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Abstract In this paper, we propose a new generic filter

called Iterated Extended Kalman Filter on Lie Groups.

It allows to perform parameter estimation when the

state and the measurements evolve on matrix Lie groups.

The contribution of this work is threefold: 1) the pro-

posed filter generalizes the Euclidean Iterated Extended

Kalman Filter to the case where both the state and the

measurements evolve on Lie groups, 2) this novel fil-

ter bridges the gap between the minimization of intrin-

sic non linear least squares criteria and filtering on Lie

groups, 3) in order to detect and remove outlier mea-

surements, a statistical test on Lie groups is proposed.

In order to demonstrate the efficiency of the pro-

posed generic filter, it is applied to the specific problem

of relative motion averaging, both on synthetic and real

data, for Lie groups SE(3) (rigid body motions), SL(3)
(homographies) and Sim(3) (3D similarities). Typical

applications of these problems are camera network cali-

bration, image mosaicing and partial 3D reconstruction
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merging problem. In each of these three applications,

our approach significantly outperforms the state of the

art algorithms.
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1 Introduction

During the last decade, parameter estimation through

optimization on matrix manifolds has been extensively

studied [1] and employed in a wide range of applications

[46]. This is due to the fact that taking intrinsically into

account the geometry of the manifold increases the rate

of convergence of algorithms [54] and helps to avoid

singularities.
When the parameters follow a dynamical system

and/or when the measurements are acquired sequen-

tially, it is important to be able to perform the estima-

tion by filtering [35].

The link between optimization and filtering on Eu-
clidean spaces, in the context of non linear least squares,

has already been studied [5, 9]. It led to the Iterated
Extended Kalman Filter (IEKF) that produces better
results in practice than the Extended Kalman Filter

(EKF).

Even if several works successfully extended Euclidean

filtering algorithms to manifolds (see Table 1 in [15]), to
the best of our knowledge, the link between optimiza-

tion and filtering has not been established for parameter

estimation on manifolds yet.

In this work, we focus on bridging the gap between

the formulation of intrinsic non linear least squares cri-

teria and Kalman filtering on matrix Lie groups [32]
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that form an important kind of manifolds. Typical ex-

amples include 3D rotation matrices SO(3), unitary
quaternions SU (2), rigid-body motion SE(3), 3D simi-

larities Sim(3), homographies SL(3). More specifically,

we are interested in generalizing the IEKF to the case

of a state and measurements evolving on Lie groups.

1.1 Related Work

On the one hand, a large amount of works proposes

to minimize intrinsic non linear least squares to es-

timate parameters evolving on a Lie group. Most of

them apply a modified Gauss-Newton algorithm (GN)

[10], or closely related algorithms such as Levenberg-

Marquardt or Reweighted Non Linear Least Squares,

to take into account the geometry of the Lie group.
[62] was the first to propose a modified GN to estimate
a 3D orientation. Simultaneous Localization and Map-
ping approaches (SLAM) [31, 36, 41, 42] are based on a

GN like algorithm to estimate 3D points as well as cam-

era poses from a video sequence and [44] uses a GN to

estimate homographies. In the more specific context of

estimating global transformations from relative trans-
formation measurements, several works derived specific
GN like algorithms: [20] and [30] tackle the synchroniza-
tion of rotations problem, [55] considers the consistent

pose registration problem, [60] covers the partial 3D re-

construction merging problem and [50] performs image

mosaicking.

On the other hand, a large number of Kalman-like

filters has been proposed to estimate a state evolving on

a Lie group: [23, 48, 43, 52] deal with the estimation of

a 3D orientation, [47] dynamically estimates homogra-

phies and [24] performs SLAM. In [12, 11] an extended

Kalman filter on Lie groups is derived, which is dedi-

cated to continuous systems possessing symmetries. In

our previous papers [18, 15], we generalize the extended

Kalman filter to Lie groups both for discrete and con-

tinuous prediction models. However, these approaches

are not related to optimization on Lie groups.

To the best of our knowledge, only a few works,

that are specifically devoted to SLAM, have related fil-

tering to optimization on Lie groups. [61] proposes an

information-filter like algorithm while [39, 38] derive
efficient square root information like filters. However,
none of these approaches deal with the case of mea-
surements evolving on a Lie group.

In preliminary works ([17] and [16]), we propose an

Iterated Extended Kalman Filter on Lie groups specif-
ically dedicated to relative motion averaging. In this

paper, we are interested in proposing a generic Iterated

Extended Kalman Filter on Lie groups. Thus, in the

next section, we recall the (Euclidean) IEKF formal-

ism.

1.2 Reminder: The Iterated Extended Kalman Filter

The IEKF [5, 9] is a filter dedicated to non-linear sys-

tems. The objective of this filter is to recursively ap-

proximate the posterior distribution p (xk|z1, . . . , zk) by

a Gaussian distribution, where xk ∈ R
p is the state we

wish to estimate at time k and zl ∈ R
q is a measurement

available at time l. Then the state estimate is taken as

the mean of this approximated posterior distribution.

More specifically, the filter is composed of two steps, a

prediction step and an update step.

1.2.1 Prediction

The prediction step consists in approximating the fol-

lowing distribution:

p (xk|z1, . . . , zk−1)

=

ˆ

p (xk|xk−1) p (xk−1|z1, . . . , zk−1) dLxk−1 (1)

≈NRp

(

xk;µk|k−1, Pk|k−1

)

(2)

where dLxk−1 corresponds to the Lebesgue measure on

R
p, p (xk−1|z1, . . . , zk−1) = NRp

(

xk−1;µk−1|k−1, Pk−1|k−1

)

and the state transition is defined as:

xk = f (xk−1) + nk (3)

where nk ∼ NRp (nk;0p×1, Rk) is a white Gaussian

noise and f : R
p → R

p is a differentiable function.

Classically, µk|k−1 is obtained by propagating the pre-

vious mean µk−1|k−1 through (3) without noise, while

Pk|k−1 is computed by linearizing (3) in xk−1 = µk−1|k−1

and propagating Pk−1|k−1 through this linearized ver-

sion of the state transition model.

The same prediction step can be seen alternatively

as the fitting of a Gaussian distribution to the integrand

in (1), using a Gauss-Laplace approximation (see Sec-

tion 3), followed by the marginalization of xk−1. In this

case, µk−1|k−1 is propagated by minimizing the nega-
tive log-likelihood of the integrand in (1):

{x̂k, x̂k−1} =

argmin
xk∈Rp,xk−1∈Rp

(

‖xk − f (xk−1)‖
2
Rk

+
∥

∥xk−1 − µk−1|k−1

∥

∥

2

Pk−1|k−1

)

(4)

where ‖·‖2Σ = (·)T Σ−1 (·) is the squared Mahalanobis

distance. It is trivial to show that x̂k−1 = µk−1|k−1

and x̂k = f
(

µk−1|k−1

)

. The predicted mean µk|k−1,

which coincides with the mode in the Gaussian case, is
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taken as x̂k. Finally, Pk|k−1 is computed by applying the

Gauss-Laplace covariance approximation equation (see
Section 3), followed by a marginalization of xk−1, which

results in a closed form covariance prediction equation.

This alternative view will help us in generalizing the

IEKF prediction step to Lie groups.

1.2.2 Update

The update step consists in approximating the following

distribution:

p (xk|z1, . . . , zk)

∝ p (zk|xk) p (xk|z1, . . . , zk−1) (5)

≈NRp

(

xk;µk|k, Pk|k

)

(6)

assuming p (xk|z1, . . . , zk−1) = NRp

(

xk;µk|k−1, Pk|k−1

)

and a measurement model defined as:

zk = h (xk) + wk (7)

where wk ∼ NRq (wk;0q×1, Qk) is a white Gaussian

noise, h (·) : Rp → R
q is a differentiable function. wk

and the state model noise nk are assumed to be inde-

pendent.

Once again, this update step can be seen as the

fitting of a Gaussian distribution to (5), using a Gauss-
Laplace approximation (see Section 3).

In this case, the updated mean µk|k = x̂k is defined

as the minimizer of the negative log-likelihood of (5):

x̂k = argmin
xk∈Rp

(

‖zk − h (xk)‖
2
Qk

+
∥

∥xk − µk|k−1

∥

∥

2

Pk|k−1

)

(8)

Employing a GN algorithm to solve (8) allows one to

compute µk|k, while Pk|k can be obtained by applying

the Gauss-Laplace covariance approximation equation

(see Section 3). Fortunately, by exploiting the specific

structure of the GN applied to (8), it is possible to de-

rive the IEKF update equations that allow to compute
both µk|k and Pk|k very efficiently [5].

1.3 Contribution and Outline of the paper

In this paper, we propose a generic Iterated Extended

Kalman Filter on Lie Groups (LG-IEKF) that extends

the link between the minimization of non linear least

squares criteria and the Iterated Extended Kalman Fil-
ter [5, 9] to the case where the state and the observa-
tions evolve on Lie groups.

For this purpose, we first present a fitting approach,

called intrinsic Gauss-Laplace approximation, that al-

lows to fit a concentrated Gaussian distribution on Lie

groups to the probability density of a random variable

evolving on a Lie group.

Since this fitting technique requires to find the min-
imizer of an intrinsic non linear least squares crite-

rion, we present a generic intrinsic GN algorithm on

Lie groups, called LG-GN, which has the advantage of

taking intrinsically into account the geometry of the Lie

group on which the parameters evolve.

Then, we show that a generalization of the IEKF,
to the case where the state and the observations evolve

on Lie groups, can be obtained by employing intrinsic

Gauss-Laplace approximations both to derive the LG-

IEKF prediction step and the LG-IEKF update step

(which involves the LG-GN algorithm).
Finally, because of the Gaussian noise assumption,

the LG-IEKF is sensitive to outlier measurements. Thus,

a statistical test on Lie groups is derived to detect and

remove them.

In order to demonstrate the efficiency of the pro-

posed generic LG-IEKF, it is applied to the specific

problem of relative motion averaging, both on synthetic

and real data for Lie groups SE(3) (rigid body mo-

tions), SL(3) (homographies) and Sim(3) (3D similar-
ities).

The rest of the paper is organized as follows: Sec-

tion 2 introduces the formalism of Lie groups and the

concentrated Gaussian distribution on Lie groups. Sec-

tion 3 describes the intrinsic Gauss-Laplace approxi-

mation while Section 4 deals with the intrinsic GN on

Lie groups algorithm. The theory behind the proposed
filter is described in Section 5. In Section 6, our formal-
ism is applied to the relative motion averaging problem,

and evaluated experimentally. Finally, the conclusion is

provided in Section 7.

2 Preliminaries

2.1 Introduction to Lie groups

2.1.1 Definitions

In this section we give the definitions and basic prop-

erties of (matrix) Lie groups and Lie algebra. For a de-

tailed description of these notions the reader is referred

to [21]. A Lie group G is a group which has also the

structure of a smooth manifold such that group com-

position and inversion are smooth operations. If G is a
matrix Lie group, then X ∈ G ⊂ R

n×n and its opera-

tions are matrix multiplication and inversion with the

n× n identity matrix as identity element Id.

The matrix exponential expG and matrix logarithm

logG mappings establish a local diffeomorphism between
an open neighborhood of 0n×n in the tangent space at
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the identity TIdG, called the Lie Algebra g, and an open

neighborhood of Id in G. The Lie Algebra g ⊂ R
n×n as-

sociated to a p-dimensional Lie group is a p-dimensional

vector space defined by a basis consisting of real ma-

trices Ei for i = 1 . . . p. Hence there is a linear isomor-

phism between g and R
P that we denote as follows:

[·]∨G : g → R
P and [·]∧G : R

P → g. For example let

a ∈ g ⊂ R
n×n, then we have [a]

∨
G = a ∈ R

P . Thus
we can define a basis [Ei]

∨
G = ei such that {ei}i=1...p

is the natural basis of R
P and a =

∑p
i=1 aiEi with

a = (a1 . . . ap)
T
. The previous notions are summarized

in Fig. 1.

In order to lighten the notations, we define1: exp∧
G (·) =

expG

(

[·]∧G
)

and log∨G (·) = [logG (·)]∨G.

For the sake of brevity, in the rest of the paper, when

we mention the Lie algebra g of a p-dimensional Lie

group G, we implicitly refer to its isomorphic Euclidean

space R
p. Moreover, when we write A = exp∧

G (a) we

assume that log∨G (A) = a, i.e we work only on sets

where exp∧
G (·) and log∨G (·) are bijective functions.

Let us introduce the linearized Baker-Campbell-

Hausdorff formula which expresses the group product

directly in R
p:

log∨G (exp∧
G (a) exp∧

G (b)) = b+ ϕG (b) a+O
(

‖a‖2
)

(9)

where

ϕG (b) =

∞
∑

n=0

BnadG (b)
n

n!
= Id−

1

2
adG (b) + · · · (10)

is the inverse of the left Jacobian2 of G, the Bn are the

Bernoulli numbers and

adG (b) a =
[

[b]
∧
G [a]

∧
G − [a]

∧
G [b]

∧
G

]∨

G
(11)

2.1.2 Product of Lie groups

Most of the time, we wish to estimate several param-

eters evolving on different Lie groups, at once. Since

the product of Lie groups is a Lie group [56], the algo-

rithms presented in this paper can be applied to “con-

catenations” of Lie groups. They can even be applied to

Euclidean parameters since an Euclidean space R
p is a

trivial Lie group by taking the matrix embedding:

x ∈ R
p 7→ X =

[

Id x

01×p 1

]

⊂ R
(p+1)×(p+1) (12)

1 For several Lie groups of interest, such as SO(3), SE(3),
Sim(3), analytical expressions of exp∧

G (·) and log∨
G (·) exist

[57]. However, for SL(3) for example, matrix exponential and
logarithm have to be computed.

2 A closed form expression of ϕG (b) was recently derived
for SE(3) in [4].

Fig. 1: Illustration of the geometry of a (matrix) Lie

group

The simplest way to “concatenate” several components

is to consider the Lie group formed by their direct prod-

uct (e.g: SO(3)×R
3). Note that other ways to “concate-

nate” Lie groups exist [56] (e.g: semi-direct product,

twisted product).

2.2 Additional notations

In the rest of the paper, G and G′ are Lie groups of

intrinsic dimensions p and q respectively. dHX is the

right invariant Haar measure of G.

2.3 Concentrated Gaussian distribution on Lie groups

Here, we introduce the concept of concentrated Gaus-

sian distribution on Lie groups, which was initially pro-
posed in [59] and then studied in [66, 67], as a gener-
alization of the normal distribution in Euclidean space.

The distribution of X ∈ G is called a right3 concen-

trated Gaussian distribution on G of “mean” µ and “co-

variance” P , denoted X ∼ NR
G (X;µ, P ) (the super-

script R stands for “right”), if:

X = exp∧
G (ǫ)µ (13)

where ǫ ∼ NRp (ǫ;0p×1, P ) and P ⊂ R
p×p is a symmet-

ric positive-definite matrix. Note that (13) depends on

the choice of the Lie algebra basis {Ei}i=1...p.
When the maximum of the eigenvalues of P is suf-

ficiently “small”, the probability mass is concentrated

3 In this paper, we consider quantities that are invariant
to the right action of the Lie group on itself. Similar results
could be obtained by considering the left action, leading to
a left concentrated Gaussian distribution on G, which is the
modelization used for instance in [18].
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around µ and the probability density of X, w.r.t the

right invariant Haar measure of G (denoted dHX) [26],
can be approximated as follows:

p (X) ≈
1

√

(2π)
p
det (P )

e
− 1

2‖log∨
G(Xµ−1)‖2

P (14)

Such a distribution allows us to describe the covariance
in R

p and hence to use Euclidean tools while being in-

variant w.r.t the right action of the group on itself:

exp∧
G (ǫ) = Xµ−1 = XX ′ (µX ′)

−1
with X ′ ∈ G.

In Fig. 2, we provide an example of a concentrated

Gaussian distribution on the Lie group

SE (2) =

{

X =

[

R t

01×2 1

] ∣

∣

∣

∣

R ∈ SO (2) , t =

[

u

v

]

∈ R
2

}

with Lie algebra

se (2) =







x =





0 −θ x
θ 0 y

0 0 0





∣

∣

∣

∣

θ, x, y ∈ R







Note that the “banana” shape [45] comes from the non-

linearity4 of expSE(2) and the correlations between θ, x

and y. Such a distribution is a better representation of

the uncertainty of a robot negotiating a bend compared

to a Euclidean Gaussian distribution.

3 Intrinsic Gauss-Laplace approximation

A classical way to tackle a Bayesian filtering problem is

to fit, at each time instant, a parametric distribution to

the posterior distribution of the state. In this section,

we propose a fitting method which will be employed,

in the rest of the paper, to fit concentrated Gaussian
distributions on Lie groups.

3.1 Problem

Let us consider the probability distribution of a random

variable X ∈ G:

p (X) = αe−‖φ(X)‖2
Σ (15)

where φ : G → R
m is a differentiable function and

p < m.

The objective is to propose a method to fit a con-

centrated Gaussian distribution to p (X).

4 Of course, this shape is emphasized by the action of µ on
exp∧

G (ǫ).

−2 0 2
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−2
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2
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6

θ

x

−1 0 1
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−1

0

1
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3

θ

y

−5 0 5

−15

−10

−5

0

5
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x

y

(a) Samples of a Gaussian distribution on se (2):
NR3 (ǫ;03×1, P = [0.1 0.5 − 0.2; 0.5 4 − 1; −0.2 − 1 1])

−25 −20 −15 −10 −5 0 5 10

0

5

10

15

20

25

u

v

(b) Samples mapped to SE (2) using exp∧
SE(2) (·)

(blue arrows) and moved around the mean µ =
exp∧

SE(2)

(

[π 30 20]T
)

using the right action of SE (2)

on itself (green arrows)

Fig. 2: Illustration of a concentrated Gaussian distribu-

tion on SE (2). An arrow represents the position and

the orientation of a robot in a 2D plane.

3.2 Proposed solution

First of all, let us define the minimizer of the cost func-
tion ‖φ (X)‖2Σ :

X̂ = argmin
X∈G

‖φ (X)‖2Σ (16)

A first order Taylor expansion of φ (·) around X̂ gives:

φ (X) = φ
(

exp∧
G (δ) X̂

)

≈ φ
(

X̂
)

+ Jδ (17)
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where δ = log∨G

(

XX̂−1
)

and

J =
dφ
(

exp∧
G (s) X̂

)

ds

∣

∣

∣

∣

s=0

(18)

We choose to take q (X) as an approximation of p (X):

q (X) = βe
−‖φ(X̂)+Jlog∨

G(XX̂−1)‖2

Σ (19)

Finally, it is possible to show that q (X) has the form
of a concentrated Gaussian distribution:

q (X) = NR
G

(

X; X̂, P =
(

JTΣ−1J
)−1
)

(20)

We call this fitting method “intrinsic Gauss-Laplace ap-
proximation”. This method is a generalization of the

Euclidean Gauss-Laplace approximation which is used
for instance in [5] to derive the IEKF update equations.
In fact, if G is a Euclidean space, the method comes

down to fitting a Gaussian distribution.

This method will be employed in Section 5 to derive
both the prediction and update steps of the novel filter

we present in this paper.

4 Intrinsic Gauss-Newton on Lie groups

The intrinsic Gauss-Laplace approximation introduced

in the previous section assumes that we are capable of

finding the minimizer X̂ of (16).

However, when the minimizer does not have a closed-
form expression, it is common to employ an iterative

optimization algorithm.

In this section, we derive an intrinsic GN algorithm

that allows one to estimate a matrix X of parameters

evolving on G.

4.1 Introduction

When performing an iterative optimization on an Eu-

clidean space, such as a gradient descent, the parame-

ters x ∈ R
n are iteratively updated as follows:

xl+1 = xl + δl+1/l (21)

where δl+1/l ∈ R
n is an increment that corrects the

previous parameter vector xl to get xl+1. In order to

perform intrinsic optimization on a Lie group G, the

update equation (21) cannot be applied since the oper-

ator “+” does not allow the parameters to remain on the

manifold. The key ingredient to intrinsically take into

account the geometry of the Lie group is to replace (21)

with:

X l+1 = exp∧
G

(

δl+1/l
)

X l (22)

where X l, X l+1 ∈ G and δl+1/l ∈ R
p. One can see

that the update equation (22) is tightly related to the

concept of concentrated Gaussian distribution on Lie

groups (13).

4.2 Algorithm

A common iterative method for solving the problem

(16), when G is a Euclidean space, is the Gauss-Newton
method. In the following, we extend this formalism to

Lie groups and call it intrinsic Gauss-Newton on Lie

groups (LG-GN).

A Riemannian GN algorithm can be found in [1].
As a consequence, the algorithm we present can fit into

their formalism (since a Lie group is a Riemannian man-

ifold) and the convergence proof proposed in [1] applies.

However, the LG-GN we introduce is dedicated to Lie

groups (as the one already proposed in [63]) and lever-

ages the “one parameter subgroup” [21] structure of the

Lie group, i.e the Riemannian structure of the Lie group

is not explicitly exploited.

As in the Euclidean case, the convergence of the

algorithm depends on the starting point X0. X l+1 is

obtained by linearizing φ (·) at the previous value X l

and solving the following problem:

δl+1/l = argmin
δ∈Rp

∥

∥φ
(

X l
)

− Jlδ
∥

∥

2

Σ
(23)

where Jl is defined as:

Jl = −
dφ
(

exp∧
G (s)X l

)

ds

∣

∣

∣

∣

s=0

(24)

Assuming that Jl has full column rank, the minimizer

of (23) is:

δl+1/l =
(

Jl
TΣ−1Jl

)−1
Jl

TΣ−1φ
(

X l
)

(25)

The current value of the parameters is finally updated
as follows:

X l+1 = exp∧
G

(

αlδl+1/l
)

X l (26)

where 0 < αl ≤ 1 is a step size.

At convergence, we take X̂ = X l.

The approach described here will be employed in

the next section to derive the update step of the novel
filter we present in this paper.
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5 Iterated Extended Kalman Filter on Lie

Groups

From the concept of concentrated Gaussian distribu-

tion on Lie groups, the intrinsic Gauss-Laplace approx-

imation and the LG-GN algorithm introduced in the

previous sections, we derive a new filter called Iterated

Extended Kalman Filter on Lie Groups (LG-IEKF).

5.1 Proposed System Model

In order to derive our novel filter, we first introduce a

prediction model that describes the dynamical behavior

of the stateXk ∈ G we wish to estimate, where k stands

for the time. Then we propose a measurement model

that relates Xk to the measurement Zk ∈ G′.

5.1.1 Prediction Model

Let the system state be modeled as satisfying the fol-

lowing equation:

Xk = exp∧
G (nk) f (Xk−1) (27)

where Xk ∈ G, Xk−1 ∈ G and nk ∼ NRp (nk;0p×1, Rk)

is a white Gaussian noise. f : G → G is a differen-

tiable function. The prediction model that we consider
induces the following conditional distribution:

p (Xk|Xk−1) = NR
G (Xk; f (Xk−1) , Rk) (28)

This model is more generic than the one studied in [18]

and thus allows us to deal with a larger class of prob-
lems (see section 6).
In order to simplify the notations, we have assumed

w.l.o.g that the Lie groups Gk and Gk−1, on which Xk

andXk−1 evolve respectively, are the same Lie group G.

In practice, we will allow them to be different in order
to augment the size of the state during prediction5 (see

Section 6.2.2).

5.1.2 Measurement Model

We consider discrete measurements Zk on G′ related to

Xk as follows:

Zk = exp∧
G′ (wk)h (Xk) (29)

where wk ∼ NRq (wk;0q×1, Qk) is a white Gaussian

noise and h : G→ G′ is a differentiable function. More-

over, nk and wk are assumed to be independent.
The measurement model, that we consider, induces the

following conditional distribution:

p (Zk|Xk) = NR
G′ (Zk;h (Xk) , Qk) (30)

5 Augmenting the size of the state during the prediction
step is sometimes called “smoothing” and not “filtering” in
the literature.

5.2 Objective

We propose to approximate the state posterior distri-

bution with a concentrated Gaussian distribution on

Lie groups: p (Xk|Z1, . . . , Zl) ≈ NR
G

(

Xk;µk|l, Pk|l

)

. We
focus on l = k − 1 (prediction) and l = k (update).

Therefore, the aim of the LG-IEKF is to predict and

update the distribution parameters µk|k and Pk|k. In

our formalism, µk|k is taken as the state estimate at

time k.

5.3 LG-IEKF Prediction

We assume that the state posterior distribution at time

k − 1 is represented by:

p (Xk−1|Z1, . . . , Zk−1) = NR
G

(

Xk−1;µk−1|k−1, Pk−1|k−1

)

(31)

The aim of this section is to show how to fit a concen-

trated Gaussian distribution to the posterior distribu-

tion of the predicted state:

p (Xk|Z1, . . . , Zk−1)

=

ˆ

p (Xk|Xk−1) p (Xk−1|Z1, . . . , Zk−1) dHXk−1 (32)

≈NR
G

(

Xk;µk|k−1, Pk|k−1

)

(33)

In order to estimate µk|k−1 and Pk|k−1, we propose

to apply an intrinsic Gauss-Laplace approximation (see

Section 3) to the integrand of (32) and then to marginal-

ize Xk−1.

5.3.1 Mean Prediction

In order to predict the mean, we minimize the negative

log-likelihood of (32):

{

X̂k, X̂k−1

}

=

argmin
Xk∈G,Xk−1∈G







∥

∥

∥log∨G

(

Xkf (Xk−1)
−1
)∥

∥

∥

2

Rk

+
∥

∥

∥log∨G

(

Xk−1µ
−1
k−1|k−1

)∥

∥

∥

2

Pk−1|k−1







(34)

A trivial minimizer of this problem is X̂k−1 = µk−1|k−1

and X̂k = f
(

µk−1|k−1

)

. We finally take:

µk|k−1 = X̂k = f
(

µk−1|k−1

)

(35)
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5.3.2 Covariance Prediction

Concerning the covariance prediction, we apply the in-

trinsic Gauss-Laplace approximation formula (20).

By linearizing the error function inside the squared

Mahalanobis norm in (34) around its minimizer, we ob-

tain:

−log (p (Xk|Xk−1) p (Xk−1|Z1, . . . , Zk−1))

≈

∥

∥

∥

∥

[

Id −Fk

0 Id

] [

δk
δk−1

]∥

∥

∥

∥

2

Σ

(36)

where Xk−1 = exp∧
G (δk−1)µk−1|k−1 and

Xk = exp∧
G (δk) f

(

µk−1|k−1

)

. Moreover,

Σ =

[

Rk

Pk−1|k−1

]

(37)

and

Fk = −
dlog∨G

(

f
(

µk−1|k−1

)

f
(

exp∧
G (s)µk−1|k−1

)−1
)

ds

∣

∣

∣

∣

∣

s=0

(38)

Thus, according to equation (20), the covariance P can

be approximated by:

P =

(

[

Id −Fk

0 Id

]T

Σ−1

[

Id −Fk

0 Id

]

)−1

(39)

=

[

R−1
k −R−1

k Fk

−FT
k R

−1
k FT

k R
−1
k Fk + P−1

k−1|k−1

]−1

(40)

=

[

FkPk−1|k−1F
T
k +Rk FkPk−1|k−1

Pk−1|k−1F
T
k Pk−1|k−1

]

(41)

where we employed the blockwise matrix inversion [8].

Under the concentrated Gaussian approximation, the

top left block of P in (41) corresponds to Pk|k−1. Thus,
we obtain the following covariance prediction formula:

Pk|k−1 = Rk + FkPk−1|k−1F
T
k (42)

5.3.3 Prediction step summary

The prediction step consists in propagating the mean
µk−1|k−1 and the covariance Pk−1|k−1 by using the pre-

diction model (27). At the end of the prediction step,
the concentrated Gaussian approximation of the poste-

rior is:

p (Xk|Z1, . . . , Zk−1) ≈ NR
G

(

Xk;µk|k−1, Pk|k−1

)

(43)

5.4 LG-IEKF Update

The aim of this section is to demonstrate how to fit

a concentrated Gaussian distribution to the posterior
distribution of the state, after having received the mea-
surement Zk, using an intrinsic Gauss-Laplace approx-

imation:

p (Xk|Z1, . . . , Zk)

∝p (Zk|Xk) p (Xk|Z1, . . . , Zk−1) (44)

≈NR
G

(

Xk;µk|k, Pk|k

)

(45)

5.4.1 Mean Update

In order to update the mean, we minimize the negative

log-likelihood of (44):

X̂k = argmin
Xk∈G







∥

∥

∥
log∨G′

(

Zkh (Xk)
−1
)∥

∥

∥

2

Qk

+
∥

∥

∥log∨G

(

Xkµ
−1
k|k−1

)∥

∥

∥

2

Pk|k−1






(46)

To minimize this function, we propose to apply the LG-

GN algorithm described in Section 4. We introduce the

following notations: δl+1/l = log∨G

(

X l+1
(

X l
)−1
)

, δl =

log∨G

(

X lµ−1
k|k−1

)

and δl+1 = log∨G

(

X l+1µ−1
k|k−1

)

where

X l denotes the parameters value at iteration l of the

LG-GN.

At iteration l, we seek the minimizer of the following

problem:

δl+1/l = argmin
δ∈Rp





∥

∥

∥
log∨G′

(

Zkh
(

X l
)−1
)

−Hlδ
∥

∥

∥

2

Qk

+
∥

∥δl + ϕG

(

δl
)

δ
∥

∥

2

Pk|k−1





= argmin
δ∈Rp

∥

∥ψ
(

X l
)

− Ψlδ
∥

∥

2

Ξk
(47)

where we used (9). The matrix ϕG

(

δl
)

is defined in

(10),

Hl = −
dlog∨G′

(

Zkh
(

exp∧
G (s)X l

)−1
)

ds

∣

∣

∣

∣

∣

s=0

(48)

ψ
(

X l
)

=

[

log∨G′

(

Zkh
(

X l
)−1
)T
(

δl
)T

]T

(49)

Ψl =
[

HT
l −ϕG

(

δl
)T
]T

(50)

and

Ξk =

[

Qk 0

0 Pk|k−1

]

(51)

For the sake of brevity, the inverse of the left Jacobian
of G is denoted ϕG

(

δl
)

≡ ϕl and Φl = ϕ−1
l .
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The minimizer of (47) is given by:

δl+1/l =
(

ΨT
l Ξ

−1
k Ψl

)−1
ΨT
l Ξ

−1
k ψ

(

X l
)

=
(

HT
l Q

−1
k Hl + ϕT

l P
−1
k|k−1ϕl

)−1
{

HT
l Q

−1
k

log∨G′

(

Zkh
(

X l
)−1
)

− ϕT
l P

−1
k|k−1δ

l
}

(52)

We now demonstrate (see Appendix A.1) that, neglect-
ing second order terms in δl+1/l, it is possible to obtain

a generalization of the IEKF mean update equation [5]

to Lie groups:

δl+1 = Kl

{

log∨G′

(

Zkh
(

X l
)−1
)

+HlΦlδ
l
}

(53)

where Kl is a gain that we call Lie-Kalman gain (see

Appendix A.2) and is defined as:

Kl = Pk|k−1Φ
T
l H

T
l

(

HlΦlPk|k−1Φ
T
l H

T
l +Qk

)−1
(54)

Note that this Lie-Kalman gain is a generalization of

the Kalman gain [5] to Lie groups. To the best of our

knowledge, it is the first time that this expression is

derived.

Moreover (53) can be simplified:

Φlδ
l = ΦG

(

δl
)

δl =

∞
∑

n=0

1

(n+ 1)!
adG

(

δl
)n
δl = δl (55)

since

adG

(

δl
)

δl = 0 (56)

Finally, the current value of the parameters can be up-

dated as follows:

X l+1 = exp∧
G

(

δl+1/l
)

X l (57)

≈ exp∧
G

(

Kl

{

log∨G′

(

Zkh
(

X l
)−1
)

+Hlδ
l
})

µk|k−1

(58)

At convergence, we take µk|k = X̂k.

5.4.2 Covariance Update

In order to estimate the updated covariance, we ap-

ply the intrinsic Gauss-Laplace approximation formula

(20). To do so, we linearize the error function inside the

squared Mahalanobis norm in (46) around its minimizer

µk|k:

− log (p (Zk|Xk) p (Xk|Z1, . . . , Zk−1))

≈

∥

∥

∥

∥

∥

[

log∨G′

(

Zkh
(

µk|k

)−1
)

−Hlδ

δl + ϕlδ

]∥

∥

∥

∥

∥

2

Σ

(59)

where Σ =

[

Qk 0

0 Pk|k−1

]

, Xk = exp∧
G (δ)µk|k and the

subscript l corresponds to the last iteration of the LG-

GN employed to update the mean. Thus, according to
equation (20), the covariance Pk|k can be approximated

by:

Pk|k =
(

HT
l Q

−1
k Hl + ϕT

l P
−1
k|k−1ϕl

)−1

(60)

However, it is possible to show that (see Appendix A.3):

Pk|k = Φl (Id−KlHlΦl)Pk|k−1Φ
T
l (61)

which is a generalization of the IEKF covariance update

equation [5] to Lie groups.

5.4.3 Update step summary

The update step consists in updating the mean µk|k−1

and the covariance Pk|k−1 by incorporating the infor-

mation coming from the measurement Zk, by using the

measurement model (29). At the end of the update step,

the concentrated Gaussian approximation of the poste-

rior is:

p (Xk|Z1, . . . , Zk) ≈ NR
G

(

Xk;µk|k, Pk|k

)

(62)

5.5 Inlier test before update

The novel filter we propose is based on the classical

assumption that the measurement noise wk (see Sec-

tion 5.1) is a white Gaussian noise. This assumption

is convenient and allowed us to derive an efficient al-

gorithm. However, it also makes the LG-IEKF not re-
silient to outlier measurements (this is also a limitation
of Kalman filtering on Euclidean spaces [53]). Conse-
quently, we propose a statistical test on Lie groups to

detect and remove outliers.

A measurement Zk is an inlier if and only if:
∥

∥

∥log∨G′

(

Zkh (Xk)
−1
)∥

∥

∥

2

Qk

< t (63)

where t is a threshold to define. However, the true value

Xk is unknown. We only have an approximation of the

posterior distribution of the state:

p (Xk|Z1, . . . , Zk−1) ≈ NR
G

(

Xk;µk|k−1, Pk|k−1

)

(64)

which can also be expressed as follows:

Xk = exp∧
G

(

ǫk|k−1

)

µk|k−1 (65)

where ǫk|k−1 ∼ NRp

(

ǫ;0p×1, Pk|k−1

)

. Thus, we propose

a statistical inlier test on Lie groups w.r.t the current

estimate of Xk:
∥

∥

∥
log∨G′

(

Zkh
(

µk|k−1

)−1
)∥

∥

∥

2

Qerr

< t (66)
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where

Qerr = E

(

(

Hk|k−1ǫk|k−1 + wk

) (

Hk|k−1ǫk|k−1 + wk

)T
)

= Hk|k−1Pk|k−1H
T
k|k−1 +Qk (67)

Indeed, from (29) and neglecting second order terms in
wk and ǫk|k−1, we have:

0 = log∨G′

(

Zkh (Xk)
−1

exp∧
G′ (−wk)

)

≃ log∨G′

(

Zkh
(

exp∧
G

(

ǫk|k−1

)

µk|k−1

)−1
exp∧

G′ (−wk)
)

≃ log∨G′

(

Zkh
(

µk|k−1

)−1
)

−Hk|k−1ǫk|k−1 − wk (68)

where

Hk|k−1 = −
dlog∨G′

(

Zkh
(

exp∧
G (s)µk|k−1

)−1
)

ds

∣

∣

∣

∣

∣

s=0

(69)

Thus, under the concentrated Gaussian assumption, the

LHS of (66) is distributed according to the chi-squared

distribution with q degrees of freedom, since G′ is a q-

dimensional Lie group. Consequently, one way to decide

whether Zk is an inlier is to define a threshold based
on the p-value of χ2 (q) [27]. Note that since we ne-

glected second order terms, this theoretical threshold is

possibly restrictive.

5.6 Summary of the LG-IEKF and remarks

The LG-IEKF algorithm is summarized in Alg.1.

Remark 1Employing the LG-GN allowed us to itera-

tively refine the linearization point during the update
step contrary to the Extended Kalman Filter on Lie
Groups (LG-EKF), proposed in [18], that performs only

one linearization. In this sense, the LG-EKF is a spe-

cial case of the LG-IEKF proposed in this paper. Note

that the prediction model we use in this paper is more

generic than the one employed in [18].

Remark 2The models (27) and (29) as well as the algo-

rithm Alg.1 reduce to the traditional models and algo-

rithm of the IEKF in the case of a state and measure-

ments evolving on Euclidean spaces. In this sense, the

LG-IEKF generalizes the IEKF to Lie groups.

Algorithm 1 LG-IEKF Algorithm

Inputs : µk−1|k−1, Pk−1|k−1, Zk, Qk, Rk, t (optional)

Outputs : µk|k, Pk|k

1) Prediction

µk|k−1 = f
(

µk−1|k−1

)

Pk|k−1 = FkPk−1|k−1F
T
k +Rk

where Fk = −
dlog∨

G

(

f(µk−1|k−1)f(exp∧
G
(s)µk−1|k−1)

−1
)

ds

∣

∣

∣

∣

∣

s=0

2) Inlier Test (optional)
∥

∥

∥
log∨

G′

(

Zkh
(

µk|k−1

)−1
)
∥

∥

∥

2

Qerr

< t

where Qerr = Hk|k−1Pk|k−1H
T
k|k−1 +Qk

and Hk|k−1 = −
dlog∨

G′

(

Zkh(exp∧
G
(s)µk|k−1)

−1
)

ds

∣

∣

∣

∣

∣

s=0

3) Update (if 2) is satisfied)

Set X0 = µk|k−1 and δ0 = 0p×1

Iterate until convergence:

Kl = Pk|k−1Φ
T
l HT

l

(

HlΦlPk|k−1Φ
T
l HT

l +Qk

)−1

δl+1 = Kl

{

log∨
G′

(

Zkh
(

Xl
)−1

)

+Hlδ
l
}

Xl+1 = exp∧
G

(

δl+1
)

µk|k−1

where Hl = −
dlog∨

G′

(

Zkh(exp∧
G
(s)Xl)

−1
)

ds

∣

∣

∣

∣

∣

s=0

ϕl ≡ ϕG

(

δl
)

is the inverse of the left Jacobian of G and

Φl = ϕ−1
l .

At convergence:

µk|k = Xl

Pk|k = Φl (Id−KlHlΦl)Pk|k−1Φ
T
l

Fk, Hk|k−1 and Hl are Jacobian matrices which
expressions depend on the application.

6 Application To Relative Motion Averaging

Here we apply the generic LG-IEKF algorithm to the

problem of estimating global transformations from noisy

relative transformation measurements6, a.k.a relative

motion averaging.

Such a problem occurs for instance in the context

of consistent pose registration [2] encountered in 3D

localization, structure from motion or camera network

calibration. In this case, a motion or transformation is

a rigid body transformation matrix (SE(3)). Thus, the

6 The Matlab code is available at
https://sites.google.com/site/guillaumebourmaud/
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relative measurements correspond to the rigid trans-

formations between two camera poses and the global

motions we wish to estimate are the rigid transforma-

tion matrices between a reference camera pose and all

the other camera poses.

In our context, a transformation is defined as an

element of a Lie group. Consequently, the solution we

propose can be applied to several other problems such

as the synchronization of rotations problem (SO(3))

[13], image mosaicing (SL(3)) [50] or the partial 3D
reconstruction merging problem (Sim(3)) [64].

6.1 Objective

We aim at estimating global transformations {TiR}i=1:N ,

where each global transformation TiR ∈ G′ is defined
as the transformation between a main reference frame

(RF) R and a RF i, and G′ is a q-dimensional Lie group.

We consider the case where the noises on the relative

transformation measurements {Yij}1≤i<j≤N are mutu-

ally independent. Each Yij ∈ G′ denotes a noisy relative

transformation between a RF j and a RF i expressed

as follows:

Yij = exp∧
G′

(

biij
)

TiRT
−1
jR (70)

where biij ∼ NRq

(

biij ;0q×1, Σ
i
ij

)

is a white Gaussian

noise. The problem is illustrated in Fig. 3a. Note that

(70) is invariant w.r.t the right action of G′. Indeed,

TiRM (TjRM)
−1

= TiRT
−1
jR for any M ∈ G′. In the

context of consistent pose registration, it simply means
that rotating and translating all the camera poses does

not affect the relative measurements.

6.2 Case 1: Outlier Free Estimation

In this section, we consider the case where the measure-

ments are outlier free.

6.2.1 State of the Art

A large amount of works addressing the problem tackled

in this section has been previously published. However,

they usually do not intrinsically take into account the

Lie group structure and are tailored to specific applica-

tions such as:

-Relative orientation averaging (Lie group SO(3), or
SU (2) for unitary quaternion), a.k.a multiple rotation

averaging [34], a.k.a synchronization of rotations [14].

In [29] and [49], in order to obtain a closed-form solu-

tion that only requires solving a large linear system of

equations, the Lie group geometry of SU (2) and SO(3)

(a) Graphical representa-
tion of the problem

(b) LG-IEKF Initialization

(c) LG-IEKF First Predic-
tion

(d) LG-IEKF First Update

Fig. 3: Illustration of the relative motion averaging
problem: dashed observations (Yij with j > i + 1)

are used as measurements during the LG-IEKF update

step. Temporally consecutive observations (Yi (i+1) for

i = 1...N−1) are used as control inputs during the LG-

IEKF prediction step in order to guide the estimation
process.

respectively are overlooked. [28] formulates the problem

as [29], but the Lie group constraints of SU (2) are ex-
trinsically taken into account using Lagrangian duality.

-Relative Euclidean motion (Lie group SE(3)) averag-

ing, a.k.a camera pose registration problem. In [2], a

Euclidean motion is parametrized as an element of the

Lie algebra se (3) of SE(3), which is a vector space,

in order to formulate the problem into a classical non-

linear unconstrained Euclidean minimization problem.

However, this parametrization causes problems at the

boundary of the Lie algebra. [30] proposes an iterative

algorithm that intrinsically takes into account the Lie

group structure of SE(3). Nevertheless, the minimized

criterion is not invariant (w.r.t the left and right ac-

tion of the Lie group on itself) while the measurement

model is invariant to the action of SE(3).

-Relative homography (Lie group SL(3)) averaging, a.k.a

image mosaicing. In [19], an Euclidean Extended Kalman

Filter is derived for which the Lie group constraints are

extrinsically taken into account using a reprojection af-

ter each iteration. [50] derives an iterative algorithm

based on a matrix exponential update rule. However
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they do not completely take advantage of the Lie group

structure of SL(3). In order to obtain a closed-form so-
lution to the problem, [40] performs a relaxation where

the Lie group constraints of SL(3) are not considered.

6.2.2 Implementation of the LG-IEKF

In order to apply the LG-IEKF to the relative motion

averaging problem, we need to specify the prediction

and update models.

However, before detailing these models, let us de-

scribe the way the observations {Yij}1≤i<j≤N are used.

We distinguish the temporally consecutive observa-
tions (Yi (i+1) for i = 1...N −1) from the other observa-

tions (Yij with j > i+1). Indeed, in order to guide the

estimation process, the temporally consecutive observa-

tions are used as control inputs in the prediction steps

(see Section 6.2.3). The other observations are used as

measurements in the update steps (see Section 6.2.4).

A graphical example of the prediction and update steps
is proposed in Fig.3.

6.2.3 Prediction model

As explained in Section 5.1.1, during the LG-IEKF deriva-

tion, we have assumed w.l.o.g that the Lie groups Gk

and Gk−1, on which Xk and Xk−1 evolve respectively,

are the same Lie group G. For this application, we al-
low them to be different in order to augment the size of

the state during prediction. Thus, at time instant k −
1, the state Xk−1 contains the global transformations

T1R, T2R, ..., T(k−1)R, TkR, while at time k, the state Xk

contains the global transformations

T1R, T2R, ..., T(k−1)R, TkR, T(k+1)R.

Consequently, Gk = G′ × G′ × · · · × G′, i.e k + 1

direct products of G′.

More precisely, the prediction step that we propose
augments the size of the state by duplicating the global

motion TkR and propagating it using the control input
Y(k+1) k = Y −1

k (k+1) in order to predict T(k+1)R. Thus we

consider the following prediction model:

Xk =

[

exp∧
G′

(

bk+1
(k+1)k

)

Y(k+1) k (Xk−1)kR 0

0 Xk−1

]

(71)

=exp∧
Gk

([

bk+1
(k+1)k

0

])

[

Y(k+1) k 0

0 Id

][

(Xk−1)kR 0

0 Xk−1

]

(72)

where the notation (Xk−1)kR corresponds to extracting

the global motion component TkR from the state Xk−1.

bk+1
(k+1)k ∼ NRq

(

bk+1
(k+1)k;0q×1, Σ

k+1
(k+1)k

)

is a white Gaus-

sian noise.

As can be seen, eq.(72) has the form of (27) where

f (Xk−1) =

[

Y(k+1) k 0

0 Id

] [

(Xk−1)kR 0

0 Xk−1

]

and

nk =

[

bk+1
(k+1)k

0

]

. As a consequence, the LG-IEKF pre-

diction equations can be applied.

6.2.4 Update model

The measurement model we consider corresponds to.

Zk = Yi (k+1) = exp∧
G′

(

bii(k+1)

)

(Xk)iR (Xk)
−1
(k+1)R

(73)

where i < k and bii(k+1) ∼ NRq

(

bii(k+1);0q×1, Σ
i
i(k+1)

)

is a white Gaussian noise.

As can be seen, eq.(73) has the form of (29), where

wk = bii(k+1) and h (Xk) = (Xk)iR (Xk)
−1
(k+1)R. As a

consequence, the LG-IEKF update equations can be

applied.

Note that if several measurements Yi (k+1), for all

i < k, are available, then we concatenate them in order

to have a single measurement equation.

6.2.5 Application of the LG-IEKF prediction step

In order to apply the LG-IEKF prediction step to (72),

we need to compute Fk (see eq.(38)). We obtain (see

Appendix B.1):

Fk =

[

AdG′

(

Y(k+1) k

)

0

0 Id

] [

0 Id 0

Id

]

(74)

where we introduced the adjoint representation
AdG′ (·) ⊂ R

q×q of G′ on R
q that enables us to trans-

form an increment ǫiij ∈ R
q, that acts onto an ele-

ment Yij through left multiplication, into an increment

ǫ
j
ij ∈ R

q, that acts through right multiplication:

exp∧
G′

(

ǫiij
)

Yij = Yijexp∧
G′

(

AdG′

(

Y −1
ij

)

ǫiij
)

(75)

6.2.6 Application of the LG-IEKF update step

In order to apply the LG-IEKF update step to (73),

we need to compute Hl (see eq.(48)). We obtain (see
Appendix B.2):

Hl =
[

0 Id 0 −AdG′

(

(

X l
)

iR

(

X l
)−1

(k+1)R

)

0

]

(76)

In our implementation, ϕl and Φl are approximated
by the identity matrix. Also, since we consider the case

where the measurements are outlier free, the inlier test
(Step 2 in Alg.1) is skipped.
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Fig. 4: Computational time and Residual errors for dif-
ferent number of global motions (N). The number of

relative motions is fixed to N + n (in our experiments

n = 30).

6.2.7 Results on Simulated Data for the Camera Pose

Registration Problem

We compare the proposed approach to state of the art

algorithms on a camera pose registration problem, i.e

global Euclidean motion (Lie group SE(3)) estimation

from relative measurements.

The explicit definitions of exp∧
SE(3), log∨SE(3) and AdSE(3)

can be found in [57].

The data are simulated using the generative model

proposed in (70).

We consider 6 different algorithms:

-“Chain”: it composes the temporally consecutive rel-

ative measurements to obtain the global motions

-“Euc-GN Lie Algebra”: algorithm proposed in [2] (Agrawal

et al.)

-“GN Non Invariant”: algorithm proposed in [30] (Govindu)

-“LG-GN”: LG-GN derived in Section 4 minimizing

∑

i,j

∥

∥

∥log∨SE(3)

(

YijTjRT
−1
iR

)

∥

∥

∥

2

Σi
ij

(77)

-“LG-IEKF”: LG-IEKF derived in Section 5

-“LG-EKF”: modified version of the algorithm proposed

in [18] (Bourmaud et al.) which actually corresponds to

applying the LG-IEKF with only one iteration at each

update step

In order to fairly compare the algorithms [30], [2]

and the LG-GN to the LG-IEKF, they are applied in-

crementally since it guides the estimation process and

reduces the chance of falling in a poor local minimum.

All the algorithms are coded in Matlab and tested with

the following configuration: core I5 4x2.27GHz, 4GB,

Linux 64 bits.

We simulate circular camera trajectories (see Fig.6)

with N cameras. In order to compare the results of each

approach to the true global motions, we need to add a

step to align the estimated global motions with the true

global motions. For that purpose, we choose to employ

another LG-GN to minimize the sum of the following er-

ror function:
∥

∥

∥log∨SE(3)

(

µiRTRRTrue
T−1
iRTrue

)

∥

∥

∥

2

. The fi-

nal error of this LG-GN obtained for each approach as

well as the computational time are presented in Fig.4.

Results show that the LG-IEKF, which considers

invariant errors, performs significantly better than the

state of the art algorithms [2] and [30].

Indeed, the parametrization used in [2] causes issues
at the boundary of the Lie algebra, while [30] does not

consider an invariant error function and thus does not

fully exploit the geometry of the problem. For these rea-

sons, [2] and [30] frequently fall into poor local minima.

As expected, the LG-GN, which is a batch optimiza-

tion, performs slightly better than the LG-IEKF. How-

ever, the LG-IEKF has a much lower computational

time. Finally, one can see that the LG-IEKF, that iter-

atively refines its linearization point, outperforms the
LG-EKF.

6.3 Case 2: Estimation in the presence of outliers

In this section, we consider the case where the measure-

ments are corrupted with outliers and compare the per-

formances of the proposed LG-IEKF against the state

of the art algorithms able to deal with outliers. As we

will see in the experimentations on real data, the outlier
measurements are usually due to duplicated structures
in the environment [55].

6.3.1 State of the Art

A large amount of works has been recently devoted to

specifically dealing with multiple rotation averaging in

the presence of outliers. This problem is also known as

synchronization of rotations in the mathematics com-

munity and is usually tackled by minimizing a given

criterion. In [3] and [58], spectral relaxations of the

problem are proposed while [13] uses their results as ini-

tialization for a second order Riemannian trust-region
algorithm to compute a local maximizer. [65] derives
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Fig. 5: Estimation error of the global motions for our

approach, Chatterjee et al. [20] and Roberts et al. [55]

on a camera pose estimation problem (λ = 1
10 and num-

ber of relative motions fixed to 5N + n with n = 60).

an algorithm that exactly estimates the global rota-

tions when a subset of the measurements are perfect

and outperforms [58]. In [33] and [20], two robust iter-

ative algorithms, based on L1 and L1-L2 minimization

criterion, respectively, are devised. However, the consid-

ered error functions are not convex and consequently

need a good initialization such as [65] to avoid poor
local minima. Finally, [22] proposes a discretization of
SO(3) to apply a loopy belief propagation algorithm on

the resulting Markov random field.

The works [25], [37] and [51] are also relevant for the

multiple rotation averaging problem. However, they are

specifically tailored for SO(3) and it is not straightfor-
ward to apply them to other Lie groups.

To the best of our knowledge, only one approach

[55] was proposed to deal with the generic problem of

global motion estimation from relative measurements in

the presence of outliers. An Expectation Maximization

(EM) algorithm is proposed, introducing latent vari-
ables to classify the measurements as inliers or outliers.

6.3.2 Implementation of the LG-IEKF

In order to apply the LG-IEKF, we assume that the

temporally consecutive observations (Yi (i+1) for i =

1...N − 1) are not corrupted with outliers. This as-

sumption might appear restrictive, however, for image

sequences for example, it is usually satisfied (see Sec-

tions 6.3.4 and 6.3.5). Indeed, relative transformations

computed between consecutive images usually do not

produce outlier measurements.

The LG-IEKF we apply is the same than the one

derived in Section 6.2.2. Nevertheless, this time the in-

(a) True trajectory (b) Result of [20]

(c) Result of [55] (d) This paper

Fig. 6: Camera pose registration problem results, a cone

represents a camera pose, a black line is an inlier mea-

surement and a gray dashed line is an outlier

lier test (Step 2 in Alg.1) is not skipped because of the

presence of outlier measurements.

6.3.3 Results on Simulated Data for the Camera Pose

Registration Problem

We compare the performance of the LG-IEKF to two

state of the art algorithms [55] and [20] on a camera

pose registration problem (Lie group SE(3)) with out-

liers. [20] was developed to deal with SO(3) but its

extension to SE(3) is straightforward. We simulate cir-

cular camera trajectories (see Fig.6) with N cameras
where each camera TiRTrue

has a timestamp ti and we

generate noisy relative motions as follows: first of all, a

measurement can be either an inlier or an outlier (ex-

cept temporally consecutive relative measurements that

are always inliers). We model the probability of a mea-

surement to be an inlier as

P (Zij is inlier) = exp (−λ |ti − tj |) where λ is a user-
chosen parameter, i.e a larger time difference increases

the chance to produce an outlier. After having drawn

the label of a measurement (inlier or outlier), we sample

the measurement. The distribution of the independent

outliers is modeled as a centered Gaussian distribution

on Lie groups with a large covariance matrix (the large

covariance is not a problem in this case since log∨SE(3)
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is defined on the whole group) while an inlier can be

sampled using (70).

In Fig.5, we compare the proposed method (LG-

IEKF with inlier test) against the robust approach pro-

posed in [20] and the Expectation Maximization al-
gorithm (EM) of [55]. [20] and [55] are initialized by
composing the temporally consecutive relative measure-

ments as it is proposed by the authors of those papers.

As in Section 6.2.7, in order to compare the results

of each approach to the true global motions, we align

the estimated global motions with the true global mo-

tions using an LG-GN. The error obtained, for each

approach, at convergence of the LG-GN is presented in

Fig.5. We show that our method outperforms both [20]

and [55]. Indeed, [20] is based on a robust convex L2-L1

norm to mitigate the influence of the outliers. However,

because of the Lie group curvature, the complete func-

tional is not convex. Therefore, the algorithm usually
gets stuck in a poor local minimum. [55] introduces la-
tent variables to classify the relative motions as inliers

or outliers. However, the labels obtained at the initial-

ization of the global motions are very difficult to modify.

Indeed, the E-step does not take into account the es-

timation errors of the current global motion estimates

which is negligible only when N is small. Therefore, a
lot of inliers remain classified as outliers. In comparison,

our approach incrementally rejects outliers, taking into

account the current uncertainty of the global motions,

and refines its estimate with the inliers. Consequently,

the global motions are correctly recovered. An exam-

ple of recovered global motions with the three different

approaches is presented in Fig.6.

6.3.4 Results on Real Data for the Partial 3D

reconstruction merging problem

In this section, the LG-IEKF is applied to a partial 3D

reconstruction merging problem (Lie group Sim(3)).

The experimental setup is the following: the camera

is hand-held and evolves around two duplicated objects

(the position of the camera is the same at the beginning

and at the end of the video). We split the video in sev-
eral (half-overlapping) parts. For each part, we applied
a SLAM algorithm similar to [41] and obtained a 3D
point cloud of the scene as well as the camera poses.

We estimated the 3D similarities (Lie group Sim(3))

between every pair of point clouds using a RANSAC
algorithm followed by a LG-GN algorithm on Sim(3).

The covariance matrix of each relative motion is ob-
tained by applying an intrinsic Gauss-Laplace approx-
imation.

In Fig.7, we compare the results of our approach to

the EM algorithm of [55] and the method of [20]. For

(a) Examples of input images of the video sequence.
Note that the first and last frames are the same since
the position of the camera is the same at the beginning
and at the end of the video.
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(b) Ground Truth : labeling
matrix manually annotated

(c) [20] : aligned camera
poses of the video sequence
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(d) [55] : (left) labeling matrix, (right) aligned camera
poses of the video sequence
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(e) This paper : (left) labeling matrix, (right) aligned
camera poses of the video sequence

Fig. 7: Wearable camera experiment: in the labeling

matrices a white pixel corresponds to an inlier, a black

pixel corresponds to an unavailable measurement, a

gray pixel corresponds to an outlier. In the results, a

cone represents the pose of a camera. The first camera

position of the video sequence is dark red and the last

camera position is bright red.
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each algorithm, we provide the camera trajectory ob-

tained by aligning the camera poses of each reconstruc-

tion with the estimated global 3D similarities. Both [55]

and [20] are initialized by composing the control inputs

relative similarities.

In order to qualitatively compare the results, we

manually annotated the 3D similarity measurements ei-

ther as inlier or as outlier. Additionally, the position of

the camera is the same at the beginning and at the

end of the video, thus the first and the last estimated
camera pose should be perfectly superimposed.

On the one hand, both the EM algorithm of [55]

and the method of [20] remains stuck in a poor local
minimum. Indeed, the first and the last camera poses

are far from being superimposed and a lot of inliers are

classified as outliers by [55] (see Fig.7d). On the other

hand, our approach perfectly infers the set of inliers (see

Fig.7e) while the first camera pose and the last one are
almost perfectly superimposed.

6.3.5 Results on Real Data for the Automatic planar

image mosaicking problem

In this section, the LG-IEKF presented in this paper is

applied to an automatic planar image mosaicking prob-

lem. We took 53 photos of a planar scene (see Fig.8a)

with a smartphone, detected points of interest and es-

timated the homographies (Lie group SL(3)) between
every pair of images using a RANSAC algorithm fol-

lowed by a LG-GN algorithm on SL(3). The covariance

matrix of each relative motion is obtained by apply-

ing an intrinsic Gauss-Laplace approximation. In our

implementation, we use the Lie algebra basis of sl (3)
given in [6]. In this dataset, there are 65% of outliers

(see Fig.8b) due to the ambiguity of the scene (some

paper sheets are almost identical). Note that the rela-

tive homography between image 43 and image 44 is not

available. Instead, we employ the relative homography

between image 43 and image 45 as control input.

In Fig.8, we compare the results of our approach

against the EM algorithm of [55] which is initialized

by composing the control inputs relative homographies.

On the one hand, once again, the proposed EM of [55]

classifies a lot of inliers as outliers since the estima-

tion errors of the global motions estimates is not taken

into account during the E-step. Consequently, [55] is

not able to correctly recover the global motions (see

Fig.8c). On the other hand, our approach perfectly in-

fers the set of inliers and produces a mosaic visually

close to the ground truth (see Fig.8d).

We could not apply [20] because log∨SL(3) is not de-

fined on the whole group.

(a) Examples of input images
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(b) Ground Truth : (left) labeling matrix manually an-
notated, (right) scene overview
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(c) [55] : (left) labeling matrix, (right) mosaic of input
images
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(d) This paper : (left) labeling matrix, (right) mosaic of
input images

Fig. 8: Image mosaicking results: in the labeling ma-
trices a white pixel corresponds to an inlier, a black

pixel corresponds to an unavailable measurement, a

gray pixel corresponds to an outlier.

7 Conclusion

In this paper, we proposed a generic Iterated Extended

Kalman Filter on Lie Groups (LG-IEKF) that allows

to perform parameter estimation when the state and

the measurements evolve on Lie groups. This novel fil-

ter extends the link between the minimization of non
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linear least squares criteria and the Iterated Extended

Kalman Filter [5, 9] to Lie groups.
For this purpose, we first presented a fitting ap-

proach, called intrinsic Gauss-Laplace approximation,

that allows to fit a concentrated Gaussian distribution

on Lie groups to the probability density of a random

variable evolving on a Lie group.

Since this fitting technique requires to find the min-
imizer of an intrinsic non linear least squares criterion,

we presented a generic intrinsic GN algorithm on Lie

groups, called LG-GN. This optimization algorithm has

the advantage of taking intrinsically into account the

geometry of the Lie group on which the parameters

evolve.

Then, we showed that a generalization of the IEKF,

to the case where the state and the observations evolve

on Lie groups, can be obtained by employing intrinsic

Gauss-Laplace approximations both to derive the LG-

IEKF prediction step and the LG-IEKF update step

(which involves the LG-GN algorithm). For each of these

two steps, we were able to obtain a computationally ef-

ficient algorithm, by exploiting the specific structure of

the problem.

Finally, we derived a statistical test on Lie groups

to detect and remove outlier measurements.

In order to demonstrate the efficiency of the LG-
IEKF, it has been applied to relative motion averaging

problems for three Lie groups of interest. In each of
these applications, the proposed approach significantly
outperforms the state of the art algorithms.

Since this novel filter was derived for generic predic-

tion and measurement models on Lie groups, it can be
applied to a large class of problems.

Future work will consider its use in localization from

a wearable camera in a known 3D environment as well
as in visual odometry [7].

A Derivation of the LG-IEKF

A.1 Derivation of δl+1

Here, we derive the expression of the δl+1 in (53):

δl+1 = log∨
G

(

Xl+1
(

Xl
)−1

Xlµ−1
k|k−1

)

= log∨
G

(

exp∧
G

(

δl+1/l
)

exp∧
G

(

δl
)

)

≃ ϕlδ
l+1/l + δl

= ϕl

(

HT
l Q−1

k Hl + ϕT
l P−1

k|k−1ϕl

)−1

{

HT
l Q−1

k log∨
G′

(

Zkh
(

Xl
)−1

)

− ϕT
l P−1

k|k−1δ
l
}

+ δl

= ϕl

(

HT
l Q−1

k Hl + ϕT
l P−1

k|k−1ϕl

)−1

{

HT
l Q−1

k log∨
G′

(

Zkh
(

Xl
)−1

)

− ϕT
l P−1

k|k−1δ
l

+
(

HT
l Q−1

k Hl + ϕT
l P−1

k|k−1ϕl

)

Φlδ
l
}

= ϕl

(

HT
l Q−1

k Hl + ϕT
l P−1

k|k−1ϕl

)−1

HT
l Q−1

k

{

log∨
G′

(

Zkh
(

Xl
)−1

)

+HlΦlδ
l
}

= Kl

{

log∨
G′

(

Zkh
(

Xl
)−1

)

+HlΦlδ
l
}

(78)

where Kl is the Lie-Kalman gain derived in Appendix A.2.

A.2 Lie-Kalman Gain Derivation

Here, we derive the expression of the Lie-Kalman gain (54)
(the superscripts and underscripts are omitted):

K = ϕ
(

HTQ−1H + ϕTP−1ϕ
)−1

HTQ−1

= ϕ
(

HTQ−1H + ϕTP−1ϕ
)−1

(

HTQ−1
(

HΦPΦTHT +Q
) (

HΦPΦTHT +Q
)−1

)

= ϕ
(

HTQ−1H + ϕTP−1ϕ
)−1

(

(

HTQ−1HΦPΦTHT +HT
) (

HΦPΦTHT +Q
)−1

)

= ϕ
(

HTQ−1H + ϕTP−1ϕ
)−1

(

((

HTQ−1H + ϕTP−1ϕ
)

ΦPΦTHT
) (

HΦPΦTHT +Q
)−1

)

= PΦTHT
(

HΦPΦTHT +Q
)−1

(79)

A.3 Covariance Update Derivation

Here, we derive the expression of the Pk|k in (61) (the super-
scripts and underscripts are omitted):

Pk|k =
(

HTQ−1H + ϕTP−1ϕ
)−1

=
(

HTQ−1H + ϕTP−1ϕ
)−1

{(

HTQ−1H + ϕTP−1ϕ
)

ΦPΦT −HTQ−1HΦPΦT
}

= ΦPΦT −
(

HTQ−1H + ϕTP−1ϕ
)−1

HTQ−1HΦPΦT

= ΦPΦT − ΦKHΦPΦT

= Φ (Id−KHΦ)PΦT (80)

where K is defined in (79).



18 Guillaume Bourmaud et al.

B Relative Motion Averaging

B.1 Derivation of Fk

From (38) and (72), we have:

log∨
Gk

(

f
(

µk−1|k−1

)

f
(

exp∧
Gk−1

(δ)µk−1|k−1

)−1
)

=log∨
Gk

([

Y(k+1) k 0

0 Id

][ (

µk−1|k−1

)

kR
0

0 µk−1|k−1

]

([

Y(k+1) k 0

0 Id

] [

exp∧
G′ (δkR)

(

µk−1|k−1

)

kR
0

0 exp∧
Gk−1

(δ)µk−1|k−1

])−1
)

=log∨
Gk

([

Y(k+1) k 0

0 Id

][ (

µk−1|k−1

)

kR
0

0 µk−1|k−1

]

([

Y(k+1) k 0

0 Id

]

exp∧
Gk

([

δkR

δ

])[ (

µk−1|k−1

)

kR
0

0 µk−1|k−1

])−1
)

=log∨
Gk

([

Y(k+1) k 0

0 Id

]

exp∧
Gk

(

−

[

δkR

δ

])[

Y −1
(k+1) k 0

0 Id

])

=log∨
Gk

([

Y(k+1) k 0

0 Id

]

exp∧
Gk

(

−

[

0 Id 0

Id

]

δ

)[

Y −1
(k+1) k 0

0 Id

])

=−

[

AdG′

(

Y(k+1) k

)

0

0 Id

] [

0 Id 0

Id

]

δ (81)

where we introduced the adjoint representation
AdG′ (·) ⊂ R

q×q of G′ on R
q that enables us to transform an

increment ǫiij ∈ R
q, that acts onto an element Yij through left

multiplication, into an increment ǫ
j
ij ∈ R

q, that acts through
right multiplication:

exp∧
G′

(

ǫiij
)

Yij = Yijexp∧
G′

(

AdG′

(

Y −1
ij

)

ǫiij

)

(82)

Consequently, from (81), we obtain:

Fk =−

dlog∨
Gk

(

f
(

µk−1|k−1

)

f
(

exp∧
Gk−1

(δ)µk−1|k−1

)−1
)

dδ

∣

∣

∣

∣

∣

δ=0

=

[

AdG′

(

Y(k+1) k

)

0

0 Id

] [

0 Id 0

Id

]

(83)

B.2 Derivation of Hl

From (48) and (73), we have:

log∨
G′

(

Zkh
(

exp∧
G (δ)Xl

)−1
)

=log∨
G′

(

Yi (k+1)exp∧
G′

(

δ(k+1)R

) (

Xl
)

(k+1)R

(

Xl
)−1

iR
exp∧

G′(−δiR)
)

=log∨
G′

(

Yi (k+1)

(

Xl
)

(k+1)R

(

Xl
)−1

iR

exp∧
G′

(

AdG′

(

(

Xl
)

iR

(

Xl
)−1

(k+1)R

)

δ(k+1)R

)

exp∧
G′ (−δiR)

)

≃log∨
G′

(

Yi (k+1)

(

Xl
)

(k+1)R

(

Xl
)−1

iR

)

− δiR + AdG′

(

(

Xl
)

iR

(

Xl
)−1

(k+1)R

)

δ(k+1)R (84)

where we approximated ϕ (·) (see (10)) by Id.

Consequently, from (84), we obtain:

Hl = −
dlog∨

G′

(

Zkh
(

exp∧
G (δ)Xl

)−1
)

dδ

∣

∣

∣

∣

∣

δ=0

≃

[

0 Id0 −AdG′

(

(

Xl
)

iR

(

Xl
)−1

(k+1)R

)

0

]

(85)

References

1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization
algorithms on matrix manifolds. Princeton University
Press (2009)

2. Agrawal, M.: A Lie algebraic approach for consistent pose
registration for general Euclidean motion. In: IROS, pp.
1891–1897 (2006)

3. Bandeira, A.S., Singer, A., Spielman, D.A.: A Cheeger
inequality for the graph connection laplacian. arXiv
preprint arXiv:1204.3873 (2012)

4. Barfoot, T.D., Furgale, P.T.: Associating uncertainty
with three-dimensional poses for use in estimation prob-
lems. IEEE Trans. Robot. 30(3), 679–693 (2014). DOI
10.1109/tro.2014.2298059

5. Bell, B.M., Cathey, F.W.: The iterated Kalman filter up-
date as a Gauss-Newton method. Automatic Control,
IEEE Transactions on 38(2), 294–297 (1993)

6. Benhimane, S., Malis, E.: Homography-based 2d visual
tracking and servoing. The International Journal of
Robotics Research 26(7), 661–676 (2007)

7. Berger, J., Lenzen, F., Becker, F., Neufeld, A., Schnörr,
C.: Second-order recursive filtering on the rigid-motion
lie group se (3) based on nonlinear observations. arXiv
preprint arXiv:1507.06810 (2015)

8. Bernstein, D.S.: Matrix mathematics: theory, facts, and
formulas. Princeton University Press (2009)

9. Bertsekas, D.P.: Incremental least squares methods
and the extended Kalman filter. SIAM Jour-
nal on Optimization 6(3), 807–822 (1996). DOI
10.1137/S1052623494268522

10. Björck, A.: Numerical methods for least squares prob-
lems. Siam (1996)

11. Bonnabel, S.: Left-invariant extended Kalman filter and
attitude estimation. In: IEEE Conference on Decision
and Control (2007)

12. Bonnabel, S., Martin, P., Salaun, E.: Invariant extended
Kalman filter : theory and application to a velocity-aided
attitude estimation problem. In: IEEE Conference on De-
cision and Control and 28th Chinese Control Conference
(2009)

13. Boumal, N., Singer, A., Absil, P.A.: Robust estimation of
rotations from relative measurements by maximum likeli-
hood. In: Proceedings of the 52nd Conference on Decision
and Control, CDC. (2013)

14. Boumal, N., Singer, A., Absil, P.A., Blon-
del, V.D.: Cramer-Rao bounds for synchro-
nization of rotations. Information and Infer-
ence (2013). DOI 10.1093/imaiai/iat006. URL
http://dx.doi.org/10.1093/imaiai/iat006

15. Bourmaud, G., Mégret, R., Arnaudon, M., Giremus, A.:
Continuous-discrete extended Kalman filter on matrix
Lie groups using concentrated Gaussian distributions. J
Math Imaging Vis (2014). DOI 10.1007/s10851-014-0517-
0

16. Bourmaud, G., Mégret, R., Giremus, A., Berthoumieu,
Y.: Global motion estimation from relative measurements
in the presence of outliers. ACCV 2014



From Intrinsic Optimization to Iterated Extended Kalman Filtering on Lie Groups 19

17. Bourmaud, G., Mégret, R., Giremus, A., Berthoumieu,
Y.: Global motion estimation from relative measurements
using iterated extended Kalman filter on matrix Lie
groups. ICIP 2014

18. Bourmaud, G., Mégret, R., Giremus, A., Berthoumieu,
Y.: Discrete extended Kalman filter on Lie groups. In:
Signal Processing Conference (EUSIPCO), 2013 Proceed-
ings of the 21st European (2013)

19. Caballero, F., Merino, L., Ferruz, J., Ollero, A.: Homog-
raphy based Kalman filter for mosaic building. applica-
tions to UAV position estimation. In: Robotics and Au-
tomation, 2007 IEEE International Conference on, pp.
2004–2009. IEEE (2007)

20. Chatterjee, A., Govindu, V.M.: Efficient and robust
large-scale rotation averaging. In: ICCV (2013)

21. Chirikjian, G.S.: Stochastic Models, Information Theory,
and Lie Groups, Volume 2. Springer-Verlag (2012). DOI
10.1007/978-0-8176-4944-9

22. Crandall, D.J., Owens, A., Snavely, N., Huttenlocher, D.:
Discrete-continuous optimization for large-scale structure
from motion. In: CVPR, pp. 3001–3008 (2011)

23. Crassidis, J., Markley, F.: Unscented filtering for space-
craft attitude estimation. Journal of Guidance, Control,
and Dynamics 26, 536–542 (2003)

24. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.:
Monoslam: Real-time single camera slam (2007)

25. Enqvist, O., Kahl, F., Olsson, C.: Non-sequential struc-
ture from motion. In: ICCV Workshops, pp. 264–271
(2011)

26. Faraut, J.: Analysis on Lie groups: an introduction, vol.
110. Cambridge University Press (2008)

27. Fisher, R.A., Yates, F., et al.: Statistical tables for biolog-
ical, agricultural and medical research. Statistical tables
for biological, agricultural and medical research. (Ed. 3.)
(1949)

28. Fredriksson, J., Olsson, C.: Simultaneous multiple rota-
tion averaging using Lagrangian duality. In: Asian Con-
ference of Computer Vision (2012)

29. Govindu, V.M.: Combining two-view constraints for mo-
tion estimation. In: CVPR (2), pp. 218–225 (2001)

30. Govindu, V.M.: Lie-algebraic averaging for globally con-
sistent motion estimation. In: CVPR (1), pp. 684–691
(2004)

31. Grisetti, G., Kuemmerle, R., Ni, K.: Robust optimization
of factor graphs by using condensed measurements. In:
IEEE International Conference on Intelligent Robots and
Systems (IROS) (2012)

32. Hall, B.: Lie Groups, Lie Algebras, and Representations
An Elementary Introduction. Springer (2003)

33. Hartley, R., Aftab, K., Trumpf, J.: L1 rotation averag-
ing using the Weiszfeld algorithm, pp. 3041–3048. Insti-
tute of Electrical and Electronics Engineers (2011). DOI
10.1109/CVPR.2011.5995745

34. Hartley, R., Trumpf, J., Dai, Y., Li, H.: Rotation averag-
ing. International Journal of Computer Vision pp. 1–39
(2013). DOI 10.1007/s11263-012-0601-0

35. Haykin, S.S., et al.: Kalman filtering and neural networks.
Wiley Online Library (2001)

36. Jeong, Y., Nister, D., Steedly, D., Szeliski, R., Kweon,
I.: Pushing the envelope of modern methods for bundle
adjustment. In: CVPR (2010)

37. Jiang, N., Cui, Z., Tan, P.: A global linear method for
camera pose registration. 2013 IEEE International Con-
ference on Computer Vision DOI 10.1109/iccv.2013.66

38. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard,
J.J., Dellaert, F.: isam2: Incremental smoothing and

mapping using the bayes tree. I. J. Robotic Res. 31(2),
216–235 (2012)

39. Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: In-
cremental smoothing and mapping. IEEE Trans. on
Robotics (TRO) 24(6), 1365–1378 (2008)

40. Khurd, P., Grady, L., Oketokoun, R., Sundar, H., Gajera,
T., Gibbs-Strauss, S., Frangioni, J.V., Kamen, A.: Global
error minimization in image mosaicing using graph con-
nectivity and its applications in microscopy. Journal of
Pathology Informatics 2, S8 (2012)

41. Klein, G., Murray, D.: Parallel tracking and mapping for
small ar workspaces. In: International Symposium on
Mixed and Augmented Reality (ISMAR) (2007)

42. Konolige, K.: Sparse sparse bundle adjustment. In:
BMVC, pp. 1–11 (2010)

43. Lefferts, E., Markley, F., Shuster, M.: Kalman filtering
for spacecraft attitude estimation. Journal of Guidance,
Control and Dynamics (1982)

44. Li, G., Liu, Y., Yin, J., Shi, Z.: Newton geodesic opti-
mization on special linear group. Proceedings of the 48h
IEEE Conference on Decision and Control (CDC) (2009).
DOI 10.1109/cdc.2009.5400115

45. Long, A.W., Wolfe, K.C., Mashner, M., Chirikjian, G.S.:
The banana distribution is Gaussian: A localization study
with exponential coordinates. In: Robotics: Science and
Systems (2012)

46. Lui, Y.: Advances in matrix manifolds for computer vi-
sion. Image and Vision Computing 30, 380–388 (2011)

47. Malis, E., T.Hamel, Mahony, R., Morin, P.: Dynamic es-
timation of homography transformations on the special
linear group of visual servo control. In: IEEE Conference
on Robotics and Automation (2009)

48. Markley, F.: Attitude error representation for Kalman
filtering. Journal of Guidance, Control and Dynamics
(2003)

49. Martinec, D., Pajdla, T.: Robust rotation and translation
estimation in multiview reconstruction. In: Computer
Vision and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on, pp. 1–8. IEEE (2007)

50. Meidow, J.: Efficient video mosaicking by multiple loop
closing. In: Photogrammetric Image Analysis, pp. 1–12.
Springer (2011)

51. Moulon, P., Monasse, P., Marlet, R.: Global fusion of rel-
ative motions for robust, accurate and scalable structure
from motion. In: Computer Vision (ICCV), 2013 IEEE
International Conference on, pp. 3248–3255. IEEE (2013)

52. Persson, S., Sharf, I.: Invariant momentum-tracking
Kalman filter for attitude estimation. In: Robotics
and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, pp. 592–598 (2012). DOI
10.1109/ICRA.2012.6224562

53. Ramachandra, K.: Kalman filtering techniques for radar
tracking. CRC Press (2000)

54. Ring, W., Wirth, B.: Optimization methods on rieman-
nian manifolds and their application to shape space.
SIAM Journal on Optimization 22(2), 596–627 (2012)

55. Roberts, R., Sinha, S.N., Szeliski, R., Steedly, D.: Struc-
ture from motion for scenes with large duplicate struc-
tures. In: Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pp. 3137–3144. IEEE
(2011)

56. Rudkovskii, M.: Twisted product of Lie groups. Siberian
Mathematical journal pp. 969–977 (1997)

57. Selig, J.M.: Lie groups and Lie algebras in robotics.
NATO Science Series II: Mathematics, Physics and
Chemistry pp. 101–125 (2005)



20 Guillaume Bourmaud et al.

58. Singer, A., Shkolnisky, Y.: Three-dimensional structure
determination from common lines in cryo-em by eigen-
vectors and semidefinite programming. SIAM journal on
imaging sciences 4(2), 543–572 (2011)

59. Smith, P., Drummond, T., Roussopoulos, K.: Computing
map trajectories by representing, propagating and com-
bining pdfs over groups. In: ICCV, pp. 1275–1282 (2003)

60. Strasdat, H., Davison, A., Montiel, J., Konolige, K.: Dou-
ble window optimisation for constant time visual SLAM.
In: IEEE International Conference on Computer Vision
(ICCV) (2011)

61. Strasdat, H., Montiel, J.M.M., Davison, A.J.: Real-time
monocular slam: Why filter? In: ICRA, pp. 2657–2664
(2010)

62. Taylor, C.J., Kriegman, D.J.: Minimization on the Lie
group SO(3) and related manifolds (1994)

63. Vercauteren, T., Pennec, X., Malis, E., Perchant, A., Ay-
ache, N.: Insight into efficient image registration tech-
niques and the demons algorithm. In: Information Pro-
cessing in Medical Imaging, pp. 495–506. Springer (2007)

64. Wachinger, C., Wein, W., Navab, N.: Registration strate-
gies and similarity measures for three-dimensional ultra-
sound mosaicing. Academic radiology 15(11), 1404–1415
(2008)

65. Wang, L., Singer, A.: Exact and stable recovery of rota-
tions for robust synchronization. Information and Infer-
ence 2(2), 145–193 (2013). DOI 10.1093/imaiai/iat005

66. Wang, Y., Chirikjian, G.: Error propagation on the Eu-
clidean group with applications to manipulators kinemat-
ics. IEEE Transactions on Robotics 22 (2006)

67. Wolfe, K., Mashner, M., Chirikjian, G.: Bayesian fusion
on Lie groups. Journal of Algebraic Statistics 2, 75–97
(2011)


