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Abstract

In the mid-1980s, Brian Gaines first developed a model to predict the trajectory of progress in human–computer relationships,

including how the knowledge science research programme would naturally transform itself over time into something he called

‘‘symbiosis science.’’ In this article, we reflect both on the extraordinary prescience of this model, and the contributions and challenges

faced by researchers intent on progressive achievement toward the aspirations it inspires.
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1. Introduction

Brian Gaines was always thinking decades ahead of the

rest of us. His BRETAM diagram brilliantly predicted

the trajectory of progress in human–computer relation-

ships, including how the knowledge science research

programme would naturally transform itself over time into

something he called ‘‘symbiosis science’’ (see Gaines,

2013). The term ‘‘symbiosis’’ hearkens back to a 1960

article on man-computer symbiosis written by J.C.R.

Licklider, the first director of the Information Processing

Technology Office of the US Advanced Research

Projects Agency—now DARPA (Licklider, 1960). In the

ultimate form of such symbiosis, human capabilities

would be transparently augmented by cognitive

prostheses—computational systems that would leverage

and extend human intellectual, perceptual, and collabora-

tive capacities, just as a steam shovel is a sort of

muscular prosthesis or eyeglasses are a sort of visual

prosthesis (Ford et al., 1997; Ford, 1998; Hoffman et al.,

2012).

This vision of symbiosis can be contrasted with early

efforts in knowledge acquisition where our intelligent

systems were somewhat like the disembodied brains shown

in low-budget black-and-white science fiction movies:

entities that ruled the world while floating in a glass jar

tethered by wires.1 While potentially rich in knowledge

models and inferential power, their only direct experience

of the world arrived through the impoverished modes of

keyboard input and video display output. As a result these

intelligent systems were virtually blind and helpless, having

little they could realistically learn about and even less that

they could directly act upon. As others in this special issue

have observed, the rise of the Internet as the largest

repository of knowledge on the planet has given intelligent

systems immeasurably richer means to sense, learn, and

interact with humans and with the myriad specialized

interactive devices, sensors, and services on which people

routinely rely.

However, this accumulation of human knowledge in

machine interpretable form is only the beginning. Brian

Gaines proposed four additional steps that would be

necessary to bring the notion of symbiosis science to full

fruition:

� the development of goal-directed autonomous knowledge-

creating processes;

� the increasing coupling of knowledge processing entities

in social networks;
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� the development of techniques to facilitate the synergy

between human and computer knowledge processes;

� the synthesis of both into a unified system.

Let’s look at progress on these steps in more detail.

2. The promise and problems of autonomous systems

Addressing the first step of developing ‘‘goal-directed

autonomous knowledge-creating processes,’’ one of Brian

Gaines’ students proposed in 1997 a conception of the

future Internet as a ‘‘cyberorganism’’ consisting of ‘‘dis-

tributed intelligent agents,’’ both human and software

(Chen, 1997). Subsequently, proponents of the Semantic

Web (Berners-Lee et al., 2001) envisioned that such agents

would, as Mark Musen expresses it, ‘‘comb the Internet

and would reason about user goals and how to achieve

them’’ (Musen, 2013). In setting their sights on this goal,

agent researchers abandoned the metaphor of the intelli-

gent system qua disembodied brain and adopted the vision

of software robots operating in a world of networked

computing resources. In this change of metaphor, the

research emphasis made an important shift from delibera-

tion to doing, from reasoning to remote action.

Much of the early research on autonomous systems was

motivated, not by cyber applications, but by situations in

the physical world in which autonomous systems were

required to ‘‘replace’’ human participation, thus minimiz-

ing the need for considering the human aspects of

such solutions. For example, one of the earliest high-

consequence applications of sophisticated agent technolo-

gies was in NASA’s Remote Agent Architecture (RAA),

designed to direct the activities of unmanned spacecraft

engaged in distant planetary exploration (Muscettola et al.,

1998). RAA was expressly designed for use in human-out-

of-the-loop situations where response latencies in the

transmission of round-trip control sequences from earth

would have impaired a spacecraft’s ability to respond to

urgent problems or to take advantage of unexpected

science opportunities.

Sadly, since those early days, most researchers in

autonomous systems have continued to pursue their

work in a technology-centric fashion, as if full autonomy—

complete independence and self-sufficiency of each

system—were the holy grail in every situation. Of course,

there are problems like deep-space exploration where the

goal of minimizing human involvement with autonomous

systems can be argued effectively. However, reflection on

the nature of human work reveals the shortsightedness of

such a singular focus: What could be more troublesome to

a group of individuals engaged in dynamic, fast-paced,

real-world collaboration than a colleague who is perfectly

able to perform tasks alone but lacks the skills required to

coordinate his or her activities with those of others?

Despite a widespread perception to the contrary, it should

be noted that virtually all of the significant deployments of

autonomous systems to date—e.g., military UAVs, NASA

rovers, oil spill UUVs, and disaster inspection robots—have

involved people in important roles, and that such involve-

ment was not merely to make up for the current inadequacy

of autonomous capabilities, but also because their jointly

coordinated efforts with humans were—or should have

been—intrinsically part of the mission planning and opera-

tions itself.

In view of the shortcomings of standalone autonomy for

complex situations, interest has grown in the topic of

‘‘cooperative’’ or ‘‘collaborative’’ autonomy. Unfortunately,

however, this research has a fundamental limitation—namely,

that the kind of ‘‘collaboration’’ usually imagined encom-

passes solely the autonomous systems themselves, regrettably

excluding the role of humans as potential collaborators.

For example, the United States Department of Defense

Unmanned Systems Roadmap stated the goal of pursuing

‘‘greater autonomy in order to improve the ability of

unmanned systems to operate independently [i.e., without

need for human intervention], either individually or collabora-

tively, to execute complex missions in a dynamic environ-

ment.’’ Similar briefs have complained of the fact that because

UxVs are not truly autonomous, their operation requires

substantial input from remote operators. They ask whether

additional research in cooperative autonomous behavior—

referring to cooperation between the autonomous systems

without any human element—could address this ‘‘problem.’’

3. Social machines and human–computer synergy

In contrast to such views, Brian Gaines never saw

standalone agent autonomy as the end of the journey.

He recognized that just as machine intelligence is hobbled

without autonomy, so machine autonomy without social-

ity is reduced to mere autism. Thus, as a next step, he

predicted ‘‘the increasing coupling of knowledge proces-

sing entities in social networks,’’ a topic deftly summarized

by Nigel Shadbolt in his discussion of ‘‘social machines’’

that embody new kinds of emergent and collective large-

scale problem-solving by people who are supported by

socially-contextualized machines (Shadbolt, 2013). My

personal focus, however, has been primarily on the sub-

sequent step in Brian Gaines’ model, namely ‘‘the devel-

opment of techniques to facilitate the synergy between

human[s] and computer[s],’’ with the machines acting in

the role of differently-abled teammates rather than of

sophisticated tools.

Increased synergy between humans and autonomous

systems as teammates requires a better understanding of

how they become interdependent as part of joint activity.

Regrettably, most methodologies for autonomous system

design have not been formulated with a sufficient appre-

ciation for the essential role of interdependence in joint

human-machine activity (Johnson et al., 2010). While

certain approaches to cooperative interaction between

humans and machines have become widely known (e.g.,

dynamic function allocation, supervisory control, adaptive
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automation, and adjustable autonomy), all of them share a

common flaw: namely, that they rely on some notion of

‘‘levels of autonomy’’ as a basis for their effectiveness

(Johnson et al., 2011).2 The problem with such approaches

is their singular focus on managing human-machine work

by varying which tasks are assigned to an agent or robot

based on some (usually context-free) assessment of its

independent capabilities for executing that task. However,

decades of studies have shown that successful collabora-

tion in everyday human interaction is largely a matter of

managing the context-dependent complexities of interde-

pendence among tasks and teammates. To counter the

limitations of the well-known Fitts’ HABA–MABA

(Humans-Are-Better-At; Machines-Are-Better-At) list

(Fitts, 1951), which was intended to summarize what

humans and machines each do well on their own, Robert

Hoffman has summarized the findings of David Woods

in an ‘‘un-Fitts list’’ (Table 1), which emphasizes how

the competencies of humans and machines can be

enhanced through appropriate forms of mutual interaction

(Hoffman et al., 2002).

None of this is to say that the pursuit of greater machine

autonomy should be abandoned. However, though continu-

ing research to make machines more active, adaptive, and

functional is essential, the point of increasing such profi-

ciencies is not merely to make the machines more indepen-

dent during times when unsupervised activity is desirable or

necessary (i.e., autonomy), but also to make them more

capable of sophisticated interdependent joint activity with

people and other machines when such is required—i.e.,

teamwork. The mention of joint activity highlights the need

for autonomous systems to support not only fluid orches-

tration of task handoffs among different people and

machines, but also combined participation on shared tasks

requiring continuous and close interaction—i.e., coactivity.

In contrast to the human-out-of-the-loop autonomy of

the RAA, NASA’s Portable Satellite Assistant (PSA)

prototype is an example of an autonomous system that

required close and continuous interaction with people

(Bradshaw et al., 2001; Gawdiak et al., 2000). The PSA

is a softball-sized flying robot prototype that was designed

to operate onboard manned and unmanned spacecraft,

collaborating with the limited number of crew members to

maintain complex systems, assist with life-critical environ-

mental health monitoring and regulation, coordinate doz-

ens of major simultaneous payload experiments, and

perform general housekeeping. Apple’s Siri, discussed by

Gruber in 2013 (Gruber, 2013), is another successful

instance of a collaborative agent that will continue to

incorporate an increasing range of autonomous capabil-

ities as it seeks to assist people with their everyday tasks. In

addition to such personal assistants, my colleagues and I

have been interested in exploring the potential of multi-

agent systems (Bradshaw, 1997) in collaborative tasks

ranging from coordinated operations of people carrying

out semi-structured missions with heterogeneous

unmanned robots (Johnson et al., 2008) to sensemaking

in cyber operations, where software agents and analysts

jointly engage in a process of progressive convergence to

identify emerging threats (Bradshaw et al., under review;

Bunch et al., 2012). We like to think of the latter as a form

of joint human-machine modeling that is consistent with

the constructivist thinking of George Kelly and the

elaborations of those of us who were inspired by his work,

including, among others, John Boose, Guy Boy, Ken Ford,

Brian Gaines, and Mildred Shaw (Bradshaw et al., 1993;

Ford and Bradshaw, 1993).

4. Teamwork knowledge

Building on the insights of Bill Clancey and Paul Compton,

Brian Gaines rightfully pointed out the importance of

Table 1

An ‘‘un-Fitts’’ list, & 2002 IEEE.

Machines

Are constrained in that: Need people to:

Sensitivity to context is low and is ontology-limited Keep them aligned to context

Sensitivity to change is low and recognition of anomaly is ontology-limited Keep them stable given the variability and change inherent in the world

Adaptability to change is low and is ontology-limited Repair their ontologies

They are not ‘‘aware’’ of the fact that the model of the world is itself in the

world

Keep the model aligned with the world

People

Are not limited in that: Yet they create machines to:

Sensitivity to context is high and is knowledge- and attention-driven Help them stay informed of ongoing events

Sensitivity to change is high and is driven by the recognition of anomaly Help them align and repair their perceptions because they rely on mediated

stimuli

Adaptability to change is high and is goal-driven Effect positive change following situation change

They are aware of the fact that the model of the world is itself in the world Computationally instantiate their models of the world

2In a significant step that has reversed years of precedent in autonomy

research, a 2012 US Task Force recommended ‘‘that the DoD abandon

the use of ‘levels of autonomy’’’ and instead focus their efforts to develop

a reference framework that emphasizes the importance of human–

computer collaboration (United States Department of Defense —

Defense Science Board, 2012), p. 4.
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‘‘practical knowledge’’ (Gaines, 1993) in models of human

expertise that drive the task-related behavior of many agent

systems. This kind of knowledge is usually represented in the

form of heuristics that serve to avoid disasters and to weakly

direct goals. Despite the shallow nature of such models, Brian

Gaines concluded that practical knowledge ‘‘can exhibit

robusty strategies’’ and ‘‘remarkable ‘adaptivity’ in that it

is insensitive to major changes in the domain in which it is

operating.’’

But this is only half the story. One of the most important

contributions of research on human-agent collaboration is

the finding that many aspects of effective joint activity rely

not only on the practical knowledge needed to execute a

task in isolation, but also on teamwork knowledge in the

form of principles, heuristics, and mechanisms for coordi-

nating joint work effectively. Pioneers in agent teamwork

research such as Cohen, Levesque, and Tambe concluded

early on that teamwork knowledge tends to be more

generic and reusable across different applications than

taskwork knowledge (Cohen and Levesque, 1991; Tambe

et al., 1999; Tambe et al., Kaminka). For this reason, many

kinds of teamwork knowledge can be modeled somewhat

separately from taskwork knowledge per se.

Teamwork knowledge is typically conceived in terms of

formalized social regulations. The idea of building strong

social regulation into intelligent systems can be traced at

least as far back as the 1940s to the science fiction writings

of Isaac Asimov (Asimov, 1942). Shoham and Tennenholtz

(Shoham and Tennenholtz, 1992) later introduced the

theme of social ‘‘laws’’ into the agent research community.

In addition to applying policy constraints to avoid dis-

asters in multi-agent systems, my colleagues and I have

attempted to develop reusable policies and mechanisms to

guide teamwork behavior (Feltovich et al., 2004; Feltovich

et al., 2006; Klein et al., 2004; Sierhuis et al., 2003). Like

Web-based knowledge used for human and machine

deliberation and like practical knowledge used by software

and robotic agents to perform taskwork, it can be

convenient to represent significant portions of this team-

work knowledge within ontologies (Bradshaw et al., 2011;

Bunch et al., Uszok; Uszok et al., 2008; Uszok et al., 2011).

5. Synthesis into a unified (and wise?) system

In 1985, Brian Gaines produced an early version of a

diagram predicting the future of knowledge systems, and

showing Wisdom as the pinnacle of that evolution (Fig. 1).

Four years later, I was honored to join Brian, along with

my mentor and friend John Boose (Boose, 1986; Boose and

Bradshaw, 1987; Bradshaw and Boose, 1990; Bradshaw

et al., 1991; Shema et al., 1990), in sending out a call for

papers for a Workshop on Wisdom-Based Systems that

was to take place on June 22–24, 1989 at the Rosario

Resort on Orcas Island in Washington state. Here is a

paragraph from that call:

Knowledge-based systems are now being applied to a

wide spectrum of applications. As new applications in

diplomacy, environmental management, jurisprudence,

corporate strategy, and others are developed, there is a

critical need to understand the limitations and potential of

future automated systems. Based on what we have learned

from attempts to represent knowledge in computer form,

what can we say about the possibility of representing

wisdom? Can knowledge-based systems recognize the

limits and proper application of their knowledge? Can

human values be used to enhance the effectiveness of such

systems during judgment and decision making? Will

Fig. 1. The evolution of knowledge systems (Gaines, 1985).
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human/computer participatory systems be developed that

improve the prospects for wisdom?

For a variety of reasons, perhaps in part due to a

recognition of our hubris in making the proposal in the

first place, the workshop never materialized. Note however

that, according to the figure, 2012 is the year of Wisdom.

Has the time now arrived to put out another call for

papers?
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