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Abstract

Background: Reverse-engineering gene networks from expression profiles is a difficult problem for which a multitude of
techniques have been developed over the last decade. The yearly organized DREAM challenges allow for a fair evaluation
and unbiased comparison of these methods.

Results: We propose an inference algorithm that combines confidence matrices, computed as the standard scores from
single-gene knockout data, with the down-ranking of feed-forward edges. Substantial improvements on the predictions can
be obtained after the execution of this second step.

Conclusions: Our algorithm was awarded the best overall performance at the DREAM4 In Silico 100-gene network sub-
challenge, proving to be effective in inferring medium-size gene regulatory networks. This success demonstrates once again
the decisive importance of gene expression data obtained after systematic gene perturbations and highlights the
usefulness of graph analysis to increase the reliability of inference.
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Introduction

Reverse engineering is an interesting area of research currently

receiving a lot of attentions from the Systems Biology community.

In fact, reconstructed biomolecular networks may allow research-

ers to understand the molecular basis of complex traits and

diseases [1], as well as the discovery of direct drug targets [2].

Gene expression data have been prevailing over protein and

metabolite activity data, because of the relative ease and unified

way to measure RNA levels, and this disproportion will be further

increased due to the appearance of gene expression measurements

techniques based on novel sequencing technologies, e.g. [3].

Therefore, the concept of gene network (GN) is of high importance

for the purpose of describing the regulatory networks inside living

cells. GNs are abstract models of gene communication with nodes

representing the gene activities (gene expression levels, mRNA

concentrations), and directed edges representing causal influences

[4,5]. The causal influence of gene A on gene B could be due to

the transcription activation of gene B by the protein product of

gene A upon binding to gene B’s promoter sequence (as in a

transcription factor–target relationship), but also be due to more

complicated processes, such as gene A encoding a metabolic

enzyme producing a metabolite which in turn regulates the

transcription of gene B. These detailed biochemical events are

hidden to the observed set of variables (gene expression levels) and

their effects will merely result in an observable causal effect A?B.

Undirected edges in GNs are present due to unmeasured

confounding variables. GNs are context specific: the regulatory

structure among genes depends on the developmental stage, cell

type, environment, genotype and disease state. For a comprehen-

sive discussion on the nature of GNs please refer to [5].

As a precise definition of GNs is missing in current literature we

here provide (one possible) formal definition.

Definition
A gene network is a mixed graph G : ~(V ,U ,D) over a set V of

nodes, corresponding to gene activities, with unordered pairs U ,

the undirected edges, and ordered pairs D, the directed edges. A

directed edge di,j from vi to vj is present if and only if a causal

effect runs from node vi to vj and there exist no nodes or subsets of

nodes in V that are intermediating the causal influence (it may be

mediated by hidden variables, i.e. variables not in V ). An

undirected edge ui,j between nodes vi and vj is present if and

only if gene activities vi and vj are associated by other means than

a direct causal influence, and there exist no nodes or subsets of

nodes in V that explain that association (i.e. it is caused by a

variable hidden to V ).

Depending on the available measurements, different inference

techniques can be employed. In case of experiments without

targeted perturbations (‘‘observational studies’’, such as gene

expression data collected over a group of similar individuals,

typically done in the context of a disease) the expression profiles

can be analyzed to build a undirected graph whose nodes are the

genes, and whose edges represent the presence of significant

associations. Without targeted perturbations it is not generally

possible to infer directions of the edges. A wide variety of
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techniques for constructing such undirected co-expression net-

works has been proposed, typically based on marginal associations

[6], conditional associations [7–9] or information theory [10].

Under some assumptions it is theoretically possible to decide the

orientation of the edges using this type of data [11,12], but

unfortunately these assumptions (such as acyclicity of the network

and absence of confounding factors) are very unlikely to be met in

the present context.

On the other hand, targeted perturbations (e.g. systematic

single-gene gene knockouts, overexpressions) are needed to enable

causal inference, and the reconstruction of the directed structure of

GNs. Many techniques for constructing GNs have been proposed

of which the most popular techniques are based on ordinary

differential equations [13–15] or Bayesian networks [16].

The performance of these techniques needs to be evaluated and

compared [17,18], and this can be accomplished by applying

different inference methods to the data obtained from biomolec-

ular networks of which the structure is assumed to be known a

priori, i.e. ‘‘gold standard networks’’ [19–21]. However, real world

biomolecular networks are mostly unknown. Even the most

studied biomolecular networks are not only plagued by false

positives, but suffer even worse from false negatives: they are

largely incomplete [22]. Consequently such networks cannot be

deemed as totally reliable benchmarks to compare inference

algorithms. Therefore, it has been suggested to use data simulated

with dynamical models of GNs, i.e. in silico data. In this case the

underlying networks are precisely known and thus allow for

thorough evaluation and comparison of reverse-engineering

algorithms [23,24]. Obviously, the relevance of evaluations on in

silico data strongly depends on the realism of the simulation system,

e.g. the network topology, the type of mathematical model, the

type of kinetic functions, the noise model, etc.

The outline of the paper is the following: we first describe the

DREAM4 In Silico Network challenges, then explain the inference

algorithm we devised and applied to the DREAM 4 data, followed

by a description of the GN simulator we developed to generate

additional synthetic networks and data. Then, we show the

evaluations of variants of our algorithm on both the DREAM3 In

Silico benchmarks and the additional simulated datasets. We also

present the results of re-analysis of the DREAM4 In Silico

benchmarks, which we were able to perform after the gold

standard networks were released. We conclude with a discussion of

the method, data and future steps to be made.

DREAM4 In Silico Network challenge
The Dialogue for Reverse Engineering Assessments and

Methods (DREAM) is an international initiative with the aim of

evaluating methods for biomolecular network inference in an

unbiased way [17,18]. Evaluations proceed through organized

competitions on a yearly basis in which teams from all over the

world participate. For the 4th edition of DREAM in 2009, the

organizers proposed three different challenges. Our team

participated in the second one, the In Silico Network challenge,

which asked to infer directed GNs from simulated data. The

challenge was, in turn, divided into three sub-challenges,

respectively named InSilico_Size10, InSilico_Size100, and InSilico_

Size100_Multifactorial.

These sub-challenges differed, as their names suggest, in the

network size and the type of data provided. In the first sub-

challenge the partecipants had to predict the topology of five 10-

gene networks, and were provided with steady state gene

expression levels from wild-type, knockouts, knockdowns, multi-

factorial perturbations, and time series data. The second sub-

challenge concerned instead five 100-gene networks, with the same

type of available data except the multifactorial perturbations. The

third sub-challenge involved five other 100-gene networks

provided with multifactorial perturbations data only. The

contestants were challenged to predict the network structures

underlying the above data, i.e. assigning a level of confidence for

the presence of each possible edge.

We here provide a brief description of the available data

provided to the DREAM 4 partecipants. The number of genes in

the network is denoted by n. The wild-type file contained the n
steady-state levels of the unperturbed network. The knockout data

(see an example in Table 1) consisted of n rows with n steady-state

values, each obtained after deleting one of the n genes. The

knockdown data were similar to the above, but were obtained by

halving the transcription rate constant of one gene at a time

instead of setting it to zero. The multifactorial perturbations data

consisted of steady-state levels of small fluctuations of the values of

all transcription rate constants simultaneously. The time series file

contained trajectories of gene activity levels starting from the wild-

type steady state to a perturbed state, and from the perturbed state

back to the wild-type state upon removing the perturbations.

The network topologies to be inferred were generated by the

organizers by extracting 10- or 100-node subnetworks from

transcriptional regulatory networks of E. coli and S. cerevisiae, with

preferential selection of parts containing cycles (but no self-

interactions).

The challenge description mentioned also that the data was

simulated through a dynamical model describing both indepen-

dent and synergistic gene regulation, which included both gene

and protein expression (but only the gene expression data was

provided to the partecipants). Internal noise was modeled through

stochastic (Langevin) differential equations, and measurement

noise was added to the simulated gene expression levels. Networks

and data were generated by the GeneNetWeaver 2.0 software [25],

which was published only after the DREAM4 conclusion.

Methods

Algorithm
The aim of these challenges was the prediction of the (directed

and unsigned) network structures. How can we infer such gene

regulatory networks? While the time-series data could be used for

this purpose, the lack of protein measurements would make it

difficult to infer relationships between gene activities from time

dynamics: the protein dynamics causes delays between the gene

Table 1. Sample of knockout data.

G1 G2 G3 G4 G5

Gwt 0.14 0.89 0.01 0.87 0.14

G1 0.00 0.96 0.00 0.86 0.06

G2 0.68 0.00 0.04 0.90 0.05

G3 0.17 0.86 0.00 0.88 0.02

G4 0.13 0.86 0.08 0.00 0.09

G5 0.12 0.78 0.09 0.91 0.00

This is an example of the provided knockout data, related to an example 5-gene
network. The first row contains the ‘wild-type’ (unperturbed) gene activities,
while the others contain the gene activities due to the knockout of the gene
indicated on the left. A knocked-out gene has null expression. Data are affected
by noise, but certain relationships are apparent: G1 is likely to be regulated by
(or at least downstream of) G2 , since the steady state value of G1 responds
strongly to perturbing G2 : G2

1~0:68 noticeably differs from Gwt
1 ~0:14.

doi:10.1371/journal.pone.0012912.t001

From Knockouts to Networks
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expression dynamics. Therefore, we resorted to the steady state

levels, in particular to the knockout datasets, where the

perturbations and the relative responses were stronger.

From this kind of data it is very easy to infer a so-called causal

influence network: genes whose steady state values change as a

result of a single-gene knockout are likely to be downstream of the

perturbed gene [26,27]. Most causal relationships (both activating

and inhibiting) due to the knocked-out gene could be immediately

recognized from the data table (e.g. Table 1), unless the influence

is particularly weak and then overwhelmed by noise, or its effect is

mitigated by other connections. This approach will not infer

spurious relationships between co-regulated genes, which is instead

a well-known problem of algorithms based on expression similarity

(e.g. correlation) [7].

However, some of the edges of a causal influence network may

be indirect, i.e. mediated by other (measured) gene activities [26].

The remaining task is thus to distinguish direct from indirect

relationships. To accomplish this, we developed an algorithm

consisting of two main steps: through statistical measures, a first

estimate of the confidence of each possible edge is obtained

directly from the available knockout data; then, by down-ranking

the feed-forward edges, a refined prediction is given.

In the first step we quantify the importance of the responses of

the gene activities toward single-gene perturbations and so how

likely it is for each gene to be downstream of the perturbed genes.

Let Gwt be the vector of wild-type gene expression, and let Gi be

the vector of gene activity steady-states obtained by knocking out

gene i. To obtain the initial predictions, we evaluated four possible

different confidence matrices W in which elements (i,j) reflects the

confidence in the existence of the edge Gi?Gj :

Deviation matrix, WD. The confidence of edge (i,j) is

simply estimated by the absolute value of the deviation from wild

type of the expression of gene j after the knockout of gene i:
WD

i,j~DGi
j{Gwt

j D. The larger the deviation the higher the

confidence we have that Gj is downstream of the perturbed Gi.

Normalized deviation matrix, WND. As the absolute values

of the steady state gene activities vary drastically (e.g. Gwt
2 ~0:89 and

Gwt
3 ~0:01 in Table 1) it might be more appropriate to consider the

relative deviations. Each column of the deviation matrix is

normalized by the corresponding wild type: WND
i,j~WD

i,j=Gwt
j .

Z-score on deviation matrix, WZD. A more statistically

motivated measure is the z-score, which indicates how many standard

deviations s an observation is far from the mean m of a whole set of

measurements. In this case, for each gene j we calculate mj and sj

using the deviations from wild type after each knockout (WD :,j ):

WZD
i,j~

WD
i,j{mj

sj

:

Z-score on raw data matrix, WZR. As both Gi
j and Gwt

j are

noisy values, it may be better to consider raw expression values

rather than deviations from the steady state values (subtracting a

noisy value from another noisy value results in a even noisier

value). Therefore, for each gene j we calculate mj and sj using the

steady-state values after each knockout (G
:

j ):

WZR
i,j~

Gi
j{mj

sj

:

Once a first prediction of the network has been calculated with

one of the above methods, the second step of the inference

algorithm comes into play. The logic behind this second step is

also plain and simple. First, based on a threshold value on the

derived confidence matrix, a network is obtained. This network

contains edges which represent causal influences between the

genes, which may be direct or indirect. The ‘‘true’’ network is thus

embedded in this initial causal influence network and could be

derived by removing edges (edges can not be added as they create

causal influences not supported by the perturbation experiments).

We recognize that certain edges can be removed without removing

the causal influences: the edge from gene A to gene C could be

removed if there is at least one additional path from gene A to C in

the network [26]. The additional path(s) could explain the causal

effect of gene A on C and therefore we have reduced confidence in

the existence of the direct edge from A to C. Figure 1 provides an

example of a feed-forward loop from which an edge could be

removed.

Our down-ranking algorithm systematically checks for paths

through the initial networks and recognizes which edges can be

removed (potentially indirect) and which edges can not be

removed (these must be direct as removing them would result in

a network missing one or more of the observed causal influences).

Note that cyclic components in the networks are fully connected,

as each gene in a cycle has a causal influence on all other genes in

the cycle. Determining which edges in a cyclic component can be

removed without removing causal paths depends on the order in

which the edges are removed. Therefore, we decided not to touch

any of the edges in cyclic components. We emphasize that we do

not believe that the sparsest network possible is most biologically

realistic. In fact, it is widely recognized that biomolecular networks

are enriched in feed-forward loops [28]. However the absolute

frequencies of their occurrence in the networks is much lower than

that of the linear path motif (A?B?C). Therefore, it is reasonable

to assume that down-ranking these edges improves the reliability

of the network inference.

The second step of our algorithm proceeds in the following way

(Figure 2):

1. Use a threshold value t for the edge confidence (selected after

several test simulations, as explained in the Results section) to

extract a directed network N from one of the above mentioned

matrices W.

Figure 1. Feed-forward loop. The edge between gene A and gene C
might be erroneously predicted as the causal effect of gene A on gene
C could in principle be explained by the indirect path through gene B.
doi:10.1371/journal.pone.0012912.g001

Figure 2. Down-ranking of unnecessary feed-forward edges.
The thick rings highlight the strongly connected components of N. The
dashed edge is removed from the network.
doi:10.1371/journal.pone.0012912.g002
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2. Calculate the condensation of network N, i.e. the acyclic

network formed by contracting each strongly connected

component of N into a single vertex.

3. Obtain the subnetwork N’ from N by deleting any edge such that:

N its endpoints belong to two different strongly connected

components Ci and Cj , and

N there is a path of length at least 2 between Ci and Cj in the

condensation of N.

4. For all the remaining edges in network N’, increase their

corresponding weight by max(i,j)[N\N ’ Wi,j , in order to ensure

them a ranking higher than all the unessential edges, i.e. the

edges in N\N’.

In silico data simulation
To be able to thoroughly evaluate and fine-tune the parameters

of our algorithm we generated in silico data using our simulator

developed in MATLAB.

In our model, the following nonlinear ordinary differential

equation describes the evolution of the gene expression Gj :

dGj

dt
~ZjVj P

n

i~1
1zAi,j

G
hi,j
i

G
hi,j
i zK

hi,j
i,j

0
@

1
A{ljhjGj :

Gj is the gene activity (gene expression level, mRNA concentra-

tion) of gene j, Vj is its basal transcription rate, while lj is its

degradation rate constant. Ki,j is the interaction strength of Gi on

Gj , hi,j is the Hill cooperativity coefficient, and Ai,j is an element of

the matrix A encoding the signed network structure (a positive sign

corresponds to an activating regulation, while a negative one to an

inhibition). Finally, hj represents the biological variance (sampled

from a normal distribution with mh~1 and standard deviation

nh~0:1), while Zj is responsible for eventually knocking-out gene

j. In our simulations, random networks were generated by the

Erdős-Rényi (ER) algorithm [29], with various average degrees.

Edge directions and signs were assigned randomly with uniform

probability. Parameters Zj , Vj , Ki,j , hi,j , lj and Gj(0) were all set

equal to 1. We then calculated the wild-type steady state. To

simulate the single-gene knockout experiments we initialize

Gj(0) = Gwt
j and set Zj~0 in the j-th perturbed experiment in

order to simulate the knockout of gene j; obviously Zk=j~1 since

we only simulated single-gene knockout experiments. These

simulations resulted in data sets similar to the ones provided in

the DREAM 4 challenges.

Evaluation
Method effectiveness was evaluated through the calculations of

the Area Under the Receiver Operating Characteristic Curve

(AUC(ROC)) and the Area Under the Precision versus Recall

Curve (AUC(PvsR)) [20,24], in the same way as was done by the

DREAM organizers to evaluate the submitted networks.

Results

Practice on the DREAM3 benchmarks
In order to make informed decisions on the choice of the weight

matrices to use and to fine-tune the threshold value for the second

step of our algorithm, we practiced first on the DREAM3

benchmarks [25]. The DREAM3 In Silico Network challenge in

2008 was very similar to the DREAM4 one. Here too GNs of

different sizes (10, 50, and 100 genes) had to be inferred using

steady states from wild-type, knockdown and knockout perturba-

tions, and time series data. The kinetic equations were also similar,

though in DREAM3 a deterministic model was used while in

DREAM4 a stochastic one.

In order to choose which, amongst the confidence matrices WD,

WND, WZD and WZR, gives the most reliable initial network

prediction, tests were performed on the DREAM3 benchmarks.

Table 2. Performances of the four considered confidence
matrices on the DREAM3 networks.

N. genes WD WND WZD WZR

AUC(ROC) 10 0.8194 0.7741 0.7837 0.7901

50 0.8444 0.8389 0.8769 0.8875

100 0.8515 0.8454 0.8736 0.8799

AUC(PvsR) 10 0.7028 0.5619 0.5991 0.6732

50 0.5396 0.4579 0.6224 0.6160

100 0.5637 0.4616 0.6200 0.6143

Average AUC(ROC) and AUC(PvsR) for the five networks of three different sizes
from the DREAM3 In Silico benchmarks, calculated through the confidence
matrices WD , WND , WZD and WZR . The best value of each row is bolded.
doi:10.1371/journal.pone.0012912.t002

Table 3. Effect of the down-ranking algorithm on larger DREAM3 networks.

n W t~0 t~1 t~1:5 t~2 t~2:5 t~3 t~3:5 t~4

AUC(ROC) 50 WZD 0.8769 0.8769 0.8766 0.8767 0:8773 0.8773 0.8772 0.8770

WZR 0.8875 0.8853 0:8885 0.8884 0.8881 0.8878 0.8877 0.8875

100 WZD 0.8736 0.8736 0.8735 0.8733 0.8735 0:8739 0.8738 0.8737

WZR 0.8799 0.8799 0.8793 0:8804 0.8804 0.8802 0.8801 0.8800

AUC(PvsR) 50 WZD 0.6224 0.6224 0.6176 0.6175 0.6411 0:6412 0.6377 0.6303

WZR 0.6160 0.5835 0:6669 0.6666 0.6555 0.6461 63.5244 0.6259

100 WZD 0.6200 0.6200 0.6181 61.1130 0.6222 0:6511 0.6456 0.6387

WZR 0.6143 0.6143 0.6039 0:6622 0.6603 0.6502 0.6410 0.6326

Average AUCs for the 50- and 100-gene networks from the DREAM3 In Silico challenge after the application of the down-ranking algorithm on matrices WZD and WZR

with 8 different thresholds t. Setting t~0 corresponds to not applying the down-ranking. The best value of each row is bolded.
doi:10.1371/journal.pone.0012912.t003
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We initially considered both the knockout and knockdown data,

but since our algorithm consistently gave better results on the

knockouts (data not shown), we will here further consider only the

knockout steady states.

By applying the aforementioned inferring techniques on these

data, the matrices WZD and WZR yielded the best results for the

50- and 100-gene networks, respectively for the AUC(PvsR) and

for the AUC(ROC). On the other hand, a simple ordering of the

edges based on the deviation from the wild type (i.e. matrix WD)

gave the best results for the small 10-gene networks for both the

evaluation measures AUC(ROC) and AUC(PvsR). The results are

shown in Table 2.

Then, given the confidence matrix W, the down-ranking

algorithm produces the modified matrix W� as described in the

Methods section. The result of this down-ranking step depends on

the chosen value for the threshold t. Therefore, we performed test

runs at different values of t to establish the value for which the best

AUCs were obtained (Table 3). We here report only the results on

the larger networks as the down-ranking step had almost no effect

on the reliability of the small networks. This indicates that our

down-ranking approach is beneficial only for larger networks.

Negligible differences in the AUC(ROC), but more substantial

improvements in the AUC(PvsR) measures were obtained for

WZD and WZR, with the latter slightly exceeding the former

performances. In particular, the AUCs peak for t~2 while down-

ranking WZR, and for t~3 in WZD (100-gene networks). These

tests suggested that using either matrix WZD or WZR in

combination with t~2 are the best choice.

Practice on additional in silico data
While the DREAM3 benchmarks were of great value, there were

some notable differences between the DREAM3 and DREAM4

networks and data. All the networks in DREAM3 were acyclic,

while the networks considered in DREAM4 do contain cycles.

Furthermore, the variance in the DREAM3 knockout data

drastically differed from those in the DREAM4 knockout data. In

the previous edition the mean deviation in each gene was uniform,

while in the DREAM4 data it seemed proportional to the gene

activity wild-type level (Figure 3). The same pattern can be observed

in our self generated in silico data (Figure 3).

So, we decided to verify the previous choices for the confidence

matrix and the threshold value on a much larger number of

datasets than the DREAM3 benchmark (thus preventing over-

training), and on data which should be more similar to the

DREAM4 ones.

By using our simulator, we generated 1000 100-gene networks

with ER topology and average degree �kk [ f2,3,5g (DREAM3 100-

gene networks had �kk ranging from 1.2 to 5.5), and corresponding

knockout datasets. The AUCs for the various confidence matrices

are shown in Table 4, emphasizing that the z-score applied on the

raw data (WZR) clearly appears to be the most effective method to

obtain a first prediction of the network from knockout data. This

choice is also supported by the test on the DREAM3 benchmarks.

In a similar fashion, we applied the down-ranking algorithm on

matrix WZR, showing that a small improvement on the AUCs

(especially with the PvsR one) can be obtained with threshold t~2
(Table 5), again in concordance with what we observed for the

DREAM3 benchmarks.

DREAM4
After the extensive tests described above, we decided to base our

predictions for the DREAM4 In Silico Network challenge on the z-

score on raw data confidence matrix (WZR), post-processed with

the down-ranking algorithm using threshold t~2. Our submission

as Team ALF was the best performer at the sub-challenge 2 (100-

gene networks), ranking first among 19 participants. Interestingly,

Figure 3. Distribution of the mean absolute deviation for three knockout datasets. Each point is the mean absolute deviation of the

expression of a gene j with respect to its wild type Gwt
j , calculated as

1

n{1

X
i=j

DGi
j{Gwt

j D, obviously excluding the knockout of gene j from the

averaged values. Our in silico knockout data (right) qualitatively resembles the distribution of the five DREAM4 InSilico_Size100 knockout datasets
(middle), in contrast to those from the five DREAM3 InSilicoSize100 knockout datasets (left).
doi:10.1371/journal.pone.0012912.g003

Table 4. Performance of the four confidence matrices on
additional in silico data.

�kk WD WND WZD WZR

AUC(ROC) 2 0.8763 0.8829 0.9276 0.9328

3 0.8223 0.8449 0.8910 0.8972

5 0.7325 0.7751 0.8155 0.8209

AUC(PvsR) 2 0.3055 0.3839 0.5909 0.6041

3 0.2602 0.3809 0.5383 0.5519

5 0.2119 0.3513 0.4500 0.4588

Average AUCs for 1000 100-gene ER networks with average degree �kk [ f2,3,5g
calculated through the confidence matrices WD , WND , WZD and WZR . The best
value of each row is bolded.
doi:10.1371/journal.pone.0012912.t004

From Knockouts to Networks
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now that the gold standard networks have been published, we

discovered that our choice for the confidence matrix was in fact

good (see Table 6), but even better predictions would have been

obtained by selecting t~2:5 as the threshold for the down-ranking

algorithm. Nevertheless, the improvement in the AUC(PvsR)

obtained with the selected t~2 has been considerable for networks

1 and 5, as shown in Figure 4 and in Table 7, compared to those

from WZR.

It should also be noticed that the the average node degrees in

the DREAM4 networks are smaller (1:8ƒ
�kkƒ2:5) than those in

DREAM3 and our simulated networks: a better estimation of the

optimal threshold might have been obtained if our test networks

had an average degree in the same range of the DREAM4

networks. Furthermore, we simulated data with networks gener-

ated with the ER algorithm, which have significantly different

topology than those used in DREAM4. Also, note that the

performances on the DREAM4 benchmarks are much more

sensitive to the value of t then we observed in the tests of our in

silico data. Obviously this is due to the fact that we used a large

ensemble (1000 networks) over which the performances were

averaged, but it also indicates that the DREAM4 benchmarks

consist of a set of networks with widely varying topologies.

Discussion

We described an algorithm to infer gene regulatory networks

from expression data, that proved to be effective by best

performing at the DREAM4 In Silico Network challenge in the

100-gene networks sub-challenge. The proposed technique

combines the advantages of the standard score in highlighting

the deviation from the mean after a gene knockout, with the down-

ranking algorithm that reduces the confidence initially predicted to

unnecessary feed-forward edges.

Our algorithm is substantially different from the techniques

used by the best performer teams of previous DREAM In Silico

Network challenges. In particular, for DREAM2 the winning

Table 5. Effect of the down-ranking algorithm on additional
in silico data.

WZR (t~0) t~1:5 t~1:75 t~2 t~2:25 t~2:5

AUC(ROC) 0.8317 0.8315 0.8317 0.8317 0.8317 0.8317

AUC(PvsR) 0.5913 0.5793 0.5892 0.5962 0.5954 0.5948

Average AUCs for 1000 100-node ER networks, generated with average degree
�kk [ f2,3,5g, after the application of the down-ranking algorithm on matrix WZR

with 6 different thresholds t. The best value of each row is bolded.
doi:10.1371/journal.pone.0012912.t005

Table 6. Performances of the four confidence matrices on the
DREAM4 networks.

WD WND WZD WZR

AUC(ROC) 0.7844 0.7927 0.8275 0.8297

AUC(PvsR) 0.2610 0.2786 0.3710 0.3602

Average AUC(ROC) and AUC(PvsR) for the five 100-gene networks from the
DREAM4 In Silico benchmarks, calculated through the confidence matrices WD ,
WND , WZD and WZR . The best value of each row is bolded.
doi:10.1371/journal.pone.0012912.t006

Figure 4. Effect of the down-ranking algorithm on DREAM4 networks. In each of the five plots, the bars show the values of the AUC(PvsR)
for one of 100-gene networks from DREAM4 after the application of the down-ranking algorithm on matrix WZR with 5 different threshold t. In the
small boxes the most significant percentage differences with respect to the threshold 0 are shown.
doi:10.1371/journal.pone.0012912.g004
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approach was fitting ordinary differential equation (ODE) models

[27,30]; for DREAM3, instead, the best method was based mainly

on finding significant deviations from wild type in knockout data

(so using the same primary source of information of our

algorithm), but also applied ODE models on the time series for

additional predictions [31].

To see how methods based on ODEs would perform on the

DREAM4 data, we analyzed them with one of the best performer

algorithm [27] for the DREAM2 In Silico Network challenges. The

predictions of this algorithm on the DREAM4 100-gene networks

was very poor (average AUC(ROC) = 0.5722, AUC(PvsR) =

0.0313). Note that in DREAM2 there was no noise added to the

in silico data, while for DREAM4 both biological and experimental

noise were present. Since the internal noise is propagated through

gene relationships, its effect on large networks make sophisticated

models (like ODEs) much less reliable than our method based on

simple cause-effect logic and graph inspection.

Further increases of the performance of our algorithm may be

obtained by studying the possible relationships between the

selected threshold t and other parameters, like the network

average degree and size, the noise on the knockout data, and so

on. Moreover, while the second step of our algorithm improves the

inference of the so-called cascade motif [32], it should be possible

to reduce also the systematic errors in the prediction of other

network motifs (e.g. the fan-in and fan-out errors [32]). Finally,

also the rest of the available data from the DREAM challenges

(knockdowns, time series, multifactorial) may be used to refine the

network prediction, but the gain would probably be small, as

already shown by the DREAM3 best performer [31].

It has become unambiguously clear that systematic perturba-

tions (e.g. experimental gene knockouts) are needed to establish

the directed structure of GNs. However, systematic single-gene

knockouts imply experimental requirements which are unreal-

istic and these experiments infeasible (and unethical) for many

organisms. It is unlikely that data such as considered here will

become available from real experiments. Fortunately, ‘‘systems

genetics’’ experiments may provide an alternative. In systems

genetics experiments a population under study is genotyped and

gene expression profiled are simultaneously collected (possibly

even including metabolomics and proteomics data [33]). It has

been demonstrated that causal links in GNs can be elucidated

based on these data (see [34,35] for reviews). Genetic

polymorphisms, naturally present in the populations, act as

genetic perturbations: if the gene activity of a gene B is affected

by a polymorphism inside another gene A, this is highly

indicative for a causal effect A?B. In fact Liu et al. [34]

proposed a very similar strategy as the one outlined in this paper:

first creating a causal influence network (but based on systems

genetics data instead of knockout data like is done here) and

subsequent sparsification of this network to retain only the edges

corresponding to direct causal influences. In that approach each

edge in the initial network was statistically tested for being

supported by the data, while we were here not able to do so based

on the data considered here. Down-ranking edges based on our

simple graphical inspection is very useful in the context of

systems genetics data as it will provide the sparsest network

supporting the causal influences. This then allows methods like

the one of Liu et al. approach to statistically identify the networks

best supported by the data by adding edges, rather than

removing edges from the causal influence network. Heuristic

model search algorithms are strongly dependent on a good initial

guess in the network space: we argue that networks which result

from the algorithm described in this paper will provide a better

initial guess than the initial causal influence network, as GNs are

known to be sparse. In this sense, the resulting networks from our

approach here should not be seen as the final prediction, but

rather as inputs to more sophisticated methods involving

thorough statistical testing. Nevertheless, as evidenced by its

winning performance over 18 other participating teams in the

DREAM4, this method can be considered state-of-the-art on its

own.
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