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Abstract: Thanks to its non-destructive, high-resolution imaging possibilities and its sensitivity to
both conductive and dielectric subsurface structures, Ground-Penetrating Radar (GPR) has become a
widely recognized near-surface geophysical tool, routinely adopted in a wide variety of disciplines.
Since its first development almost 100 years ago, the domain in which the methodology has been
successfully deployed has significantly expanded from ice sounding and environmental studies to
precision agriculture and infrastructure monitoring. While such expansion has been clearly supported
by the evolution of technology and electronics, the operating principles have always secured GPR a
predominant position among alternative inspection approaches. The aim of this contribution is to
provide a large-scale survey of the current areas where GPR has emerged as a valuable prospection
methodology, highlighting the reasons for such prominence and, at the same time, to suggest where
and how it could be enhanced even more.

Keywords: Ground-Penetrating Radar; NDT; near surface geophysics; applications of GPR

1. Introduction

The plethora of GPR applications is growing rapidly, since GPR is now capable of
producing high-resolution, 3D volume images of the shallow subsurface, which is rare in
other non-destructive methodologies. In addition, being a reflection methodology, it allows
for the joint measurement of both the geophysical and geometrical features of the problem,
thus providing information on both the subsurface stratigraphy and the characteristics of
the encountered material. This double potential has secured the technique a favorable place
within a large number of domains, spanning from applications within the engineering and
infrastructure inspection fields, possibly representing the core research domains, to the
exploration for natural resources and geology.

Historically, the development of the GPR methodology has followed the invention of
radar, and in 1910, only six years after Hülsmeyer obtained the first patent for his naval anti-
collision system (patent DE 165546), Leimbach and Löwy applied for a patent to implement
such technology to locate buried objects (patent DE 237944). The approach consisted of
inserting a pair of transmitter and receiver antennas into an array of vertical boreholes and
then correlating the recorded signal magnitude with the value obtained when successive
pairs were used. In addition, they also suggested that the use of surface-laid antennas
could lead to the determination of reflections from ground water interfaces. The first pulse
radar system for geotechnical applications was introduced by Hülsenbeck in 1926 (patent
DE 489 434), who developed a technology that is still widely used after almost a century,
and who also highlighted that signal reflections are generated by any dielectric variations,
not only when conductivity differences occur. Except for some early experiments aimed at
measuring the depth of glaciers in 1929 [1], a campaign widely acknowledged to represent
the world’s first GPR survey, the technology was largely overlooked until late 1950s, when
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eight US Air Force planes attempting to land in Greenland crashed because the onboard
radar systems were actually seeing through the ice and therefore provided the pilots with
an erroneous altitude measurement (Lost Squadron, 1942 [2]). This accidental event is
considered the spark of the understanding of the potential of the radar methodology for
exploring the subsurface and sounding geological materials. The earliest consequence
was the inclusion of radar equipment onboard the Apollo 17, the Apollo Lunar Sounder
Experiment (1972 [3]), with the aim of studying the moon’s surface and subsurface.

Since the mid-1960s, the GPR technique was mainly researched for military appli-
cations as a tunnel-detection technology, in particular during the Vietnam War [4] and
for locating tunnels under the demilitarized zone separating North and South Korea [5].
The first commercially available GPR devices appeared during the 1970s. From then on,
industrial players, such as public utility and construction companies, became interested
in such subsurface investigation tools, regarded as a fast and effective means for utility
mapping under city streets [6]. Additionally, GPR became a publicly recognized instrument
for supporting forensic investigations after the well-known “Fred West murders” case
(1994 [7]), where it was able to accurately locate the remains of a number of victims buried
under a concrete basement [8]. Since then, thanks to ever-increasing signal recovery and
analysis techniques, hardware design, and instrumentation developments, the last decades
have witnessed the evolution of GPR from a simple locator method to a quasi-quantitative
subsurface interpretative tool.

Typically, GPR systems consist of separate transmitter and receiver antennas, even if
they are housed in a single case with no means of varying the antenna geometry, commonly
referred to as the quasi-monostatic configuration. An additional distinction is made de-
pending on whether the equipment is working in contact with the surface (ground coupled)
or above it (air launched), though the exact height at which antennas need to be placed for
the configuration to be considered air launched is poorly defined, as well as how close is
close enough to be considered ground coupled. The choice of one or the other approach
represents a trade-off between operational suitability, data quality, and interpretability [9].

Considering that the probability of detection degrades rapidly as the sensor is lifted
from the ground and that surface topography could severely affect the quality of the
received data, ground-coupled GPR measurements are generally more effective. Reasons
for this are the effect of the surface topography and roughness, which will randomly scatter
the incident GPR wave, thus making the received data difficult to analyze and complicating
the prediction of the effective propagating waveform, and the degraded coupling efficiency,
since complex angles of refraction might occur. In addition, it should be noted the increased
distance to the buried object. However, working with an air-launched configuration has its
clear advantages, especially considering that it can be operated at higher speeds and is more
suitable to vehicle mountings, thus allowing larger areas to be surveyed. Signal penetration
and data resolution are highly enhanced through the use of a ground-coupled platform,
as it is less prone to external noise and surface clutter and benefits from a theoretically
perfect coupling between the antennas and the soil interface. In addition, the propagating
waveform remains almost unaffected by the previously mentioned phenomena and, in
principle, is closely similar to the emitted one, hence it can be used to more intuitively
predict and interpret data [10–12]. Nevertheless, ground-coupled systems survey an area
at slower speeds and cannot be operated on every surface topography.

Following these considerations, it is clear that air-launched configurations are the
method of choice when there is the need for surveying large areas (such as transport infras-
tructures, bridges, and dams, as well as archeological and agricultural applications) and/or
when the target of interest does not exhibit significant geometry variations (as is the case of
geological horizons and environmental stratigraphy delineation). Finally, detaching the
system from the surface is necessary when the roughness of the ground is relevant or when
the contact might represent a safety concern, such as for security and demining operations.
On the other hand, when deeper aspects are to be evaluated with high spatial resolution,
a ground-coupled approach can by far surpass its counterpart. In particular, building
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material characterization, including cracking and debonding, structures inspections, and
cultural heritage condition, but also forensic studies and contaminant detection, are just
few examples of applications where a ground-coupled approach is preferably.

Given these considerations, the aim of this contribution is to provide a comprehensive
review of the major application areas in which GPR is currently being adopted, defining
for each of them the specific research question that is addressed and detailing why the GPR
technique has proven to be a valuable tool.

This review starts with civil engineering applications, in which GPR has played and
is still playing a pivotal role for its non-destructive operations and high sensitivity to
metallic objects. The contribution then explores another fundamental research topic of the
technique, i.e., cultural heritage diagnosis and monitoring, one of the domains that has
greatly benefited from the widespread adoption of GPR. Forensic and security applications
represent two contexts in which GPR has already proven its value, but also where it is
still confined at a marginal level, hindered by the strong need of human experience and
interpretation, as for buried graves or search-and-rescue tasks, and by the expensive nature
of the technology, particularly for the humanitarian assistance context.

The use of GPR for environmental investigations embraces both established appli-
cations, focusing on subsurface characterization and monitoring in both land and glacial
scenarios, as well as emerging topics, including surface mining surveys.

Finally, this paper reviews the challenges and opportunities for GPR in the domain
of geology. This application area includes sedimentary structure reconstruction for strati-
graphic studies and fractures mapping, and freshwater investigations, where the objectives
of the study go beyond the plain geometrical profiling of the underwater boundary.

2. GPR Applications in Civil Engineering

GPR is considered one of the most efficient, easy to operate, least traffic disrupting,
and multi-application NDT in civil engineering applications [13]. Most of the GPR de-
velopments focus on detecting rebar and other linear metal targets (e.g., tendon ducts),
and hidden utilities, both metal and non-metal, such as pipes and cables. The detection
of hidden utilities is crucial prior to other invasive works such as excavation. The main
findings of GPR within this application field are piping distribution and dimensioning,
identification of utility material type, fluid/void ratio in case of non-metal pipes, leakage
detection, rebar configuration and dimensioning, and corrosion [14–16].

GPR has also been widely used for transport infrastructure inspection, including the
evaluation of roads, highways, and runways, as well as railways. Within this framework,
the use of air-coupled systems mounted on mobile vehicles allows for the evaluation of
in-service pavements without major disturbance to users, which means data collection can
occur at high speeds, continuously, and in non-contact mode. Regarding road-pavement as-
sessment (flexible and rigid), GPR provides valuable information in measuring thicknesses,
aiming to identify deficiencies that compromise the proper behavior of pavements, and in
detecting subsurface distresses (cracking, debonding and delamination, subsidence, and
cavities) [17,18]. However, the effectiveness of the method in determining layer thickness
and damages is affected by the presence of water, the high iron content in the aggregates,
and metal presence (e.g., vehicles) in urban environments. Moreover, for an optimal deter-
mination of layer thickness, the system needs a calibration process (e.g., coring, using a
metal plate, with the common-mid-point (CMP) method). On the other hand, the detection
of cracks depends on the frequency antenna used, higher frequencies provided higher reso-
lution, the geometry of the crack (width, depth, and orientation), and its condition (filled
with foreign material, filled with bitumen, filled with water, empty, etc.) [19]. Other aspects
that can be investigated with the GPR method are material density, porosity, moisture
content, and subgrade condition [20,21]. For the latter, the most important limitation is the
signal attenuation due to the high content of clay and water in this section of the pavement
structure. In the case of rigid pavements, GPR is widely used to map rebar, cover depth
to the rebar, and measure damages such as corrosion and delamination [22,23]. The main
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applications in ballast-condition assessment consist of measuring ballast-layer thickness,
detecting settlements, and analyzing fouling and moisture content [24–26]. In railways
inspections, the main limitation is the presence of steel sleepers and rails that can result in
a constant reflection, masking the deeper information.

For tunneling inspections, GPR applications comprehend thickness measurements in
concrete segments and grouting and undertake the detection of reinforcement, corrosion,
and moisture-content, and assess the damage in lining such as voids, fractures, and delam-
ination [27–30]. Generally, tunnels are inspected manually, but some devices have been
developed for higher speed data collection and complete cross-section scanning [31–33].
Moreover, other practical problems that typically occur are the loss of contact between the
antenna and the surface, the difficulty to maintain a uniform speed, and the presence of
conduits and cables through the surface that makes difficult to collect data.

Numerous GPR works can be found in the literature dealing with the assessment
of existing structures such as bridges, retaining walls, dikes and dams, and buildings.
Regarding the evaluation of stone bridges (road and railways) and stone retaining walls,
the method has been successfully employed to detect damage such as cracks/fractures or
cavities and moisture content, to estimate thicknesses (ashlars, arches, spandrel walls, etc.),
and to investigate filling distribution in masonry and foundations [34–37]. Nevertheless, the
interpretation of GPR data is often difficult because of the complexity of stone bridges and
the heterogeneity of building materials, which generates diffractions and other unwanted
reflections. In concrete bridges, dams, and retaining walls, the GPR findings are mainly
focused on estimating cover depth, mapping rebars and other utilities such as joints and
dowels, detecting damage on concrete such as cracking or delamination and moisture
content, assessing rebar corrosion, and evaluating soil systems and foundations [38–42]. A
typical problem when inspecting reinforced concrete structures comes from the presence of
steel bars masking the detection of deeper targets. In the case of a tight mesh, collecting
data in both polarizations is highly recommended, because the reflections produced by
metal targets perpendicular to the scanning direction are weakly seen in data acquired
with dipoles parallel to the data-collection direction. Another technical limitation that can
be extended to both stone and concrete bridges is the difficult accessibility of the vaults
and piers of the structure. With respect to building diagnosis, which includes residential,
industrial, and monumental buildings, GPR is an effective tool for thickness estimation
in concrete slabs, brick/stone walls, wooden beams, and ashlar [43–45]; detecting hidden
structural elements (e.g., floor supporting structures, conduits or post tensioned cables in a
concrete slab) [46–48]; mapping radiant (heating) floor [49,50]; damage detection such as
cracks, fractures, voids and delamination [51–53]; moisture detection [54,55], mapping pipe
supply and water leakage [56,57]; rebar location and corrosion [43,44,58,59]; and estimating
the condition of basements/foundations [47].

During the last decade, most of the efforts in GPR developments within this application
field include new processing techniques and methodologies for 3D reconstruction and
visualization, machine learning techniques for automatic detection (mainly objects with
a circular section such as bars and pipes, but also cracks), and data digitization into GIS
models [60–67]. Moreover, new multi-antenna systems and array multi-channel antennas
have been developed, thus allowing for a dense 3D data collection [68], thus reducing the
surveying time and increasing the productivity.

Finally, the recent advances in GPR applied to the monitoring of tree root systems and
their impact on the built environment should also be mentioned [69].

Figure 1 shows some examples of GPR application in civil engineering. Figure 1a
illustrates an example of pipe detection, highlighting the stronger reflection and inversed
polarity by the presence of metal pipes (1) in comparison with the non-metal pipes (2 to 5).
Figure 1b presents an example of rigid pavement inspection showing s deteriorated rein-
forced concrete (RC) slab and the forming cavity below. Figure 1c compares a healthy RC
slab consisting of five bars (left) with a deteriorated RC slab showing superficial detachment
and rebar at larger travel-time distances (ns) due to higher moisture content (right).
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Figure 1. Examples of GPR application in civil engineering: 1 GHz data to detect underground pipes
(metal (1), cement (2), PVC (3), polypropylene (4), and polyethylene (5)) (a), 500 MHz data in a rigid
pavement (b), and 2.3 GHz data in building RC slab (c). Adapted with permission from Refs. [18,70].
Author’s own work and Copyright 2017, Elsevier.

Table 1 provides a list of published reviews on the mentioned GPR civil engineer-
ing applications.
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Table 1. Published review papers in civil engineering applications.

Application Title Year Ref.

Road pavements/
Infrastructure

GPR monitoring for road transport
infrastructure: a systematic review
and machine learning insights

2022 [71]

Road/runway pavements;
railways; retaining walls;
bridges; tunnels

A review of GPR application on
transport infrastructures:
troubleshooting and best practices

2021 [72]

Moisture content of
building materials

Review of moisture measurements in
civil engineering with
Ground-Penetrating Radar—Applied
methods and signal features

2021 [73]

Concrete structures
Non-Destructive Corrosion Inspection
of Reinforced Concrete Using
Ground-Penetrating Radar: A Review

2021 [74]

Bridges (concrete, masonry,
steel)

Condition Monitoring of Bridge
Infrastructure Using Non-Contact
Testing Technologies: A
Comprehensive Review

2020 [75]

Roads, highways, and runways;
railways; bridges; tunnels

Ground-Penetrating Radar for the
evaluation and monitoring of
transport infrastructures

2019 [76]

Buildings; road pavements;
bridges; tunnel liners;
geotechnical; underground
utilities

A review of Ground-Penetrating
Radar application in civil engineering:
A 30-year journey from Locating and
Testing to Imaging and Diagnosis

2018 [77]

Bridge deck Bridge deck condition assessment by
using GPR: a review 2018 [78]

Concrete bridges Non-destructive test methods for
concrete bridges: A review 2016 [79]

Pavement structures
A review of pavement assessment
using Ground-Penetrating Radar
(GPR)

2008 [80]

Concrete and masonry
structures

Review of NDT methods in the
assessment of concrete and
masonry structures

2001 [81]

The combination of GPR with other non-destructive testing (NDT) techniques has
been shown to be beneficial for achieving more robust interpretations and reliable results.
According to [72], the other NDTs generally combined with GPR for surveying linear trans-
port infrastructures (roads, runways, railways) are Electrical Resistivity Tomography (ERT),
seismic wave propagation and ultrasonic testing (for the detection of cavities, changes in
soils properties, and bedrock exploration), load tests such as a Falling Weight Deflectometer
(FWD) to evaluate the bearing capacity, and, more recently, the use of Interferometric
Synthetic Aperture Radar (InSAR) to subsidence detection. On the other hand, when in-
specting masonry and concrete structures, the complementary NDT commonly applied are
infrared thermography (IRT) to analyze moisture and shallower cracking, ultrasonic testing
or half-cell potential (HCP) to evaluate internal cracking and fractures, as well as concrete
corrosion, and ERT or seismic testing to inspect the foundation soils (poor compaction, wet
areas), as well as vibrant ambient noise or InSAR to detect structural displacements. Finally,
with respect to tunneling inspections, the most typical combination is GPR and seismic
to investigate tunnel stability (mainly discontinuities in the rock, loosened materials, and
cavities behind lining).
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3. GPR Applications in Archeology and Cultural Heritage

Ground-Penetrating Radar represents one of the core methodologies within the land-
scape of near-surface geophysical techniques addressing archeological prospection and
cultural heritage management [82,83]. The GPR method has been successfully employed
for a great variety of archeological and cultural heritage applications, such as to locate and
map buried archeological artifacts, and to inspect the state of conservation of monumental
buildings, statues, frescoes, and mosaics, etc. [84,85].

Within archeology, the development of array multi-channel systems, together with
3D data-processing and visualization, has aided in the acceptance of the technique for
archeological prospecting. Multi-channel systems speed up data acquisition and allow full
wave-field recording at the same time. Moreover, the use of 3D imaging techniques has pro-
duced more realistic and high-resolution images of buried archeological remains, such as
villages [86,87], megalithic structures as in the case of Stonehenge [88], and ancient necrop-
olises [89,90], which permits not only finding, but also obtaining volumetric reconstructions,
thus allowing archeologists to restore the original appearance of the site [91].

The GPR has also been widely used for preventive damage detection and heritage
preservation. The protection and management of monuments must be particularly cautious
with the preservation of their singular and historical characters. In this context, GPR
has proved to be a powerful non-destructive and non-invasive tool to investigate ancient
buildings and monuments. For heritage buildings, GPR was mainly employed to detect
damage in façades or walls of churches and cathedrals, such as fractures and cracks,
detachments, and moisture [92,93]; to investigate the conservation state of timber beams in
floor and ceiling systems [94]; and to locate hidden artifacts such as sarcophagi or tombs [95]
and crypts [96]. Furthermore, GPR also allowed for the evaluation of the internal structure
and defects in columns [43] and other decorative elements, such as the identification of
fractures and iron bolts in the rose window of Troia Cathedral in Southern Italy [97].

Regarding other monumental structures, GPR was successfully applied to monitor
fractures and cavities in tombs [98] and statues [99,100]. Ancient masonry arch bridges
were also investigated with GPR, which revealed interesting information about hidden
arches and former shapes, in addition to other structural details such as thicknesses and
the materials’ zonification [101–103].

Although there are few examples, GPR has also provided promising results in moni-
toring the state of conservation of works of art, such as to evaluate the adhesion between
different layers and moisture in paintings and frescoes [104] and stratigraphy and water
content in mosaics [105,106].

Finally, it was also possible to find some GPR work within the application field of pale-
ontology, particularly for the detection of vertebrate fossils [107,108] and dinosaur sites [109].

Regarding the use of advanced processing such as machine/deep leaning in this field of
application, only a few articles are found in the current body of published literature [110,111].

Figure 2 presents some examples of GPR application in archeology and cultural
heritage. Figure 2a displays a 3D overlaid GPR image produced at the Roman Site “Aquis
Querquennis” (Bande, Spain), showing the partial structure of a barrack. Figure 2b presents
a sliced 3D cube and the volumetric reconstruction of an ancient underground tunnel
consisting of a main corridor and lateral galleries. Figure 2c shows two radargrams
acquired with antennas of 2.3 GHz and 1.2 GHz in one anthropomorphic grave of the
rock necropolis of San Vítor de Barxacova (Ourense, Spain) showing the interpretation of
sub-vertical fractures (red lines).

Table 2 provides a list of published reviews on the mentioned GPR archeologi-
cal applications.
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time-slice to detect buried remains at the Roman Site “Aquis Querquennis” (a), 500 MHz 3D cube
and volumetric reconstruction of an ancient underground tunnel (b), and 2.3 GHz and 1.2 GHz data
to detect internal fractures (red lines) in one anthropomorphic grave of the rock necropolis of San
Vítor de Barxacova (c). Adapted with permission from [112,113]. Author’s own work and Copyright
2014, Elsevier.

Table 2. Published review papers in archeological investigations.

Application Title Year Ref.

Built heritage conditions Close-range sensing and data fusion for built heritage
inspection and monitoring—A review 2021 [114]

Cultural heritage inspection

GPR prospecting of cylindrical structures in cultural
heritage applications: a review of geometric issues 2012 [115]

Non-destructive testing technologies for Cultural
Heritage: Overview 2019 [116]

Archeological prospection

Large-area high-resolution Ground-Penetrating Radar
measurements for archaeological prospection 2018 [117]

Sensing archaeology in the north: the use of
non-destructive geophysical and remote sensing
methods in archaeology in Scandinavian and North
Atlantic territories

2020 [118]

Ground-Penetrating Radar for Archaeology and
Cultural-Heritage diagnostics: Activities Carried Out in
COST Action TU1208

2018 [119]

Large-scale archeological prospections are typically carried out by combining dif-
ferent geophysical methods, mainly GPR, ERT, and magnetic, but also remote-sensing
imagery [85]. The ERT provides complementary results in detecting voids, cavities, tun-
nels/galleries, and buried structures, while magnetometry allows for the detection of
magnetic and conductive bodies in the subsurface (buried remains and fireplaces). In
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the case of heritage buildings and other monuments, such as statues, frescoes, etc., the
NDTs commonly used together with GPR are: IRT for moisture detection, ultrasonics
(pulse-echo/impact-echo) to analyze internal cracking, voids, and delamination, as well as
corrosion, and acoustic tomography and seismic reflection to measure elastic parameters
and waves velocities in walls and columns [120].

4. GPR Applications in Forensic and Security

Ground-Penetrating Radar (GPR) technology has become an important subsurface
prospection tool to assist forensic investigation in a broad range of security applications,
from buried explosive threats to human remains detection, as well as locating and tracking
people in disaster areas [121,122], mainly due to its high degree of flexibility, which is hardly
achievable with other geophysical alternatives [123]; its enhanced operations efficiency, as a
consequence of the possibility of rapidly highlighting suspected areas to then be thoroughly
searched; and its preservation of the scene, thanks to its non-destructive nature [124].

Applications of GPR are increasingly widening and gaining relevance, not only from
a research and development perspective, but also thanks to its regular adoption by a
variety of law enforcement agencies, legal and technical surveys operations, and demining
platforms, either as a complementary unit or a standalone tool for route and roadside
clearance [125–129]. The technology has demonstrated its valuable performance also in
search and rescue operations, either in urban or rural scenarios and for the search of human
remains or buried evidence. Throughout the years, the technological development of GPR
systems has embraced the entire acquisition, processing, and imaging chain, due to the
wide variety of challenging scenarios that the methodology has to face and cope with.

In the case of natural catastrophes or man-made disasters, such as earthquakes,
avalanches, or buildings collapsing, the priority of search-and-rescue operations is to
detect vital signs below the debris piles or the opaque layers as quickly as possible, as the
survival time of a trapped person might be very limited. Due to the complex and potentially
unstructured subsurface conditions in disaster areas, a visual and manual search is time
consuming and error prone, considerations which have pushed the development of easy-to-
deploy, real-time, and easy-to-interpret technologies [130,131]. Within this critical domain,
two main objectives can be highlighted: the detection of voids that are naturally created
during the collapse of a structure and the detection of vital signs and movements [132,133].

From a first-responder perspective, information about the presence of buried voids and
cavities is essential to ensure efficient and effective operations; they also represent a critical
feature for prioritizing the area that need to be searched. At the same time, subsurface voids,
unstable and hidden by nature, are a source of hazard for search-and-rescue operators, given
the risk of falling into holes covered by loose rubble and becoming injured. Such subsurface
characteristics and associated risks can also be found in the case of avalanche-trapped
people, in which case the available time is even more constrained. Despite the highly
challenging subsurface conditions, GPR has been researched as a tool to increase situational
awareness and reduce search times [134,135]. In both scenarios, research attempts have
been made to improve the clarity of GPR profiles and strengthen the magnitude of radar
reflections, with the major accomplishments achieved in the characterization of human
signatures and automatic localization [136]. The combination of GPR sensors and robotic
platforms, such as UAV [137,138] and helicopters, is gaining more and more attention,
particularly for scenarios in which the intervention of human operators is limited [130].

Unlike common GPR operations, which essentially focus on the detection of stationary
targets, locating human beings is based on target-movement detection. GPR technology
has demonstrated its ability to sense slight movements and shallow breathing of a survivor
in seconds, making GPR a suitable tool for the detection of trapped people in a disaster
area [132,139]. Both continuous-wave radar (CW), exploiting the traditional doppler effect,
and ultra-wide band radar (UWB), relying on the time difference of the reflected wave due
to the motion of a person, have been successfully employed for survivor detection, the
latter exhibiting better performance thanks to a better resolution capability [140–142].
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GPR has been proposed as an alternative to classical electromagnetic induction tech-
niques for landmine detection due to a number of advantages, the principal one being
the ability to detect landmines with little or no metal content, as long as there is a differ-
ence in the electromagnetic contrast between the ground and the target [120,143,144]. In
addition, advanced imaging algorithms and data post-processing has allowed not only
the localization of the target but also the extraction of valuable features that can pave
the way for target recognition and identification [145–149]. However, standalone GPR
platforms for antipersonnel landmine detection are less common than their metal detector
counterparts, a situation possibly related to the fact that GPR signal interpretation remains
a complex task and that the mentioned benefits are often balanced by its susceptibility to
clutter [150]. A separate discussion can be developed for military operations, in which
GPR is regularly mounted on route clearance convoys [151] for minefield breaching and
antitank-mine detection.

The use of GPR for mapping unmarked graves in historical cemeteries, finding clan-
destine burial sites or hidden bodies, is becoming more common, as can be appreciated
by the increasing number of published case studies that have successfully employed the
technology [152–154], predominantly to assist search teams. These forensic contexts are
highly problematic and challenging for investigators, due to the great uncertainty related
to the circumstances surrounding the event and the related expenses in terms of human
resource, features which typically result in a low success rate. The adoption of GPR has
made it possible to search large areas in minutes, providing accurate information on soil dis-
turbance and modification without altering the site, and allowing the data to be visualized
in real time to offer immediate evidence and feedback to the operator [155,156].

The wide variety of possible targets and scenarios in the security application area
represents the principal challenge for the development of dedicated GPR-based platforms.

Regarding advances in data processing, algorithms that have been developed are
mainly based on automated feature extraction, clutter and unwanted interference removal,
and image classification, with the objective of increasing the operator’s confidence in the
interpretation of the obtained results and to support the labelling activity [157–163].

Figure 3 presents some examples of GPR application in the forensic and demining
contexts. Figure 3a displays a radargram produced in a missing person case, in which it is
possible to delineate the geological layer (red), the curve roof of the subsurface cave (yellow),
and an anomaly due to a possible body (green). Figure 3b presents the results from an
experimental test evaluating the performance of GPR methodology in detecting avalanche-
trapped people and buried remains. The two results in Figure 3c show the potential of
3D GPR reconstruction for demining applications, not only for accurately delineating the
object contour, but also for detecting the presence of internal multiple reflections.

Table 3 provides a list of published reviews on the mentioned GPR-based forensic and
security applications.

Table 3. Published review papers in forensic and security applications.

Application Title Year Ref.

Forensic studies Forensic geophysics: how GPR could help police
investigations 2016 [122]

UXO/ERW/IED
detection

Ground-Penetrating Radar for Buried Explosive Devices
Detection: A Case Studies Review 2021 [164]

AP/AT landmines

Radar Systems for Landmine Detection 2020 [165]

Ground-Penetrating Radar for Close-in Mine Detection. In
Mine Action, The Research Experience of the Royal Military
Academy of Belgium

2017 [166]

Avalanche and trapped
people.

A review on Ground-Penetrating Radar technology for the
detection of buried or trapped victims 2012 [167]

A Review of Radars to Detect Survivors Buried Under
Earthquake Rubble 2017 [168]

Buried remains The Application of Ground-Penetrating Radar for Forensic
Grave Detection 2012 [169]
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Figure 3. Examples of GPR application in forensic and demining contexts. (a) A 500 MHz radargram
acquired over the potential location of a missing person (green shadow). (b) A 900 MHz radargram
showing an example of a cave with a test person. (c) Depth slice of a 2 GHz 3D acquisition over
a test minefield including inert landmines, mortar shells and rocks. From the same survey, Set of
2 GHz slices of an antipersonnel landmine showing the presence of an internal structure within the
landmine volume. Adapted with permission from [122,135]. Copyright 2014, IEEE.

A wide range of geophysical techniques is applied in forensic investigations, the choice
being mainly dependent on target size, target type, burial depth, and surrounding soil
characteristics. Generally, electrical resistivity and magnetic methods are used to reduce
the search area, which could reach several hectares in the case of clandestine burial sites or
hidden buried remains, so that most of the resources are concentrated when there is a precise
need and evidence, thus saving time from non-contaminated areas (which represent the
predominant situation). GPR is then typically deployed for anomaly characterization and
identification, thanks to its higher resolution and its capability of reconstructing the exact
geometry of the detected object [170,171]. Concerning landmine detection, the majority
of sensor integration strategy includes metal detectors and GPR, representing the most
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mature solution in terms of technology deployment, but there are examples which also
comprise an IR or optical imaging sensor [172]. Finally, for search-and-rescue operations,
micro-seismic, and acoustic monitoring has been proposed as an alternative solution [173].

5. GPR Applications in Environmental Investigations

Representing one of its first and core domains of application, GPR methodology has
always held promise for enhancing the characterization and monitoring of the subsurface
by providing a spatially extensive, non-destructive, non-invasive, and high resolution
means of investigation, with respect to alternative solutions [174]. In particular, what has
secured the methodology a prominent position is that it can provide high resolution images
of the dielectric property variations typically associated with subsurface structures, of the
top few tens of meters of the earth with a very dense spatial distribution. Such potential,
combined with the capability of delineating the subsurface geometry, has allowed the
methodology to play a relevant role in the development of accurate hydrogeologic models
of the large-scale stratigraphy of the subsurface. In addition, GPR works almost in real time;
it is thus capable of revealing subsurface structures without any time delay during a survey.
The technique has been successfully adopted in a variety of environmental and agricultural
investigations, not only for extracting qualitative information on the subsurface, but also
with the aim of estimating fundamental parameters to obtain a deeper understanding of its
heterogeneity and dynamics.

Considering the operating principles of the methodology, GPR is being increasingly
used in scenarios where water content, transport, and solutes represent the predominant
players, such as hydrogeological site characterization, soil–water content monitoring,
hydraulic conductivity estimation, and groundwater studies [175,176].

GPR for hydrogeological studies has mainly embraced the definition of near-surface
aquifer geometries and stratigraphic information [177–181], as well as the determination of
the water table depth and volumetric water content [182–185]. While the determination
of the subsurface geometry is a well-established procedure and can be quantitatively ex-
tracted from traditional radargrams, the estimation of soil dielectric properties is performed
through the solution of specific petrophysical relationships, which link the measured per-
mittivity properties to the material porosity and moisture content. Hence, substantial
research has been carried out to increase the accuracy of such relationships and overcome
major limitations in their applications [186,187]. Conceptually related to this field of appli-
cation is contaminant hydrology, a branch in which GPR has provided a highly efficient
means of determining the presence of immiscible contaminants by detecting changes in
the subsurface dielectric properties, including salts, hydrocarbons, and other organic ma-
terials [188,189]. Research has demonstrated the potential of GPR not only to detect such
contaminants in order to plan specific countermeasures, but also for studying the dynamics
of contaminant transport processes within natural geologic systems. In addition, when
repeated measurements are taken, using a technique commonly called time lapse, GPR
surveys enable users to accurately monitor the local impact of remediation measures.

Information on water content, porosity, and soil moisture is also critical within the
domain of agriculture and precision farming, where such features have an immediate
impact on crop yield, irrigation management, and the environmental effects of farming
activities [190–193]. The use of GPR in the agricultural discipline, therefore, has been
extensively researched with aims spanning from estimating the limited soil depth restricted
by bedrock, hardpan, or water table; determining the root biomass; and mapping local
soil attributes affecting agricultural performance, to the characterization of movements of
agrochemicals and vadose zones, local soil texture, and layering [194,195].

Ground-Penetrating Radar is an ideal method for glaciological studies, as dry snow
and ice are highly transparent to GPR signals, thus providing the most advantageous
environment for GPR signal propagation [196]. This has led to an exponential expansion
of radar investigations of snow and ice, both ground based as well as adopting airborne
survey platforms [197,198]. The main objectives of the application are the determination of



Remote Sens. 2022, 14, 3033 13 of 30

sheet thickness and reconstruction of bed topography, internal layering, and delineation
of hydraulic pathways; the detection of crevasses and cavities; and reflectivity computa-
tion [199–204]. Significant research has been carried out into the characterization of both
temperate and polythermal glaciers, in order to determine local density, ice fabric, and
characterizing conductivity variations due to impurities [205,206]. Similar in principle is the
application of GPR to the study of permafrost, as geologic materials exhibit very different
physical behaviors in the presence of liquid water or ice [207–209]. The importance arises
not only from the scientific interest in investigating permafrost distribution and properties,
but also from the fact that the knowledge of spatial and temporal variations in freezing
and thawing of the ground affect the possibilities of infrastructure expansion and human
activities in these regions.

Applications of GPR for surface mining represent a niche and a quite recent expansion
of the methodology, in which GPR is gaining acceptance as a rapid geophysical method
providing high-resolution information for certain mineral resource evaluation applica-
tions [210]. The objective of most GPR surveys for these applications is to provide horizon
continuity between existing or planned boreholes, a process that is speculative in nature
due to the large variability of layer thicknesses that can exist between even closely spaced
boreholes. GPR can be employed to quantify the occurrence of uneconomic boulders and
dykes, as well as groundwater tables, for optimizing quarrying activities [211]. For some
specific tropical deposits, such as lateritic and bauxitic deposits, high-resolution informa-
tion on weathering horizons can lead to the definition of resources prior to mining [212]. In
addition, the understanding of the subsurface geology of paleo-fluvial environments and
correlated placer deposits, and in particular bedrock topography and grain-size distribution,
is critical to resource exploration and mine engineering. Finally, iron ore deposits, mineral
sands, coal, and kimberlites represent other examples of growing fields of application for
GPR surveying [213,214].

In this case, advances in data processing have addressed signal attribute extraction
and characterization to associate waveform parameters with specific subsurface features,
such as moisture content and volumetric water content, as well as to classify radar results
to complement, or even replace, human interpretation [215–218].

Figure 4 presents some examples of GPR applications for environmental studies.
Figure 4a displays the 3D geometrical reconstruction of an alluvial aquifer for groundwater
flow prediction. Figure 4b presents the interpreted radargram for glacier-bed delineation
and ice-thickness estimation. Figure 4c shows a GPR profiles exhibiting deep and highly
localized anomalies caused by sediment depression in superficial aquifers due to water per-
colation. Figure 4d displays a 2D profile including a detected kimberlitic pipe sub-cropping.

Table 4 provides a list of published reviews on the mentioned GPR environmen-
tal applications.

Table 4. Published review papers in environmental investigations.

Application Title Year Ref.

Hydrology Current uses of Ground-Penetrating Radar in
groundwater-dependent ecosystems research 2017 [219]

Waste and contaminants Ground-Penetrating Radar for
Environmental Applications 2001 [195]

Soil studies Application of Ground-Penetrating Radar methods in soil
studies: A review 2019 [220]

Agricultural studies Ground-Penetrating Radar for underground sensing in
agriculture: a review 2016 [221]

Ice sounding Five decades of radioglaciology 2020 [222]

Mining A review of selected Ground-Penetrating Radar
applications to mineral resource evaluations 2012 [223]

Root biomass Application of Ground-Penetrating Radar for coarse root
detection and quantification: a review 2013 [224]
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Among the different techniques commonly adopted within the domain, GPR is pre-
dominantly combined with ERT, EMI, and hyperspectral sensors, as a consequence of
the fact that the majority of applications involve the detection of a water-related physical
and chemical parameter or variations in the electrical property of the subsurface. This is
particularly true for soil moisture content and contaminant monitoring [225–229]. However,
GPR remains probably the most exploited geophysical method for glaciological studies and
glacier monitoring, as well as for all other applications in which retrieving the geometrical
attributes is a critical and essential task.
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6. GPR Applications in Geology

Given the typically strong dielectric and conductivity contrasts between bedrock and
overburden, GPR methodology represents an effective tool to detect the interface between
the two, thus supporting the definition of the stratigraphic architecture, the sand-body
geometry, and correlation and quantification of sedimentary structures [230,231].

GPR has been widely used by sedimentologists to reconstruct past depositional envi-
ronments and the nature of sedimentary processes in a variety of environmental settings,
leading to the development of improved models, especially when combined with cores,
trenches, outcrops, and quarry faces. While early comparisons between GPR profiles and
outcrop sections were largely qualitative and relied strongly on visual evidence, more
recent outcrop analysis has turned its attention to quantitatively determining the causes of
GPR reflections [232–236]. Its adoption is also related to the rapidity of data collection and
the apparent analogy with its seismic reflection counterpart.

Several GPR applications to palaeo-seismological studies for imaging active faults are
found in the literature, with varying degrees of success depending on the local lithologies
and network geometry [237,238]. Not only can it be stated that GPR could represent
a valuable pre-trenching tool for paleo-seismic surveys, but also that the technique has
shown great potential in tracing fault segments along strikes, assessing variations in their
displacements, and, hence, determining their chronology. Within this domain, geometric
and morphological attributes have been widely developed to highlight the features of fault
zones that are hardly visible in standard GPR profiles [239,240].

The detection of fractures of various scale, from millimetric up to a decametric scale,
represents another topic widely researched with GPR, where its geometrical reconstruction
capability has made it a valuable tool for characterizing mining sites and rock masses, im-
proving quarries and extraction processes, and determining unstable rock slopes [241–244].
Another successful application of GPR within this domain is the determination of fracture
openings and fillings [245–247], crucial for several environmental and engineering appli-
cations, including the accessibility of geothermal energy. Fractures and faults represent
the primary conduits for the transport of heated fluids needed for geothermal energy, and
therefore a detailed knowledge on the fracture network is essential to increase the efficiency
of the energy-transition process [248–252].

The favorable setting of dune sands for GPR investigations, and in particular the
extended and spatially continuous sedimentary structures within it and the low conduc-
tivity typically exhibited by aeolian sands, have been known for decades [253,254]. Dune
are essentially hills of sand built up and shaped by the wind via a number of processes
including erosion, transportation, and deposition, and understanding of them is critical in
several fields, including sedimentology, palaeoclimatology, aquifer characterization, and
groundwater studies. Within this context, GPR has allowed for quick and non-invasive
operations, as well as high-resolution 3D results [255]. Many studies have shown the impor-
tance of GPR as a tool for studying and characterizing the internal structures of sand-bodies’
elements. In particular, the successful adoption of the technique has mainly targeted the
geometrical reconstruction of the internal sedimentary structures of aeolian dunes, to define
the relative chronology of sand deposition, dune development, and migration, as well as
studies on the impact that grain size-distribution, grain shapes, and compaction processes
might have on the radar results [256–258].

In addition, sediment analysis represents a relevant task of lacustrine investigations,
where freshwater allows for improved wave penetration and image resolution [259–261].
With respect to conventional underwater mapping methods, GPR represents a faster and
more reliable solution, particularly in a shallow water context, capable of providing a
continuous cross-section of the lake bottom and the underlying sediment column [262–266].
Waterborne GPR mapping of lakes has several objectives, including studies of sedimenta-
tion environments and stratigraphic boundaries [267,268], the estimation of a sedimentation
rate and volume of lacustrine sediments [269], and the tracing of tectonic faults and dis-
placements beneath the lake [270], improving the understanding of the evolution of water
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bodies at a local scale. GPR has also been applied to delineate reference horizons and local
geophysical features [271].

Finally, over the last decade, the possible use of GPR methodology for planetary
exploration has regained favor as a consequence of the continuous technological advances
and the recent rover missions that have highlighted the importance of GPR equipment
in mapping the subsurface characteristics of landing sites, including the geometry of
sedimentary deposits and subsurface stratigraphy, as well as to retrieve scientifically
relevant information on planetary soils [272–277]. Though orbiting radars have been
routinely adopted since the end of the twentieth century, the Chinese Chang’E-3 (CE-3)
mission in 2013 represented the first attempt to physically deploy a GPR platform over
the moon’s surface [278,279], and the equipped 500 MHz antenna system was capable of
providing detailed information on the moon’s subsurface down to a depth of 10 m [280,281],
boosting the widespread adoption of GPR for planetary exploration. More recently, the
Chang’E-4 mission in 2019 was the first successful landing on the far side of the moon [282],
providing, therefore, an unprecedented opportunity to gather knowledge on the subsurface
structure of the lunar far side. As a reference, results have highlighted significant geological
differences between the two landing sites, underlining once again the potential that GPR
technology could bring to the planetary exploration field [283–286]. More recently, the
NASA Mars 2020 Perseverance Rover mission [287,288] has, for the first time, deployed a
GPR platform on the surface of Mars [289,290] to assess the depth and extent of the regolith
and to characterize the stratigraphic section by identifying material dielectric properties.
On top of that, within this emerging field, GPR could provide critical information on the
geological processes that formed the sedimentary surface of the planet and its past exposure
history, as well as signs of past life.

Across these field of applications, automated machine learning and classification models
have been applied to process GPR data with the aim of classifying geological structures,
estimating dielectric variations, and identifying geological boundaries [291–295].

Figure 5 presents some examples of GPR applications in geological horizon recon-
struction. Figure 5a displays a radar section acquired over a coastal dune to reconstruct the
stratigraphical beddings and erosional surfaces composing its internal structures, along
with its interpretation and stratigraphic model. Figure 5b presents a horizontal depth slice
showing the presence of deep diffraction events likely related to sub-vertical fractures,
fracture wall intersections, or geological heterogeneities. Figure 5c shows the results from
a water-penetrating radar experiment aimed at locating a 17th Century sunken trackway.
Figure 5d displays the model of the moon subsurface geological structure at the CE-4
landing site as inferred from GPR measurements.

Table 5 provides a list of published reviews on the mentioned GPR geological applications.

Table 5. Published review papers in geological investigations.

Application Title Year Ref.

Fractures/faults
The use of Ground-Penetrating Radar to distinguish
between seismic and non-seismic hazards in hard
rock mining

2020 [296]

Stratigraphic studies

Ground-Penetrating Radar and its use in
sedimentology: principles, problems and progress. 2004 [297]

A review of Ground-Penetrating Radar studies related
to peatland stratigraphy with a case study on the
determination of peat thickness in a northern boreal
fen in Quebec, Canada

2013 [298]

Bathymetry Water penetrating radar 2021 [299]

Sand bodies Radar suitability in aeolian sand dunes—A
global review 2012 [300]

Planetary exploration Applications of Radar Systems in Planetary Sciences:
An Overview 2015 [301]
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Figure 5. Examples of GPR application in geology. (a) A 600 MHz radargram acquired over a
coastal dune characterized by erosion, accretion, and equilibrium to delineate its internal stratigraphy.
Corresponding model highlighting the upper Aeolian unit (yellow) and lower marine unit (blue).
(b) A 450 MHz GPR depth slice (1.32 m depth) over a vertical and sub-vertical fracture network
showing the typical diffraction events generated by such horizons. (c) The 100 MHz unshielded
antennas for lake-bottom profiling investigations. (d) Subsurface internal structure at the landing site
as inferable from the Chang’E-4 500 MHz GPR survey over the far side of the moon. Adapted with
permission from [245,253,286,299]. Copyright 2020/2021, Elsevier.

Considering that the geophysical response of complex geological bodies exhibits dif-
ferent physical properties due to the fact that such horizons are composed of a combination
of layers with contrasting properties and are caused by a host of geological, geotechni-
cal, and climatic factors, a multidisciplinary approach is often recommended to gather
an in-depth understanding of the features. Typically, this involves the GPR technique as
the primary method to determine the velocity and geometrical attributes of the subsur-
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face, while electrical resistivity tomography and seismic reflection and refraction often
work as complementary methods [302–309], due to their limited resolutions and mediocre
stratum-detection performance, in particular for the shallow subsurface.

7. Conclusions and Further Perspectives

This comprehensive, though not exhaustive, survey of the application areas in which
GPR has proven to be a technological and operational breakthrough essentially shows
that the applications of GPR are almost endless. Whether the objective of the survey
is to reconstruct complex subsurface geometries or to determine variations in the soil
permittivity properties, the methodology represents a key player within the landscapes of
near-surface geophysical techniques.

However, it also reveals the main challenge common to all: the need of a deciphering
key capable of translating GPR information into useful quantitative information on the
reflectivity coefficients for the end users, that is to say, mapping the apparent values
exhibited by the radar data to the actual permittivity values, so that it will be possible to
unravel complex human–environment interactions. In addition, this is where much remains
to be completed to effectively bridge the gap between interpretation and identification.
Such an ability could be even more improved by developing advanced learning processing
techniques and algorithms derived from computer vision research, features which are still
confined to a relatively limited applicability. In particular, the automated extraction of
information from GPR image is a long-awaited capability that is expected to reduce the
dependency of GPR results on the operator’s familiarity and skills, but its performance is
still hindered by the presence of subsurface heterogeneities or weak target scattering, two
attributes not so uncommon within the GPR domain.

On top of that, it has been also shown that there is a continuous need for enhancing
the operativity of GPR by deploying advanced surveying platforms (including unmanned
aerial and robotics, to address the most unfavorable scenarios or make it possible to
survey hazardous areas) and by developing suitable multi-sensor platforms and related
multi-sensor data fusion to increase the available information on the surveyed site. This
last consideration is a fundamental consequence of the multifaceted nature of typical
geophysical problems. An example of this can be found within the humanitarian demining
domain, in which operation performance has greatly benefited from the combination of
GPR and metal detector technologies, even if the two sensors are typically treated as
independent. Finally, due to the severe limitations in signal penetration and consequently
in the achievable resolution, unmanned aerial platforms have frequently failed not only in
detecting the target of interest, even when shallowly buried, but also in generating reliable
underground images due to several uncertainties in the image-formation process. Still, a
number of successful applications of airborne GPR can be found, particularly when the
aim is to delineate large subsurface features in a homogeneous context.

In conclusion, although GPR technology is established, it is capable of further develop-
ments to enable the continued classification of evolving targets and the continued reduction
of the size, weight, and power of equipment, at the same time reducing the need for human
presence and supervision.
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