources may also be viewed as machine reading [29, 58, 60].

Of course, this vision is not new. Universal knowledge bases ha-
ve been an AI objective since the pioneering work on Cyc [87, 88]
and the early enthusiasm about the original roadmap for the Seman-
tic Web [19, 120]. But there are much more favorable assets to start
with available today, and a fair number of ongoing endeavors, both
in academia and industrial research, have embarked on the mission
of building large knowledge bases. freebase.com and trueknowled-
ge.com are compiling huge amounts of entity-relationship-oriented



facts, the community endeavor DBpedia [12] (dbpedia.org) which
is harvesting RDF subject-property-object triples from Wikipedia
and similar sources, the KnowItAll [59] project and its local sib-
lings TextRunner [142], Kylin/KOG [138, 139, 140] and Omni-
vore [24], which aim to extract arbitrary relations from natural-
language texts, the ReadTheWeb [29] team with the ambitious goal
of “macro-reading” arbitrary Web pages, the sig.ma engine [130]
which taps on “triplified” RDF data on the Web, as well as our
own project YAGO project [123, 124] which integrates relational
knowledge from Wikipedia with the WordNet taxonomy. Further
services along these lines are being pursued for specific commu-
nities, such as DBLife [49] (dblife.cs.wisc.edu) for database rese-
arch (based on the general-purpose methodology of Cimple [51])
or MedIE [94] for the biomedical domain [57]. In addition, the-
re is an emerging new brand of semantic-search and knowledge-
discovery engines that are centered around large knowledge repo-
sitories. Representatives include wolframalpha.com which compu-
tes knowledge answers from a set of hand-crafted databases, goo-
gle.com/squared which arranges search results in a tabular form
with entities and attributes, entitycube.research.microsoft.com which
provides dynamically gathered facts about named entities (based
on the StatSnowball methodology [144]), opencalais.com which
provides services to superimpose structure on documents or Web
pages, or kosmix.com which uses a large ontology for categorizing
questions and identifying entities that are related to the user’s input.

1.2 Scope and Outline of the Tutorial
This tutorial gives an overview of this research avenue, and will

go into some depth on specific issues, aiming to identify interesting
research problems (for students) and major challenges (for larger
teams or institutes).

A knowledge base of the envisioned kind would go through va-
rious stages of a life-cycle:
1) building a large collection of facts about entities, classes, and

relationships based on Web sources (or enterprise information,
digital library documents, etc.);

2) cleaning the knowledge base by assessing the validity of facts,
possibly removing invalid pieces or completing missing pieces
by deduction;

3) querying the fact collection to answer advanced questions by
knowledge workers;

4) ranking answers to complex queries or reasoning tasks, by means
of statistics about informativeness, confidence, compactness,
and other criteria;

5) reasoning about entities and relationships to derive additional
knowledge that is not readily given in extensional form;

6) maintaining and growing the knowledge base as the world evol-
ves, with new facts coming into existence and being digitally
expressed on the Internet.

This tutorial will focus on the stages 1, 2, and 6: building, cleaning,
maintaining and growing. The second stage, cleaning, is indeed clo-
sely intertwined with the other two. Here, reasoning also plays an
important role. As for querying, we merely point to languages li-
ke SPARQL, which is roughly a schema-free equivalent of select-
project-join queries in the relational algebra. There is considerable
research on extending SPARQL by reachability constructs, regular
expressions, or temporal predicates (e.g., [6, 8, 72, 107, 127, 136]),
and, of course, there are big challenges regarding the optimizati-
on and scalability of query processing (e.g., [98]). Ranking the re-
sults of queries that yield more answers than a human would want
to see has been intensively studied for entity-centric search (e.g.,

finding soccer players who played for FC Barcelona) [31, 38, 62,
75, 81, 99, 102, 116, 132]. For general queries that aim to explo-
re the connections between multiple entities (e.g., co-infection with
HIV and tuberculosis in South Africa and treatments with particular
drugs) or ask for composite facts (e.g., songs and movies such that
the song is played in the movie), recent progress on statistical ran-
king models is presented in [55]. Finally, reasoning over uncertain
data is a huge topic (see, e.g., [16, 47]); we consider only specific
approaches that are particularly relevant for knowledge harvesting.

The key technology for tackling the goals of knowledge harve-
sting is known as information extraction (IE). It provides models,
algorithms, and tools for lifting Web pages, text sources, semistruc-
tured data such as HTML tables or Wikipedia infoboxes into expli-
cit facts – instances of unary, binary, or higher-arity relations. The
prevalent methods are (combinations of) rule-based pattern mat-
ching, natural language processing (NLP), and statistical machine
learning (ML). The IE field has made enormous progress in recent
years and became much more scalable, and also less dependent on
human supervision (see [1, 46, 50, 113] and references given there).

Fact extraction can be pursued in an output-oriented targeted
(“closed”) manner or in an input-oriented generic (“open”) man-
ner. In the case of output-oriented targeted IE, we are driven by a
given set of relations for which we would like to gather instances.
We are flexible in choosing our sources (e.g., can go only for easier
or cleaner sources with high return) and we can exploit redundan-
cy on the Web. Moreover, we have great flexibility regarding how
deep natural-language text is analyzed in a demand-driven manner.
A typical use case is to find the Alma Mater of as many scientists
as possible, using a small set of seed facts for training. In the ca-
se of input-oriented generic IE, we are focusing on a given input
source (e.g., a particular Web page, news site, or discussion forum)
and consider all conceivable relations at once. This approach ine-
vitably requires deep analysis of natural-language text, and it can
be successful only if sufficient training data is provided. A typical
use case is to automatically annotate news articles and extract as
many relations as possible from each news item. In this tutorial,
we largely focus on output-oriented targeted IE, as a cornerstone of
knowledge harvesting.

Several related areas are out of scope of this tutorial. As the out-
come of knowledge harvesting may be non-schematic facts with
different degrees of confidence in their validity, there is an obvious
connection to the broad areas of uncertain data management and
data spaces [65, 71]. However, organizing knowledge bases is a
special setting with characteristics that are very different from, for
example, sensor data. Thus, we will merely borrow selected me-
thods from the general theme of uncertain databases. Data integra-
tion and data exchange [20, 54, 61] are latently relevant, but these
lines of research are primarily schema-oriented. In knowledge har-
vesting, on the other hand, we are more concerned with individual
entities and their types and relationships. There is no prescripti-
ve schema, typing is the outcome of the harvesting and cleaning
process. Data cleaning [97] (e.g., for data warehouses) is an issue
insofar as entity matching and record linkage [42, 83] are a key ele-
ment for a vital knowledge base. We will look at this specific issue,
but disregard data cleaning at the level of entire databases. Final-
ly, text and Web mining provides algorithmic building blocks for
our agenda. However, we go beyond the informal discovery tasks
such as computing interesting tags or tag clouds from blogs and
online communities. Our goal is a rigorously formalized, machine-
processable knowledge base.

The tutorial is organized by progressively advancing the style of
knowledge that we aim to harvest. We start in Section 3 with gathe-
ring individual entities and carefully organizing them into seman-



tic classes (unary predicates). Then we raise the bar in Section 4
by looking at typed relationships between entities, limiting oursel-
ves to instances of binary relations (binary predicates). Finally, we
address the temporal validity of facts in Section 5, this way exten-
ding our scope to non-binary relations (higher-arity predicates or
even higher-order predicates). The discussion of these three levels
of knowledge harvesting is preceded by a short primer on technical
basics in Section 2.

2. TECHNICAL BACKGROUND
Knowledge harvesting and machine reading heavily rely on sta-

tistical machine learning (ML) and, to the extent that arbitrary text
inputs are considered, also on natural language processing (NLP).
In the following we provide some basic reference points.

Statistical Machine Learning (ML). One of the most funda-
mental ML models are classifiers. These are based on supervised
learning, with explicit training data. For example, we could train a
classifier to test whether a given substring of a Web table or sen-
tence is a temporal expression or not (including, perhaps, adverbi-
al phrases such as “last Monday”), or whether the whole sentence
talks about the CEO of a company. Methods for automatic classifi-
cation of text inputs are very mature; the main families are probabi-
listic methods (e.g., Bayesian models, logistic regression, etc.) and
discriminative models (e.g., support vector machines). Training a
classifier requires manual labeling, which is often the bottleneck;
insufficient training data will lead to poor accuracy of the classi-
fier’s predictions. Therefore, some semi-supervised learning me-
thods aim to combine sparse training data with large collections of
additional, unlabeled data (e.g., unlabeled Web pages).

Another fundamental building block from ML are models for
joint segmentation and labeling. These operate over sequences of
tokens and aim to find meaningful subsequences that will then be
labeled. For example, consider bibliographic entries with one or
more authors, a title, a source like a conference or journal, publis-
her, publication date and place, and so on. Such entries exhibit very
high diversity, including different orders of their elements, all kinds
of abbreviations, book chapters so that authors appear for both the
article and the entire book, and so on. We can model the structure
and possible orderings of components in a probabilistic automaton
and then use statistical learning to infer probabilities that govern
the production of realistic bibliographic entries. A learned model
along these lines would then process a new, previously unseen, ent-
ry by identifying segments of contiguous tokens and labeling each
segment by its role: author, title, journal, volume, issue, year, etc.
Mature ML methods for this purpose are Hidden Markov Models
(HMMs) and Conditional Random Fields (CRFs) [113, 126]. Their
training procedures merely require a set of typical inputs (bibliogra-
phic entries in our example), without any explicit manual labeling.
The model parameters are learned by likelihood-optimization tech-
niques, often via dynamic programming or gradient-descent me-
thods. For a new input, the trained model then computes the most
likely label sequence (or state sequence in the underlying FSA) that
explains the input. For HMMs, which use only locally bounded
contexts for predicting a label, this is the well-known Viterbi al-
gorithm. For CRFs, which support richer forms of context-aware
feature functions, similar but more advanced optimization methods
are used.

Natural Language Processing (NLP). Statistical learning is re-
levant for semistructured inputs such as Web tables or Wikipedia
infoboxes as well as unstructured text inputs. In the latter case, the-
re is usually a need to combine ML with NLP techniques [80, 91]
(many of which in turn employ ML models and algorithms). The
most widely used NLP method is part-of-speech tagging (PoS tag-

ging for short). A PoS tag adorns a word in a natural-language sen-
tence with the word’s grammatical role: noun, verb, adjective, pre-
position, pronoun, etc. This is a shallow technique that relies on a
stochastic notion of finite-state automata, often on Hidden Markov
Models (HMMs). Training these models is based on likelihood-
optimization methods; it requires a large amount of well-formed
input sentences but does not need any manual PoS labeling in the
training input. Once the model is trained, it can label the words in a
new sentence by their PoS tags, using dynamic programming. PoS
tagging is not computationally inexpensive, but its run-time cost is
usually acceptable and not a showstopper regarding scalability. An
important class of tags for the purpose of IE are so-called proper
nouns; these are (composite) nouns that do not have a preceding
article and are thus candidates for named entities.

For fully understanding the structure of a natural-language sen-
tence, deep parsing is needed. A popular class of parsers are lexical
dependency parsers, aka. link parsers. These are based on proba-
bilistic context-free grammars and compute an edge-labeled planar
graph that connects the constituents in the sentence according to the
syntactic-logical structure of the sentence. For example, if the se-
cond object of a verb (e.g., “gave . . . a present”) is placed far apart
from the verb because of a relative clause that elaborates on the first
object (e.g., “gave Mary, who had her 18th birthday, a present”), the
dependency structure determined by such a deep parser would cor-
rectly connect the verb with the first object (“Mary”) and the second
object (“a present”). Thus, although dependency parsing is a purely
syntax-driven method, it can be seen as a crude approximation of
the sentence’s semantics by means of a predicate-argument struc-
ture. Unfortunately, dependency parsing is computationally expen-
sive; it typically has to solve dynamic-programming problems over
a grammar with a huge number of (probabilistic) production rules.
Today, very expressive dependency parsers are available as open-
source software (e.g., CMU Link Parser, Stanford Lex Parser, Open
NLP tools, etc.).

An active research issue in NLP is to extend this line of analy-
sis into semantic role labeling (SRL) [68, 95]. Here a sentence is
viewed as a logical predicate, derived from the verbal phrase and
perhaps using a trained classifier, that comes with a number of argu-
ments such as acting agent, location, time, purpose, etc. SRL aims
to automatically fill these arguments or roles with the proper parts
of the sentence. One can think of this as mapping the sentence in-
to a frame-like knowledge representation. For example, sentences
that refer to purchases could be mapped into purchase-specific fra-
mes with roles like seller, buyer, goods, amount, etc., regardless of
whether the sentence is active or passive and whether the verb is
“buy”, “acquire”, etc. Obviously this is a very difficult task, especi-
ally because there are still only small-scale training corpora availa-
ble (e.g., PropBank [82] and FrameNet [96]).

Gazetteers. An additional ingredient for PoS tagging and exten-
ded forms of semantic role labeling are large dictionaries of person
names, location names, temporal expressions, etc. These are often
referred to as gazetteers, especially in the context of geographic
entity names. A popular example are the GeoNames gazetteers (see
geonames.org; [128] uses it for IE).

3. ENTITIES AND CLASSES

3.1 State of the Art
At this first level of knowledge harvesting, we are interested in

collecting all individual entities – persons, companies, cities, pro-
ducts, etc. – and organizing them into semantic classes (types) such
as artists, scientists, molecular biologists, singers, guitar players,
movies, computer games, etc. Of course, a given entity can belong



to multiple classes; for example, Angela Merkel is in classes li-
ke “politicians”, “scientists”, “female persons”, “German chancel-
lors”, and so on. Classes are mutually related by subclass/superclass
connections – inclusion dependencies in database jargon and hypo-
nymy/ hypernymy relations in linguistic jargon. For example, “Ger-
man chancellors” is a subclass of “politicians”. Altogether, we are
seeking for no more or less than a comprehensive set of all mea-
ningful entity types, and their instances in the real world: the isA
and instanceOf relations in a universal entity-relationship databa-
se. Automatically constructing such a first-level knowledge base is
known as taxonomy induction or sometimes ontology learning (a
slight misnomer as ontologies should be richer than mere taxono-
mies).

Wikipedia as key asset. Ten years ago, this task would have be-
en deemed elusive, being in the realm of “AI-complete” challenges.
But today, there are rich assets available that can be harnessed for
automatic knowledge harvesting. Most notably, the WordNet the-
saurus [63] is a hand-crafted collection of more than 100,000 se-
mantic classes along with fairly comprehensive subclass/superclass
relations. WordNet covers entity types in the form of high-level
concepts. It would know that biologists are scientists, scientists are
humans, humans are vertebrates, and so on. But it would not know
the specialized types of the modern world, such as “laser physi-
cists” or “European commissioners” and it can also not keep up
with the emergence of new types in the business and entertainment
world, such as “cloud computing providers”, “hedge fonds”, “hy-
brid cars”, “golden raspberry winners”, or “indie rock music”. Mo-
reover, WordNet has very little knowledge about instances of its
classes. For example, it knows Alan Turing as a scientist, but no-
ne of Ted Codd, Jim Gray, Ronald Rivest, or Barbara Liskov. Here
is the point where Wikipedia opened up great opportunities. The
English version of Wikipedia contains more than 3 million articles,
most of which correspond one-to-one to individual entities. In ad-
dition, the Wikipedia authors have manually placed the articles in
a rich set of categories which can be seen as classes. It may even
seem that Wikipedia itself and its category system already constitu-
te a solution to our task. However, this is a treacherous hypothesis.
In fact, the category system is very noisy, contains dangling ends
and mistakes, and is oriented by association rather than clean taxo-
nomic relations. For example, Robert Sherman (a composer) is in
the category “Walt Disney theatricals”, Frank Zappa in “1960s mu-
sic groups”, and Javier Navarette in “European composer stubs”,
but they are not theatricals, groups, or stubs, respectively. Google is
even in the category “Internet history”, but even Google’s harshest
critics would not claim that it is history. Similarly, sub-categories
do often not reflect the isA relation: the category “Einstein family”
(in which Albert Einstein is an instance) is a sub-category of “Al-
bert Einstein”, and “books about revolutions” are a sub-category of
“revolutions” (which may hold for some books, but certainly not
for all of them).

With these considerations, it is not obvious if and to what extent
the raw assets of WordNet and Wikipedia categories can be har-
vested and systematically organized. A major breakthrough along
these lines has been achieved by the work on building YAGO (Yet
Another Great Ontology) [123, 124], the parallel and independent
work on WikiTaxonomy [103, 104, 105], and the follow-up work
on KOG (Kylin Ontology Generator) [138, 139, 140]. We brief-
ly outline the methodology of YAGO; there are many commonali-
ties with the other two projects. YAGO initializes its class system
by importing all WordNet classes and their hyponymy/hypernymy
(subclass/superclass) relations. Each individual entity that YAGO
discovers in Wikipedia needs to be mapped into at least one of the
existing YAGO classes. If this fails, the entity (and its related facts)

are not admitted to the knowledge base. To this end, the Wikipedia
categories of the entity are compared to names of WordNet classes,
including the synonyms that WordNet knows for a class name. In
this comparison and to eliminate non-taxonomic categories, a noun
group parser is used to determine the logical head word of the cate-
gory name. For example, the head word of “American folk music of
the 20th century” is “music”. If the head word is in plural or can be
cast into plural form (which would not work for “music”), it is att-
empted to map the head word or the head word with its pre-modifier
(e.g., “folk music”) onto a WordNet class. If this results in a perfect
match of the names, then the entity is added to the WordNet class
and the category that led to the match is made a subclass of the
WordNet class. This way, we can automatically make “Presidents
of France” a subclass of “Presidents”. There are also limitations of
this heuristics: we cannot directly make the connection between the
Wikipedia category “Presidents of France” and the WordNet class
“French” (i.e., French people). The paths in the Wikipedia catego-
ry system may help to establish this subclassOf relation, but then
we face many noisy connections as well. Thus, YAGO exploits this
potential only to a limited extent.

Overall, these procedures ensure that we can maintain a consi-
stent knowledge base, where consistency eliminates dangling en-
tities or classes and also guarantees that the subclassOf relation is
acyclic. WikiTaxonomy uses fairly similar heuristics. It additional-
ly considers all instances of a category and a WordNet class in deci-
ding whether it should create a subclassOf relations. All these me-
thods are tuned towards high precision rather than recall. They are
amazingly powerful and work very well, but there are many possi-
ble mappings for the taxonomic relations that are not captured this
way. The publicly released version of YAGO contains 1,941,578
individual entities in 249,015 classes (plus about 19 million facts –
instances of 93 different binary relations carefully extracted from
Wikipedia infoboxes). The empirically assessed accuracy of the in-
stanceOf and subclassOf relations is around 97 percent. YAGO has
been integrated into DBpedia and other knowledge bases, and it has
been used to create a semantically annotated XML corpus of Wi-
kipedia used as a reference collection in the INEX benchmarking
series (see inex.otago.ac.nz).

The more recent work on KOG [140] takes a more ambitious
route by considering infobox templates that are abundantly used in
Wikipedia. A template is like a noisy form of schema, and the in-
clusion of one template’s fields (e.g., person with fields birth_date,
birth_place, etc.) in another template (e.g., scientist with additio-
nal fields like alma_mater, doctoral_advisor, known_for, etc.) may
be viewed as an indicator of a superClassOf relation. However, the
plethora of infobox templates and their frequent ad-hoc use (with
fields like “filler3”) makes this kind of knowledge mining a daun-
ting task. KOG uses a cleverly composed suite of machine-learning
tools and considers the actual instances of templates to infer sub-
sumption relations. [140] reports encouraging accuracy results, but
so far no taxonomic collection has been made available.

Of course, the Web itself is also a huge source of gathering in-
dividual entities for given classes. Directly using services such as
labs.google.com/sets, by starting with a few seed entities for a class
of interest, could have high recall based on surface co-occurrences
but would face tremendous noise and thus fail to achieve high pre-
cision. Recently, a smarter method has been developed by [134,
135] which exploits semistructured lists at Web scale and carefully
ranking the aggregated results by graph-based authority measures.
This technique is language-independent (works for Japanese the sa-
me way as for English) and achieves high precision, but it remains
to be seen whether its recall can go beyond the methods discussed
above which exploit hand-crafted sources such as Wikipedia, mo-



vie portals, etc. Moreover, this Web-centric approach needs to start
with a given class, it does not determine the classes themselves and
their subclassOf relations.

Entity disambiguation. When mapping a category to a Word-
Net class based on a clever name-matching method, a thorny issues
that we have so far disregarded is the ambiguity of names. For ex-
ample, should we map the category “drivers” to the WordNet sense
“driver: the operator of a motor vehicle” or to the sense “driver: de-
vice driver for a computer” of this polysemous word? YAGO uses a
simple heuristics to this end: it always choose the sense that is most
frequent in common language according to the WordNet statistics.
The same ambiguity issue arises for individual entities as well: do
“Dr. Joe Hellerstein, UC Berkeley” and “Prof. Joseph M. Heller-
stein, University of California” denote the same person? Conver-
sely, how can we tell that “Michael Jordan”, the NBA player, and
“Michael Jordan”, the Berkeley professor, are two different people?
Or that “LDA” is an ambiguous acronym, possible meanings being
“Latent Dirichlet Allocation”, “Legal Drinking Age”, and others?
This raises the general issue of entity resolution, also known as en-
tity reconciliation or record linkage. Given a string, perhaps with a
textual context, or a record with a few fields, what is the most likely
target for mapping the string onto an individual entity or semantic
class? A variant of this problem is to test two strings or records as
to whether they are duplicates [97].

There is extensive literature on entity resolution. Typically, the
first step is to define a similarity measure between strings/records
in context and possible target entities (or among strings/records
for de-duplication). For strings and entity names themselves, edit-
distance-based measures such as the Jaro-Winkler distance are po-
pular. Such measures can operate on flexible notions of tokens that
are formed by pre-processing (e.g., stemmed words, PoS-tagged
words, N-grams, etc.), and they can be combined and augmen-
ted with type-specific distances for numeric or categorical fields
(e.g., spatial distances for cities or zip codes) (see, e.g., [42, 41,
83] and references given there). Machine learning techniques may
be employed to consider the joint disambiguation of multiple enti-
ties [119]. For example, for detecting if two bibliographic entries
with different spellings, abbreviations, and typos in authors and ve-
nues are the same or not, there is a mutual reinforcement effect bet-
ween matching the different authors, the venues, etc. If you know
that two authors are most likely the same, this affects the likelihood
that two co-authors are the same as well. Of course, scalability is
a key issue here, especially for the de-duplication setting [15, 33,
83]. State-of-the-art approaches work reasonably well, but there is
considerable room for improvement. The problem of entity disam-
biguation remains a challenge.

Interestingly, the availability of large knowledge bases that know
typed entities and many facts about them can boost the effectiven-
ess of entity disambiguation. When we see a string (in context)
on a Web page, text document, or database record, we can match
it against all strings known in the knowledge base as synonyms
of some entities. For example, the knowledge base would know
both Michael Jeffrey Jordan and Michael I. Jordan, and further
facts about them. If the string context mentions words like Chicago
Bulls, center, or champion, we can perform a similar comparison
against the words in the types and facts of Michael Jeffrey Jordan
and would encounter high similarity. Thus, we would map this oc-
currence of “Michael Jordan” to the NBA player Michael Jeffrey
Jordan. On the other hand, if the string context contains words like
Berkeley, machine learning, or computer science, then Michael I.
Jordan would be the better target. This is a fairly simple but ama-
zingly effective heuristics, leveraging the situation that we already
have a rich knowledge base with plenty of well-structured infor-

mation [45, 129]. It can be further strengthened in its accuracy, by
constructing string contexts from multiple documents found on the
Web [34].

Collecting entity synonyms. The last point raises the questi-
on: how do we avoid the scalability problem of having to compare
a string (in context) against a huge number of possible target en-
tities? And how do we identify the string itself as a worthwhile
candidate for entity resolution? For the latter, we could run PoS
tagging and ML techniques such as CRFs (see, e.g., [114]) for seg-
menting and labeling. But if the knowledge base is rich enough in
terms of entity synonyms (including nicknames, abbreviations, and
perhaps even common typos), it would be easier and way more ef-
ficient to query the knowledge base for matching strings. To build
a fairly comprehensive collection of synonyms, YAGO has syste-
matically harvested the Wikipedia redirection and disambiguation
pages, and also considers strings in the ample href anchors that are
used to cross-link articles. Of course, Wikipedia is not and will ne-
ver be fully complete, neither in terms of synonyms nor in terms
of interesting entities. But for many domains, explicit dictionari-
es are available, e.g., imdb.com for movies, librarything.com for
books, musicbrainz.org for pop music, geonames.org for geogra-
phic places, DBLP for computer scientists, MeSH (Medical Sub-
ject Headings) and UMLS (Unified Medical Language System) and
for biomedical entities, and so on. In addition, and most important
for the rapidly changing world of product names, companies, and
business people, [34, 35] have developed efficient techniques for
mining news and Web sources to discover entity synonyms.

3.2 Problems and Challenges
Wikipedia categories reloaded. Since the early work on YA-

GO and WikiTaxonomy the Wikipedia category system has grown
much larger and also become somewhat cleaner. There is defini-
tely large room for improvement, especially regarding the recall
in distilling classes and subClassOf relations. One interesting asset
for re-addressing this issue is the large number of interwiki links
across the Wikipedia editions in different languages. Each edition
comes with its own category system. Semantically they should lar-
gely overlap, but they are independently crafted by different sub-
communities. This should offer a fertile ground for better harve-
sting of taxonomic relations.

Tags and topics. While Wikipedia is the focal point of knowled-
ge harvesting, there are plenty of other sources for mining taxono-
mic relations. These include “social tags” from online communities
such as del.icio.us, citeulike.org, librarything.com, or flickr.com,
and also tags assigned to blog postings and news articles. In ad-
dition, informally compiled directories such as dmoz.org are poten-
tially valuable, although their directory structure is not based on
taxonomic relations.

Long tail of entities. Going beyond the individual entities that
are featured as Wikipedia articles would be a worthwhile goal.
Even Wikipedia articles mention many people, organizations, and
events that do not correspond to articles themselves. For example,
can we systematically compile the spouses and children of all per-
sons known to YAGO, from articles and also biographies and other
Web sources? How can we build a machinery that automatically
identifies new entities on the Web as they appear and become rele-
vant (e.g., in the news)? Superficial approaches with high recall but
low precision are easily conceivable, but high-precision methods
that achieve near-human quality are a challenge. Even accurately
determining all current students of all DBLP authors seems impos-
sible today.

Robust disambiguation. The correct mapping of surface strings
onto unique entities remains a very difficult problem. Heuristics go



a long way, and the proliferation of explicit knowledge assets is
extremely helpful. However, a principled solution with very high
accuracy is still missing. Perhaps, even a better theory is needed,
for example, to characterize upper bounds for the best possible di-
sambiguation given a limited amount of input context. Obvious-
ly, a single-keyword query such as “Jordan” can never be properly
disambiguated (other than by guessing) if nothing else is known
about the user and her situational context or long-term history.

4. RELATIONSHIPS

4.1 State of the Art
Equipped with the knowledge about individual entities and their

types, we now aim to gather and clean facts about entities. Here we
consider instances of binary relations. Note that with typed entities,
these relations would have a type signature as well. For example,
we could be interested in: birthplace ⊆ Person × City, marriedTo
⊆ Person× Person, graduatedAt⊆ Person× University, hasAdvi-
sor ⊆ Scientist × Scientist, headquarteredIn ⊆ Company × City,
isCEOof ⊆ Person × Company, playsInstrument ⊆ Musician ×
Instrument, and many more. We disregard ternary and higher-arity
relationships, by assuming that there is typically a binary base fact
to which additional facts can refer. For example, the year of gradua-
tion could be another relation graduatedAtYear⊆ graduatedAtFact
× Year. This may look like a higher-order representation, but by
reifying the base facts it can be cast into standard first-order logic.

The methods for harvesting relational facts pursue different pa-
radigms: 1) rule-based with declarative querying as a key asset,
2) pattern-based drawing on NLP techniques and statistics, and 3)
learning-based with joint inferencing by coupled learners and lo-
gical reasoning about hypotheses. Obviously, the rule-based para-
digm is best suited for semistructured inputs such as Web tables,
the pattern-based paradigm is needed for natural-language inputs,
and the learning/reasoning-oriented paradigm aims to combine the
best of both worlds. In the following we discuss prior and ongoing
work in these three research avenues.

4.1.1 Rule/Query-based Methods
Wrappers and Wrapper Induction. From a DB perspective,

the obvious idea is to exploit regularities in the structure of Web
sources. In many cases, Web pages are actually generated from a
database-backed content management system. Then it is possible to
construct or automatically infer wrappers for fact extraction from
HTML headings, tables, lists, form fields, and other semistructured
elements. To this end, powerful languages for extraction scripts –
typically centered around regular expressions over DOM trees – ha-
ve been developed, and methods for learning structure from examp-
les have been successfully applied (see, e.g., [9, 28, 85, 86, 112]).
The latter is also known as wrapper induction. Some approaches
employed ML techniques like HMMs and classifiers, but the gene-
ral rationale has been to arrive at a set of good extraction rules that
could be applied in a deterministic manner. Early prototype systems
of this kind included Rapier [28] and the W4F toolkit [112]; more
recent systems that are being pursued further include Lixto [14, 30,
70], RoadRunner [43, 44], and SEAL [135].

Declarative extraction. More recent work on rule-based fact ga-
thering is based on DB-style declarative IE (see [50] for several
overview articles). [48, 108, 117] have shown how to combine que-
ry processing for extraction and consistency-centered inferencing
into a unified framework. In the Cimple framework [117], non-
declarative program parts (e.g., for text-pattern analysis) can be en-
capsulated into declarative programs in the XLog language. Consi-
stency constraints are lifted into first-order logical rules, which can

then be checked in a unified way against both existing facts and
candidate facts derived during the extraction process. SystemT [84,
93, 108] has developed a declarative language, coined AQL, for fact
extraction tasks, along with an algebra and query rewriting rules.

A very nice showcase is the (at least largely) automated con-
struction and maintenance of the DBLife community portal (dbli-
fe.cs.wisc.edu), which is based on the Cimple tool suite [48, 49].
DBLife features automatically compiled “super-homepages” of re-
searchers with bibliographic data as well as facts about community
services (PC work, etc.), colloquium lectures given at important
institutions, and much more. For gathering and reconciling these
facts, Cimple provides a suite of DB-style extractors based on pat-
tern matching and dictionary lookups. These extractors are com-
bined into execution plans, and periodically applied to a carefully
selected set of relevant Web sources. The latter include prominent
sites like DBLP and the dbworld messaging archive, but also im-
portant conference and university pages that are determined semi-
automatically.

Efficiency and optimization. While declarative IE is a power-
ful paradigm, it gives rise to major issues for indexing and query
processing. [1, 2] discuss scalability issues in IE. The QXtract sy-
stem [2] aims to filter relevant from irrelevant documents sources
for a given set of queries. The optimization framework by [76, 78,
79] aims to generate execution plans for extraction tasks and text-
mining workflows. This entails trading off the costs of crawling do-
cuments vs. gathering relevant sources by appropriately generated
queries. Although text-centric, this framework employs many in-
gredients from DB query optimization: selectivity estimation, plan
generation, etc. [36, 37] present indexing strategies over evolving
data. [39] provide SQL-like, structured queries directly over un-
structured or loosely structured Wikipedia articles. [93, 108] have
shown how to use algebraic representations for query optimizati-
on: pushing down expensive extraction operators and ordering join
conditions (matching predicates) for lower-cost execution plans.
[92] investigates efficient search techniques for Medline articles in
the biomedical domain. Also in the medical domain, recent pro-
jects such as AliBaba [100] address efficiency aspects by selecting
the most suitable patterns to be used for IE.

Wikipedia, again. Rule-based fact extraction has also been cu-
stomized to Wikipedia as a knowledge source, more specifically to
exploiting the great asset provided by infoboxes. Infoboxes are col-
lections of attribute-value pairs. They are often based on templates
and then reused for important types of entities such as countries,
companies, scientists, music bands, sports teams, etc. For example,
the infobox for Nicolas Sarkozy gives us data such as birth_date =
28 January 1955, birth_place = Paris, spouse = Carla Bruni, oc-
cupation = lawyer, and alma_mater = University of Paris X: Nan-
terre. DBpedia [12] has pioneered the massive extraction of info-
box facts. It uses simple, recall-oriented techniques and essentially
places all attribute-value pairs into its knowledge base as they are.
The values do not necessarily correspond to known (and typed) en-
tities; values as well as attribute names are of mixed quality caused
by non-sensical names (recall “filler3”) and non-unique naming.
YAGO [124], on the other hand, uses a suite of carefully designed
rules for frequently used infobox attributes to extract and norma-
lize the corresponding values. For example, the spouse attribute is
mapped to the marriedTo relation, and the extracted fact then is Ni-
colas Sarkozy marriedTo Carla Bruni. YAGO did not attempt to
extract all infobox attributes, as their “long tail” has a lot of na-
ming diversity and noise. The Kylin/KOG project [138, 139, 140]
is a more recent attempt at universally harvesting infoboxes, with
careful cleaning based on advanced ML techniques.



Type checking. As YAGO has all entities typed by their assi-
gnment to one or more classes, binary relations have a type signa-
ture as well. For example, the isCEOof relation can be specified to
have a domain BusinessPerson or simply Person and a range Com-
pany (where we denote relations as powerset functions). When the
extractor produces a candidate fact like Nicolas Sarkozy isCEOof
France, we can reject it because the second argument, France, is
not a company. Similarly, the hypothesis Nicolas Sarkozy married-
To Élysée Palace which may, perhaps, be incorrectly inferred from
sentences such as “Nicolas Sarkozy loves his work with the Élysée
Palace” (or from an incorrect interpretation of the infobox attribute
“Residence”), is falsified by the type invariant that marriages are
between persons. Type checking is a powerful building block for
high-precision harvesting of relational facts. It is enabled by the
methods of Section 3 for gathering individual entities and carefully
organizing them into semantic classes with a rigorous subclassOf
hierarchy.

4.1.2 Pattern-based Methods
Hand-crafted patterns. Using textual patterns for fact extracti-

on from natural-language documents has a long history in the NLP
and AI communities, dating back to the works by Hindle [74] and
Hearst [73]. [74] proposed unsupervised clustering techniques to
identify relationships among entities, based on the observation that
natural language has restrictions on which noun phrases can oc-
cur as subject or object of a given verbal phrase. For example,
wine may be drunk or produced, but not eaten or driven. Thus,
noun phrases can be clustered based on their appearance in simi-
lar verbal phrases. Hearst patterns [73] are PoS-enriched regular
expressions (so-called lexico-syntactic patterns) which aim to iden-
tify instances of predefined relationship types from free text. For
example, for the instanceOf relation we can automatically deter-
mine instances from noun phrases around a syntactic pattern like
〈NP0 such as {NP1, NP2 . . . (and|or)}NPn〉 (where NP is the PoS
tag for proper nouns). Hearst patterns have later been defined also
for other taxonomic relations [77], including partOf [18] and also
causal relations [69]. Hearst patterns yield relatively high precision,
but typically suffer from low recall due to the sparseness of the ex-
act patterns. In any case, the patterns are hand-crafted; for arbitary
target relations (e.g., marriedTo or hasAdvisor) it would be difficult
to come up with expressive yet accurate patterns.

Pattern-fact duality. The early work on hand-crafted patterns
led to the goal of automatically constructing characteristic patterns
for a given relation of interest. The seminal work by Brin [22] was
centered around the following observation on the duality of facts
and patterns: if we knew enough facts for a relation (e.g., instan-
ces of married couples) we could automatically find textual patterns
and distill the best ones, and if we knew good patterns, we could au-
tomatically find more facts. Initially, this mutually recursive gathe-
ring process may look like a daunting ML task, but extensive hand-
labeling for training would usually be out of the question anyway.
Instead, [22] suggested the following almost-unsupervised method,
which has later become the prevalent approach. The fact harvesting
starts with a small set of seed facts for one or more relations of inte-
rest, then automatically finds markup, textual, or linguistic patterns
in the underlying sources as indicators of facts, and finally uses
these patterns to identify new fact candidates as further hypotheses
to populate the relations in the knowledge base. For example, for
collecting facts about the Alma Mater and doctoral advisor of re-
searchers, one could start with seeds such as AlmaMater(Jim Gray,
UC Berkeley), AlmaMater(Hector Garcia-Molina, Stanford), Advi-
sor(Jim Gray, Mike Harrison), and Advisor(Hector Garcia-Molina,
Gio Wiederhold). We could then find text patterns such as “x gra-

duated at u”, “x and his advisor y”, and “professor y and his stu-
dent x” (with placeholders x, u, y for the involved named entities),
which in turn could lead to discovering new facts such as AlmaMa-
ter(Susan Davidson, Princeton) and Advisor(Susan Davidson, Hec-
tor Garcia-Molina). This process of gathering and generating facts
and patterns is then iterated.

At each iteration, some form of statistical assessment is needed
to quantify the indicative strengths of patterns and the confidence
in fact candidates and to prune noisy candidates accordingly. For
example, we could use a search engine or sample a large Web cor-
pus to compute the (point-wise) mutual information (MI) between
the two entities in a fact or between a pattern and a fact that it sup-
ports. This is a frequency-based measure for the relative entropy
(Kullback-Leibler divergence) of two observations (e.g., the two
entities in a fact) co-occurring together vs. being independently ob-
served (i.e., co-occurring accidentally at random). Only the facts
and patterns with MI measures above some threshold would be
kept for the knowledge base and the next iteration of the harve-
sting process. Additional plausability tests can be employed based
on logical consistency constraints, to reduce the false-positive ra-
te. For example, if researcher x graduated from university u under
the supervision of y, then y would have to be a professor or lecture
with a position at or other connection to u. We will come back to
this theme further below.

Advanced pattern generation. The iterative process outlined
above is powerful, but difficult to tune (regarding thresholds, weigh-
ting parameters, etc.) and susceptible to drifting away from its tar-
get. While high recall is easily possible, the precision would often
be unacceptable. This led to a series of improvements in a variety
of projects and tool developments, most notably, Snowball [3], Se-
magix/SWETO [5, 118], KnowItAll [59], Text2Onto [21, 40], LEI-
LA [122], TextRunner [13, 142], SEAL [134], and the work by [23]
and [141] (and others). Snowball, KnowItAll, and Text2Onto im-
proved the statistical assessment of fact candidates and patterns in
a variety of ways, regarding robustness (lower false-positive rate
while still retaining high recall), expressiveness (e.g., by adding
PoS tagging and other NLP-based features), and efficiency (lower-
cost estimates for MI and other measures). Semagix/SWETO in-
tegrated heuristics for entity disambiguation into the fact extracti-
on process. SEAL combined the seed-based harvesting with graph-
proximity-oriented assessment. [23] proposed the use of lexical de-
pendency parsing for a richer representation of the sentences before
identifying patterns; pattern candidates would then be the word se-
quences on the shortest paths between the two entities that form
the fact hypothesis. [141] extended these approaches to extracting
higher-arity relations and complex events. LEILA [122] used de-
pendency-parsing-based features for boosted precision, and also
extended the bootstrapping technique by incorporating both posi-
tive and negative seeds. Negative seeds are entity pairs which are
known to not belong to the relation of interest; these may include
generalized patterns such as regular expressions over tokens. The
negative seeds help to discover spurious patterns even if they recei-
ve support from the positive seeds. For example, for the isCapitalOf
relation, seeds like (Paris, France) and (Berlin, Germany) can ea-
sily lead to the poor pattern “x is the largest city of y”; negative
seeds like (Sydney, Australia) or (Rio de Janeiro, Brazil) can coun-
ter this effect. TextRunner extended the pattern-fact bootstrapping
paradigm to Open IE, where the harvesting is not focused on a par-
ticular relation but considers all relationships expressed in verbal
phrases.

Semistructured inputs. Pattern-based extraction was designed
for natural-language input, but is equally suited for semi-structured
inputs such as Web tables or lists. For example, patterns such as



“birth date: y” can be learned and applied if the left-hand argu-
ment (person x) can be inferred from the context (e.g., the title of
a homepage or Wikipedia article). DOM-tree-based patterns that
combine, for example, a column name in a table header with the
value in a table cell, can also be cast into the fact-pattern duali-
ty framework. However, the output of such an approach may need
substantial postprocessing (e.g., clustering, de-duplicating, plausa-
bility testing, etc.). [25, 56] present recent approaches for tapping
on HTML tables and lists at Web scale.

Another form of structured-inputs situation is to start with sever-
al formalized knowledge sources and obtaining better knowledge
bases by integrating them. This is also known as ontology merging.
[90] has developed mapping methods for the automatic alignment
of multiple ontological sources. [131] combined logical reasoning
and statistical arguments for merging knowledge from multiple, he-
terogeneous ontologies. [89] devised ways of (semi-) automatical-
ly extracting smaller but high-quality, domain-specific ontologies
from specific Web sources through interaction with a human on-
tology engineer. An overview of approaches for involving humans
for quality assurance or active learning, including “wisdom of the
crowd” games, is given in [52].

4.1.3 Learning/Reasoning-based Methods
To reconcile the high recall provided by pattern-based harvesting

with the high precision of rule-based methods, pattern-based me-
thods can be augmented by an additional form of joint/constrained
reasoning on the set of fact hypotheses gathered by a recall-oriented
method. Consider, for example, a situation where we have compiled
several hypotheses about facts of the marriedTo relation: (Carla,
Nicolas), (Carla, Mick), (Carla, Benjamin), (Bianca, Mick), (Chan-
tal, Nicolas). If we independently accept some of these hypotheses
as new facts for the knowledge base, we may end up with the sa-
me person having multiple spouses (at the same time – assume we
are looking at a snapshot in time). If, on the other hand, we consi-
der the joint probability distribution for these hypotheses being true
or false, we have a better perspective for accepting the truly valid
ones. Moreover and most importantly, if we add a constraint that
marriedTo is an injective function (for any given timepoint), we
may be able to eliminate the false hypotheses by means of cons-
traint violation. This form of consistency awareness is in fact a DB
paradigm added to the more ML/AI-oriented harvesting methods
considered so far.

Statistical Relational Learning. The field of statistical relatio-
nal learning (SRL) [67] has gained strong interest in both the AI and
DB communities. Within the SRL family, Markov Logic Networks
(MLN) [53, 110] are probably the most versatile approach in com-
bining first-order logic rules and probabilistic graphical models;
the Alchemy open-source software implements a wide variety of
MLN-based algorithms [4]. The Markov Logic framework works
by grounding rules against base facts and newly extracted candida-
te facts: substituting constants for the variables in the rules so as
to produce a set of propositional-logic clauses without any varia-
bles. Now the literals (concrete fact hypotheses) in the clauses are
interpreted as binary random variables, with a probabilistic depen-
dency between two literals if they appear in the same clause. Thus,
the interconnection of clauses determines the complexity of reaso-
ning about this setting. This probabilistic structure forms a Markov
Random Field (MRF); we can view this as the machine-language
representation of the more elegant MLN-level representation. The
goal of the MLN solver is to compute the joint probability distri-
bution of all variables in the MRF, or to determine the most likely
joint assignment of truth values. Like in most probabilistic graphi-
cal models, inference in MLNs – actually the underlying MRFs – is

NP-hard. This is why efficient approximations and techniques for
Markov Chain Monte Carlo (MCMC) sampling [106, 109] need to
be employed.

Kylin/KOG [138, 139, 140] is an interesting application of MLNs
and a suite of other learning techniques. It aims to infer “missing
infobox values” in Wikipedia. Consider an entity of a given type
(e.g., scientist) for which many Wikipedia entities have a rich in-
fobox (e.g., with values for the Alma Mater), but the given entity
is lacking one or more attributes in its infobox or does not have an
infobox at all (which is indeed the case for many entities “in the
long tail”). The existing infoboxes for this type (as well as other as-
sets such as the YAGO taxonomy) are used for learning a model by
which the entity type and missing attribute values can be inferred.

Constraints Conditional Models (CCMs) [32, 111] are another
way of combining declarative and probabilistic models and have
been applied to IE tasks such as entity disambiguation and seman-
tic role labeling. In the ReadTheWeb project [29], semi-supervised
learning ensembles have been combined with constraints for ex-
tracting entities and facts from a huge Web corpus. Efficiency is a
major issue for these methods: CCMs are mapped into integer li-
near programs, ReadTheWeb uses massive parallelism on a large
cluster (but does not report any figures on resource consumption
and run-time).

Leveraging existing knowledge. Parallel work that has found
new ways of combining pattern-based harvesting with consistency
reasoning is the SOFIE methodology [121, 125], which was deve-
loped to enable automatic growth of YAGO while retaining the high
level of near-human quality. SOFIE maps all ingredients – known
facts from the knowledge base, new fact hypotheses, patterns, cons-
traints, and possible entity disambiguations – into a set of weigh-
ted clauses, where the weights are derived from the automatically
gathered statistical evidence. This representation is also grounded,
just like in the MLN-based approaches. In contrast to MLNs, howe-
ver, the goal of the reasoning is not to infer a joint probability dis-
tribution, but SOFIE settles for the somewhat simpler goal of com-
puting truth values such that the total weight of satisfied clauses is
maximized. This is also NP-hard, but there are many good approxi-
mation algorithms, and SOFIE customized various elements from
the prior work on MaxSat solvers to the specific structure of clau-
ses in its knowledge harvesting and assessment setting. This uni-
fied reasoning includes entity disambiguation, provides very high
precision (while restricting recall), and is reasonably efficient: an
overnight run on a standard PC can process thousands of rich Web
pages (e.g., biographies or Wikipedia articles), with the grounding
being the most expensive part.

SOFIE exploits YAGO and its rigorous entity typing for both
accuracy and efficiency. As for accuracy, recall that all entities are
typed by their assignment to one or more classes. Thus, binary rela-
tions have a type signature as well. This way, incorrect hypotheses
such as Jim Gray hasAlmaMater San Francisco can be immediate-
ly falsified because San Francisco is a city and not a university, and
thus violates the type condition. In the same vein, constraints about
types and relations are a very effective means of hardening the out-
put of SOFIE. As for efficiency, the typing has two highly bene-
ficial effects. First, many type-incorrect hypotheses can be pruned
early before entering the reasoning phase. Second, in grounding the
first-order constraints, we need to consider only constants (entities
from the knowledge base) that match the required types in the cons-
traints. This reduces the size of the clauses set by a large margin,
and speeds up the subsequent reasoning as well. While these tech-
niques are not rocket science, they clearly demonstrate the need for
clever engineering and the great asset than an existing knowledge
core, such as YAGO, provides to further growing a fact collection.



This theme – use knowledge to better acquire more knowledge – is
an exciting direction to be explored further.

Open Information Extraction. Recent work by [24, 26, 27] ad-
dresses the goal of open information extraction (Open IE). The Tex-
tRunner system [13, 142] aims at extracting all meaningful relati-
ons from Web pages (coined “assertions”), rather than a predefined
set of canonical relations. Here, entities are not yet necessarily di-
sambiguated (i.e., the same extracted name may refer to different
real-world entities), and relations are not canonicalized: all verbal
phrases found in natural language sentences may constitute a valid
relation type between two or more entities. These two relaxations
make it very difficult to apply any form of consistency reasoning
on the extracted data.

4.2 Problems and Challenges
Reconciling high precision and high recall. The biggest chal-

lenge is to achieve both high precision and high recall. Achieving
one while neglecting the other is easy, but automatically construc-
ting knowledge bases with near-human quality requires both. To
this end, combining pattern-based methods (for high recall) and re-
asoning about candidate facts as hypotheses (for high precision)
in a declarative manner seems to be the most promising avenue.
A great advantage of a declarative approach is the ability to treat
constraints (and other logical dependencies) as first-order rules and
apply them to millions of candidate facts “at once”. Today’s me-
thods work by grounding rules and combining the grounded model
with both seed facts and newly found candidate facts. It is conceiva-
ble, though, and may be very worthwhile to pursue that constraints
are dealt with in their lifted first-order form, without any tedious
grounding. However, this would probably entail the need for ad-
opting full-fledged theorem proving methods from computational
logics.

Extending and optimizing declarative IE. The DB-oriented
approaches of declarative extraction languages have the advanta-
ge of enabling a suite of query optimization techniques. However,
the current generation of these approaches is still primarily geared
for semistructured inputs such as Web tables. It is not clear how to
generalize to arbitrary domains and input types, including natural
language. For example, how would one incorporate pattern-based
and learning-based methods into a declarative extraction language,
with full capabilities for execution-plan rewriting and optimizati-
on?

Types and constraints. Typed entities and type signatures for
relations can drastically reduce the number of grounded instan-
ces. Typing and consistency constraints are also powerful assets for
improving precision. In the MLN-based and Max-Sat-based work,
constraints are typically treated in a soft manner: they can be vio-
lated (by some instances in the grounded model), but this incurs
a penalty. In some cases, however, we may want to enforce hard
constraints. How to deal with the co-existence of both soft and hard
constraints is an open issue. Overemphasizing hard constraints may
result in empty results, while soft constraints could dilute the outco-
me of the reasoning. A unified reasoning framework thus requires
a statistically quantified impact of soft constraints, which may be
violated by a certain amount of instances.

Inconsistencies. Should we aim to keep the knowledge base con-
sistent at all times and perform eager cleaning, or would it have
advantages to keep diverse, potentially inconsistent hypotheses as
first-class citizens and rather perform uncertainty-aware reasoning
at query time? The latter faces on-line efficiency challenges in re-
solving inconsistencies at query time or whenever required by an
application task, with interactive response times.

Scale and dynamics. For a universal knowledge base, one would
need to process a very large set of Web sources, potentially on a dai-
ly basis, as the world progresses rapidly. Even when looking only at
high-quality sources such as news articles and scientific publicati-
ons, the rate at which online-available knowledge grows poses ma-
jor challenges to any harvesting approach. Even the rate of major
edits of Wikipedia articles presents a challenge. Imagine compu-
ting all spouses and their validity periods of all people mentioned
in Wikipedia – in one night, with > 90 percent precision and > 90
percent recall. This would be quite a challenging benchmark. Per-
haps, knowledge harvesting needs to be adapted to a cloud-style
or distributed infrastructure with massively parallel computation.
Some of the steps in knowledge harvesting are embarrasingly par-
allel (e.g., pre-processing incoming Web sources by NLP tools),
but others would be difficult to parallelize (e.g., consistency reaso-
ning).

Open IE and generic reasoning. In the long-term, targeted IE
with a fixed set of relations will be insufficient, and open IE for
arbitary, previously unknown, relation types would be the ultima-
te goal. How can we make the few existing approaches to open IE
more robust for rigorous knowledge base building (with canonicali-
zed entity and relation names), or at least for extending an existing
knowledge base? What is the role of consistency reasoning in such
an endeavor? Non-canonical facts (with diverse naming) make it
difficult to apply the currently used reasoning approaches. Perhaps,
new combinations of reasoning with semi-supervised ML methods
may hold the answer?

5. TEMPORAL KNOWLEDGE

5.1 State of the Art
So far we have simplified our knowledge-harvesting setting by

assuming that facts are time-invariant. This is appropriate for some
relation types, for example, for finding birth dates of famous peo-
ple, but inappropriate for evolving facts, e.g., presidents of coun-
tries or CEOs of companies. In fact, time-dependent relations seem
to be far more common than time-invariant ones. For example, fin-
ding all spouses of famous people, current and former ones, invol-
ves understanding temporal relations. Extracting the validity time
of facts involves detecting explicit temporal expressions such as da-
tes as well as implicit expressions in the form of adverbial phrases
such as “last Monday”, “next week”, or “years ago”. Moreover, one
often has to deal with incomplete time information (e.g., the begin
of someone holding a political office but no end-of-term date given,
although the person may meanwhile be dead), and with different ti-
me resolutions (e.g., only the year and month for the begin of the
term, but the exact date for related events). In addition to the com-
plexity of extracting temporal knowledge, this also entails difficult
issues of appropriately reasoning about interrelated time points or
intervals. For example, the constraint that each person has at most
one legal spouse now becomes a more complex condition that the
validity intervals of the marriedTo instances for the same person
must be non-overlapping.

Initial work on these issues includes [7, 17, 101, 136, 143]. For
illustration of conceivable approaches, we briefly outline our pre-
liminary work towards a Timely-YAGO (T-YAGO) knowledge ba-
se [136]. We first use - time-ignorant - fact extraction techniques to
collect base facts and sentences (or semistructured elements such
as lists, tables, infoboxes) in which they are expressed. Then we
analyze these sentences and their contexts for additional informati-
on about the temporal scope of the facts. Temporal expressions can
be explicit expressions like dates or implicit expressions like ad-
verbial phrases. The former can be extracted by regular expression



matching, the latter require deeper NLP and/or a good dictionary
of temporal expressions [133]. For both it is often necessary to a)
validate that they actually refer to the considered fact (and not to
another aspect of the same sentence) and b) determine the exact
denotation that connects the fact and the temporal expression. For
example, an expression may denote the beginning of an interval
during which the fact holds, its end, both, or a relative timepoint or
interval.

To cope with the variety of temporal expressions, a unified repre-
sentation is helpful. Explicit expressions should have (earliest, la-
test) bounds for timepoints and the begin and end of intervals [143].
This is convenient for capturing different resolutions (e.g., “July
2009” vs. “2009”), and checking, cleaning, and refining temporal
information. Alternatively, one could represent the uncertain tem-
poral scope of a fact by means of (time-range-bucketized) histo-
grams [115] or other kinds of probabilistic models (e.g., a Gaussian
for the uncertain timepoint of an event). The DB and AI fields have
strong track records on temporal models and may offer further al-
ternatives for representing temporal knowledge (see, e.g., [10, 64]).

As T-YAGO is based on an RDF-style data model, we can cap-
ture only binary relations whereas temporal facts would rather ap-
pear to be higher-arity relations or even higher-order facts. We cir-
cumvent this issue by reifying base facts, giving them explicit iden-
tifiers, and then using these identifiers in additional facts about time
scopes (as if the identifiers were constant literals in the underlying
logical model). For example, for the ternary relation between Nico-
las Sarkozy, the Grand Cross of the Légion d’Honneur, and 2007,
we use the original time-agnostic fact as a primary fact with identi-
fier #1. For temporal facts valid at a time point, we use the relation
onDate to describe the validity time. Then we represent the tempo-
ral property of the primary fact as: #1 onDate 2007. For temporal
facts that are valid during a time period, we use two relations to
represent the interval: the relation since for the begin time point,
and the relation until for the end time point. For example, the fact
that Nicolas Sarkozy was Mayor of Neuilly-sur-Seine from 1983 to
2002 is represented as #2: Nicolas_Sarkozy mayorOf Neuilly-sur-
Seine, #3: #2 since 1983, and #4: #2 until 2002.

Sometimes it is impossible to extract accurate time-points, say
the exact day, and sometimes we may know only the begin or the
end of a fact’s validity interval but not both. For these situations,
we use the above mentioned representation for time-points with
the earliest and latest possible time to constrain the range of the
true time point. For example, if we know that Nicolas Sarkozy was
elected for Mayor of Neuilly-sur-Seine on April 29, 1983 and re-
signed from this office on May, 2002 we would add the temporal
facts #3: #2 since [29-April-1983, 29-April-1983] and #4: #2 until
[1-May-2002, 31-May-2002]. If we later figure out that he resigned
from this office exactly on May 7, 2002, we are able to refine the
until relation for #2 into #4: #2 until [7-May-2002, 7-May-2002].

For querying a time-aware knowledge base, languages like SPAR-
QL need extensions, too. Reification and fact identifiers or fact-
identifier variables can be added to the concept of triple patterns,
and additional temporal predicates such as during, overlap, inYe-
ar, etc. are needed. These issues and also the ranking of temporal
search results are being investigated in the exploratory work of [17,
101, 107, 127, 136]; aggregating temporal facts on a per-entity ba-
sis and visualizing them as timelines is addressed in [7] and the
Timeline Project (see www.simile-widgets.org/timeline).

5.2 Problems and Challenges
This aspect of temporal knowledge harvesting is relatively new

and the ongoing work along these lines is fairly preliminary. Thus,
there are plenty of research opportunities.

Incomplete and uncertain temporal scopes. In knowledge har-
vesting, incompleteness and uncertainty are intrinsic features of
temporal facts. How to represent them in an expressive yet easy-
to-manage way is a widely open area. We need to capture con-
tradictory information about the begin, end, duration, and perhaps
even relative ordering of relational instances (e.g., a marriage or the
term of a political office), and we need to cope with different time
resolutions and missing pieces of information. The representation
must support refinements as more evidence is collected from Web
sources. While prior work on temporal modeling (mostly in AI and
DB theory) is highly relevant, we believe that the requirements for
the specific purpose of knowledge harvesting are sufficiently diffe-
rent to justify and inspire a fresh look.

Consistency reasoning. For assessing and cleaning temporal hy-
potheses in a knowledge base, consistency reasoning may play a
key role. For example, marriages of the same person must not over-
lap in time. Other constraints may refer to the relative ordering of
facts: if X graduated with doctoral advisor Y , then Y herself/himself
must have graduated before X . When reasoning about the validity
of facts in the presence of such constraints, both base facts and facts
about temporal scopes need to be considered together. For example,
if we see strong evidence that X graduated before Y , perhaps this
is correct and Y was not the true advisor of X . We believe that
reasoning methods along these lines require a carefully designed
integration of logical and statistical elements.

Narrative information. Many biographies, which are among the
richest sources for temporal knowledge, have a narrative structure.
They report events in chronological order, without necessarily gi-
ving explicit dates for each and every fact. The issue here is how to
exploit these relative orderings for knowledge extraction. This may
require very advanced NLP methods, but should also tie in with the
temporal consistency reasoning pointed out above.

Temporal querying. Although we sketched some possible ap-
proaches to querying and exploring temporal knowledge, the prin-
cipled design of a query language and the development of efficient
query processing algorithms are widely open. Obviously, this can
build on the extensive prior work on temporal databases, but it also
needs to consider the very different setting now: no schema, need
for flexible search (incl. combined fact-keyword predicates), dif-
ferent confidence in different pieces of knowledge, ranking as a
first-class citizen.
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