
  

 
Abstract— Over the last five years there has been an increase in 

the frequency and diversity of network attacks. This holds true, as 

more and more organisations admit compromises on a daily basis. 

Many misuse and anomaly based Intrusion Detection Systems 

(IDSs) that rely on either signatures, supervised or statistical 

methods have been proposed in the literature, but their 

trustworthiness is debatable. Moreover, as this work uncovers, the 

current IDSs are based on obsolete attack classes that do not 

reflect the current attack trends. For these reasons, this paper 

provides a comprehensive overview of unsupervised and hybrid 

methods for intrusion detection, discussing their potential in the 

domain. We also present and highlight the importance of feature 

engineering techniques that have been proposed for intrusion 

detection. Furthermore, we discuss that current IDSs should 

evolve from simple detection to correlation and attribution. We 

descant how IDS data could be used to reconstruct and correlate 

attacks to identify attackers, with the use of advanced data 

analytics techniques. Finally, we argue how the present IDS attack 

classes can be extended to match the modern attacks and propose 

three new classes regarding the outgoing network communication. 

 
Index Terms— Anomaly IDS, correlation and attribution, 

attack reconstruction, digital forensics, network forensics, data 

analytics, unsupervised learning, feature selection 

 

I. INTRODUCTION 

significant rise of cyber attacks has been witnessed in the 
recent years. Some examples include the Sony data breach 

in 2014, the Ukraine attack on power grid in the end of 2015 
and even the hack of the controversial cybersecurity group 
Hacking Team in 2015. According to [1], in the first quarter of 
2017, DDoS attacks increased by 30% compared to the 
previous year. Twelve of these attacks exceeded a bandwidth of 
100 Gigabits per second (Gbps), while two exceeded 300 Gbps 
against the media and entertainment sectors. Moreover, 43% of 
web traffic across their network was produced by bots and 63% 
was malicious. These attacks not only impair the normal 
operation of organisations and governments, but also have 
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social consequences and may affect and impair critical 
infrastructures.  

As stated in [2], targeted attacks are now an established part 
of the threat landscape and Advanced Persistent Threats (APTs) 
are one of the biggest security challenges as they target 
companies, infrastructures and governments. Indicatively, in 
2015 Carbanak APT campaign successfully attacked up to 100 
financial institutions across the globe with total losses as high 
as US$1 billion [2]. An APT is a sophisticated and premeditated 
method for an attacker to achieve specific predetermined goals. 
The word “persistent” in the APT acronym holds a double 
meaning: a) its ability to stay in the system/network until it 
fulfils its purpose and b) the persistence of the attacker who will 
not stop until her/his goal is reached. Attackers nowadays are 
highly motivated and most of the times have surplus time and 
money to devote for achieving their goal. Cyber-crime has 
become more organized and sophisticated, as criminals can 
easily purchase all the necessary means to carry an attack from 
the underground market [3]. Malware infection frameworks 
such as Zeus or SpyEye, can be purchased for US$4,000–
US$7,000, while hosting Browser Exploit Packs (BEP) on a 
website to lure the victims, costs for US$1,500–US$3,000 [4]. 
According to Symantec [5], a drive-by download web toolkit, 
which includes updates and 24x7 support, can be rented for 
between US$100 and US$700 per week, while distributed 
denial-of-service (DDoS) attacks can be ordered from US$10 
to US$1,000 per day. 

Over the last two decades, many IDSs have been proposed, 
developed, reviewed and evaluated. An IDS processes the 
traffic of a network and potentially data from its host to detect 
any malicious activity, such as unauthorized access or a DDoS 
attack. In the early days of internetworking, intrusion detection 
was performed manually by analysts and system administrators, 
who used to review all the monitored activities in the network. 
As networks increased in size and complexity, the amount of 
network traffic that was produced made the manual monitoring 
of network traffic for intrusions inefficient. To overcome the 
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shortfalls, misuse detection approaches using predefined attack 
patterns, were introduced. However, as the complexity and 
amount of new attacks increased, a different solution was 
needed and as a result data mining based approaches were 
brought in. At first, supervised methods were utilised for this 
purpose, but proved to be limited on detecting known attacks 
with very low false positive rate only. In recent years, 
unsupervised and hybrid (supervised or misuse combined with 
unsupervised) techniques are gaining more popularity. 
However, contrary to supervised IDS techniques, which have 
been extensively studied in the literature, there is no 
comprehensive review of the unsupervised and hybrid ones. 
This paper contributes by providing a comprehensive review of 
these techniques, also noting that they can raise the bar of 
security that the IDS as a countermeasure provides, as: 

1) They can potentially detect unknown attacks (e.g., 0-
day attacks) [35]. Supervised methods do not perform 
well on unknown attacks, but do well on known ones 
with a low false positive rate. Conversely, unsupervised 
methods are able to detect unknown attacks, but exhibit 
a high false positive rate. Therefore, combining the two 
approaches in a hybrid system may potentially result to 
both high detection and low false positive rates. 

2) Unsupervised methods do not require the time 
consuming training of supervised methods on a regular 
basis. 

3) Unsupervised methods do not require regularly data 
labelling for training purposes, which is both time 
consuming and resource demanding. 

4) One of the most significant problems in a forensic 
investigation is the amount of data created from diverse 
sources, such as network traffic, host evidence and logs 
from different devices. The extraction of features from 
these evidence and their inclusion on the clustering 
process is much more convenient and efficient than the 
re-training of the supervised model. 

5) Finally, as will be discussed in Section IV, the evolution 
of the attacks demands the extension of the IDS with the 
use of attribution and correlation. Clustering techniques 
fit well with this purpose, as the attribution questions we 
desire to answer can be described well by features 
extracted from diversified sources (network, host, log 
files, etc.), on which later the clustering process will be 
performed on. 

However, it should be noted that this work does not suggest 
that unsupervised or hybrid IDS are the silver bullet of security 
for an organization. An attack might still occur even with the 
presence of an IDS for various reasons, e.g., due to the presence 
of a misconfiguration, a 0-day vulnerability or a non-security 
and technically savvy user. Moreover, as explained in [6], the 
problem of intrusion detection is intractable and in fact IDSs do 
not detect intrusions at all. They only identify evidence of 
intrusions and produce indicators of potentially malicious 
activities. 

For this reason, further correlation of the detected instances 
is needed, to reconstruct the occurred attack and potentially 
identify parts of it and affected hosts that were previously 
missed [99]. For instance, a targeted attack consists of several 
stages, which may not be detected, especially if they do not 

produce network traffic. One of these stages could, for example, 
include host infection through a malicious USB device, which 
will certainly not be detected by the IDS, contrary to other 
instances of host infection that do require traffic, e.g., service 
exploitation with a buffer overflow. In both cases, these stages 
are parts of a larger attack. If other parts of the attack are 
detected and correlated, the missing stages could be identified 
manually or automatically through either the newly produced 
knowledge from the correlation or from other evidence sources. 
Consequently, we regard that further correlation of the detected 
instances, could lead to the reconstruction of the occurred 
attacks, the prevention of future ones and even the identification 
of the attacker. Such analysis is typically performed as part of 
the forensic investigation of an incident. However, with the 
extensive increase of produced data, this task is becoming 
overwhelming and manual reconstruction inefficient. As it will 
be discussed later in Section IV, time is critical factor in a 
forensic investigation, thus, combining data mining methods 
with the current forensics analysis techniques can be very 
effective. Moreover, such sophisticated and multistep attacks 
demand the bridging of technologies such as IDS with the 
forensic process.  

The major contributions of the paper are as follows: 
1) Contrary to most surveys that cover all the facets of 

existing IDS (i.e., signature, statistical, supervised, 
unsupervised, soft-computing, knowledge-based, 
etc.), but with limited focus on unsupervised and 
hybrid IDS techniques, this paper provides a 
comprehensive review of those methods and take it to 
the next level of intrusion correlation and attribution. 

2) Particularly with machine learning based approaches, 
we believe that feature extraction, construction, and 
selection techniques play important roles as they 
influence their learning processes significantly. Unlike 
other studies, we devote a subsection to discuss the 
topic thoroughly. 

3) We do not limit ourselves on the presentation of the 
reviewed works, but also compare and analyse them 
and identify their strengths and weaknesses. In this 
way, we are able to produce recommendations to be 
considered when developing an intrusion detection 
system in the future. 

4) We discover open issues regarding the current IDSs 
and discuss how such systems need to evolve from 
simple detection to correlation and attribution, to be 
able to effectively cope with threats like APTs, 
targeted attacks, data exfiltration, etc. 

5) To the best of our knowledge, we are the first to 
discuss the concept of correlation of the produced 
indicators from the intrusion detection stage, with the 
ultimate goal of revealing the identity of the attacker. 

6) Finally, we identify modern attacks that do not fall in 
any of the four known IDS attack classes. We discuss 
the behaviour of those attacks, as well as identify and 
propose characteristics to be considered for detecting 
them. 

The rest of the paper is organised as follows. Section II 
provides a brief background in intrusion detection. Section III 
presents and compares the different unsupervised and hybrid 
intrusion detection methods and feature selection techniques. 



  

Section IV introduces the concept of correlation and Section V 
presents related work. Finally, Section VI concludes the paper 

and discusses directions for future work.

 

II. BACKGROUND 

This section discusses the fundamentals of intrusion 
detection technology according to its a) implementation 
method, b) detection mechanism and data analytic technique, 
and c) architecture as well as the most used measures and attack 
classes.  

A. Implementation Classification 

With regards to the implementation method, IDSs can be 
divided into two categories: a) host-based and b) network-
based. A host-based intrusion detection system (HIDS) deploys 
a local agent on each host of the network. HIDS uses the local 
agents and application logs or raw system calls as data source 
to detect rogue processes, modification of critical system 
configuration files (e.g., registry keys), privilege escalations 
and any other unauthorized action that is against the system’s 
policies. HIDS has the advantage of working with high quality 
data that are typically very informative [7]. However, 
processing the audit trail can have a significant impact on the 
performance of the host, when the data are processed locally 
[8], or on the bandwidth of the network, when a remote 
processing unit is used [9]. Lichodzijewski et al. in [10] 
successfully reduced the computational cost by utilizing 
“session information” instead of the traditional audit trails and 
so did Hu et al. in [11], by proposing a system based on a 
Hidden Markov Model with a pre-processing stage that 
removes similar sub-sequence system calls. Others who have 
proposed host-based IDSs are [12] and [13]. 

Although HIDS was the first area the literature explored, with 
the growth of computer networks and the proliferation of 
network attacks, the protection offered by HIDS was not 
enough, as they were restricted on a single host. Compared to a 
HIDS, a NIDS has several advantages [7]: 

1. It is more resilient to attacks, as an HIDS depends on the 
logs produced by the system and other applications. 

2. It is operating system and platform independent 
meaning that the same NIDS works on any platform 
without needing any modification. 

3. It does not affect the performance of the network as it 
does not add any overhead to the network traffic by 
simply monitoring and processing it. 

A NIDS monitors and analyses the network traffic on a 
packet or a flow level and attempts to detect anomalies, such as 
unauthorized access or DDoS attacks. On a packet level, an IDS 
performs a so called Deep Packet Inspection (DPI), which 
analyses both the header and the payload of each packet [7], 
[14]. Although inspecting the payload of the packets can be 
very informative, with today’s high speed communication 
networks such approach is not only time consuming and 
inefficient, but also computationally costly. As will be 
discussed later in Section III.C, one of the desirable 
characteristics of IDS is the requirement of real-time, or near 
real-time performance. Moreover, in the case of encrypted 
packets, which are becoming prevalent with the rise of darknet 
[15] and the use of technologies like VPN, the analysis of the 
payload is not possible. On the contrary, a flow-based NIDS 
inspects only the packet headers and uses input data in the form 
of NetFlow or IPFIX [16]. A combination of both techniques 
could be used to improve the performance of IDS. For example, 
DPI could be applied only on the packets that were flagged as 
potentially malicious by the flow-based IDS. One of the main 
disadvantages of the NIDS is network scalability, i.e., the 
ability of the NIDS to adjust as the size and the complexity of 
the network is changing. This problem and its current proposed 
solutions will be detailed in Section III.C. 

B. Detection Mechanism Classification 

IDSs can be classified based on their detection mechanism as 

Fig.  1. General Classification of Intrusion Detection Systems 



  

[17]: (i) misuse or signature based, (ii) anomaly or behaviour 
based, and (iii) hybrid. Misuse or signature based systems 
maintain a database of predefined signatures (patterns) that 
correspond to known attacks and perform the detection by 
comparing these to the audit data stream. It is still the preferred 
method in today’s industry, as it has a low false positive rate 
and constitutes an “out of the box” solution. There are many 
signature-based open source IDSs that are widely used in the 
enterprise world, such as SNORT [17], BRO [18] and Suricata 
[19]. Moreover, various security solutions exist that include 
network intrusion detection provided by known vendors, such 
as Unified Security Management (USM) [20] by AlienVault, 
Firepower Next-Generation IPS (NGIPS) [21] by CISCO and 
FireEye Network Security [22] by FireEye.  

Despite its advantages a misuse intrusion detection system is 
as good as its database, which needs to be updated by a human 
expert and so it cannot detect unknown attacks [6]. 
Consequently, the performance of such an intrusion detection 
system is inseparably linked with the quality of its database. 
Also, as its size increases, so do the processing time (i.e. search 
time) and cost. According to Dreger et al. [23], popular misuse 
IDS, such as SNORT and BRO, consume a significant amount 
of resources (e.g. CPU and memory) when operating on a high 
speed network. Moreover, in today’s ever changing and 
evolving cyber-physical ecosystems new attacks and more 
advanced variations of older ones appear on a daily basis. As 
such, maintaining an updated set of rules is not feasible, as well 
as is a time-consuming and insufficient process. Cheng et al. 
[24] tested five different IDS evasion techniques against known 
misuse-based systems like SNORT. Their results showed that 
this kind of IDSs are vulnerable to attacks like payload and 
shellcode mutation and simple variation of older attacks. 

Anomaly detection refers to the problem of identifying 
instances in a dataset that do not conform to the “normal” 
behaviour. A behaviour is considered an anomaly or an outlier 
if the deviation from the “normal” one exceeds a predefined or 
dynamical calculated threshold. Anomaly detection finds 
extensive use in a wide variety of applications, such as fraud 
detection for credit cards, insurance, or health care, intrusion 
detection for cyber-security, fault detection in safety critical 
systems, and military surveillance for enemy activities [25]. It 
is important to stress that an anomaly does not necessarily 
correspond to an attack, but a suspicious observation. Anomaly-
based IDSs do not rely on previously defined patterns, but they 
aim to model the normal behaviour/traffic in order to detect the 
abnormal, and so they are able to detect both known and 
unknown attacks. The price for that is the high false positive 
rate they produce and the tuning stage they require. 

There are many studies in the literature aiming to combine 
the aforementioned techniques to inherit both of their 
advantages, improving the detection rate and minimizing the 
false positive rate. Barbara et al. [26] proposed one of the most 
well-known hybrid systems, named, the Audit Data Analysis 
and Mining (ADAM). ADAM has two stages of detection: it 
firstly uses association rule mining for the anomaly-based stage 
and then classifies the suspicious connections as normal, known 
attacks and unknown attacks with a misuse module. Kim et al. 

[27] combine the C4.5 decision tree for the misuse module with 
multiple one-class Support Vector Machines (SVMs) to model 
the normal behaviour. Similarly, Depren et al. [28], use self-
organizing maps (SOM) for the anomaly module and C4.5 
decision tree for the misuse module. Other proposed hybrid 
systems are the [29], [30] and [31]. 

C. Anomaly-based Intrusion Detection Systems 

Anomaly-based IDS can be divided into the following 
categories according to the method they use: statistical, 
supervised (classification), unsupervised (clustering and outlier 
detection), soft computing, knowledge-based and combination 
of learners. This review focuses on the unsupervised and 
hybrid-based systems, while providing a short description of the 
supervised techniques. Detailed reviews on the rest categories 
can be found in [32], [33] and [34].  

In a supervised IDS, a model is trained to learn from 
examples (i.e., labelled data). When a new instance is 
introduced, a classifier attempts to assign it to one of the 
predefined classes. Several classification algorithms, like 
Decision tree (C4.5), SVM, K-Nearest Neighbour, Bayes 
Classifier, Neural Networks, etc., have been used for network 
based intrusion detection tasks. According to Laskov et al. [35], 
the supervised algorithms exhibit excellent detection accuracy 
and low false positive rate on the detection of known attacks – 
with C4.5 achieving the best results. However, when unknown 
attacks are present in the dataset, most of the classification 
models fail to detect them, with SVM achieving the best results. 
Moreover, classification-based systems have a similar 
disadvantage to the signature-based ones, i.e., they need to be 
periodically trained to preserve their high detection rate. This is 
not feasible as it is extremely difficult to obtain labelled data, 
especially on a regular basis. In addition, even if labelled data 
do exist, it is uncertain if they include all the new attacks. In the 
past, lots of supervised models were proposed, like the ones in 
[36], [37], [38], [39] and [40]. 

Unsupervised anomaly detection (also known as outlier-
based detection) uses clustering techniques to identify possibly 
malicious instances in a given dataset, without having any prior 
knowledge. The goal of clustering is to separate a finite 
unlabelled dataset into a finite and discrete set of “natural”, 
hidden data structures, rather than providing an accurate 
characterization of unobserved samples generated from the 
same probability distribution [41]. In other words, clustering 
algorithms aim to partition the given data into groups (clusters) 
that achieve high inner similarly and outer dissimilarity, 
without any prior knowledge. For this purpose, all the clustering 
methods are based on the following assumptions. Firstly, the 
number of normal instances in a dataset vastly outnumbers the 
number of anomalies. Secondly, the anomalies themselves are 
qualitatively different from normal instances [43]. After the 
cluster formation, scores are assigned to the constructed 
clusters. If the score of a cluster exceeds the predefined or 
dynamically calculated threshold, it is considered as potentially 
malicious. Respectively, when clustering is used to detect 
network attacks, one is assuming that a) normal traffic 
outnumbers the malicious and b) normal traffic differentiates in 
some way from the malicious. For these reasons, as it will be 
explained later in this section, selecting the proper feature 
subset is of great importance. In other words, one has to select 



  

the features that describe well enough the attacks to be 
identified. With regards to the detection process the goal of 
clustering is to group the network flows or packets without any 
prior knowledge, but solely based on the relations between 
them. As a result, large clusters of normal traffic will be created 
while malicious traffic will form smaller clusters and outliers, 
i.e. instances that do not belong to any cluster. Based on 
experiments and tuning of the algorithms in use, a dynamic or 
static threshold can be used to decide which clusters are 
considered malicious. The main advantage of clustering-based 
systems is their ability to detect unknown attacks without any 
prior knowledge, which eliminates the need for labelled data. 
The main drawback is the high false positive rate that they 
produce. A more extensive overview and comparison of 
unsupervised systems is provided in Section III.C. 

One of the most important steps of the unsupervised anomaly 
detection is feature extraction or selection. Each instance in a 
dataset is represented by an array of characteristics, which are 
called features. Feature selection refers to the process of 
selecting a subset of the available features that are the most 
relevant and less redundant. On the other hand, the feature 
extraction aims to create (extract) new features of higher 
quality. Both processes can affect not only a system’s detection 
rate, but also its performance. Section III.B provides a thorough 
discussion of the feature selection and extraction processes and 
compares the most commonly used techniques in network 
intrusion detection. 

D. Architecture classification 

The architecture of an IDS can affect its overall performance, 
thus is an important decision during the system’s design. This 
is especially true due to the high speed networks that most 
organizations (e.g. companies, universities) use nowadays. 
Considering the architecture of the system, IDSs can be divided 
in the following three categories: 

1) Centralized: Centralized IDSs consist of multiple 
sensors across the network that monitor and send data 
to the central processing unit (CPU), where the 
analysis of the collected data and the detection take 
place. This architecture has two main disadvantages. 
Firstly, it does not provide network scalability, which 
means that as the network expands the CPU is 
overloaded and at some point may become unable of 
keeping up with the workload. Secondly, one CPU 
constitutes a Single Point of Failure (SPoF) of the sys-
tem [43]. 

2) Decentralized: In this architecture, multiple sensors 
and multiple processing units are scattered across the 
network, following a hierarchical structure. The 
collected data are sent to the closest processing unit, 
where they get pre-processed before they end up at the 
main processing unit. In this way, the SPoF and the 
scalability problems can be avoided. The performance 
of the system is also boosted due to the pre-processing 
stage. 

3) Distributed: This architecture consists of a flat overlay 
of multiple autonomous agents that act as sensors and 
processing units at the same time. Data are collected 
and processed by the agents, which communicate with 
each other through a Peer-to-Peer (P2P) architecture 

[40]. In this architecture there is no main or CPU and 
the processing workload is distributed between all the 
agents, which boosts the system’s performance and 
scalability. 

In both decentralized and distributed architectures 
communication between the agents is crucial for the detection 
of certain types of attacks. For instance, the loss of 
communication between the agents may lead to the inability of 
the system to detect distributed attacks. 

E. Measures 

In the past different metrics and datasets have been used to 
measure how good a system is at successfully identifying 
attacks and normal traffic in a dataset, which makes it difficult 
to compare the results of the various proposed systems. The 
most common evaluation measures regarding the detection 
ability of the system are as follows: 

1) Confusion matrix, also known as error matrix, is a way 
of visualizing the relationship between the actual 
results and the predicted results. It is mainly utilized in 
supervised learning to evaluate the prediction 
accuracy of a classifier. Each row of the table 
corresponds to a result predicted by the classifier, 
while each column corresponds to an actual result. 

2) Recall represents the portion of the relevant instances 
(i.e. true positives) which are successfully retrieved. 
Conversely, precision is the proportion of retrieved 
instances that are correctly identified. Both recall and 
precision focus on the positive samples, but neither of 
them captures how well the model handles negative 
cases [43]. The harmonic mean of the two previous 
measures is called F-measure (F1). Although F1 is 
advocated as a single measure to capture the 
effectiveness of a system, it still completely ignores 
True Negatives (TN) [44]. 

3) Accuracy takes into account both the true positives and 
negatives and is defined as the ratio of the correctly 
classified samples to the total number of instances. 

4) Sensitivity, also known as True Positive Rate (TPR), is 
the proportion of positives samples that are correctly 
classified as such. On the contrary, specificity or True 
Negative Rate (TNR) measures the proportion of 
instances that are correctly classifies as negative. 
Similarly, False Positive Rate (FPR) represents the 
proportion of sample that are incorrectly identified as 
anomalies. 

5) The Receiver Operating Characteristic (ROC) is a 
technique originally used in signal processing theory 
for visualizing the TPR against the FPR for different 
parameter settings. It depicts relative trade-offs 
between benefits (true positives) and costs (false 
positives) [45].  

Although the accuracy of an IDS is one of the most important 
requirements, it is not the only one. The response time of the 
system is a significant factor, as it will be used in fast enterprise 
networks where even a small latency can result in monetary 



  

losses for an organization. Furthermore, the computational and 
communication cost (between the agents and the processing 
units), can not only negatively affect the response time, but also 
the financial cost of deploying and maintaining the system. As 
today’s networks are large and their size dynamic and variable, 
the IDS should possess the ability to adjust to the changes of the 
network’s size and structure. Finally, a system destined to 
protect other systems should be itself resilient to any attacks 
that aim to disrupt its operation and have a stable and consistent 
performance under different scenarios.  

F. Attack Classes 

Four main categories of attacks have been proposed in the 
intrusion detection literature, which an IDS needs to be able to 
detect: 

1) Denial of Service (DoS): In a DoS attack the targeted 
system is flooded with a large amount of requests 
originating from a single connection, until all the 
target’s resources are exhausted and thus is not 
capable to handle legitimate requests anymore. In a 
Distributed Denial of Service (DDoS) attack the 
attacker is using multiple connections that are 
distributed across the Internet and are likely part of 
a botnet network. Attacks of this kind, target the 
availability of an infrastructure by making a service 
or resource unavailable to its users. Small or 
medium DoS and DDoS attacks are often used as 
smokescreens by the attackers to conceal smaller 
but more dangerous malicious activities, or to take 
down security appliances, such as firewalls. 

2) Probe: This type of attack (e.g., port scanning) is used 
to explore the target network and collect 
information about the hosts, such open ports, 
running services, etc. 

3) User to Root (U2R): In this case, the attacker already 
has local access to the targeted system and aims to 
exploit a system vulnerability to escalate her 
privileges from those of a simple user to super 
user/admin. One of the most common U2R types is 
buffer overflow, in which the attacker tries to 
overfill a buffer and execute malicious code under 
root privileges. 

4) Remote to Local (R2L): In this attack class, the attacker 
does not have an account in the targeted machine 
and tries to gain local access. Remote to local attacks 
are usually combined with U2R attacks. An 
example of a R2L attack is SSH brute force. 

III. METHODS AND SYSTEMS FOR UNSUPERVISED AND 

HYBRID INTRUSION DETECTION 

This section presents a comparison of unsupervised and 
hybrid methods, as well as feature techniques used for intrusion 
detection. Moreover, we summarize the different datasets that 
have been used by researchers for intrusion detection. Finally, 
a review of the limited research on attack reconstruction and 
correlation is presented.  

A. Collection Methodology 

This subsection describes the methodology that we used for 

compiling the list of papers that were considered. In the case of 
papers focusing on intrusion detection our target was to collect 
those published in the last five years that use either 
unsupervised or hybrid (combinations of supervised and 
unsupervised) techniques. Feature selection literature is 
somewhat relatively limited, therefore we included the most 
known or promising works in our list, but again tried to limit 
ourselves to the recent seven years only. Firstly, an initial pool 
of papers was created based on: 

 Searches on Google Scholar, IEEE Xplore and ACM 
Digital Library with keywords like “unsupervised 
intrusion detection”, “anomaly intrusion detection”, 
etc. 

 Browsing the proceeding of top security conferences 
and journals like ACM Symposium on Computer and 
Communications Security, IEEE Communications 
Surveys & Tutorials, IEEE Symposium on Security 
and Privacy, Network and Distributed System Security 
Symposium. 

 Recommendations of specific papers based on the 
authors’ personal knowledge. 

The selection was expanded based on: 

 Considering papers that were in the reference section 
of the already selected papers. 

 Browsing the proceeding of conferences or journals in 
which the selected papers were published, only if they 
have not been considered. 

B. Feature Selection 

Over the past decades, many researchers have attempted to 
improve the detection rate and performance of IDS, by focusing 
on the detection algorithm and proposing different techniques 
or by combining both. However, they may have neglected the 
process that must be preceded, i.e., feature selection (FS). FS is 
the process of identifying an optimal subset of the relevant 
features that represent each class better than the original set. In 
many cases feature selection is more important than the choice 
of the detection algorithm. 

Using an optimal subset that describes efficiently the input 
data, instead of the whole feature space can not only enhance 
the accuracy of the system, but also decrease the false positive 
and computational time. FS does not create new features, but 
selects the ones that are relevant and non-redundant. The 
inclusion of irrelevant and redundant feature in the 
classification or clustering process can lead to poor 
generalization and overfitting [46]. The feature selection 
process has two main components: a search strategy and an 
evaluation criterion. The chosen search strategy is responsible 
for selecting the features to be considered as part of the optimal 
subset. The evaluation criterion assigns a score to each feature. 
If this score exceeds a threshold, then it is considered relevant 
and included in the subset. 



  

FS methods can be divided in two main categories: filters and 
wrappers. Filters do not take into consideration the 
classification technique, but assign score to the proposed 
features with statistical and information theory methods, such 
as mutual information, information gain, correlation 
coefficient, and information entropy. Therefore, a filter is a fast 
and simple method. In contrast a wrapper, whose general 
methodology can be observed in Figure 2, evaluates the 
candidate subset with a predicted model based on the detection 
algorithm in use. In each iteration a feature subset is used by the 
classifier on the training set and depending on the results the 
features are either accepted or rejected. Although wrappers take 
the detection algorithm into consideration and consequently 
produce a subset adjusted to the specific algorithm and IDS, 
they can cause overfitting and can be computationally intensive, 
especially in the case of network data, which are high 
dimensional.  

Wrapper feature selection processes differentiate according 
to the detection technique. In the case of supervised learning, 
the classes are predefined and the data are labelled. 
Consequently, it is easier to evaluate the proposed subset after 
the classification process has been applied. Selecting features 
in unsupervised learning scenarios is considered to be a much 
harder problem, due to the absence of class labels that would 
guide the search for relevant information [47]. In such cases, 
the most common criterion is the cluster’s quality, their intra 
and inter cluster distances. 

A comparison of several feature selection methods for 
intrusion detection is given in Table I. 

With regard to the use of FS in [48], Fahad et al. compared 
six different techniques: Information Gain (IG), Gain Ratio 
(GR), Principal Component Analysis (PCA), Correlation based 
Feature Selection (CBF), Chi-square, and Consistency-based 
search (CBC). For the evaluation of the methods three measures 
were chosen: i) goodness, which corresponds to the detection 
accuracy, ii) stability, which evaluates the robustness of the 
subset to the variation in the traffic data and iii) similarity, to 
compare the behaviour of different FS techniques on the same 
dataset. According to their results, no feature selection 
technique can be considered as the “best” along all the metrics 
and datasets. In more detail, CBF achieved the highest goodness 
value on all of the datasets except one. Also, Chi-square and IG 
achieved very high values on many datasets. The lowest results 
were achieved by GR and CBC. Regarding the stability almost 
all the techniques were considered unstable. The best results 
(0.87%) were achieved by IG and the worst by CBC and CBD, 
as they do not highly consider the interdependencies of the 
features. The similarity between the six selected techniques was 
low in all cases, which suggests that one subset that is optimal 
for one technique can be considered not optimal form another. 
All the above lead to the conclusion that one FS technique 
cannot satisfy all the criteria across all the datasets. 
Consequently, the writers propose the Local Optimisation 
Approach (LOA), a combination of five FS methods. PCA was 
excluded as it transforms the features and therefore falls under 
the feature extraction category. LOA firstly extracts an optimal 
feature subset for each one of the 5 FS techniques and then 

calculates the support for each feature. Finally, if this value is 
higher than a predefined threshold, the feature is included in the 
final optimal subset. 

Moreover, Fahad et al. [49] improved their previous method 
by proposing the Global Optimization Algorithm (GOA). 
Firstly, the five aforementioned FS techniques were combined 
to filter out the irrelevant features. Then, an adaptive threshold 
based on maximum entropy was used to select the robust 
features from the unstable subset produced by the first stage. 
Finally, a Random Forest filtering was applied that utilised 
forward sequential selection to guarantee the quality of the final 
subset and avoid overfitting. GOA outperformed 
Backpropagation Neural Network (BNN) and Fast Correlation 
Based Filter (FCBF-NB) not only by increasing the detection 
rate, but also by producing a smaller and highly descriptive 
subset that decreases computational time. The main advantage 
of this approach is that it combines multiple techniques and thus 
the one that performs better in terms of stability and optimality 
is chosen each time. Moreover, using an adaptive threshold 
instead of a static one makes the method more robust against 
the network drift. 

Liu et al. [50] proposed a two phased feature selection 
technique, called Class-Oriented Feature Selection (COFS). 
Phase one searches for an optimal subset for every attack class 
in two steps: firstly calculates the weighted symmetric 
uncertainty (WSU) for each value and the local correlation 
metric (LCM) between each feature and each class. Using both 
a local and a global metric ensures not only relevancy between 
features of the same class, but also among different ones. The 
second phase uses a predefined threshold to select a feature 
subset for each class. This is accomplished by removing the 
redundant features from all selected subsets. The disadvantage 
of this approach is the use of a static threshold in contrast with 
[49]. Their results illustrated that the first phase improves the 
detection accuracy of the classifier, whereas the second 
decreases the computational cost. COFS was compared with 
other known FS schemes like Global Optimization Algorithm 
(GOA), WSU_AUC and BFS and in most cases had the best or 
second best results, with GOA having the worst.  

Similarly, Zhang et al. [51] proposed a wrapper method that 
combines WSU for prefiltering most of the features and the area 
under the ROC curve (AUC) to choose the optimal features for 
a specific classifier. At the last stage, Selection Robust Stable 
Features (SRSF) algorithm was used to choose the most robust 
feature subset of the previous step. According to their results, 
this approach improved the TPRs for most minority classes and 
reduced the FRP for the majority class. Moreover, according to 
the authors’ experiments, the server port, the total number of 
bytes sent in the initial window and the minimum segment size 
seem to be the three most important features across the different 

Fig.  2. Wrapper Method Topology 



  

datasets. 
De la Hoz et al. proposed a multi-objective wrapper method 

in [52] that combined NSGA-II [53] and the Jaccard’s 
coefficient as the evaluation criterion for selecting the optimal 
subset of features. In each iteration, a new subset is selected for 
each of the five classes (DoS, Probe, U2R, R2L, Normal). Each 
subset is then   evaluated through the classifier using the Jaccard 
coefficient and the population is evolving through the 
calculation of the Pareto front of the five non-dominant 
solutions (subsets). Results showed that the use of the selected 
subset provided better accuracy for all the classes and 
particularly high performance for the U2R and R2L classes, 
which are considered the less probable and so the most difficult 
to detect. Compared to other FS methods, such as [49] and [51], 
the proposed method selects a different subset for each class 
(attack or normal), which leads to higher accuracy. Similarly, 
authors in [54] proposed an improved version of NSGA-III, 
called I-NSGA-III, for feature selection. The proposed scheme 
overcomes the imbalance problem using bias-selection based 
on probabilities and removes redundant features using fit-
selection. As before the evaluation criterion is the Jaccard 
coefficient. For the evaluation of the produced feature subset, 
the authors use GHSOM on the detection stage. According to 
their results, NSGA-III+GHSOM has slightly better overall 
performance (99.27%) in terms of detection accuracy than I-
NSGA-III+GHSOM (99.24%). However, the main advantage 
of the proposed method, which is not reflected in the overall 
detection rate, is that by solving the imbalance problem it 
produced higher accuracy for the smaller classes (U2R and 
R2L). Finally, I-NSGA-III+GHSOM produced a smaller subset 
of features, which leads to less computational time. 

 A wrapper-based method was proposed in [55] by Li et al. 
that combines a Modified Random Mutation Hill Climbing 
(RMHC) algorithm with multiple linear SVMs to build a 
lightweight IDS. Firstly, an initial subset is generated followed 
by an iterative process of using modified RMHC to generate a 
subset and linear SVMs to compare it with the previous one. 
The current best subset is considered optimal if the iterations 
reach the maximum number or the predefined criterion is 
satisfied. Modified RMHC was chosen to improve the 
wrapper’s dimensionality reduction ability and decrease its 
computational complexity. The experiments showed a 
significant speed up of the feature selection process and 
improvement of the overall detection ability of the system. 
Moreover, similarly to [50] and [52], RMHC constructs one 
subset for each attack and normal class. However, unlike [48], 
[49] and [50], the method only uses one evaluation criterion 
instead of multiple ones. 

Information theory and statistical criteria used by Amiri et al. 

[56] create a FS method that selects features with maximum 
relevancy and minimum redundancy. Modified mutual 
information-based feature selection (MMIFS) algorithm selects 
the feature with the maximum mutual information (MI) as the 
first element of the subset and then uses a greedy approach to 
select features depending on their feature-to-feature MI. The 
proposed method was compared with the linear correlation-
based feature selection (LCFS) and the forward feature 

selection (FFSA). It proved to be the most effective among the 
three in detecting R2L and Probe attacks and FFSA was the 
most effective for DoS, U2R and Normal. Likewise, the 
approach in [57] uses mutual information for feature-class 
relevancy and generalized entropy to achieve feature-to-feature 
non-redundancy. 

The following conclusions arise from the study of the 
literature: 

1) One feature selection technique is not enough to achieve 
stability through the different datasets, as the behaviour 
of the network traffic is shifting ([48] ,[49] ,[50]) 

2) For each of the five classes of intrusion detection, one 
optimal subset should be obtained as one global feature 
subsets is not capable to describe satisfactorily all the 
different classes ([50], [52], [55]). 

3) FS can considerably improve not only the detection rate, 
but also the computational performance. As mentioned 
earlier, features that are irrelevant or redundant may 
lead to poor generalization and overfitting. Moreover, 
more features regarding each data point translate to 
higher computational cost and complexity ([49]-[55]).  

4) Finally, U2R and R2L classes are considered the most 
difficult to detect because they are discrete enough and 
they can be misidentified as normal traffic. Experiments 
showed that FS can offer the solution to this problem by 
identifying a feature subset adjusted to the 
characteristics of each class ([52], [54], [55]). 

C. Unsupervised and Hybrid IDS 

As discussed in Section II, unsupervised learning attempts 
to distinguish malicious traffic from normal without any prior 
knowledge. In this subsection the unsupervised and hybrid 
(combinations of supervised and unsupervised) approaches, 
which have been published in the last 5 years, are presented and 
compared (Table II). The reviewed papers and their proposed 
methods in this subsection regard a typical corporate network. 
The reader may refer to Section V for security solutions that 
focused on different network types, such as WSN and SCADA, 
which fall outside the scope of this work. 

Casas et al. [58] propose a Sub-Space Clustering and 
Evidence Accumulation algorithm (SSC-EA) using DBSCAN 
as the clustering method. Instead of partitioning the whole 

Fig.  3. Topology of proposed IDS in [59] 



  

feature space, SSC-EA divides the feature space X in N 
different sub-spaces Xi ⊂ X of smaller dimensions and applies 
DBSCAN on each partition. The results from the clustering of 
the multiple sub spaces are then combined to a new similarity 
measure, which is capable of clearly highlighting both the 
outliers and small-size clusters that were simultaneously 
identified in different sub-spaces. Later in [59], the authors used 
their proposed clustering techniques into a complete intrusion 
detection system, whose topology can be found in Figure 3. 
Firstly, network packets are captured and converted into flows. 
Next, flows are being aggregated at different flow-resolution 
levels before arriving to the change detection module, which 
uses a time series criterion for detecting a potentially malicious 
flow and activating the clustering module. The use of 
multiresolution flows enables the system to detect both small, 
large, single sourced and distributed attacks. If a change is 
detected, SSC-EA clusters the data and ranks the produced 
clusters. Finally, a predefined threshold is used to decide if a 
cluster is malicious or not. Their results indicate that the 
proposed methodology can achieve high detection rates not 
only for the large volume attacks like DoS and Probe, but also 
for the U2R and R2L. This is most likely due to the use of multi 
resolution flows and sub clustering for the detection of smaller 
attacks, which can be cloaked by largest ones. Moreover, the 
use of sub clustering enables system parallelization, lowering 
the computational time and resulting to real time detection. 

Amoli et al. [60] created a two engine unsupervised intrusion 
detection system based on SSC-EA. The first engine is 
responsible for the intrusion detection using SSC-EA with a 
Dynamic Self-Adaptable Threshold, which is computed based 
on the previous behaviour of the network. To avoid losing small 
attacks the threshold takes in consideration four different 
network prefixes: /0, /8, /16 and /24. The second engine is a 
botnet detection module that clusters specific network features 
to detect centralized and decentralized botnet C&C 
communication. Different time windows for the previous 
behaviour were tested and the optimal value was observed to be 
five minutes. Moreover, the proposed model achieved a 98.39% 
accuracy and 3.61% FP rates after optimizing the threshold 
parameters and outperformed the classic DBSCAN and K-
means implementations. 

Bohara et al. [61] used both K-means and DBSCAN for 
hybrid intrusion detection, using system and network logs. 
Firstly, the performance of both algorithms was evaluated with 
firewall data. When K-means was used, data points of different 
feature distributions were clustered together and smaller 
clusters were absorbed into their larger neighbouring clusters. 
That was likely due to the non-normal distribution of the data. 
Conversely, DBSCAN performed exceptionally on the data and 
so it was used for the rest of the experiments. In addition, 
system and network logs were combined to study the effect of 
host features in the detection ability of the system. The results 
prove that some attacks can only be detected through the 
combination of host and network features. 

Bhuyan et al. [57] proposed a multistep outlier-based 
detection approach, which utilizes their previous work in [62] 
and [63]. The proposed framework consists of a mutual 
information and generalized entropy feature selection (MIGE-
FS), which was presented in section III.B, a tree based subspace 
clustering technique called TreeCLUS (TCLUS) and an 

anomaly detection, based on the ROS’ score. As discussed in 
the previous subsection, MIGE-FS attempts to select the most 
relevant optimal subset of features in each case to reduce the 
cost and improve accuracy. TCLUS algorithm generates a tree 
where each node represents a cluster. At first, all the features 
are part of the root node. Then, the algorithm divides the feature 
space in more nodes with respect to the maximum feature-class 
relevancy and the minimum feature-feature redundancy in a 
depth-first manner. When clusters are fully formed a reference 
point is calculated for each of them in order to be used for the 
profile creation. In the last stage, an outlier score ROS’ is 
calculated for each cluster with respect to its profile and 
reference point. If the score exceeds a predefined threshold, the 
cluster is considered anomalous. The proposed methodology 
outperformed known approaches like C4.5 and ID3, with an 
especially higher detection rate in Normal and U2R classes. 

Optimum Path Forest Clustering (OPF) was deployed by 
Costa et al. in [64]. To overcome the OPF’s problem with 
different concentrations and scales and to speed up the 
detection, the authors optimize OPF through different nature-
inspired optimization techniques. The best results were 
obtained by Particle Swarm Optimization (PSO) and Bat 
Algorithm (ΒΑ). 

Bostani et al. [65] used a modified Optimum Path Forest 
(MOPF) algorithm, which consists of three modules for 
partitioning, pruning and detecting. The first module utilizes k-
means to create training subsets to be used later by the detection 
module. The pruning module is responsible for pruning the 
training subsets by identifying the most informative samples in 
order to improve the speed of OPF. Finally, the detection 
module is based on an advanced OPF algorithm which achieved 
14.86% better performance than the original OPF and training 
time 6.9 times less. 

An intrusion detection system based on combining cluster 
centres and nearest neighbours (CANN) was introduced in [66] 
by Lin et al. Firstly, the cluster centres are extracted using a 
clustering technique. As the second step, the distance measures 
are calculated, namely the distance between all data of the given 
dataset and the cluster centres (dist1) and the distance between 
each data point and its nearest neighbour in the same cluster 
(dist2). The sum of dist1 and dist2 leads to a new one dimension 
feature. Finally, k-NN is used to classify the data represented 
by the newly constructed feature. Experiments show that the 
approach succeeds in detecting DoS and probe attacks, but does 
not perform well on U2R and R2L. 

Unsupervised learning and artificial immune system were 
combined by Hosseinpour et al. in [67] to create a distributed 
hybrid IDS. Unsupervised learning is used as the primary innate 
immunity, where clustering divided the data in self (normal) and 
non-self (attack). Next, supervised learning represents the 
secondary adaptive immunity, where detectors are generated 
based on the clustering results and are distributed on the hosts 
of the networks when they become mature. These detectors can 
be used in the future by the hosts to stop known attacks.  

Another immune system model for intrusion detection is 
presented by Jha et al. in [68], which consists of two layers: a 
T-cell and a B-cell layer. At the first layer a probabilistic model, 
which utilizes a Hidden Markov Model (HMM), identifies 
possible attacks. At the second layer, a decision tree uses the 
output from the previous phase together with each own feature 



  

recognition algorithm to confirm true attacks. While the second 
stage is unsupervised, the first one requires the training of the 
T-cells. Finally, one advantage of the proposed model is its 
adaptiveness, as the T-cell utilize previous experience to 
enhance the detection rate. 

The authors in [69] tried to exploit the advantages of both 
the misuse and anomaly detection by combining random forest 
and weighted K-means. The proposed methodology consists of 
two phases: the online and the offline. At the online phase, the 
traffic is compared against the misuse signatures through the 
random forest algorithm and if no match exists the connection 
is sent to the offline module, where the anomaly detection 
module will try to decide if it is a novel attack or normal traffic 
using k-means. Moreover, the offline phase generates 
signatures from the results of the anomaly detection, which are 
used by the misuse module. 

A Particle Swarm Optimization (PSO) approach using the 
MapReduce technique was proposed in [70]. After the data pre-
processing, the PSO was used for the clustering process by 
taking in account the global optimal centroids. The use of the 
MapReduce technique gives the IDS the ability to adjust on a 
large scale network and be parallelized in order to reduce the 
computational time. The proposed system achieved a 0.963 
AUC with a 0.013 FPR, but its capabilities are limited on 
distinguishing the normal from malicious traffic, but not the 
specific attack classes. 

Song et al. in [71] present a hybrid IDS composed of a 
training and a testing phase, which aims to detect attacks 
through modelling the normal behaviour. In the training phase, 
data are firstly filtered to isolate the normal traffic and then they 
are clustered. For every formed cluster, an one-class SVM 
model is created. In the testing phase, the opposite process takes 
place. The data are clustered and the formed clusters are 
compared with the previously created one-class SVM models. 
If a cluster does not match any of the models then it is 
considered an attack. The disadvantage of this approach is that 
normal behaviour of a network is constantly shifting as new 
applications and hardware are added, which could lead to a high 
false positive rate. Moreover, the training stage should be 
performed regularly, which is computationally costly. 

Ashfaq et al. [72] propose a semi-supervised divide-and-
conquer model that uses the magnitude of fuzziness to 
categorize unlabelled data. The authors used neural network 
with random weights (NNRw) as the classifier. Although the 
proposed method does not require a great amount of labelled 
data, the model still needs to be trained and has an accuracy of 
84% (KDDTest+) and 68% (KDDTest-).  

An intrusion detection system that uses K-means, SVM and 
fuzzy neural networks was proposed by Chandrasekhar et al. in 
[73]. The methodology consists of four stages: firstly K-means 
is used to generate training clusters from the initial dataset. For 
each training subset a different neuro-fuzzy model is trained 
and subsequently a vector for SVM classification is generated. 
Finally, a radial SVM classifier is used to detect the attacks. The 
proposed method achieved especially high rates in the two low-
frequency attack classes, U2R and R2L. 

Gogoi et al. [74] proposed a multistep approach that consists 
of three stages. Firstly, the CatSub+ classifier is used to detect 
DoS and Probe attacks. Then, K-point clustering is used to 
detect the normal traffic and finally GBBK outlier based 

classifier detects the R2L and U2R attacks. Both flow and 
packet level detection were performed in the experiments and 
flow level achieved higher accuracy in all classes. 

The proposed method in [75] consists of three modules: 
feature selection, unsupervised clustering and supervised 
classification. Firstly, an entropy based feature selection 
method is applied on the data to remove the irrelevant features 
with poor prediction ability and the redundant features that are 
inter-correlated with one or more features. Then, k-means is 
used to cluster the data into normal and anomalous. Finally, k-
NN and Naïve Bayes classifiers detect the specific attack class 
of the anomalous instances. The detection rate of the proposed 
method reached 98.18% with a 0.830% FP rate. 

A graph-based intrusion detection algorithm that uses an 
outlier detection method based on local deviation coefficient 
(LDCGB) was introduced in [76]. LDCGB uses graph-based 
algorithm (GB) to cluster the data and an outlier method based 
on the local deviation coefficient to decide which clusters are 
malicious and which are normal. The advantage of this method 
is that compared to other approaches this algorithm does not 
depend on the initial cluster number and is able to detect 
arbitrary shaped clusters. 

The following conclusions and suggestions arise from the 
aforementioned literature: 

1) As can be observed in Table III, network traffic data are 
high dimensional. Specifically, most datasets have 
between 19 to 50 features for each data point (Table III). 
Moreover, as the technology evolves this number could 
be increased even more. Consequently, clustering using 
the whole feature space is not only time consuming, but 
can also lead to poor detection rate. Thus, feature 
selection is crucial as explained in section II.A. 

2) Clustering algorithms that have the ability to detect 
clusters of arbitrary shapes, like DBSCAN, perform 
better than the ones that can detect only circular clusters 
([57]-[61]). This is also confirmed from Buczak et al. 
[111].  

3) The parallelization of the detection method could reduce 
the computational time and lead to real-time detection. 
For this reason, high performance cloud computing 
techniques could be utilized, to achieve better time 
performance and distribute the processing workload. 

4) The use of host data can improve the detection rate, but 
one has to consider if the extraction of these data from 
a large-scale network in real-time is feasible ([61], [67]). 

5) The need of initializing and tuning the parameters of the 
system is one of the main drawbacks that keeps these 
techniques from being applied in the industry [33]. 
Therefore, density-based methods such as DBSCAN 
that require less parameterization appear most suitable 
for deployment in real networks.  

6) The combination of unsupervised and supervised 
techniques could potentially lead to a high detection rate 
and a low false positive rate ([67]-[69], [71]-[75]).  

7) U2R and R2L attacks are the hardest to detect as they 
resemble normal traffic. Sub clustering, feature 
selection, such as [52], [54] and [55], and the use of 
different network resolutions seems to improve the 
detection rate of these attack classes. Moreover, the 
combination of neural networks [77] and unsupervised 



  

methods, as in [73], performs very well in these two 
low-frequency attacks. 

D. Datasets 

Realistic network traffic is a prerequisite for developing, 
testing, tuning and evaluating IDSs. As new attacks and 
network technologies arise, there is a compelling need for 
newly captured high speed traces. Most of the datasets used in 
intrusion detection are outdated and do not reflect real-world 
conditions, as discussed in [78]. In this subsection the different 
datasets that have been used by researchers for intrusion 
detection are presented and summarized in Table III. 
1) UNB ISCX [78]: The UNB ISCX IDS 2012 dataset 

consists of labelled network traces, including full packet 
payloads in pcap format, which are publicly available 
along with the relevant profiles. Real traces were analysed 
to create profiles, which contain detailed descriptions of 
intrusions and abstract distribution models for applications, 
protocols, or lower level network entities. These profiles 
were used by agents to generate real traffic for HTTP, 
SMTP, SSH, IMAP, POP3, and FTP. The dataset consists 
of seven days of network traffic, namely: 
 Three days of non-malicious traffic. 
 One day containing a U2R infiltration from an inside 

attack and normal Activity. 
 One day of DDoS attacks using an IRC Botnet. 
 One day of HTTP DoS and normal activity. 
 One day of normal activity and R2L attack (Brute 

Force SSH). 
2) ISOT Botnet [79]: The ISOT dataset is a combination of 

three previously existing datasets: 
 Two datasets from the French chapter [80] of the 

honeypot project, containing Storm and Waldek botnet 
traffic were used to simulate the malicious traffic. 

 Traces from the Traffic Lab of the Ericsson Research 
[81] in Hungary and the Lawrence Berkeley National 
Lab [84] were used to simulate the normal traffic. 

3) CAIDA [82]: These datasets contain passive traffic traces 
from CAIDA's equinix-chicago monitor on high-speed 
Internet backbone links. Traffic traces are anonymised and 
the payload is removed. Each yearly dataset (2014-2016) 
contains one trace per quarter 

4) MAWI [83]: This dataset contains packet traces from the 
WIDE backbone, which connects several research 
institutions in Japan as well as commercial ISPs and 
universities in US. The traces are unlabelled and all the IPs 
are scrambled to protect user anonymity. 

5) LBNL [84]: The Lawrence Berkeley National Lab (LBNL) 
dataset consists of more than 100 hours of anonymised 
network activity from a total of several thousand internal 
hosts for the time period of October 2004 to January 2005.  

6) UNIBS [85]: These traces were collected on the edge router 
of the campus network of the University of Brescia on three 
consecutive working days and contain traffic from twenty 
different workstations. The dataset is composed of 79000 
flows of TCP (99%) and UDP (1%) anonymised and 
payload-free traffic. 

7) DARPA [86]: DARPA dataset consist of labelled traffic 
from two experiments: LLDOS 1.0 and LLDOS 2.0 
conducted at MIT Lincoln Laboratory. Both scenarios 
include an attacker probing the network, breaking into a 
host, installing malicious Trojan software and launching 
DDoS attacks. 

8) KDD99 [87]: KDD99 is the most widely used dataset in 
intrusion detection. It was first prepared by MIT Lincoln 
Labs for the Third International Knowledge Discovery and 
Data Mining Tools Competition and consists of five 
million connection records on the training set and 2 million 
records on the testing set. It contains a total of 24 training 
attack types, with an additional 14 types in the test data 
only and its flow is described by 41 features. 

9) NSL-KDD [88]: As discussed in [89], KDD99 has two 
important issues that highly affect the performance of 
evaluated systems, and result in a very poor evaluation of 
anomaly detection approaches. For this reason NSL-KDD 
was proposed, which consists of selected flows of the 
KDD99 and has the following advantages: 
 It does not include redundant records in the training 

set, so the classifiers will not be biased towards more 
frequent records. 

 There are no duplicate records in the proposed test 
sets. Therefore, the performance of the learners is not 
biased by the methods that have better detection rates 
on the frequent records. 

 The number of selected records from each difficulty 
level group is inversely proportional to the percentage 
of records in the original KDD data set. As a result, the 
classification rates of distinct machine learning 
methods vary in a wider range, which allows more 
accurate evaluation of different learning techniques. 

 The number of records in the training and testing sets 
are reasonable, which makes it affordable to run the 
experiments on the complete set without the need to 
randomly select a small portion. Consequently, 
evaluation results of different research works can be 
consistent and comparable. 

10) TUIBS: The TUIBS dataset is at the time of writing this 
paper inaccessible and therefore is excluded from the 
discussion. For more information the reader may refer to 
[32]. 

11) METROSEC [90]: These traces were collected as part of 
the METROSEC project from the French RENATER 
network and contained simulated DDoS attacks. Since the 
project ended in 2006 the dataset is not available anymore 
as it was considered outdated by its creators. 

12) DEFCON: The DEFCON dataset contains traffic from a 
CTF exercise, but is currently inaccessible. For more 
information the reader can refer to [32]. 

In conclusion, the most well-known and commonly used 
datasets are the various versions of the original KDD99 ([87], 
[88]), which nowadays are obsolete as they do not reflect 
neither the current types of attacks, nor the methodology of the 
attackers. However, other datasets, namely [78]-[82], are more 
representative of the current threat landscape. Another 



  

drawback for many researchers could be the format of the 
dataset. While the well-known KDD99 is already pre-
processed, other datasets such as [78] are in raw (.pcap) format. 
Therefore, they require technical skills to perform the process 
of feature engineering. Nevertheless, there is a constant need 
for the construction of new datasets for intrusion detection, 
which are both realistic in terms of topology and balance, as 
well as follow the current attacks and trends. Finally, it is 
evident that currently there is no dataset that includes network 
traffic as well as logs and host evidence.  

E. Correlation 

As discussed earlier, the need for further correlation of the 
detected malicious instances has emerged the last years. 
Nonetheless, the relevant literature is rather limited. This 
subsection presents published works in attack reconstruction 
and correlation of the indicators produced by the IDS. 

One of the first and few approaches on the detection and 
identification of multistep attack scenarios was presented by 
Cheung et al. [91]. The authors present the Correlated Attack 
Modelling Language (CAML) and showcase how it can be used 
to model multistep attack scenarios. The methods and the 
models produced by CAML are extensible in order to handle 
new attacks and data types and independent of the sensor 
technology. Limmer et al. [92] present a classification of event 
correlation techniques published in the literature and present a 
requirement analysis from an early warning system’s point of 
view. In [93], the authors apply network attack graphs for 
correlating events and constructing scenarios. They map known 
exploits to events through the graph and use inverse distance 
between each event in a path as the correlation measure. A low-
pass filter was also applied to the sequences of inverse distances 
in order to provide resiliency against detection errors. Also, a 
threshold was used to the filtered distances in order to separate 
the event paths into highly correlated attack scenarios. Dwivedi 
et al. [94] attempt to correlate SNORT events with the same 
alert name but different source IP. They succeeded on removing 
the duplication of the alerts, which is useful in reducing the 
workload of the security administrator. In [95] the authors 
develop a Process Query System (PQS), which is able to scan 
and correlate distributed events with the use of signatures and 
temporal-based event correlation. Unlike the others, Morin et 

al. [96] propose the application of chronicles instead of rules on 
event correlation in intrusion detection. They illustrate how this 
approach may be able to decrease the alarm overload and the 
false positives. Finally, in [97] Quicksand, a decentralized 
approach for gathering and correlating events from multiple 
points within the network is proposed. The system considers an 
intrusion as a pattern of events that occurred on different hosts 
of the network and uses signatures to identify patterns of an 
attack. 

IV. OPEN ISSUES 

As discussed in the precious sections, each type of detection 
mechanism has its own disadvantages. Signature-based systems 
are as good as their databases, which are hard to keep updated 
especially nowadays. Supervised methods perform well only on 

known attacks and also require regular training with labelled 
data. Unsupervised methods are capable of identifying 
unknown attacks without regular training, but have a higher 
false positives rate. Moreover, regardless the detection 
mechanism, designing a system with not only the ability to scale 
in networks of different sizes and structures, but also to perform 
satisfactorily is not a trivial task [32]. Thus, although many 
systems and methods have been proposed for intrusion 
detection in the relevant literature, designing a robust, scalable 
and high-performance IDS is still challenging [32].  
  The majority of the research to date focuses on developing a 
system capable of producing attack indicators. These attack 
indicators are first-level isolated security alerts, based on the 
observation of activity that corresponds to a single attack step 
(exploit, probe, or other event) [91]. However, the shift in the 
threat landscape over the last few years demands the evolution 
of such a system from simple detection to correlation and 
attribution. The rest of this subsection identifies open issues 
related to them and provides directions for future research. 

A. Attack Reconstruction 

As previously discussed, IDSs identify potentially malicious 
instances, but do not actually detect the complete chronicle of 
an attack. Although this was sufficient in the past, today it is not 
due to the rise of DDoS and ransomware attacks, botnets, 
Advanced Persistent Threats (APT) and the use of privacy 
enhancing technologies (PET), such as Virtual Private Network 
(VPN) and Tor. As the current widely used security 
technologies (IDS and antivirus) are not capable of detecting 
such targeted and advanced threats as APTs [98], the need for a 
new generation of intrusion detection and prevention tools 
arises. Consequently, there is a compelling need for further 
correlation of the indicators produced by the IDSs and other 
similar technologies, such as integrity checkers and Web 
Application Firewalls (WAFs), in order to identify every step 
of an attack and be able to reconstruct it. As it will be discussed 
in depth later in this section, sophisticated attacks such as APTs 
consist of multiple steps which can be mapped on a kill-chain, 
a model containing the different stages of an attack [99]. Thus, 
the correlation of data from different sources (such as logs, 
performance indicators, network traffic) can enable one to 
identify and group as many of these steps as possible. These 
techniques could bring a plethora of benefits. Firstly, a holistic 
view of the cyber threats and network attacks against a business 
could be provided, whereas current IDS can only provide 
individual indicators. This is important as in most cases the 
severity and significance of an incident can only be perceived 
through examination of the attack as a whole. Similarly, 
attempting to reconstruct an attack can trigger further 
investigations and reveal undetected parts of it, such as live 
connections that can potentially offer traceability to the 
attacker, other infected hosts, etc. For instance, in case of a 
botnet infection, reconstructing the attack may lead to the 
identification of other infected hosts. Furthermore, cyber space 
is a dynamic environment thus studying previously occurred 
attacks, both successful and unsuccessful (near misses), could 
lead to the development of a better defending strategy and the 



  

early detection or even prevention of future attacks. 
Moreover, IDSs are becoming an integral part of digital 

forensics and incident response processes. This is done through 
the correlation of the evidence by feeding the IDS outputs to the 
digital investigation processes in order to construct the timeline 
of an attack and identify the perpetrators. As with all incident 
response cases, time is a critical factor. In most digital forensic 
investigations specific instances recovered from evidence such 
as potentially malicious domains, become inaccessible over 
time. Consequently, automating part of the correlations, which 
the analyst would normally perform manually, could lead to the 
retrieval of time-sensitive evidence. The sooner an attack is 
reconstructed and all its pieces identified, the sooner the 
targeted company or organization could react and take extra 
precautions. This may include revising or adding new 
safeguards, such as populating firewall rules or educating 
employees, with the aim of avoiding further damage caused 
from the same or a different attacker. Finally, correlating the 
produced indicators could reduce the false alarms produced by 
the IDS, as they will not fit in any malicious campaign and 
constitute outliers. 

In a seminal paper, Hutchins et al. [99] introduced the attack 
kill chain consisting of seven phases, namely: reconnaissance, 
weaponization, delivery, exploitation, installation, command 
and control (C&C) and actions. These refer to the different 
stages of an APT attack vector and all together form a 
campaign. Previously produced IDS indicators can be used to 
reconstruct the occurred attacks. Also, parts of the IDS attack 
classes correspond to specific campaign stages. For instance, 
probe class corresponds to the reconnaissance stage. Other 
stages such as the installation can only be detected through host 
data. Hence, features extracted from the host machines could be 
crucial in some cases. Specifically, sudden changes in the CPU 
or the memory consumption, or modification of crucial registry 
keys are strong indicators of malware infection. Intensive 
parsing of different file types in many different folders in a very 
short time, is a solid indicator of ransomware activity. Open 
connections which belong to processes that normally would not 
communicate through the Internet or orphan processes (those 
that do not have a parent process), are other indicators of a 
malware infection.  

Nevertheless, their collection should be done in a way that 
does not disrupt the normal operations and does not raise any 
privacy violations. Ideally the collection should be able to 
achieve both maximum privacy for the users and gather the 
required data to attain maximum visibility within the 
infrastructure. Unfortunately, this is not a feasible and realistic 
goal in all situations, therefore, a trade-off between privacy and 
security is inevitable [100]. The criticality of the infrastructure 
and the types of threats against it, are the main factors that will 
influence such a trade-off. Depending on its location, the 
organization or company has to conform to a different set of 
laws and regulations. For instance, in the EU complete 
transparency is required as demanded by the new EU General 
Data Protection Regulation1 (EU GDPR). Each organization or 

 
1 https://www.eugdpr.org/ 

company is compelled to explicitly declare the data that are 
collected and justify why they are of importance against 
specific threats. Finally, the users of the infrastructure should 
be fully aware of the data that are collected and stored for 
security purposes.   

As Hutchins et al. [99] stated, defenders may take advantage 
of the “persistent nature” of the attackers and use it against 
them. By their nature, APT actors attempt multiple intrusions 
that may well be scattered through time and use the feedback 
(successful or unsuccessful) of these attempts to adjust their 
strategy. Even for a well-resourced attacker the idea of 
completely changing her modus operandi is not feasible or 
profitable. The authors also present a case study to prove that 
comparing different stages of multiple campaigns can 
determine if they came from the same attacker. Such complex 
correlations require the extension of the current detection 
methods to answer attribution questions like the following: 
 Is a reconstructed campaign part of a persistent threat? 

Two or more attack campaigns that belong to the same 
attacker could be part of a larger targeted attack or an APT. 
In this case, the number of successful and unsuccessful 
attempts of the attacker and the timing of the attacks could 
be used for the correlation. An attacker may launch 
multiple campaigns over a certain period, but may also wait 
for days even for months before trying again to avoid 
detection. This decision depends on the importance of the 
aim, the incentives and the resources. 

 Given any two attacks on a set of resources, can we identify 

if they are connected? To answer this question we could 
consider features that describe the similarities of two 
attacks in case of campaigns and the timestamps related to 
the attacks. The similarities could refer to the targeted host, 
the exploit in use, the delivery method, etc. The evident 
method of correlating two attacks would be the source IP 
address. However, a large percentage of attacks use 
nowadays services such as Tor, VPN and proxies, which 
make the identification of the real source IP particularly 
challenging. Moreover, IP correlation is not helpful in case 
of distributed attacks as the attack originates from multiple 
infected hosts, which are controlled by a botmaster. 
Besides, small or medium DDoS attacks are sometimes 
used as a smokescreen to cover smaller but more 
significant activities, such as data exfiltration. In this case, 
time-related features and the size of the attack could be 
used to identify this kind of relations between attacks. 

 Can we use additional information from external sources 

such as social media or Dark Web to identify the attacker? 
Often attackers such as hacktivists tend to announce and 
discuss their attacks through social networks, e.g., Twitter 
and Facebook [101], [102]. Similarly, threat intelligence 
can be gathered from the Dark web, where many threat 
actors use forums to communicate, exchange 
vulnerabilities or coordinate their attacks [103]. Moreover, 
in many cases researching Dark Web forums may lead to 
the identification of attacks that were previously missed by 



  

the victim company or organisation. The correlation of 
such information with the detected attacks and constructed 
campaigns could possibly lead closer to the identification 
of the attacker. 

 Is an attack manual or automated? 
When considering the attribution of an attack, i.e. the 

identification of the attacker, we should consider if the attack or 
parts of it are automated. For instance, in most cases DDoS 
attacks are automated either through software or botnets. In this 
case the use of IP as a correlation criterion is not helpful. On the 
other hand, if an attack is manually accomplished, there are 
more possibilities of a direct connection back to its origin. 
However, even in this case the attribution may require multiple 
stages of correlation. For example, in the case of pivoting from 
one infected host to the final target, the connections detected on 
the final host may be misleading. In this case, correlating the 
similar behaviour of the two hosts and the network traffic 
between them could reveal the pivoting. Then, evidence from 
the initially infected host could be used for the identification of 
the attacker. 

The evident problem that arises is the complexity and the 
diversity of the correlations to be performed in such a massive 
amount of heterogeneous and rapid data. Rules and 
predetermined signatures cannot be used, as they would identify 
only known patterns and thus limit the effectiveness of such a 
system. Conversely, a method that is able to identify the natural 
connections and correlations by using constructed sets of 
features is needed in intrusion detection. For these reasons, the 
digital forensics field could benefit from big data analytics and 
data mining techniques, such as feature-based attribution. 
Moreover, as the field of machine learning and data mining is 
evolving, new algorithms and optimizations are proposed, 
which can benefit the security domain in many ways. Several 
security related tasks, such as intrusion detection and attack 
reconstruction, can be automated or semi-automated. Also, the 
performance of such tasks in terms of time and resources can 
be significantly improved. 

B. IDS attack classes 

All IDS-related literature divides the indicators produced by 
the system in four classes, namely DoS, U2R, R2L and probe 
(see Section III). As attacks evolve these classes should have 
evolved along with them and, thus, we consider that they are 
not sufficient anymore. The open issues regarding the attack 
classes of intrusion detection systems that have been identified 
in this work are as follows: 
1) An intrusion detection system produces attack indicators 

and divides them in the aforementioned 4 classes. 
According to Akamai [1] and OWASP TOP 10 [104], the 
three most frequent web application attacks are SQL 
injections, Local file inclusion and XSS. All three of them 
belong to the U2R and R2L classes, which are currently the 
least detected attack classes. This fact supports our 
previous argument that it is necessary to reinforce the 
IDS’s ability to detect these classes by using feature 
selection, extraction and transformation techniques and 
manually selected features (see Section III.B). 

2) As stated by Kaspersky [105], cyber espionage through 
data exfiltration is one of the worst fears of every business. 
In this attack, the transmission of the targeted data to the 
attacker takes place after host infection with malware and 
in most cases uses encrypted traffic. This malicious 
network activity does not fall under the traditional four 
attack classes that are used in the literature, as it is the 
action that follows a successful intrusion. Nevertheless, 
creating an indicator for this malicious network traffic 
could identify an intrusion and reveal the infected host, 
even if the infection was not detected. 

3) Similarly as mentioned in [106], the number of new 
ransomware families has steadily increased since 2011 and 
in 2016 almost 43% of ransomware victims were 
employees in organizations. This attack falls under the 
malware infection category, which does not necessarily 
require network traffic (e.g., infection with an USB drive). 
However, it possesses a unique characteristic: after the first 
execution the malware has to communicate with a C&C 
server to receive the encryption key. By selecting a proper 
feature subset we might create indicators for this type of 
communication (see Section III.B) and stop the realization 
of the attack, even if the infection was successful. 

4) Botnets facilitate DDoS attacks, regardless if they are hired 
or owned by the attackers [5]. Thus, botnet infections have 
increased the last years and large networks with high 
speeds, such as corporate or university networks are the 
primary targets. Again, botnet infections and 
communication do not fall under any of the four known 
attack categories. Detecting the infection stage could be 
based mostly on features related to the host as in any other 
malware infection instance. On the contrary, detecting 
botnet communication can be based on network features 
regarding a) the type of communication: HTTP, IRC, P2P 
or a social network communication method [107] and b) 
the occurrence of hiding and evasion techniques, such as 
Fast-Flux [108]. Finally, produced indicators could be 
combined to identify infected hosts as members of a botnet 
through spatial and temporal correlation. For instance, if a 
group of hosts is observed to be performing similar 
activities in response to similar messages from the same 
server, then they are likely part of the same botnet. 

As easily observed, points two, three and four are associated 
with the outgoing network traffic. Traditionally, computer 
security uses the notion of the perimeter, considers everything 
out of it enemy territory and everything inside as safe zone. 
Consequently, malicious traffic used to be considered as always 
part of the incoming traffic. This fact however is no longer 
valid, with the emergence of insider threats, data exfiltration 
and C&C communication. To conclude, the existing 
categorization of attacks needs to be extended.  

Following the evolution of the attacks and the current threats, 
the outgoing traffic needs to be considered as well. Based on 
these, we propose the addition of the following attack classes: 
data exfiltration, botnet C&C communication and ransomware 
communication. Ransomware communication is referred to the 
acquisition of the encryption key but utilizes C&C methods for 



  

it. Consequently, this class could be considered a subclass of 
C&C. However, ransomware network communication is more 
specific and its messages are limited in number whereas botnet 
C&C communication is extended and continuous through time. 
Moreover, if we consider host evidence as well, a ransomware 
malware reveals itself to the user whereas a botnet malware 
utilizes different techniques to keep itself hidden. Finally, 
botnet communication often includes multiple hosts exhibiting 
the same suspicious behaviour, which constitutes another 
unique characteristic. 

V. RELATED WORK 

Bhuyan et al. [32] provide a comprehensive background and 
a thorough review of anomaly detection papers under the 
categories of statistical, classification-based, knowledge-based, 
soft computing, clustering-based and combination learners. 
Moreover, the authors present capturing methods, different 
metrics, attack types and a review of the most used datasets. 
Finally, they discuss open issues and provide practical 
recommendations for designing an IDS. In [109], Catania et al. 
compare known signature and anomaly based methods not only 
according to their detection rate, but also based on the 
automation level they can achieve without human interaction. 
Signature-based, anomaly-based and stateful protocol analysis 
methods are included in the review but also the authors attempt 
to discuss the gap between theoretical data mining methods for 
intrusion detection and their deployment in real networks [110]. 
Buczak et al. [111] compared representative machine learning 
(ML) and data mining (DM) methods, based on the number of 
citations and the relevancy. Their survey includes a 
comprehensive background of the DM/ML field and compares 
different methods, such as artificial neural networks, Bayesian 
network, clustering, decision trees, etc. The authors also present 
some known cyber-security datasets for ML and DT. Finally, 
they highlight some of the most significant problems in 
intrusion detection, such as the collection of labelled data for 
re-training. 

Readers interested in cloud intrusion detection may refer to 
[112]. The authors present an exhaustive review of Virtual 
Machine Introspection (VMI) and Hypervisor Introspection 
(HVI) based techniques for intrusion detection along with their 
advantages and disadvantages. That includes misuses, anomaly 
based and hybrid methods. Furthermore, a threat model is 
proposed especially for highlighting vulnerabilities in cloud 
environments, which includes both attacks launched from 
within and outside the cloud. Attacks are classified target-
component wise in five categories: attacks in virtual machines 
(VMA), attacks on virtual machine monitor (VMMA), attacks 
in hardware (HA), attacks on virtual storage (VSA) and attacks 
in tenant network (TNA). 

Contrary to other surveys, Vasilomanolakis et al. [43] focus 
on Collaborative IDSs (CIDSs) and divide them in three 
categories based in their architecture: centralized, decentralized 
and distributed. After disassembling the CIDS into five basic 
building blocks, each block is discussed. For each one of the 
three categories, the most known CIDSs where compared in 
block level based on the capabilities they offer. Authors define 
the requirements for a CIDS and present relationship between 
them and the attacks against them. The paper concludes that no 

CIDS is able to provide the necessary capabilities in a large 
scale network. 

In [113] authors present different intrusion detection 
approaches for Mobile Ad-Hoc Networks (MANET) and 
Wireless Sensor Networks (WSN) taking in consideration their 
architecture: distributed, centralized, hierarchical or standalone. 
Their survey included statistical, clustering, game theory and 
genetic algorithms. Likewise, Mitchell et al. in [114] classify 
existing anomaly, signature based and hybrid IDS techniques 
according to the type of system they will be deployed to. Their 
classification includes Wireless Local Area Networks 
(WLAN), Wireless Sensor Networks (WSN), Wireless 
Personal Area Networks (WPAN), Ad-hoc networks, mobile 
telephony, Cyber Physical Systems (CPS) and Wireless Mesh 
Networks (WMN). Luong et al. in [115] provide a 
comprehensive review of economic and pricing approaches for 
detecting security attacks against wireless networks, such as 
eavesdropping, jamming and black hole attacks. Furthermore, 
the paper concludes by providing research directions for both 
existing challenges from an attack and an economic tool 
perspective, as well as for new research problems regarding 5G 
HetNets. Similarly, in [117] a review of machine learning 
methods used to address a variety of problems in WSNs is 
presented. The authors do not focus only on the security aspect 
but also on other functional and non-functional characteristics 
of a wireless network. Xu et al. in [116] discuss a major threat 
against WSNs, node forgery or impersonation, and propose 
device fingerprinting solutions against it. The authors review 
fingerprinting methods for WSN security and propose their 
usage for generating non-forgeable signatures in order to 
distinguish malicious users from legitimate ones. Zhu et al. 
[118] provided a taxonomy of SCADA-specific intrusion 
detection systems and tried to highlight the requirements of an 
IDS designed to protect a control system. Except from a review 
on IDS techniques, the authors define a set of metrics and 
attacks specifically for SCADA systems. 

VI. CONCLUSION 

The topic of intrusion detection has been researched 
extensively over the last two decades. Through the years 
different methods, signature and anomaly based, have been 
deployed. This paper surveys anomaly based IDSs of the last 
few years that use unsupervised techniques, as they exhibit the 
ability to detect unknown attacks, based on the features that 
describe each attack class without any prior knowledge or the 
need of labelled data for regular training. Moreover, anomaly 
based hybrid IDSs have been reviewed, as they aim to combine 
the advantages of both unsupervised and supervised methods.  

Nowadays forensic investigations include a significant 
amount of data from diverse sources, such as network traffic, 
host machines, logs from different devices, etc. Unsupervised 
techniques are more malleable to the addition of new features 
extracted from different evidence sources and do not require 
regular re-training. For this reason, we present and compare 
feature selection methods for intrusion detection. Through our 
survey we highlight that finding and using an optimal subset of 
features for each class decreases the computational time and 



  

complexity, boosts the detection accuracy and decreases the 
false positive rate. This concept is well known in the data 
analytics field, but it has not yet been extensively used in 
intrusion detection.  

Furthermore, we identify the limitations of the current IDSs 
and discuss directions for future work to effectively cope with 
the current threat landscape. For this reason, we argue that the 
gap between the IDS and the forensic instigation needs to be 
filled. IDS outputs can be introduced to the forensic 
investigation processes in order to construct the timeline of an 
attack and correlate the reconstructed attacks aiming to identify 
the perpetrator. Finally, we propose the extension of the 
existing attack classes by adding three new categories regarding 
the outgoing network communication. 
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TABLE I 
FEATURE SELECTION METHODS FOR INTRUSION DETECTION 

 
 
 
 
 
 

Author Method FS Algorithm Datasets Type Evaluation Criterion 

[57] 
Mutual information for feature-class relevancy and generalized entropy for feature-feature non-

redundancy 

Mutual Information and Generalized 

Entropy FS (MIGE-FS) 

KDD99, NSL-
KDD, TUIDS, 

UCI 

 

Filter 
Mutual information, 

generalized entropy 

[50] 
Two phases: 1. evaluation of the local and global score of its feature and search for a relevant 

and discriminative subset, 2. removal of redundant features from all subsets 
Class-Oriented Feature Selection (COFS) Cambridge, 

UNIBS, SCUT 
Filter Maximum entropy 

[52] 
1. Select a feature subset 2. Train classifier 3. Classification on dataset 4. Evaluation with 

Jaccard coefficient 5. Evolution of the population 

NSGA-II and classifier is GHSOM with 

probabilistic  relabeling NSL-KDD Wrapper Jaccard coefficient 

[49] 
Three stages: 1. combines multiple FS techniques to find the optimal subset 2. Adaptive 

threshold based on maximum entropy 3. Random Forest filtering 
Global Optimization Algorithm(GOA) 

Cambridge Lab 
[119], Dataset 

[119] 

Filter Stability, Optimality 

[48] 

1. Extract an optimal FS subset for each of the 5 FS techniques 2.Support is calculated for each 

feature in the optimal subsets 3. If support is higher than the threshold the feature is going to 

the final subset 

Local Optimization Approach (LOA) KDD99, MAWI, 
Dataset [119] 

Filter 
Goodness Rate, 

Stability, Similarity 

[51] 
1. Filtering with WSU metric 2.Select optimal features with wrapper based on AUC 3. Choose 

the robust features 

Weighed Symmetrical  Uncertainty_Area 

Under Roc(WSU_AUC), Selection Robust 

Stable Features(SRSF) 

UNIBS, 
Cambridge (non 

ids), CAIDA 

Wrapper 

Weighted 

Symmetrical 

uncertainty 

[56] 
1. Select 1st feature the one with maximum MI to the output 2.Greedy selection: compute 

feature to feature MI and select the optimal 3. Repeat until the desired number of features 

Modified mutual information-based feature 

selection algorithm (MMIFS) KDD99 Filter Mutual Information 

[55] 

1. Initial subset generation 2.Iterative procedure: generate subset with modified RMHC and 

compare with the previous one 3. Find optimal subset after maximum iterations or predefined 

criterion is satisfied 

Modified Random Mutation Hill Climbing 

(RMHC)+multiple linear SVMs KDD99 Wrapper N/A 

[54] 

1. Initialization of the population 2. Training of the classifier 3. Classification 4. Evaluation of 

the results based on the Jaccard coefficient 5. If not converge, evolution of the population based 

on a) special domination method (bias-selection) or b) predefined multiple targeted search (fit 

selection) 6. Repeat steps 2-4 until converge. 

I-NSGA-III+GHSOM KDD99 Wrapper Jaccard coefficient 



  

 

TABLE II 
UNSUPERVISED AND HYBRID IDS 

 
 

Authors Method Algorithm Probe DoS R2L U2R Datasets Input 

[61] 1. Feature selection for redundant info using Pearson correlation 2. 
Clustering on the host and network data determine attacks through cluster 
normalcy 

K-means, 
DBSCAN 

N/A N/A N/A N/A VAST 2011 Mini 
Challenge 2 

z 

[58] 1. Mutual information and generalized entropy based feature selection 
technique 2. Tree based sub-clustering 
3. Outlier detection using ROS’ score and a predefined threshold 

Tree-based 
subspace 
clustering 
(TCLUS) 

98.07 99.99 89.96 76.32 KDD99, NSL-
KDD, TUIDS 

y 

[60] Two engines: 1. Clustering and outlier ranking using a Dynamic Self-
Adaptable Threshold 2. Botnet detection 

DBSCAN FP: 3.61%  TN:96.39%  ACC:98.39%  RECALL:100%  
PRECISION:98.12% 

 

DARPA, ISCX z 

[64] Use nature inspired optimization techniques to set k parameter for Optimum 
Path Forest clustering of the data 

Optimum Path 
Forest Clustering 

(OPF) 

PURITY MEASURE: ISCX: 0.9637, 
KDD99:0.7166,NSL-KDD: 0.9988 

 

ISCX, KDD99, 
NSL-KDD 

z 

[65] Three modules: 1. Partitioning: uses k-means to create training subsets for 
detection module 2. Pruning: aims to prune the training subsets to speed up 
MOPF 3. Detection: uses MOPF to detect attacks 

K-means, 
Modified 

Optimum Path 
Forest (MOPF) 

85.92 96.89 77.98 81.13 NSL-KDD z 

[66] 1. Extraction of cluster centers and nearest neighbours 2. Calculation of 
dist1 and dist2 3. Sum dist1 and dist2 to create a new distance feature for 
each point in the dataset 3. k-NN classifier is used for the new dataset 

Clustering, KNN 6 f: 99.99 
,19 f:87.61 

6 f: 99.99,19 
f: 99.68 

6 f:0 ,19 
f:57.02 

6 f: 0,19 
f:3.85 

KDD99 z 

[67] 1. Primary innate immunity: clustering into self and non-self  2. secondary 
adaptive immunity: from the results of the clustering detectors are generated 
and when they are mature they will be distributed to the hosts 

DBSCAN FPR:0.008, TNR:0.991, ACC:0.771, RECALL:0.589, 
PRECISION:0.987, F-1:0.738 

KDD99 z 

[68] Two layered Immune system Inspired IDS (I3DS): T-cells layer: a Hidden 
Markov Model (HMM) is used to identify possible attacks, B-cells layer: a 
decision tree is used to confirm true attacks 

Hidden Markov 
Model (HMM), 
Decision tree 

Detection rate: 60.2 ,F-measure: 64.5 , 
I-measure: 55.4, Precision: 77.8 

KDD99 z 

[69] Online module:  Misuse signature comparison through Random forest. If no 
match the offline module is called for clustering and creation of new 
signatures 

Random forest 
and weighted K-

means 

maximum detection rate: 98.3% with FPR 1.6% KDD99 y 

[70] MapReduce is used to parallelize the Particle Swarm Optimization that 
clusters the data based on the global optimal centroids 

PSO clustering maximum AUC: 0.963 KDD99 x 



  

 
 
 
 
 
 
 
 
 
 
 
 

[71] Training: 1. Filtering to find normal 2. Clustering 3. Create one SVM model 
for each cluster Testing: 1. Compare traffic to SVM models 2. If no match 
the flow is considered anomalous 

Clustering and 
one-class SVM 

N/A N/A N/A N/A KDD99, Kyoto 
university 

x 

[72] A divide-and-conquer model uses the magnitude of fuzziness to categorize 
unlabelled data. Then, a neural network with random weights (NNRw) 
model is used to identify the attacks. 

Neural network 
with random 

weights (NNRw) 

Accuracy (KDDTest+): 84% 
Accuracy (KDDTest-): 68% 

KDD99 z 

[73] 1. Clustering creates k clusters 2. One neuro-fuzzy model for each cluster 3. 
Previous step results to a SVM vector 4. Radial SVM classification for the 
detection 

k-means, SVM 
and fuzzy NN 

97.31 98.8 97.5 97.5 KDD99 z 

[74] 1.Supervised Classifier detects DoS and Probe 2.Unsupervised Classifier 
detects Normal 3.Outlier based detection for R2L and U2R 

CatSub+, K-point 
and GBBK 

98.75 99.99 91.1 81.4 TUIDS, KDD99, 
NSL-KDD 

y 

[58] 1. Μulti-resolution traffic flow 2. Time series criterion for detecting a 
potentially malicious flow 3. Sub-Space Clustering (SSC) 4. Evidence 
Accumulation Clustering (EAC) ranking 

DBSCAN N/A N/A N/A N/A KDD99, MAWI, 
METROSEC 

z 

[75] Hybrid, 3 modules, module 1:entropy based feature selection, module 
2:clustering(normal/attack), module 3:classification(types of attack) 

K-Means, K-NN, 
NAÏVE BAYES 

98.43 95.15 97.6 92 KDD99 y 

[59] Sub-Space Clustering and Evidence Accumulation: partition the feature 
space in N sub-spaces and perform clustering in a lower dimension space 

DBSCAN 0.95 0.95 0.8-0.85 0.8-0.85 METROSEC z 

[63] 1. Unsupervised cluster formation 2. Stability analysis 3. Iteration until 
clusters are stable 4.CLUSLab: cluster labelling technique 

Tree-based 
subspace 

clustering(TCLUS
) 

0.9645 0.9997 0.8652 0.6623 KDD99, TUIDS y 

[76] 1. Graph-based algorithm 2. Outlier detection based on the local deviation 
coefficient 

LDCGB N/A N/A N/A N/A KDD99 z 

x- represents continuous y- represents mixed z- represents N/A 
 



  

 
 

TABLE III 
DATASETS FOR INTRUSION DETECTION 

Citation Year Type Attack 

Publicly 
Available Description # of Features 

UNB ISCX [77] 2012 RL ALL Y Real packet traces were analysed to create profiles for agents that generate real traffic 19 

ISOT Botnet[79] 2010 BM ALL Y Combinations of several existing publicly  

CAIDA [82] 2008-2016 BM ALL Y passive backbone anonymised traffic, no payload N/A 

MAWI [83] 2006-2016 RL N/A Y daily trace at the transit link of WIDE to the upstream ISP, some longer traces for some years N/A 

LBNL [84] 2005 BM DoS Y 

more than 100 hours of activity from a total of several thousand internal hosts, heavily anonymised, no 
payload N/A 

UNIBS [85] 2009 RL ALL Y TCP (99%) and UDP traffic, 79000 flows, description table at the url N/A 

DARPA [86] 2000 BM DoS Y two scenarios, LLDOS 1.0 and LLDOS 2.0.2 N/A 

KDD99 [87] 1999 BM ALL Y most widely used dataset 41 

NSL-KDD [88] 1999 BM ALL Y better version of KDD99 (url for reasons) 41 

TUIBS  N/A RL ALL N/A Ν/A 50,24 

METROSEC [90] N/A RL N/A N Ν/Α N/A 

DEFCON  N/A BM DoS N/A CTF traffic N/A 

RL- represents real-life BM- represents benchmark 

 
 
 


