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The production of biofertilizers at industrial level is a bottleneck because bacterial

strains are generally developed and managed by research laboratories and not by

production units. A seamless transition from laboratory to field application is, therefore

necessary. This review provides an overview of the constraints that limiting the application

or the implementation of Actinobacteria based biofertilizers especially in agricultural

field and suggests solutions to overcome some of these limits. General processes of

making and controlling the quality of the inoculum are briefly described. In addition, the

paper underlines the opportunity of biofertilizers alone or in combination with chemical

fertilizers. This review also, highlights the latest studies (until June 2019) and focuses

on P-solubilization microorganisms mainly Actinobacteria. The biotechnology of these

bacteria is a glimmer of hope for rock phosphate (RP) bioformulation. Since direct

application of RP fertilizer is not always agronomically effective due to its sparse solubility.

Keywords: Actinobacteria biotechnology, bioformulation, phosphorous, rock phosphate, quality standards

INTRODUCTION

The world population will reach at least 9.8 billion by 2050 according to the United Nation Food
and Agriculture Organization (FAO) projections (Harold and Reetz, 2016). In order to ensure
global food security, at least doubling our current agricultural production is required (FAO, 2017,
2018). To achieve this goal, it is necessary to have very fertile soils or to supplement nutrients
in low fertility soils by applying a high amount of fertilizers (Keane, 2009). Until now, chemical
fertilizers help in feeding the world by providing three major plant nutrients, nitrogen, phosphorus
and potassium (NPK). Approximately 52.3 billion tons of P-based fertilizers are applied annually
to maintain available P levels in soil–plant systems (FAO, 2017). Whereas, only, about 0.2%, i.e.,
<10µM of this huge amount, is used by plants (Alori et al., 2017; Islam et al., 2019) and the
rest is precipitated by metal cations in soil such as Fe, Al, Mg, Ca, etc. The extensive use of
P may leads to inevitable depletion of world reserves of rock phosphate (Leghari et al., 2016).
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This depletion will be concomitant with the increase in the cost
of these commercial fertilizer products. Recently, scientists from
all over the world have focused their attention on sustainable
agriculture by exploiting beneficial microbes in order to increase
the contribution of biofertilizers to food and fiber production
(Khan et al., 2007; Granada et al., 2018; Yadav and Sarkar, 2019).
Biofertilizers are commonly defined as “Preparation containing
live microbes which helps in enhancing the soil fertility either
by fixing atmospheric nitrogen, solubilizing phosphorus or
decomposing organic wastes or by augmenting plant growth
by producing growth hormones with their biological activities”
(Chaparro et al., 2014; Okur, 2018). Many strains, some of
which have interesting biotechnological potential have been
isolated from the extensive research programs on plant-beneficial
microorganisms (Sivasakthivelan and Saranraj, 2013; Umesha
et al., 2018; Nafis et al., 2019). Nitrogen fixers, potassium and
phosphorus solubilizers, or their combinations with molds fungi
are the organisms commonly used as components of biofertilizers
(Mohammadi and Sohrabi, 2012; Pathak and Kumar, 2016).
Most of these microorganisms used as biological fertilizers are
isolated from the plant rhizosphere where they establish close
contact with the roots (Xiang et al., 2012). Rhizobia, Arbuscular
mycorrhizal fungi (AMF) and Frankia are symbiotic with roots
whereas rhizobacteria live in the rhizosphere soil, and/or on
the root surface or even in superficial intercellular spaces
(Vasconcellos et al., 2010; Stamenković et al., 2018). Nowadays,
few microorganisms have been marketed as biofertilizers, and
most are in North America, Europe and Asia (particularly
India) (Mishra et al., 2017). The low R&D funding in this area,
poor quality of such products and low level of adaptability to
the farmer’s needs could explain their low usage despite their
reputation of being easy to use, non-toxic, cheap, eco-friendly
and sustainable (FAO, 1991; Date, 2001; Hungria et al., 2005;
Shravani et al., 2019). This has resulted in a lack of credibility
in these products and makes their sale difficult (Stamenković
et al., 2018). Therefore, scientists and biofertilizers manufacturers
need to collaborate in order to overcome the bottlenecks in the
process of bacterial bioformulation. In this regard,Actinobacteria
constitute promising source of novel biofertilizers in sustainable
agriculture. Indeed, Actinobacteria have the advantage of
surviving in very competitive environments and produce spores
during unfavorable conditions (Nandimath et al., 2017). These
filamentous organisms can bridge water free gaps between soil
particles to move to a new nutritional site (Olanrewaju and
Babalola, 2019). Theirmorphology also gives them amuch higher
surface to volume ratio and improves their ability to solubilize
phosphorus. Therefore, there are immense opportunities for
using phosphate and potassic rocks to produce biofertilizers
based on Actinobacteria. The development of these biofertilizers
could optimize the use of natural phosphate in the world. This
comprehensive review aims to (i) make a current assessment
of the works that have been done in microbial biotechnology
research in particular the P-solubilizing Actinobacteria and
(ii) to identify the major limitations and problems in their
bioformulation before proposing future research pathways that
can contribute to an effective industrialization.

BIOFERTILIZERS AS COMPLEMENT TO
CHEMICAL FERTILIZERS

Microbes are very small but very powerful and useful. In fact,
all the elements brought as chemical fertilizer can be provided
by microorganisms, especially Nitrogen (N), Phosphorous (P),
and Potassium (K) (Nath et al., 2018). Most of the time,
these elements are sufficiently available in the soil (NPK) or
in the atmosphere (N) but in an unassimilable form for plants
and animals. Rhizobia, Frankia and free-living fixer convert
dinitrogen gas (N2) into usable form (NH4+ mainly) for
plants uptake, while Arbuscular Mycorrhizal fungi, potassium
and phosphate solubilizing microbes dissolve mineral and/or
organic sources to make P and K available to plants (Rashida
et al., 2016; Bargaz et al., 2018). AMF can also supply other
macro and micronutrients such as Fe, Mg, K, Ca, Cu Mn,
Zn etc. (Chen et al., 2017). The other important benefits of
microbes are their ubiquitous distribution and adaptation to
environments (Qu et al., 2019). Somemicrobes are extremophilic
and extremotolerant to various environmental factors such as
pressure, drought, salinity, and pH (Rampelotto, 2010; Banga
et al., 2018). In the current context where sustainable farming
systems are much needed, the use of these plant-friendly
microorganisms as biofertilizers is more and more urgent (Yadav
and Sarkar, 2019). In fact, the high cost of chemical fertilizers
formulation and the difficulties of meeting their demand have
encouraged scientists to develop biofertilizers as a solution
to replace or at least partially substitute chemo-synthetic and
chemical fertilizers (Vaxevanidou et al., 2015). However, the
task is not easy because chemical formulation in agro-products
is standardized for long-term storage, resistance to abuse of
application and ease of use by farmers (Bashan et al., 2014). Thus,
biofertilizer need to meet these standards, and produce evident
effects like those produced by chemical fertilizer, otherwise it will
be difficult to convince farmers, with very low incomes to use
them. This means that, in the absence of efficient biofertilizers
with consistent quality, their contribution, compared to the
chemical fertilizers will remain too low. However, biofertilizers
have the ability to slowly release nutrients from a source
according to the crop’s need and complement other minerals and
growth factors an advantage over chemical fertilizers (García-
Fraile et al., 2015; Yadav and Sarkar, 2019). Some researchers
have tried to test mixed fertilizers combining biofertilizers with
organic and/or chemical fertilizers (Cisse et al., 2019). Chen
(2006) showed that a cocktail of beneficial microorganisms in
compost and urea could help to save the input of chemical or
organic fertilizers and decrease P accumulation in the soil. Similar
results were reported by Mondal et al. (2015), after combining
chemical fertilizers with biofertilizers and vermicompost. They
concluded that vermicompost can substitute at least 25% of
NPK fertilizer amount and help to increase farmers’ incomes.
The authors Latha and Jeyaraman (2014) found that the use of
chemical fertilizers alone in brinjal (Solanum melongena Linn.)
crop had a higher cost-benefit ratio compared to the combination
of biofertilizers and chemical fertilizers. Other positive effect of
phosphorus biofertilizer in combination with chemical fertilizer
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on wheat (Farsani et al., 2013), rice (Naher et al., 2016), and
soybean (Munda et al., 2015) have been published. Farmers’ can
therefore get more profit by combining both fertilizers. In view
of these results, the urgency to formulate high efficient fertilizers
which combine chemical, organic material, and microbe is
considerably high and will become more efficient in the future.

Currently, the biofertilizers market is valued around $1.57
billion and is expected to reach $ 1.88 billion by 2020, while
the global fertilizer market need will be around $245 billion.
Biofertilizers based on P-solubilizing bacteria account for only
14% of this market (Market data forecast, 2018). The main
P-solubilizing production units are currently in India and
most of them are using strains belonging to Bacillus genus
(Table 2). Limited information is available on the production
capacity and most of these units are of local scale production.
Therefore, P-biofertilizers still have a lot to gain in this
market. However, there is an overdue need to understand
their limiting factors and emphasize the great opportunities of
their use.

OBSTACLES OF BIOFERTILIZERS TO
OVERCOME

Relative to the Carrier
The weak point of commercialization is often the performance
of the microbial inoculum (Mishra and Arora, 2016). The
most common barriers of inoculants commercialization are
the formulation inadequacies (Bashan et al., 2016a). Indeed,
a micro-organism may be efficient in laboratory and/or
greenhouse conditions but formulating that organism into an
adequate carrier is a difficult step (Reddy and Saravanan,
2013). Hence, the choice of the carrier material is fundamental
because carrier (inoculant) is the sole delivery vehicle of
live microorganisms from the production unit to plants
in the field. A good carrier should be: (i) nontoxic to
organisms (ii) easily pulverized and sterilized (iii) able to
carry exceptionally high microbial numbers (iv) easily available
and cost effective, and (v) should have a good absorption
capacity (Mishra and Arora, 2016). The carrier materials can
be of various origins: inorganic, organic, or synthesized from
specific molecules. However, whatever its origin, the carrier
should keep microorganism’s viability during storage in the
farmer’s warehouse and should have a long shelf life and
stability (Bashan et al., 2016a). Research must therefore focus
on this step-in order to find carriers that meet these needs.
Many materials such as charcoal, peat, lignite, vermiculite,
farm coal manure mix, charcoal farm yard manure (FYM)
mixture, charcoal-soil mixture and kaolin have been identified
as suitable carriers (Bashan, 1986; Berninger et al., 2018).
However, these carriers are very prone to contamination after
formulations that can reduce the shelf life of the inoculant after
autoclaving (Brahmaprakash and Sahu, 2012). The innovations
offered by materials science and engineering technologies help
to avoid these limitations. For instance, formulations based
on alginate beads encapsulation offer advantages of delivering
microorganism at the right and precise concentration without

losing efficacy (Bashan et al., 2014; Shang et al., 2019) and
keeping the quality of inoculant products (Deaker et al.,
2011). This technique which lately has become popular in
the pharmaceutical, nanotechnology, medicine, aquaculture, and
cosmetics industry, ensures the inclusion of liquids, gases
or fine solid particles with natural or synthetic polymer
(Bashan et al., 2014). The polymeric, deserves attention,
because many studies have reported that alginate beads improve
cell survival with remarkable flexibility, biodegradation and
biocompatibility (Herrmann and Lesueur, 2013; Dragostin
et al., 2017). Nevertheless, this approach need to be optimized
especially the type of alginate, and the diameter of the beads to
obtain the best function after bio-formulation by encapsulation
(Bashan et al., 2016a).

Other research focuses on inorganic carrier such as
water-in-oil emulsions (Molet-Rodríguez et al., 2018). The
principle of this method is to mix water and oil, so, oil
is dispersed as droplets in a continuous water phase. The
microorganisms are trapped in water droplets and are protected
by a physical barrier of emulsifiers. Sometimes, the process
can be improved by adding a surfactant i.e., surface-active
agent. This technology is widely used in pharmaceutical
and cosmetic industries and cancan be adapted to microbial
bioformulation (Malusá et al., 2012). However, a certain
number of parameters such as oil type, oil density and,
emulsion stability must be mastered (Molet-Rodríguez et al.,
2018). To overcome these obstacles, collaboration between
researchers in the field microbiology and materials science is
necessary because bioformulation is at the crossroads of these
two disciplines.

Relative to Quality Standards
Quality standards are the major concern of microbial
biotechnology. Two important characteristics define the quality
of a bio fertilizer: the presence of the recommended strain in
active form and required number. If any of these characteristics
is missing in the product, the biofertilizer could be termed as
sub-standard (Ghosh et al., 2001). Currently, the quality control
framework is not well-defined. Furthermore, the present quality
standards as prescribed by regulatory agencies of a country,
do not authenticate the strain used for commercial production
(Balachandar, 2012). As a result, most of the inoculants produced
in the world are of relatively poor in quality (Thuita et al., 2018).
To solve this problem, international standards through the
ISO Standards should be established and be adapted in the
production and use of these biofertilizers. Although efforts to
regulate the industries have been made by some countries such
as India, Canada, Brazil, China, etc., there are still insufficient
(Hungria et al., 2005). In China, the number of cell forming
units (CFU) is considered as the main parameter in assessing
the quality of the different kinds of biofertilizers (Malusá and
Vassilev, 2014). In the European Union, quality parameters
for biofertilizers are not yet standardized and they vary from
one region to another (Malusá and Vassilev, 2014). Currently,
India seem to have the most standardized and functional legal
framework related to biofertilizers (Malusá and Vassilev, 2014;
Manashi et al., 2017).
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FIGURE 1 | Quality control in the biofertilizer manufacturing process [modified from García-Fraile et al. (2015), Permission acquired from the author]. Writing in red

means that the quality control is not compliant, and the project is rejected the writing in white corresponds to the compliant product. The diagram shows that

bio-formulation has six main steps before commercialization and four each stage, a quality control is necessary.

Quality Control Procedure
To ensure product safety, efficacy, and conformity to prescribed
standards, quality control and regulation of bio-fertilizers
are important steps (Arora et al., 2016). Inoculum quality
control should be done at different stages: screening and
efficiency at laboratory and the greenhouse scale by researchers,
formulation including choice of support, packaging, and storing
at industrial scale. Each step requires expertise, and everything
must be governed by standards (under regulation) (Figure 1).
Unfortunately, all biofertilizer production units do not follow this
procedure due to lack of technical back up.

Techniques’ for Strain Identification
Until now, at the international level, there are still no quality
control procedures and guidelines for monitoring microbial
cells and activity during the production and formulation of
inoculants. Many enumeration methods exist, each with its
advantages and limitations (Table 1). Usually, the number of
living cells is counted by spread plate or drop plate methods
or Most Probable Number Method (MPN). However, all these
enumeration methods are not specific to a particular strain
and are not suitable enough to detect low population levels
(Table 1). Additionally, contaminants have some effect on
counting protocols and they do not allow identity of target
strain. Molecular biology offers techniques for detecting the
presence and abundance of specific microorganisms whether in
the soil, rhizosphere or in a commercial inoculant, with high
sensitivity. Sequence Characterized Amplified Region (SCAR)

marker-based fingerprinting produces very good results as
demonstrated by a recent research we carried out (Reddypriya
et al., 2019) and those of Couillerot et al. (2010) and
Reddypriya et al. (2016). Our results showed that, in addition
to authentication, quantitative PCR and SCAR marker allow
for assessing the cell loads per g/ml of inoculants (Figure 2).
In this study, the presence and abundance of Azotobacter
chroococcum (Ac1), Bacillus megaterium (Pb1), and Azospirillum
brasilense (Sp7) in biofertilizer-inoculated maize rhizosphere
soil was detected by small DNA fragments of 299, 375,
and 584 bp, respectively. These results clearly showed that
multiplex PCR and real-time PCR targeting SCAR markers
could be applied in quality control of commercial biofertilizer
production, to guarantee quality product for farmers satisfaction.
This work can be extended to all potentially usable strains
as biofertilizer.

Previously, colony immunoblotting technique was evaluated
for the specific detection and enumeration of Citrobacter freundii
in sterilized or unsterilized carrier media in commercial products
(Kecskés et al., 2009). Today, the sensitivity of microbial
identification and enumeration in a sample is improved by
next generation sequencing Technique (Abbasian et al., 2018).
However, the analysis in Table 1 shows that it is currently
difficult to find a technique that meets all the desired criteria, i.e.,
reliable, rapid, inexpensive, and relatively easy to use. Molecular
techniques generally have good reliability but require expensive
and sophisticated laboratory equipment and technical expertise
(Table 1). From this comparative analysis, we conclude that
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TABLE 1 | Main manufacturer of biofertilizer based on P-solubilizing microbes.

Product unit/

county

Name of

product

Component Form (s) Performance

declared by the

manufacturer

References (Web ID)

TNAU Agritech

Portal/INDIA

Phosphobacteria

and Phosphatika

2 bacterial*

and 2 fungal

species

Powder/Liquid Increase yield

5–30%

http://agritech.tnau.ac.in

Monarch

Bio-Fertilisers and

Research

Centre/INDIA

Phosphobacteria Bacteria * Powder Dissolve 30–50 kg of

phosphorous/

hectare

http://www.monarchbio.co.in/bio_fertilizers.html

SAFS Organic

Enterprises/INDIA

Phosphobacterium Bacteria* Powder/

Liquid

No indication https://www.indiamart.com/safsorganicenterprises/

bio-fertilizer.html#bio-fertilizer-phosphobacterium

Agro bio tech

Research Centre

LTD/INDIA

Phosphobacteria Bacillus

megaterium var.

phosphaticum

Powder/

Liquid

No indication http://www.abtecbiofert.com/products.htm

Ajay Bio-Tech

(India) Ltd/India

Biophos Bacteria*

& Fungi

Powder

(spore)

No indication https://www.linkedin.com/company/ajay-biotech-

india-ltd/?originalSubdomain=fr

International

Panaacea Limited

/India

Phosphofix Bacteria* Liquid Reduce 25–30%

phosphatic fertilizer

requirement

https://www.iplbiologicals.com/

Varsha Bioscience

And Technology

India Private

Limited/INDIA

Phosphomax Bacillus

megatherium

Powder Increase Crop yield

by 15–25%

http://www.varshabioscience.com/products/

phosphomax.html

T. Stanes &

company

Limited/India

Symbion-P Bacillus

megaterium var.

phosphaticum.

Liquid Saves up to 50%

over the cost of

phosphorous

chemical fertilizer

http://www.tstanes.com/products-symbion-p.html

Novozymes

Biologicals

Limited/Canada

Jumpstart LCO -Penicillium bilaii Powder/

Granular

Solubilize 8.25 kg/ha https://www.novozymes.com/en/advance-your-

business/agriculture/crop-production/jumpstart

AgriLife/India P Sol B®- BM Bacillus

megaterium

Powder

(spore)

No indication http://www.agrilife.in/bioferti_psolb_bm.htm

SCAR marker studies have more advantages and deserve to be
extended to all microorganisms used in bioformulation.

POTENTIAL FEATURES OF PHOSPHATE
SOLUBILIZING ACTINOBACTERIA

Several strains cited in the scientific literature as potentially useful
do not appear in the commercial market, perhaps because of
inappropriate formulation (Bashan et al., 2014). Unfortunately,
they are lost or forgotten. For example, in Africa, lots of efficient
isolates belonging to Azospirillum, Rhizobia, Cyanobacteria,
Azotobacter (for N2 fixation), Pseudomonas, Bacillus, Aspergillus,
Penicillium (for P solubilization and PGPR), Bacillus (K
solubilization), and arbuscular mycorrhiza (for P mobilization)
are described in literature (Hamdali et al., 2012; Ndoye et al.,
2013; Barka et al., 2016; Berruti et al., 2016; Hassimi et al., 2017;
Soumare et al., 2017) but none of them (or only very few) has
been formulated andmarketed. This observation can be extended
to many other countries and even all over the whole world.
There are many reasons that might have led to this situation,
but lack of funding is one of the most important part. Grant
applications regarding bio-formulations are seldom successful.

The lack of private sector involvement in the production and
formulation of the inoculum is perhaps the missing link in
the chain. The contribution of phosphate producing companies
from rock P is a necessity for bio-formulation of phosphate
solubilizing microbes (PSMs). This investment will be beneficial
for these companies because it will allow them to diversify
their offer to farmers. The phosphorus importance for plant
growth and role of bacteria to make it available is presented
in Box 1.

The use of phosphate solubilizing microbes (PSMs) will
efficiently increase fertilizers uptake by mobilizing insoluble
phosphorus in the fertilizers and in soils to which they are
applied (Suleman et al., 2018). In fact, chemical P fertilizer is
subjected to chemical fixation (see Box 1) in soil with some metal
cations (Viani et al., 2014) and losses by leaching (Fortune et al.,
2005). Combined application of rock phosphate with slow-release
PSMs would be a sustainable solution in the modern agriculture.
Thus, natural RP is a valuable alternative and less expensive
natural source for phosphate fertilizers (Biglari et al., 2016). Sane
and Mehta (2015) showed that phosphate solubilizing bacteria
and fungi in co-inoculation increase the mobilization of rock
phosphate and plant growth. Authors Zaidi et al. (2017) and
Ding et al. (2019) reported that PSMs isolated from the rice
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TABLE 2 | Reliability comparison of some methods for detection and enumeration.

Detection method Sensitivity Advantages Limits References

McFarland turbidity

standard

Low Non-destructive, rapid and low cost - Size of microorganisms influence bacterial

concentration

- Not usable for identification

- Not possible to distinguish between live and

dead cells

Guo et al. (2017)

Plate count Low Enumerate microorganisms - Time-consuming and laborious

- Not usable for identification

- Only for culturable cells

- Important limitations for anaerobic bacteria

Emerson et al.

(2017)

Clais et al. (2015)

Most probable

number (MPN)

Low Enumerate microorganisms - Only for symbiotic microbes

- Not usable for identification

- poor repeatability

Deaker et al. (2011)

MPN-PCR
Meduim

- Specific detection and enumeration

- Applicable to

non-culturable microorganisms

- Dependent on specificity of probes Bonny et al. (2018)

Cell count by

microscopy

Meduim Enumerate microorganisms - Time-consuming and laborious

- Not possible to distinguish between live and dead

cells

- Expensive equipment and/or consumables

- Detection not always possible

Xie et al. (2018)

Colony

immunoblotting

Meduim - Specific detection and enumeration

- Non-destructive an inexpensive method

- Only for culturable cells

- Identifiable markers required

Kecskés et al.

(2009)

Scar

marker/Quantitative

real-time PCR

High - Large number of samples can be screened

at a time

- Good repeatability

- Specific and reproductible

- Detection and Quantification

- Applicable to

non-culturable microorganisms

- Expensive and sophisticated, equipment

laboratory is required

- Requires specific primers designed from a specific

gene

- Dependent on specificity of probes

Reddypriya et al.

(2019)

Next generation

gene sequencing

systems

High - Detects the presence of different

microorganisms in a sample

- Expensive

- Required bioinformatic analysis

Abbasian et al.

(2018)

rhizosphere released 22–826 µg P mL−1 in in vitro test. Among
the PSMs, Actinobacteria (Actinomyces) are of special interest
since these filamentous sporulating bacteria (see details in Box 2)
are able to develop in extremely different soils and offering a
unique opportunity for biotechnological application (Mengual
et al., 2016).

These bacteria are characterized with, thermo-tolerant,
drought-tolerant, easier to cultivate and formulate, easier to store
and transport, and extended shelf life. Actinobacteria spores
can be stored for a long time because they are very resistant
to several environmental factors (Sharma et al., 2014). Dry
formulations, such as powders containing mostly spores or
granules can be manufactured with simple and cost-effective
time technology. On the other hand, while most P-solubilizing
organisms act through a mechanism of acidification of the soil,
Actinobacteria appears to be moreover disposed of by other,
efficient mechanisms such as chelation (Delvasto et al., 2006;
Sharma et al., 2013; Nandimath et al., 2017). The high buffering
capacity of the soil, generally prevents acidification and causing
a failure of some biofertilizers (Khan et al., 2007). Irrespective
of the type of soil, it acid or alkaline, Actinobacteria are able
to solubilize rock phosphate (RP) and potassium rock (Hamdali
et al., 2008). Therefore, a biofertilizer based on Actinobacteria

inoculated into these materials will provide continuous supply
of P and K for sustainable plant growth. In addition to their
fertilizing ability, Actinobacteria can be used as biopesticide and
bio-immunizing agents against plant diseases (Majeed et al.,
2015; Barka et al., 2016). In fact, some Actinobacteria limit
Fe availability in the soil by producing a Fe-chelating agent,
siderophore. This results in low availability of this element,
which limits or suppresses the growth of pathogens and their
ability to cause diseases (Solanki et al., 2012; Raimi et al.,
2017). Otherwise, the sequestration of these cations by the
excreted siderophores led to the solubilization of the insoluble
phosphates. The figure below summarizes in a very simple
way the different stage of the bioformulation of Actinobacteria
as a fertilizer (Figure 3). Some Actinobacteria, in addition to
their biofertilization effects (ability to solubilize RP) can act
as growth-promoting rhizobacteria (PGPR) as like other PGPR
through phytohormones production such as indole acetic acid
(IAA), gibberellins and cytokinins (Gopalakrishnan et al., 2014;
Sousa and Olivares, 2016). A large amount of IAA (222.75
ppm) is produced by Actinobacteria belonging to the genus of
Nocardiopsis and isolated under the rhizosphere of mandarin
(Shutsrirung et al., 2013). IAA is one of the main phytohormone
enhancing plant growth by stimulating the elongation of stems
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FIGURE 2 | PCR targeting SCAR markers of biofertilizer strains for strain-level

authentication and qualification in maize rhizosphere at different growth stages

15th (A), 30th (B), and 60th (C) day. Error bar indicates with letters “a” and “b”

(ANOVA and DMRT test; p < 0.05) (Reddypriya et al., 2019) Reproduced with

permission.

and roots. Other Actinobacteria belonging to the genus of
Streptomyces have also shown a positive effect on the growth
and elongation of common bean roots (Igarashi et al., 2002).
Similar results were reported by Rashad et al. (2015) who
showed that marine Actinomyces produce lot of phytohormones,
including gibberellic acid. These phytohormones have been
tested on eggplant (Solanum melongena) and have improved
the agronomic performance of the species. On the other hand,
Endophytic Actinobacteria produces secondary metabolites that
improve growth and resistance to various environmental
stresses (Girão et al., 2019). For instance, kasugamycin and
mildiomycin from Streptomyces kasugaensis and S. rimofaciens

BOX 1 | Importance of P in live and role of bacteria to its availability

Phosphorus is considered as the second most vital plant nutrient as well as

secondmost deficient after nitrogen (Leghari et al., 2016). It is highly abundant

in nature as rock phosphate. The global resources of rock phosphate are of

the order of 163,000 million tonnes. Africa contains about 41%, USA has

21%, USSR 13%, the Middle East 10%, Asia 8%, South America 3%, New-

Zealand and Oceania together accounts for only 2% and entire Europe <1%

(Kumari and Phogat, 2008). Without P, life would not exist because it is a

vital component of cell walls, DNA, RNA, and ATP to transport energy to the

brain. In crop growth, there is no substitute for phosphorus and phosphorus

cannot be synthetically manufactured. It is available for plants in the form of

orthophosphate ions H2PO
−

4 and HPO2−
4 (Leghari et al., 2016). Plants require

this phosphorus for cell growth, the formation of fruits and seeds and ripening

(Figure 4). Unfortunately, P is one of the least biologically available nutrients.

The fact that certain soil microbes are capable of dissolving relatively insoluble

phosphatic compounds has opened the possibility of inducing microbial

solubilization of phosphates in the soil. The maximum level of phosphorus

solubilization potential of Actinomyctes isolates selected from tropical soils

was established around 1,727µg/ml of Ca-P and 48.0µg/ml of RP (Leghari

et al., 2016).

BOX 2 | Features and taxonomy of Actinobacteria

Actinobacteria are a distinct group of bacteria that are widely distributed

in nature. They are gram-positive bacteria with high G+C content. Their

taxonomy is extremely complex, they were first divided into two groups

namely, Streptomyces and non-Streptomyces or also known as rare

Actinobacteria. In volume 5 of the Bergey’s, the phylum Actinobacteria is

divided into 6 classes namely Actinobacteria, Acidimicrobiia, Coriobacteriia,

Nitriliruptoria, Rubrobacteria and Thermoleophilia. According to the recent

classification of Barka et al. (2016), the class Actinobacteria comprises five

subclasses, 10 orders, 56 families, and 286 genera.

Actinobacteria are organismswith characteristics common to both bacteria

and fungi but possessing distinctive features to delimit them into a distinct

category. They are unicellular like bacteria but produce a mycelium which

is non-septate. They resemble fungi because they are adapted to life on

solid surfaces and they can produce mycelium and dry spores like most

fungi (Kalakoutski and Agre, 1976). On culture media, they have different

cultural characteristics (Figure 5) and occur in the soil in the spore stage

as well as in the mycelial stage (Figure 5). Their mycelial growth form creates

the potential for the formation of large networks (Krsek et al., 2000). They

are typically present at densities in the order of 106-109 cells per gram

of soil and they represent more than 30% of the total population of soil

microbiomes (Polti et al., 2014). Actinobacteria play an important role in soil

and in plant interaction because of their ability to produce a large number of

secondarymetabolites, many of which possess antibacterial activity (Lazzarini

et al., 2000). Actinobacteria produce approximately two-thirds of the known

antibiotics produced by all microorganisms (Dhanasekaran et al., 2012;

Feina et al., 2019). This nutrient cycling capacity makes them an ideal

candidate for natural fertilizers (Jog et al., 2016; Olanrewaju and Babalola,

2019). In addition, the ubiquitous presence and possible global distribution

of many of these actinobacteria suggest a great environmental tolerance.

Actinobacteria could be used for the formulation of novel biofertilizer and

bio-control products constituted by spores and/or mycelium in association

with pulverized rock phosphate (Reponen et al., 1998; Nandimath et al.,

2017). Unfortunately, this great potential interest of Actinobacteria is almost

unexplored in Africa and all over the world.

respectively protect against rice blast and powdery mildew
diseases (Sathya et al., 2017). According to Srivastava et al. (2015),
PGP-Streptomyces rochei SM3 increase chickpea biomass
accumulation (20%) and induces stress tolerance against NaCl
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FIGURE 3 | Simplified schematic flow chart for the production of Actinobacteria biofertilizer. Quality control is done at all stages of production a production as

previously described (II.3).

and Sclerotinia sclerotiorum. Previously (Hamdali et al., 2008)
reported that Micromonospora aurantiaca- and Streptomyces
griseus increase wheat shoots and roots weight, respectively
50–47% and 80–78. Using two P-solubilizing actinomycetes
as biofertilizers, Mba (1994) showed that these strains led to
a 43% increase in soybean yield and soil properties were also
improved. Alam et al. (2012) achieved an increase in yield
(11%) of geranium herbs inoculated with Streptomyces sp. The
ability of some Streptomyces to fix nitrogen as free-Living is
an additional advantage in offsetting nitrogen losses from soil
(Dahal et al., 2017). It has been documented that Actinobacteria
promotes legume symbioses through hyphal elongation for
symbiotic fungi (Schrey and Tarkka, 2008) and /or by increasing
nodulation for nitrogen fixing symbiosis (Sathya et al., 2017).
The multifunctionality of Actinobacteria is a definite advantage
in the prospect of using them as bioinoculants for sustainable
agriculture. However, beneficial PGP traits of Actinobacteria
require more extensive research and more field trials. Also,
extensive studies on Actinobacteria mechanisms of PGP action
are needed.

OPTIMIZATION OF ACTINOBACTERIA FOR
MASS PRODUCTION

Bacterial production and formulation are close. Hence, it is
important to find out how, when, where and under what
conditions the selected bacteria for bioformulation work. For
this, prior optimization of the bacteria by monitoring growth
parameters such as pH, culturing conditions, temperature,
incubation time etc. is required. Many Actinobacteria species
are grown on the common bacteriological media under normal
conditions i.e., pH 7, T◦C 28–30◦C (Pudi et al., 2016).
However, some species belonging to Frankia genus require
special incubation conditions and growth media. The maximum
yield is usually obtained after 7–10 days of incubation. For
sporulating Actinobacteria, modification of nutrient parameters
can induce and increase spore yield. In order to reduce the
use of chemicals for mass production, several cost-effective
substrates have been tested successfully. For instance, Soares
et al. (2007) and Diraviyam et al. (2011), have shown that
sterile moistened rice, rice bran, wheat bran and sugarcane

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 January 2020 | Volume 7 | Article 425

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Soumare et al. Phosphate Solubilizing Microbes as Biofertiliezs

FIGURE 4 | Schematic representation of P solubilization/mineralization/immobilization by PSM and its importance for plant growth.

residues can be viable methods for inoculum mass production
of Actinobacteria. Despite of this innovation, research must be
continued to test natural, inexpensive and available products for
microbial biomass production. After mastering mass production,
validation of the inoculation methods is also an essential step
for biofertilizer. Three main biofertilizers inoculation methods
(seeds treatment, root dipping and soil application) are generally
used. For Actinomyces, better plant growth and yield are found
when inoculum has been applied to the soil or substrate before
sowing seeds (Gopalakrishnan et al., 2012; Sousa and Olivares,
2016). According to these authors, this type of application leads
to a better establishment of the inoculated strain and better
colonization of soil and/or roots. However, more field research
results are still needed to optimize inoculation techniques in
actinobacterial biofertilizers.

ENVIRONMENTAL RISK/SAFETY OF
ACTINOBACTERIA

There are few publications on the biosafety of biofertilizers,
especially those based on Actinobacteria. Most of Actinobacteria
fall in biosafety level 1, i.e., they are not known to be responsible
for diseases (Shepherd et al., 2010). Only, few microorganisms
used as bio fertilizers fall in biosafety level 2, i.e., opportunistic
pathogens and presents health and/or environmental risk. This
does not exclude the respect of good microbiological practices by
following general laboratory safety rules. In this regard, research

and industrial laboratories must verify the level of pathogenicity
or any other risk related to microorganisms before embarking on
a process of bioformulation or commercialization.

The environmental risks of inoculation are related to the fact
that exotic microorganisms can disrupt the functioning of the
soil microbiome because they can create invasive and competitive
reactions (Glick, 2012; Sathya et al., 2017). Given these risks,
it is more recommended to use native isolates because they
have lower ecological risk to ecosystem. Otherwise, prior field
studiesmust be carried out. On the other hand,Actinobacteria are
major producers of antibiotics, so the horizontal transfer of genes
between bacteria might be particularly risky in case of resistance
(Egan et al., 2001). In a study, Martinez (2008) had already
warned about the risk of disruption of rhizospheric population
and resistance selection due to a large release of antimicrobial
compounds. Additionally, about ten species belonging to genus
of Streptomyces are known to be plant-pathogens and responsible
of the common scab of potatoes (Labeda, 2011; Vurukonda et al.,
2018). Such species should never be subject to bioformulation for
biosecurity issues.

CONCLUSIONS AND PERSPECTIVES

One of the main problems to be solved in the next decades
is to minimize dependence on phosphate fertilizers. To meet
this challenge, PSMs must play a bigger role. It is known
and well-documented that PSMs are able to solubilize rock
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FIGURE 5 | Some features of actinobacteria (Bergey’s Manual of systematic Bacteriology, Barka et al., 2016).

phosphate. Exploitation of this potential may be a promising
technique for plant phosphate nutrition. Thus, several tests of
selection, identification, performance, and bio-formulation have
been carried out in recent past to meet this need. However, this
review shown that most of the experiments are carried out at
laboratory or greenhouse scales and few papers have presented
results in the field. So, we suggest some future lines: (i) since
we know that results in laboratory or greenhouse conditions do
not always reflect those of the field, therefore, consistent field
results are a prerequisite for a massive adoption of biofertilizers
based PSMs; (ii) there is also need for further research to
understand the complex associations between the microbes-rock
phosphate, dynamics of microbial populations, mechanisms of

PSMs, and suitable technique of inoculation according the target
crop and/or stain.

These data will allow to model the process of solubilization
and even bioformulation (Saeid, 2018); (iii) the market of
biofertilizers based on PSMs is very low compared to the
biofertilizer based on nitrogen-fixing bacteria, 14 vs. 79%
according to Transparency Market Research (2014). Therefore,
potential problems associated with quality and stability of
PSMs inoculum should be investigated with new approaches
stemming from the collaboration between microbiologists,
materials scientists and agricultural scientists (Arora, 2015;
Berninger et al., 2018). Additionally, inoculation techniques
and methodology should be described in detail to allow
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repetition of the experiment (Bashan et al., 2016b); (iv)
among PSMs, Actinobacteria are the least studied for their
agronomic interest. These bacteria deserve special attention
due to their ability to adapt to diverse ecosystems such as
desert soil, marine soil, rock phosphate deposit etc. (Nafis
et al., 2019; Qu et al., 2019). Therefore, future research should
focused on this group which still has a hidden repertoire
that can be explored to develop quality bio-fertilizers. By
associating these bacteria with Arbuscular mycorrhiza fungi,
they can solubilize and mobilize P stored within the soil
resulting in efficient biofertilizer. It is also necessary to focus
on multi-functionality of Actinobacteria including nitrogen
fixers and solubilizing phosphorus since plant production is
largely dependent on N and P availability. Actinobacteria

biotechnology has the potential to induce profound modification
of agricultural practices, if it is developed. Therefore, there
is a need for disruptive innovation and scientific research to
ensure optimal rock phosphate solubilizing and bioformulation
for sustainable and ecofriendly agriculture. An optimization of
the processes of selection, multiplication, storage of PSM and
their interactions in the rhizosphere are steps to master in order
to develop efficient microbial inoculants with high phosphorus
solubilization capacity.
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