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Abstract: In this paper, we survey our recent results on the variational formulation of
nonequilibrium thermodynamics for the finite-dimensional case of discrete systems, as well as for the
infinite-dimensional case of continuum systems. Starting with the fundamental variational principle
of classical mechanics, namely, Hamilton’s principle, we show, with the help of thermodynamic
systems with gradually increasing complexity, how to systematically extend it to include irreversible
processes. In the finite dimensional cases, we treat systems experiencing the irreversible processes
of mechanical friction, heat, and mass transfer in both the adiabatically closed cases and open
cases. On the continuum side, we illustrate our theory using the example of multicomponent
Navier–Stokes–Fourier systems.

Keywords: nonequilibrium thermodynamics; variational formulation; nonholonomic constraints;
irreversible processes; discrete thermodynamic systems; continuum thermodynamic systems

1. Introduction

This paper reviews our recent work on the development of a variational formulation of
nonequilibrium thermodynamics, as established in [1–4]. This formulation extends to nonequilibrium
thermodynamics of the Lagrangian formulation of classical and continuum mechanics that include
irreversible processes, such as friction, heat, and mass transfer, chemical reactions, and viscosity.

1.1. Some History of the Variational Approaches to Thermodynamics

Thermodynamics was first developed to treat exclusively equilibrium states and the transition
from one equilibrium state to another in which a change in temperature plays an important role.
In this context, thermodynamics appeared mainly as a theory of heat, and it is viewed today as
a branch of equilibrium thermodynamics. Such a classical theory, which does not aim to describe the

time evolution of the system, can be developed in a well-established setting [5] governed by the
well-known first and second laws, e.g., [6,7]. It is worth noting that classical mechanics, fluid dynamics,
and electromagnetism, being essentially dynamical theories, cannot be treated in the context of
equilibrium thermodynamics. Although much effort has been applied to the theoretical investigation of
nonequilibrium thermodynamics in relation to physics, chemistry, biology, and engineering, the theory
of nonequilibrium thermodynamics has not reached the level of completeness. This is in part due
to the lack of a general variational formulation for nonequilibrium thermodynamics that would
reduce to the classical Lagrangian variational formulation of mechanics in absence of irreversible
processes. So far, various variational approaches have been proposed in relation to nonequilibrium
thermodynamics. For example, the principle of least dissipation of energy, introduced in [8] and later
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extended in [9,10], underlies the reciprocal relations in linear phenomenological laws, and the principle

of minimum entropy production by [11,12] sets conditions on steady-state processes. Onsager’s approach
was generalized in [13] for systems with nonlinear phenomenological laws. We refer to [14] for reviews
and developments of Onsager’s variational principles and for a study of the relation between Onsager’s
and Prigogine’s principles. We also refer to Section 6 of [15,16] for overviews on variational approaches
to irreversible processes. Note that, however, the variational principles developed in these previous
works are not natural extensions of Hamilton’s principle of classical mechanics, because they do not
recover Hamilton’s principle for the case in which irreversible processes are not included. Another
important work was by [17,18], wherein, in conjunction with thermoelasticity, viscoelasticity, and heat
transfer, a principle of virtual dissipation as a generalized form of the d’Alembert principle was used with
various applications to nonlinear irreversible thermodynamics. In particular, Biot [17] mentioned that
the relations between the rate of entropy production and state variables may be given as nonholonomic

constraints. Nevertheless, this variational approach was restricted to weakly irreversible systems or
thermodynamically holonomic and quasi-holonomic systems. More recently, it was noteworthy that [19]
showed a variational formulation for viscoelastic fluids, in which the internal conversion of mechanical
power into heat power due to frictional forces was written as a nonholonomic constraint. However,
it should be noted that none of the approaches mentioned above present systematic and general
variational formulations of nonequilibrium thermodynamics and are hence restricted to a certain class
of thermodynamic systems.

Following the initial works of [20–22], the geometry of equilibrium thermodynamics has been
mainly studied via contact geometry by [23], with further developments by [24–26]. In this geometric
setting, thermodynamic properties are encoded by Legendre submanifolds of the thermodynamic
phase space. A step toward a geometric formulation of irreversible processes was made in [27] by
lifting port-Hamiltonian systems to the thermodynamic phase space. The underlying geometric
structure in this construction is again a contact form. A description of irreversible processes using
modifications of Poisson brackets was introduced in [28–30]. This was further developed, for instance,
in [31–35]. A systematic construction of such brackets from the variational formulation given in the
present paper was presented in [36] for the thermodynamics of multicomponent fluids.

1.2. Main Features of Our Variational Formulation

The variational formulation for nonequilibrium thermodynamics developed in [1–4] is distinct
from the earlier variational approaches mentioned above, both in its physical meaning and in its
mathematical structure, as well as in its goal. Roughly speaking, while most of the earlier variational
approaches mainly underlie the equation for the rate of entropy production, in order to justify the
expression of the phenomenological laws governing the irreversible processes involved, our variational
approach aims to underlie the complete set of time evolution equations of the system in such a way that it
extends the classical Lagrangian formulation in mechanics to nonequilibrium thermodynamic systems
including irreversible processes.

This is accomplished by constructing a generalization of the Lagrange–d’Alembert principle of
nonholonomic mechanics, where the entropy production of the system, written as the sum of the
contribution of each of the irreversible processes, is incorporated into a nonlinear nonholonomic constraint.
As a consequence, all the phenomenological laws are encoded in the nonlinear nonholonomic constraints,
to which we naturally associate a variational constraint on the allowed variations of the action functional.
A natural definition of the variational constraint in terms of the phenomenological constraint is possible
thanks to the introduction of the concept of thermodynamic displacement, which generalizes the concept
of thermal displacement given by [37] to all the irreversible processes.

More concretely, if the system involves internal irreversible processes, denoted by α,
and irreversible process at the ports, denoted by β, with thermodynamic fluxes Jα, Jβ and

thermodynamic affinities Xα, Xβ together with a thermodynamic affinity X
β
ext associated with the

exterior, then the thermodynamic displacements Λα, Λβ are such that Λ̇α = Xα and Λ̇β = Xβ.
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This allows us to formulate the variational constraint associated with the phenomenological constraint
in a systematic way, namely, by replacing all the velocities by their corresponding virtual displacement

and by removing the external thermodynamic affinity X
β
ext at the exterior of the system as follows:

JαΛ̇α + Jβ

(
Λ̇β − X

β
ext

)
 JαδΛα + JβδΛβ.

Our variational formulation thus has a clear and systematic structure that appears to be common
for the macroscopic description of the nonequilibrium thermodynamics of physical systems. It can be
applied to the finite-dimensional case of discrete systems, such as classical mechanics, electric circuits,
chemical reactions, and mass transfer. Further, our variational approach can be naturally extended to
the infinite-dimensional case of continuum systems; for instance, it can be applied to some nontrivial
example, such as the multicomponent Navier–Stokes–Fourier equations. Again, it is emphasized that
our variational formulation consistently recovers Hamilton’s principle in classical mechanics when
irreversible processes are not taken into account.

1.3. Organization of the Paper

In Section 2, we start with a very elementary review of Hamilton’s variational principle in classical
mechanics and its extension to the case of mechanical systems with external forces. We also briefly
review the variational formulation of mechanical systems with linear nonholonomic constraints by
using the Lagrange–d’Alembert principle. Furthermore, we review the extension of Hamilton’s
principle to continuum systems and illustrate it with the example of compressible fluids in the
Lagrangian description. The variational principle in the Eulerian description is then deduced in the
context of symmetry reduction. In Section 3, we recall the two laws of thermodynamics as formulated
by [38], and we present the variational formulation of nonequilibrium thermodynamics for the
finite-dimensional case of discrete systems. We first consider adiabatically closed simple systems
and illustrate the variational formulation using the case of a movable piston containing an ideal gas
and the case of a system consisting of a chemical species experiencing diffusion between several
compartments. We then consider adiabatically closed non-simple systems, such as the adiabatic
piston with two cylinders and a system with a chemical species experiencing both diffusion and heat
conduction between two compartments. Further, we consider the variational formulation for open
systems and illustrate it with the example of a piston device with ports and heat sources. In Section 4,
we extend the variational formulation of nonequilibrium thermodynamics to the infinite-dimensional
case of continuum systems and consider a multicomponent compressible fluid subject to irreversible
processes due to viscosity, heat conduction, and diffusion. The variational formulation is first given
in the Lagrangian description, from which the variational formulation in the Eulerian description is
deduced. This is illustrated with the multicomponent Navier–Stokes–Fourier equations. In Section 5,
we make some concluding remarks and mention further developments based on the variational
formulation of nonequilibrium thermodynamics, such as variational discretizations, Dirac structures
in thermodynamics, reduction by symmetries, and thermodynamically consistent modeling.

2. Variational Principles in Lagrangian Mechanics

2.1. Classical Mechanics

One of the most fundamental statements in classical mechanics is the principle of critical action
or Hamilton’s principle, according to which the motion of a mechanical system between two given
positions is given by a curve that makes the integral of the Lagrangian of the system critical (see,
for instance, [39]).

Let us consider a mechanical system with configuration manifold Q. For instance, for a system
of N particles moving in the Euclidean 3-space, the configuration manifold is Q = R

3N , whereas
for a rigid body moving freely in space, Q = R

3 × SO(3), the product of the Euclidean 3-space and
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the rotation group. Let us denote by (q1, ..., qn) the local coordinates of the manifold Q, also known
as generalized coordinates of the mechanical system. Let L be a given Lagrangian of the system,
which usually depends only on the position q and velocity v of the system and is hence defined on the
tangent bundle or velocity phase space, TQ, of the manifold Q. Recall that tangent bundle of a manifold
Q is the manifold TQ given by the collection of all tangent vectors in Q. As a set, it is given by the
disjoint union of the tangent spaces of Q, that is, TQ = ⊔q∈QTqQ, where TqQ is the tangent space to
Q at q. The elements in TqQ are denoted by (q, v). The Lagrangian L is usually given by the kinetic
minus the potential energy of the system: L(q, v) = K(q, v)− U(q).

Hamilton’s principle is written as follows. Suppose that the system occupies the positions q1 and
q2 at the time t1 and t2. Then, the motion q(t) of the mechanical system between these two positions is
a solution of the critical point condition

d

dǫ

∣
∣
∣
∣
ǫ=0

∫ t2

t1

L
(
q(t, ǫ), q̇(t, ǫ)

)
dt = 0, (1)

where q(t, ǫ), t ∈ [t1, t2], ǫ ∈ [−a, a], is an arbitrary variation of the curve q(t) with fixed endpoints,
i.e., q(t, ǫ)|ǫ=0 = q(t) and q(t1, ǫ) = q(t1), q(t2, ǫ) = q(t2), for all ǫ. The infinitesimal variation
associated with a given variation q(t, ǫ) is denoted by

δq(t) :=
d

dǫ

∣
∣
∣
∣
ǫ=0

q(t, ǫ).

From the fixed endpoint conditions, we have δq(t1) = δq(t2) = 0.
The Hamilton principle in Equation (1) is usually written in short form as

δ
∫ t2

t1

L(q, q̇)dt = 0, (2)

for arbitrary infinitesimal variations δq, with δq(t1) = δq(t2) = 0. Throughout this paper, we always
use this short notation for the variational principles and also simply refer to δq for variations.

The direct application of Equation (1) gives, in local coordinates q = (q1, ..., qn),

δ
∫ t2

t1

L(q, q̇)dt =
∫ t2

t1

[
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

]

dt

=
∫ t2

t1

[
∂L

∂qi
−

d

dt

∂L

∂q̇i

]

δqi dt +

[
∂L

∂q̇i
δqi

]t2

t1

,
(3)

where Einstein’s summation convention is employed. Since δq is arbitrary and since the
boundary term vanishes because of the fixed endpoint conditions, we get from Equation (3) the
Euler–Lagrange equations:

d

dt

∂L

∂q̇i
−

∂L

∂qi
= 0, i = 1, ..., n. (4)

We recall that L is called regular when the Legendre transform FL : TQ → T∗Q, locally given by
(qi, vi) 7→ (qi, ∂L

∂vi ), is a local diffeomorphism, where T∗Q denotes the cotangent bundle or momentum

phase space of Q. Recall that cotangent bundle of a manifold Q is the manifold T∗Q = ∪q∈QT∗
q Q,

where T∗
q Q is the cotangent space at each q given as the dual space to TqQ. The elements in T∗

q Q are
covectors, denoted by (q, p). When L is regular, the Euler–Lagrange Equation (4) yields a second-order
differential equation for the curve q(t).

The energy of a mechanical system with the Lagrangian L is defined on TQ by

E(q, v) =

〈
∂L

∂v
, v

〉

− L(q, v), (5)
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where 〈, 〉 denotes a dual pairing between the elements in T∗
q Q and TqQ. It is easy to check that E is

conserved along the solutions of the Euler–Lagrange Equation (4), namely,

d

dt
E(q, q̇) =

(
d

dt

∂L

∂q̇i
−

∂L

∂qi

)

q̇i = 0.

Let us assume that the mechanical system is subject to an external force, given by a map Fext :
TQ → T∗Q assumed to be fiber preserving, i.e., Fext(q, v) ∈ T∗

q Q for all (q, v) ∈ TqQ. The extension of
Equation (2) to forced mechanical systems is given by

δ
∫ t2

t1

L(q, q̇)dt +
∫ t2

t1

〈
Fext(q, q̇), δq

〉
dt = 0, (6)

for arbitrary variations δq, with δq(t1) = δq(t2) = 0. The second term in Equation (6) is the time
integral of the virtual work

〈
Fext(q, q̇), δq

〉
done by the force field Fext : TQ → T∗Q with a virtual

displacement δq in TQ. The principle in Equation (6) leads to the forced Euler–Lagrange equations

d

dt

∂L

∂q̇i
−

∂L

∂qi
= Fext

i . (7)

Systems with Nonholonomic Constraints

Hamilton’s principle, as recalled above, is only valid for holonomic systems, i.e., systems without
constraints or whose constraints are given by functions of the coordinates only, not the velocities.
In geometric terms, such constraints are obtained by the specification of a submanifold N of the
configuration manifold Q. In this case, the equations of motion are still given by Hamilton’s principle
for the Lagrangian L restricted to the tangent bundle TN of the submanifold N ⊂ Q.

When the constraints cannot be reduced to relations between the coordinates only, they are called
nonholonomic. Here, we restrict the discussion to nonholonomic constraints that are linear in velocity.
Such constraints are locally given in the form

ωα
i (q)q̇

i = 0, α = 1, ..., k < n, (8)

where ωα
i are functions of local coordinates q = (q1, ..., qn) on Q. Intrinsically, the functions ωα

i are the
components of k independent one-forms ωα on Q, i.e., ωα = ωα

i dqi, for α = 1, ..., k. Typical examples
of linear nonholonomic constraints are those imposed on the motion of rolling bodies, namely,
the velocities of the points in contact should be identical.

For systems with nonholonomic constraints (Equation (8)), the corresponding equations of motion
can be derived from a modification of the Hamilton principle called the Lagrange–d’Alembert principle,
which is given by

δ
∫ t2

t1

L(q, q̇)dt = 0, (9)

for variations δq subject to the condition

ωα
i (q)δqi = 0, α = 1, ..., k < n, (10)

together with the fixed endpoint conditions δq(t1) = δq(t2) = 0. Note the occurrence of two constraints
with distinct roles. First, there is the constraint in Equation (8) on the solution curve called the kinematic

constraint. Second, there is the constraint in Equation (10) on the variations used in the principle,
referred to as the variational constraint. Later, we show that this distinction becomes more noticeable in
nonequilibrium thermodynamics.

A direct application of Equations (9) and (10) yields the Lagrange–d’Alembert equations
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d

dt

∂L

∂q̇i
−

∂L

∂qi
= λαωα

i . (11)

These equations, together with the constraints in Equation (8), form a complete set of equations
for the unknown curves qi(t) and λα(t).

For more information on nonholonomic mechanics, the reader can consult [40–42]. Note that
the Lagrange–d’Alembert principle (9) is not a critical curve condition for the action integral restricted

to the space of a curve satisfying the constraints. Such a principle, which imposes the constraint via a
Lagrange multiplier, gives equations that are, in general, not equivalent to the Lagrange–d’Alembert
Equation (11), see, e.g., [42,43]. Such equations are sometimes referred to as the vakonomic equations.

2.2. Continuum Mechanics

Hamilton’s principle permits a natural extension to continuum systems, such as fluid and elasticity.
For such systems, the configuration manifold Q is typically a manifold of maps. We shall restrict the
discussion here to fluid mechanics in a fixed domain D ⊂ R

3 that is assumed to be bounded by a
smooth boundary ∂D. Hamilton’s principle for fluid mechanics in the Lagrangian description has
been discussed at least since the works of [44] for an incompressible fluid and [45,46] for compressible
flows (see also [47] for further references on these early developments). Hamilton’s principle has since
then been an important modeling tool in continuum mechanics.

2.2.1. Configuration Manifolds

For fluid mechanics in a fixed domain and before the occurrence of any shocks, the configuration
space can be taken as the manifold Q = Diff(D) of diffeomorphisms of D. In this paper, we do
not describe the functional analytic setting needed to rigorously work in the framework of infinite
dimensional manifolds. For example, one can assume that the diffeomorphisms are of some given
Sobolev class, regular enough (at least of class C1) so that Diff(D) is a smooth infinite-dimensional
manifold and a topological group with a smooth right translation. The tangent bundle to Diff(D)

is formally given by the set of vector fields on D covering a diffeomorphism ϕ and tangent to the
boundary, i.e., for each ϕ ∈ Diff(D), we have

Tϕ Diff(D) = {V : D → TD | V(X) ∈ Tϕ(X)D, ∀ X ∈ D, V(X) ∈ Tϕ(X)∂D, ∀ X ∈ ∂D}.

The motion of the fluid is fully described by a curve ϕt ∈ Diff(D) defining the position
x = ϕt(X) at time t of a fluid particle with label X ∈ D. The vector field Vt ∈ Tϕt Diff(D) defined by
Vt(X) = d

dt ϕt(X) is the material velocity of the fluid. In local coordinates, we write xa = ϕa
t (XA) and

Va
t (XA) = d

dt ϕa
t (XA).

2.2.2. Hamilton’s Principle

Given a Lagrangian L : TQ → R defined on the tangent bundle of the infinite-dimensional
manifold Q = Diff(D), Hamilton’s principle formally takes the same form as Equation (2), namely,

δ
∫ t2

t1

L(ϕ, ϕ̇)dt = 0, (12)

for variations δϕ such that δϕt1 = δϕt2 = 0.
Let us consider a Lagrangian of the general form

L(ϕ, ϕ̇) =
∫

D
L (ϕ(X), ϕ̇(X),∇ϕ(X))d3X,

with L being the Lagrangian density and ∇ϕ being the Jacobian matrix of ϕ, known as the deformation
gradient in continuum mechanics. The variation of the integral yields
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δ
∫ t2

t1

L(ϕ, ϕ̇)dt =
∫ t2

t1

∫

D

[

∂L

∂ϕa
δϕa +

∂L

∂ϕ̇a
δϕ̇a +

∂L

∂ϕa
,A

δϕa
,A

]

d3Xdt

=
∫ t2

t1

∫

D

[

∂L

∂ϕa
δϕa −

∂

∂t

∂L

∂ϕ̇a
−

∂

∂A

∂L

∂ϕa
,A

]

δϕad3Xdt

+
∫

D

[
∂L

∂ϕ̇a
δϕa

]t2

t1

d3X +
∫ t2

t1

∫

∂D

∂L

∂ϕa
,A

NAδϕadSdt,

where N is the outward-pointing unit normal vector field to the boundary ∂D, and dS denotes the
area element on the surface ∂D. Hamilton’s principle thus yields the Euler–Lagrange equations and
the boundary condition

∂

∂t

∂L

∂ϕ̇
+ DIV

∂L

∂∇ϕ
=

∂L

∂ϕ
and

∂L

∂∇ϕ
· N

∣
∣
∣
∣
T∂D

= 0 on ∂D, (13)

where the divergence operator is defined as
(

DIV ∂L
∂∇ϕ

)

a
= ∂

∂A
∂L
∂ϕa

,A
. The tensor field

P := −
∂L

∂∇ϕ
, i.e. PA

a = −
∂L

∂ϕa
,A

(14)

is called the first Piola–Kirchhoff stress tensor (see, e.g., [48]).

2.2.3. The Lagrangian of the Compressible Fluid

For a compressible fluid, the Lagrangian has the standard form

L(ϕ, ϕ̇) = K(ϕ, ϕ̇)− U(ϕ) =
∫

D

[
1
2

̺ref(X)|ϕ̇(X)|2 − E
(
̺ref(X), Sref(X),∇ϕ(X)

)
]

d3X, (15)

with ̺ref(X) and Sref(X) being the mass density and entropy density in the reference configuration.
The two terms in Equation (15) are, respectively, the total kinetic energy of the fluid and minus the
total internal energy of the fluid. The function E is a general expression for the internal energy density
written in terms of ̺ref(X), Sref(X), and the deformation gradient ∇ϕ(X). For fluids, E depends on
the deformation gradient only through the Jacobian of ϕ, denoted by Jϕ. This fact is compatible with
the material covariance property of E , written as

E
(
ψ∗̺ref, ψ∗Sref,∇(ϕ ◦ ψ)

)
= ψ∗

[
E
(
̺ref, Sref,∇ϕ

)]
, for all ψ ∈ Diff(D), (16)

where the pull-back notation is defined as

ϕ∗ f = ( f ◦ ϕ)Jϕ (17)

for some function f defined on D. From Equation (16), we deduce the existence of a function ǫ such that

E
(
̺ref, Sref,∇ϕ

)
= ϕ∗

[
ǫ(ρ, s)

]
, for ρ = ϕ∗̺ref, s = ϕ∗Sref, (18)

(see [48,49]). The function ǫ = ǫ(ρ, s) is the internal energy density in the spatial description expressed
in terms of the mass density ρ and entropy density s.

For the Lagrangian Equation (15) and with the assumption in Equation (16), the first
Piola–Kirchhoff stress tensor (Equation (14)) and its divergence are computed as

PA
a =

∂E

∂ϕa
,A

= −pJϕ(ϕ−1)A
,a and DIV P = (∇p ◦ ϕ)Jϕ, (19)
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where p = ∂ǫ
∂ρ ρ + ∂ǫ

∂s s − ǫ is the pressure. Note that for all δϕa parallel to the boundary, we have

PA
a NAδϕa = −pJϕ(ϕ−1)A

,a NAδϕa = 0, since (ϕ−1)A
,a δϕa is parallel to the boundary. Hence,

the boundary condition in Equation (13) is always satisfied. From Equation (19), the Euler–Lagrange
Equation (13) becomes

̺ref ϕ̈ = (∇p ◦ ϕ)Jϕ. (20)

Equation (20) is the equation of motion for a compressible fluid in the material (or Lagrangian)

description, which directly follows from the Hamilton principle in Equation (12) applied to the
Lagrangian Equation (15). It is, however, highly desirable to have a variational formulation that
directly produces the equations of motion in the standard spatial (or Eulerian) description. This is
recalled below in Section 2.3 by using Lagrangian reduction by symmetry.

2.3. Lagrangian Reduction by Symmetry

When symmetry is available in a mechanical system, it is often possible to exploit it in order to
reduce the dimension of the system and thereby facilitate its study. This process, called reduction by

symmetry, is presently well understood on both the Lagrangian and Hamiltonian sides (see [50] for an
introduction and references).

On the Hamiltonian side, this process is based on the reduction of symplectic or Poisson
structures while, on the Lagrangian side, it is usually based on the reduction of variational principles
(see [51–53]). Consider a mechanical system with a configuration manifold Q and Lagrangian
L : TQ → R, and consider also the action of a Lie group G on Q, denoted here simply as q 7→ g · q

for g ∈ G, q ∈ Q. This action naturally induces an action on the tangent bundle TQ, denoted here
simply as (q, v) 7→ (g · q, g · v), called the tangent-lifted action. We say that the action is a symmetry
for the mechanical system if the Lagrangian L is invariant under this tangent-lifted action. In this
case, L induces a symmetry-reduced Lagrangian ℓ : (TQ)/G → R defined on the quotient space (TQ)/G

of the tangent bundle with respect to the action. The goal of the Lagrangian reduction process is to
derive the equations of motion directly on the reduced space (TQ)/G. Under standard hypotheses
on the action, this quotient space is a manifold, and one obtains the reduced Euler–Lagrange equations

by computing the reduced variational principle for the action integral
∫ t2

t1
ℓdt induced by Hamilton’s

principle (Equation (2)) for the action integral
∫ t2

t1
L dt. The main difference between the reduced

variational principle and Hamilton’s principle is the occurrence of constraints on the variations to be
considered when computing the critical curves for

∫ t2
t1

ℓdt. These constraints are uniquely associated
with the reduced character of the variational principle and are not due to physical constraints as in
Equation (10) earlier.

We now quickly recall the application of Lagrangian reduction for the treatment of fluid mechanics
in a fixed domain (see Section 2.2) by following the Euler–Poincaré reduction approach in [54]. In this
case, the Lagrangian reduction process encodes the shift from the material (or Lagrangian) description
to the spatial (or Eulerian) description.

As we recalled above, in the material description, the motion of the fluid is described by a curve
of diffeomorphisms ϕt in the configuration manifold Q = Diff(D), and the evolution Equation (20) for
ϕt follows from the standard Hamilton principle.

In the spatial description, the dynamics are described by the Eulerian velocity v(t, x), the mass
density ρ(t, x) and the entropy density s(t, x), defined in terms of ϕt as

vt = ϕ̇t ◦ ϕ−1
t , ρt = (ϕt)∗̺ref, st = (ϕt)∗Sref. (21)

Using these relations and Equation (18), the Lagrangian Equation (15) in the material description
induces the following expression in the spatial description:

ℓ(v, ρ, s) =
∫

D

[
1
2

ρ|v|2 − ε(ρ, s)

]

d3x.
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The symmetry group underlying the Lagrangian reduction process is the subgroup

Diff(D)̺red,Sref
⊂ Diff(D)

of diffeomorphisms that preserve both the mass density ̺ref and entropy density Sref in the reference
configuration. So, we have Q = Diff(D) and G = Diff(D)̺red,Sref

in the general Lagrangian reduction
setting described above.

From the relations in Equation (21), we deduce that the variations δϕ used in Hamilton’s principle
in Equation (12) induce the variations

δv = ∂tζ + v · ∇ζ − ζ · ∇v, δρ = −div(ρζ), δs = −div(sζ), (22)

where ζ = δϕ ◦ ϕ−1 is an arbitrary time-dependent vector field parallel to ∂D. From Lagrangian
reduction theory, the Hamilton principle in Equation (12) induces, in the Eulerian description,
the (reduced) variational principle

δ
∫ t2

t1

ℓ(v, ρ, s)dt = 0, (23)

for variations δv, δρ, δs constrained by the relations in Equation (22) with ζ(t1) = ζ(t2) = 0.
This principle yields the compressible fluid equations ρ(∂tv + v · ∇v) = −∇p in the Eulerian
description, while the continuity equations ∂tρ + div(ρv) = 0 and ∂ts + div(sv) = 0 follow from
the definition of ρ and s in Equation (21) (see [54]). We refer to [49] for an extension of this Lagrangian
reduction approach to the case of fluids with a free boundary.

The variational formulations in Equations (22) and (23) are extended in Section 4 to include
irreversible processes and are illustrated using the Navier–Stokes–Fourier system as an example.

3. Variational Formulation for Discrete Thermodynamic Systems

In this section, we present a variational formulation for the finite-dimensional case of discrete
thermodynamic systems that reduces to Hamilton’s variational principle in Equation (2) in absence
of irreversible processes. The form of this variational formulation is similar to that of nonholonomic
mechanics recalled earlier (see Equations (8)–(10)) in the sense that the critical curve condition is
subject to two constraints: a kinematic constraint on the solution curve and a variational constraint on the
variations to be considered when computing the criticality condition. A major difference, however,
with the Lagrange–d’Alembert principle recalled above is that the constraints are nonlinear in velocity.
This formulation is extended to continuum systems in Section 4.

Before presenting the variational formulation, we recall below the two laws of thermodynamics
as formulated in [38].

• The two laws of thermodynamics

Let us denote by Σ a physical system and by Σ
ext its exterior. The state of the system is defined

by a set of mechanical variables and a set of thermal variables. State functions are functions of these
variables. Stueckelberg’s formulation of the two laws is given as follows.

• First law:

For every system Σ, there exists an extensive scalar state function E, called energy, which satisfies

d

dt
E(t) = Pext

W (t) + Pext
H (t) + Pext

M (t),

where Pext
W is the power associated with the work done on the system (here, work includes not only mechanical

work by the action of forces but also other physical work, such as that by the action of electric voltages,
etc.), Pext

H is the power associated with the transfer of heat into the system, and Pext
M is the power associated
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with the transfer of matter into the system. As we recall below, a transfer of matter into the system is
associated with a transfer of work and heat. By convention, Pext

W and Pext
H denote uniquely the power

associated with a transfer of work and heat into the system that is not associated with a transfer of matter.
The power associated with a transfer of heat or work due to a transfer of matter is included in Pext

M .
Given a thermodynamic system, the following terminology is generally adopted:

• A system is said to be closed if there is no exchange of matter, i.e., Pext
M (t) = 0.

When Pext
M (t) 6= 0, the system is said to be open.

• A system is said to be adiabatically closed if it is closed and there are no heat exchanges,
i.e., Pext

M (t) = Pext
H (t) = 0.

• A system is said to be isolated if it is adiabatically closed and there is no mechanical power
exchange, i.e., Pext

M (t) = Pext
H (t) = Pext

W (t) = 0.

From the first law, it follows that the energy of an isolated system is constant.

• Second law:

For every system Σ, there exists an extensive scalar state function S, called entropy, which obeys
the following two conditions

(a) Evolution part:

If the system is adiabatically closed, the entropy S is a non-decreasing function with respect to
time, i.e.,

d

dt
S(t) = I(t) ≥ 0,

where I(t) is the entropy production rate of the system accounting for the irreversibility of internal
processes.

(b) Equilibrium part:

If the system is isolated, as time tends to infinity, the entropy tends toward a finite local maximum
of the function S over all thermodynamic states ρ compatible with the system, i.e.,

lim
t→+∞

S(t) = max
ρ compatible

S[ρ].

By definition, the evolution of an isolated system is said to be reversible if I(t) = 0, namely,
the entropy is constant. In general, the evolution of a system Σ is said to be reversible if the evolution of
the total isolated system with which Σ interacts is reversible.

Based on this formulation of the two laws, Stueckelberg and Scheurer [38] developed a systematic
approach for the derivation of the equations of motion for thermodynamic systems; it is especially
well suited for the understanding of nonequilibrium thermodynamics as an extension of classical
mechanics. We refer, for instance, to [55–57] for the applications of Stueckelberg’s approach to the
derivation of equations of motion for thermodynamical systems.

We present our approach by considering systems with gradually increasing level of complexity.
First we treat adiabatically closed systems that have only one entropy variable or, equivalently,
one temperature. Such systems, called simple systems, may involve the irreversible processes
of mechanical friction and internal matter transfer. Then, we treat a more general class of
finite-dimensional adiabatically closed thermodynamic systems with several entropy variables,
which may also involve the irreversible process of heat conduction. We then consider open

finite-dimensional thermodynamic systems, which can exchange heat and matter with the exterior.
Finally, we explain how chemical reactions can be included in the variational formulation.
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3.1. Adiabatically Closed Simple Thermodynamic Systems

We present below the definition of finite-dimensional and simple systems following [38].
A finite-dimensional thermodynamic system Σ is a collection Σ = ∪P

A=1ΣA of a finite number of
interacting simple thermodynamic systems ΣA. By definition, a simple thermodynamic system is a
macroscopic system for which one (scalar) thermal variable and a finite set of nonthermal variables
are sufficient to entirely describe the state of the system. From the second law of thermodynamics,
we can always choose the entropy S as a thermal variable. A typical example of such a simple
system is the one-cylinder problem. We refer to [55] for a systematic treatment of this system via
Stueckelberg’s approach.

3.1.1. Variational Formulation for Mechanical Systems with Friction

We consider here a simple system which can be described only by a single entropy as a
thermodynamic variable, besides mechanical variables. As in Section 2.1 above, let Q be the
configuration manifold associated with the mechanical variables of the simple system. The Lagrangian
of the simple thermodynamic system is thus a function:

L : TQ ×R → R, (q, v, S) 7→ L(q, v, S),

where S ∈ R is the entropy. We assume that the system involves external and friction forces given
by fiber-preserving maps Fext, Ffr : TQ ×R → T∗Q, i.e., such that Ffr(q, v, S) ∈ T∗

q Q, similar to Fext.
As stated in [1], the variational formulation for this simple system is given as follows:

Find the curves q(t), S(t) which are critical for the variational condition

δ
∫ t2

t1

L(q, q̇, S)dt +
∫ t2

t1

〈
Fext(q, q̇, S), δq

〉
dt = 0, (24)

subject to the phenomenological constraint

∂L

∂S
(q, q̇, S)Ṡ =

〈

Ffr(q, q̇, S), q̇
〉

, (25)

and for variations subject to the variational constraint

∂L

∂S
(q, q̇, S)δS =

〈

Ffr(q, q̇, S), δq
〉

, (26)

with δq(t1) = δq(t2) = 0.

Taking variations of the integral in Equation (24), integrating by parts, and using δq(t1) = δ(t2) = 0,
it follows that

∫ t2

t1

[(
∂L

∂qi
−

d

dt

∂L

∂q̇i
+ Fext

i

)

δqi +
∂L

∂S
δS

]

dt.

From the variational constraint in Equation (26), the last term in the integrand of the above
equation can be replaced by Ffr

i δqi. Hence, using Equation (25), we get the following system of
evolution equations for the curves q(t) and S(t):







d

dt

∂L

∂q̇
−

∂L

∂q
= Ffr(q, q̇, S) + Fext(q, q̇, S),

∂L

∂S
Ṡ =

〈

Ffr(q, q̇, S), q̇
〉

.

(27)
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This variational formulation is a generalization of Hamilton’s principle in Lagrangian mechanics
in the sense that it can yield irreversible processes in addition to the Lagrange–d’Alembert equations
with external and friction forces. In this generalized variational formulation, the temperature is defined
as minus the derivative of L with respect to S, i.e., T = − ∂L

∂S , which is assumed to be positive. When the
Lagrangian has the standard form

L(q, v, S) = K(q, v)− U(q, S),

where the kinetic energy K is assumed to be independent of S, and U(q, S) is the internal energy,
then T = − ∂L

∂S = ∂U
∂S recovers the standard definition of the temperature in thermodynamics.

When the friction force vanishes, the entropy is constant from the second equation in Equation (27),
and hence, the system in Equation (27) reduces to the forced Euler–Lagrange equations in classical
mechanics for a Lagrangian depending parametrically on a given constant entropy S0.

The total energy associated with the Lagrangian is still defined by the same expression as in
Equation (5) except that it now depends on S, i.e., we define the total energy E : TQ ×R → R by

E(q, v, S) =

〈
∂L

∂v
, v

〉

− L(q, v, S). (28)

Along the solution curve of Equation (27), we have

d

dt
E =

(
d

dt

∂L

∂q̇i
−

∂L

∂qi

)

q̇i −
∂L

∂S
Ṡ = Fext

i q̇i = Pext
W ,

where Pext
W is the power associated with the work done on the system. This is nothing but the statement

of the first law for the thermodynamic system, as in Equation (27).
The rate of entropy production of the system is

Ṡ = −
1
T

〈

Ffr, q̇
〉

.

The second law states that the internal entropy production is always positive, from which the

friction force is dissipative, i.e.,
〈

Ffr(q, q̇, S), q̇
〉

≤ 0 for all (q, q̇, S). This suggests the phenomenological

relation Ffr
i = −λij q̇

j, where λij, i, j = 1, ..., n are functions of the state variables, with the symmetric
part of the matrix λij positive semi-definite, which are determined by experiments.

Remark 1 (Phenomenological and variational constraints). The explicit expression of the constraint in

Equation (25) involves phenomenological laws for the friction force Ffr, which is why we refer to it as a

phenomenological constraint. The associated constraint in Equation (26) is called a variational constraint since

it is a condition on the variations to be used in Equation (24). Note that the constraint in Equation (25) is

nonlinear and also that one shifts from the variational constraint to the phenomenological constraint by formally

replacing the time derivatives q̇, Ṡ by the variations δq, δS:

∂L

∂S
Ṡ =

〈

Ffr, q̇
〉

 
∂L

∂S
δS =

〈

Ffr, δq
〉

.

Such a systematic correspondence between the phenomenological and variational constraints will hold,

in general, for our variational formulation of thermodynamics, as we present in detail below.

Remark 2. In our macroscopic description, it is assumed that the macroscopically “slow ” or collective motion of

the system can be described by q(t), while the time evolution of the entropy S(t) is determined from the

microscopically “fast ” motions of molecules through statistical mechanics under the assumption of local

equilibrium. It follows from statistical mechanics that the internal energy U(q, S), given as a potential energy at



Entropy 2019, 21, 8 13 of 39

the macroscopic level, is essentially coming from the total kinetic energy associated with the microscopic motion

of molecules, which is directly related to the temperature of the system.

Example 1 (piston). Consider a gas confined by a piston in a cylinder as in Figure 1. This is an example of a

simple adiabatically closed system, whose state can be characterized by (q, v, S).

q

m

F fr

U(q,S)

Ideal gas F
ext

ext

Figure 1. One cylinder.

The Lagrangian is given by L(q, v, S) = 1
2 mv2 − U(q, S), where m is the mass of the piston;

U(q, S) := U(S, V = Aq, N0), where U(S, V, N) is the internal energy of the gas, N0 is the constant number

of moles, V = αq is the volume, and α is the constant area of the cylinder. Note that we have

∂U

∂S
(q, S) = T(q, S) and

∂U

∂q
(q, S) = −p(q, S)α,

where T is temperature and p = − ∂U
∂V is the pressure. The friction force reads Ffr(q, q̇, S) = −λ(q, S)q̇,

where λ(q, S) ≥ 0 is the phenomenological coefficient, which is determined experimentally.

Following Equations (24)–(26), the variational formulation is given by

δ
∫ t2

t1

[
1
2

mq̇2 − U(q, S)

]

dt +
∫ t2

t1

Fext(q, q̇, S)δq dt = 0,

subject to the phenomenological constraint

∂U

∂S
(q, S)Ṡ = λ(q, S)q̇2.

and for variations subject to the variational constraint

∂U

∂S
(q, S)δS = λ(q, S)q̇δq.

From this principle, we get the equations of motion for the piston-cylinder system as

mq̈ = p(q, S)α + Fext − λ(q, S)q̇, T(q, S)Ṡ = λ(q, S)q̇2,

consistent with the equations derived in Section 4 of [55]. We can verify the energy balance, i.e., the first law,

as d
dt E = Fextq̇, where E = 1

2 mq̇2 + U is the total energy.

3.1.2. Variational Formulation for Systems with Internal Mass Transfer

We here extend the previous variational formulation to the finite-dimensional case of discrete
systems experiencing internal diffusion processes. Diffusion is particularly important in biology,
as many processes depend on the transport of chemical species through bodies. For instance,
the setting that we develop is well suited for the description of diffusion across composite membranes,
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e.g., composed of different elements arranged in a series or parallel array, which occurs frequently in
living systems and has remarkable physical properties (see [58–61]).

As illustrated in Figure 2, we consider a thermodynamic system consisting of K compartments
that can exchange matter by diffusion across walls (or membranes) of their common boundaries.
We assume that the system has a single species, and we denote by Nk the number of moles of the
species in the k-th compartment, k = 1, ..., K. We assume that the thermodynamic system is simple;
i.e., a uniform entropy S, the entropy of the system, is attributed to all the compartments.

1

2

3

4

5J 1→2

J 2→3

J 3→5J 3→1

J 1→4 N

N

N

N
N

4

1

2

3

5

Compartment

Compartment

Compartment

Compartment

Compartment

S

S

S

S

S

,

,

,
,

,

Figure 2. Simple adiabatically closed system with a single chemical species experiencing diffusion
among several compartments.

For each compartment k = 1, ..., K, the mole balance equation is

d

dt
Nk =

K

∑
ℓ=1

J ℓ→k,

where J ℓ→k = −J k→ℓ is the molar flow rate from compartment ℓ to compartment k due to diffusion of
the species. We assume that the simple system also involves mechanical variables, friction, and exterior
forces Ffr and Fext, as in (A). The Lagrangian of the system is thus a function:

L : TQ ×R×R
K → R, (q, v, S, N1, ..., NK) 7→ L (q, v, S, N1, ..., NK) .

Thermodynamic displacements associated with matter exchange. The variational formulation involves
the new variables Wk, k = 1, ..., K, which are examples of thermodynamic displacements and play a
central role in our formulation. In general, we define the thermodynamic displacement associated with

an irreversible process as the primitive in time of the thermodynamic force (or affinity) of the process.
This force (or affinity) thus becomes the rate of change of the thermodynamic displacement. In the
case of matter transfer, Ẇk corresponds to the chemical potential of Nk.

The variational formulation for a simple system with an internal diffusion process is stated
as follows.

Find the curves q(t), S(t), Wk(t), Nk(t) which are critical for the variational condition

δ
∫ t2

t1

[

L (q, q̇, S, N1, ..., NK) + Ẇk Nk

]

dt +
∫ t2

t1

〈
Fext, δq

〉
dt = 0, (29)
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subject to the phenomenological constraint

∂L

∂S
Ṡ =

〈

Ffr, q̇
〉

+
K

∑
k,ℓ=1

J ℓ→kẆk, (30)

and for variations subject to the variational constraint

∂L

∂S
δS =

〈

Ffr, δq
〉

+
K

∑
k,ℓ=1

J ℓ→kδWk, (31)

with δq(t1) = δq(t2) = 0 and δWk(t1) = δWk(t2) = 0, k = 1, ..., K.

Taking variations of the integral in Equation (29), integrating by parts, and using
δq(t1) = δq(t2) = 0 and δWk(t1) = δWk(t2) = 0, it follows that

∫ t2

t1

[(
∂L

∂qi
−

d

dt

∂L

∂q̇i
+ Fext

i

)

δqi +
∂L

∂S
δS +

(
∂L

∂Nk
+ Ẇk

)

δNk − ṄkδWk

]

dt.

Then, using the variational constraint in Equation (31), we get the following conditions:

δqi :
d

dt

∂L

∂q̇i
−

∂L

∂qi
= Ffr

i + Fext
i , i = 1, ..., n,

δNk :
d

dt
Wk = −

∂L

∂Nk
, k = 1, ..., K,

δWk :
d

dt
Nk =

K

∑
ℓ=1

J ℓ→k, k = 1, ..., K.

(32)

These conditions, combined with the phenomenological constraint in Equation (30), yield the
system of evolution equations for the curves q(t), S(t), and Nk(t):







d

dt

∂L

∂q̇
−

∂L

∂q
= Ffr + Fext,

d

dt
Nk =

K

∑
ℓ=1

J ℓ→k, k = 1, ..., K,

∂L

∂S
Ṡ =

〈

Ffr, q̇
〉

− ∑
k<ℓ

J ℓ→k

(
∂L

∂Nk
−

∂L

∂Nℓ

)

.

(33)

The total energy is defined as in Equations (5) and (28) and depends here on the mechanical
variables (q, v) ∈ TQ, the entropy S, and the number of moles Nk, k = 1, ..., K, i.e., we define
E : TQ ×R×R

K → R as

E (q, v, S, N1, ..., NK) =

〈
∂L

∂v
, v

〉

− L (q, v, S, N1, ..., NK) . (34)

On the solutions of Equation (33), we have

d

dt
E =

(
d

dt

∂L

∂q̇i
−

∂L

∂qi

)

q̇i −
∂L

∂S
Ṡ −

∂L

∂Nk
Ṅk = Fext

i q̇i = Pext
W ,

where Pext
W is the power associated with the work done on the system. This is the statement of the first

law for the thermodynamic system in Equation (33).
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For a given Lagrangian L, the temperature and chemical potentials of each compartment are
defined as

T := −
∂L

∂S
and µk := −

∂L

∂Nk
, k = 1, ..., K.

The last equation in Equation (33) yields the rate of entropy production of the system as

Ṡ = −
1
T

〈

Ffr, q̇
〉

+
1
T ∑

k<ℓ

J k→ℓ(µk − µℓ),

where the two terms correspond, respectively, to the rate of entropy production due to mechanical
friction and to matter transfer. The second law suggests the phenomenological relations

Ffr
i = −λij q̇

j and J k→ℓ = Gkl(µk − µℓ),

where λij, i, j = 1, ..., n and Gkℓ, k, ℓ = 1, ..., K are functions of the state variables, with the symmetric
part of the matrix λij positive semi-definite and with Gkℓ ≥ 0 for all k, ℓ.

Example 2 (mass transfer associated with nonelectrolyte diffusion through a homogeneous membrane).
We consider a system with diffusion due to internal matter transfer through a homogeneous membrane separating

two reservoirs. We suppose that the system is simple (so it is described by a single entropy variable) and involves

a single chemical species. We assume that the membrane consists of three regions, namely, the central layer

denotes the membrane capacitance in which energy is stored without dissipation, while the outer layers indicate

transition regions in which dissipation occurs with no energy storage. We denote by Nm the number of mole of

this chemical species in the membrane and by N1 and N2 the numbers of mole in reservoirs 1 and 2, as shown in

Figure 3. Define the Lagrangian by L(S, N1, N2, Nm) = −U(S, N1, N2, Nm), where U(S, N1, N2, Nm) denotes

the internal energy of the system, and assume that the volumes are constant and the system is isolated. We denote

by µk = ∂U
∂Nk

the chemical potential of the chemical species in the reservoirs (k = 1, 2) and in the membrane

(k = m). The flux from reservoir 1 into the membrane is denoted by J 1→m, and the flux from the membrane

into reservoir 2 is denoted by J m→2.

¹ ¹ ¹

J

m1 2Reservoir Reservoir

Membrane

One chemical
component

J
1

1

2

2

m

m

m

Figure 3. Nonelectrolyte diffusion through a homogeneous membrane.

The variational condition for the diffusion process is provided by

δ
∫ t2

t1

[

L(S, N1, N2, Nm) + Ẇ1N1 + Ẇ2N2 + ẆmNm

]

dt = 0, (35)

subject to the phenomenological constraint

∂L

∂S
Ṡ = J m→1(Ẇ1 − Ẇm) + J m→2(Ẇ2 − Ẇm) (36)
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and for variations subject to the variational constraint

∂L

∂S
δS = J m→1(δW1 − δWm) + J m→2(δW2 − δWm), (37)

with δWk(ti) = 0 for k = 1, 2, m and i = 1, 2.

Thus, it follows that

Ṅ1 = J m→1, Ṅm = J 1→m + J 2→m, Ṅ2 = J m→2 (38)

and Ẇ1 = µ1, Ẇ2 = µ2, Ẇm = µm. The constraint in Equation (36) becomes

− TṠ = J m→1(µ1 − µm) + J m→2(µ2 − µm), (39)

where T = − ∂L
∂S . Equations (38) and (39) are equivalent to those derived in ([61] Section 2.2).

From Equations (38) and (39), we have energy conservation d
dt U = 0, which is consistent with the fact

that the system is isolated.

3.2. Adiabatically Closed Non-Simple Thermodynamic Systems

We now consider a general finite-dimensional system Σ = ∪P
A=1ΣA composed of interconnected

simple thermodynamic systems ΣA, as illustrated in Figure 4. This class of non-simple interconnected
systems extends the class of interconnected mechanical systems (see [62]) to include the irreversible
processes. In addition to the irreversible processes of friction and mass transfer described earlier,
these systems can also involve the process of heat conduction.

The main difference from the previous cases is the occurrence of several entropy variables,
namely, each subsystem ΣA has an entropy denoted by SA, A = 1, ..., P. Besides the variables SA,
each subsystem ΣA may also be described by mechanical variables qA ∈ QA and number of moles
(NA,1, ..., NA,KA

) ∈ R
KA , where QA is a configuration manifold for a mechanical variable associated

with ΣA and where KA is the number of compartments in a simple system ΣA. For simplicity,
we assume that independent mechanical coordinates q ∈ Q have been chosen to represent the
mechanical configuration of the interconnected system Σ. The state variables needed to describe
this system are

(q, v) ∈ TQ, SA, A = 1, ..., P, NA,k, k = 1, ..., KA, A = 1, ..., P. (40)

1

2

3

4

5

6

F
ext

ext

Σ = ∪
P

A=1
ΣA

S

S

S

S

S

S

2

1 3

5

6

4

Figure 4. Non-simple interconnected system.

We present the variational formulation for these systems in two steps, exactly as in Section 3.1,
by first considering the case without any transfer of mass.
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3.2.1. Variational Formulation for Systems with Friction and Heat Conduction

Besides the entropies SA, A = 1, ..., P, these systems only involve mechanical variables.
The Lagrangian of the system is thus a function:

L : TQ ×R
P → R, (q, v, S1, ..., SP) 7→ L (q, v, S1, ..., SP) .

We denote by Fext→A : T∗Q ×R
P → T∗Q the external force acting on subsystem ΣA. Consistent

with the fact that the mechanical variables q = (q1, ..., qn) describe the configuration of the entire
interconnected system Σ, only the total exterior force Fext = ∑

P
A=1 Fext→A appears explicitly in

the variational condition in Equation (42). We denote by Ffr(A) : T∗Q × R
P → T∗Q the friction

forces experienced by subsystem ΣA. This friction force is at the origin of an entropy production
for subsystem ΣA and appears explicitly in the phenomenological constraint (Equation (43)) and the
variational constraint (Equation (44)) of the variational formulation. We also introduce the fluxes JAB,
A 6= B associated with the heat exchange between subsystems ΣA and ΣB and such that JAB = JBA.
The relation between the fluxes JAB and the heat power exchange PA→B

H are given later. For the
construction of variational structures, it is convenient to define the flux JAB for A = B as

JAA := − ∑
B 6=A

JAB,

so that we have
P

∑
A=1

JAB = 0, for all B. (41)

Thermodynamic displacements associated with heat exchange. To incorporate heat exchange into our
variational formulation, the new variables ΓA, A = 1, ..., P are introduced. These are again examples of
thermodynamic displacements in the same way as we defined Wk before. For the case of heat exchange,
Γ̇A corresponds to the temperature of the subsystem ΣA, where ΓA is identical to the thermal displacement

employed in [37], which was originally introduced by [63]. The introduction of ΓA is accompanied by
the introduction of an entropy variable ΣA whose meaning will be clarified later.

Now, the variational formulation for a system with friction and heat conduction is stated
as follows:

Find the curves q(t), SA(t), ΓA(t), ΣA(t) which are critical for the variational condition

δ
∫ t2

t1

[

L (q, q̇, S1, ..., SK) + Γ̇A(SA − ΣA)
]

dt +
∫ t2

t1

〈
Fext, δq

〉
dt = 0, (42)

subject to the phenomenological constraint

∂L

∂SA
Σ̇A =

〈

Ffr(A), q̇
〉

+ JABΓ̇B, for A = 1, ..., P, (43)

and for variations subject to the variational constraint

∂L

∂SA
δΣA =

〈

Ffr(A), δq
〉

+ JABδΓB, for A = 1, ..., P, (44)

with δq(t1) = δq(t2) = 0 and δΓA(t1) = δΓA(t2) = 0, A = 1, ..., P.
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Taking variations of the integral in Equation (42), integrating by parts, and using
δq(t1) = δ(t2) = 0 and δΓA(t1) = δΓA(t2) = 0, it follows that

∫ t2

t1

[(
∂L

∂qi
−

d

dt

∂L

∂q̇i
+ Fext

i

)

δqi +
∂L

∂SA
δSA − (ṠA − Σ̇A)δΓA + Γ̇A(δSA − δΣA)

]

dt = 0.

Then, using the variational constraint (Equation (44)), we get the following conditions:

δqi :
∂L

∂qi
−

d

dt

∂L

∂q̇i
−

P

∑
A=1

Γ̇A

∂L
∂SA

F
fr(A)
i + Fext

i = 0, i = 1, ..., n,

δSA :
∂L

∂SA
+ Γ̇A = 0, A = 1, ..., P,

δΓA : − ṠA + Σ̇A −
P

∑
B=1

Γ̇A

∂L
∂SA

JBA = 0, A = 1, ..., P.

The second equation yields

Γ̇A = −
∂L

∂SA
=: TA, (45)

where TA is the temperature of the subsystem ΣA. This implies that ΓA is a thermal displacement.
Because of Equation (41), the last equation yields ṠA = Σ̇A. Hence, using Equation (43), we get the
following system of evolution equations for the curves q(t) and SA(t):







d

dt

∂L

∂q̇
−

∂L

∂q
=

P

∑
A=1

Ffr(A) + Fext,

∂L

∂SA
ṠA =

〈

Ffr(A), q̇
〉

−
P

∑
B=1

JAB

(
∂L

∂SB
−

∂L

∂SA

)

, A = 1, ..., P.

(46)

As before, we have d
dt E =

〈
Fext, q̇

〉
= Pext

W , where the total energy E is defined in the same way as
before. Since the system is non-simple, it is instructive to analyze the energy behavior of each subsystem.
This can be done if the Lagrangian is given by the sum of the Lagrangians of the subsystems, i.e.,

L(q, v, S1, ..., SP) =
P

∑
A=1

LA(q, v, SA).

The mechanical equation for ΣA is given as

d

dt

∂LA

∂q̇
−

∂LA

∂q
= Ffr(A) + Fext→A +

P

∑
B=1

FB→A,

where FB→A = −FA→B is the internal force exerted by ΣB on ΣA. Denoting EA as the total energy of
ΣA, we have

d

dt
EA =

〈

Fext→A, q̇
〉

+
P

∑
B=1

〈

FB→A, q̇
〉

+
P

∑
B=1

JAB

(
∂L

∂SB
−

∂L

∂SA

)

= Pext→A
W +

P

∑
B=1

PB→A
W +

P

∑
B=1

PB→A
H ,

(47)

where Pext→A
W and PB→A

W denote the power associated with the work done on ΣA by the exterior and
that by the subsystem ΣB, respectively, and where PB→A

H is the power associated with the heat transfer
from ΣB to ΣA. The link between the flux JAB and the power exchange is thus

PB→A
H = JAB(T

A − TB).



Entropy 2019, 21, 8 20 of 39

Since entropy is an extensive variable, the total entropy of the system is S = ∑
P
A=1 SA.

From Equation (46), it follows that the rate of total entropy production Ṡ = ∑
P
A=1 ṠA of the system is

given by

Ṡ = −
P

∑
A=1

1
TA

〈

Ffr(A), q̇
〉

+
K

∑
A<B

JAB

(
1

TB
−

1
TA

)

(TB − TA). (48)

The second law suggests the phenomenological relations

F
fr(A)
i = −λA

ij q̇j and JAB
TA − TB

TATB
= LAB(T

B − TA), (49)

where λA
ij and LAB are functions of the state variables, with the symmetric part of the matrices

λA
ij positive semi-definite and with LAB ≥ 0 for all A, B. From the second relation, we deduce

JAB = −LABTATB = −κAB, with κAB = κAB(q, SA, SB) being the heat conduction coefficients between
subsystem ΣA and subsystem ΣB.

Example 3 (The adiabatic piston). We consider a piston-cylinder system composed of two cylinders connected

by a rod, each of which contains a fluid (or an ideal gas) and is separated by a movable piston, as shown in

Figure 5. We assume that the system is isolated. Despite its apparent simplicity, this system has attracted a lot of

attention in the literature because there has been some controversy about the final equilibrium state of this system

when the piston is adiabatic. We refer to [55] for a review of this challenging problem and for the derivation of

the time evolution of this system, based on the approach of [38].

§

m

`

1 m3
m2

T         S2
2
,

T         S1
1
,

1

§3

§2

®1, ®2,

q Dr - q` -=

Figure 5. The two-cylinder problem.

The system Σ may be regarded as an interconnected system consisting of three simple systems; namely,

the two pistons Σ1, Σ2 of mass m1, m2 and the connecting rod Σ3 of mass m3. As illustrated in Figure 5, q and

r = D − ℓ− q denote, respectively, the distance between the bottom of each piston to the top, where D is a

constant. In this setting, we choose the variables (q, v, S1, S2) (the entropy associated with Σ3 is constant) to

describe the dynamics of the interconnected system, and the Lagrangian is given by

L(q, v, S1, S2) =
1
2

Mv2 − U1(q, S1)− U2(q, S2), (50)

where M := m1 + m2 + m3, and

U1(q, S1) := U1(S1, V1 = α1q, N1), U2(q, S2) := U2(S2, V2 = α2r, N2),

with Ui(Si, Vi, Ni) as the internal energies of the fluids, Ni as the constant number of moles, and αi as the

constant areas of the cylinders, i = 1, 2.

As in Equation (49), we have Ffr(A)(q, q̇, SA) = −λA q̇, with λA = λA(q, SA) ≥ 0, A = 1, 2 and

JAB = −κAB =: −κ, where κ = κ(S1, S2, q) ≥ 0 is the heat conductivity of the connecting rod.
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From the variational formulations (Equations (42)–(44)), we get the following system for q(t), S1(t), S2(t),

in light of Equation (46), as







Mq̈ = p1(q, S1)α1 − p2(q, S2)α2 − (λ1 + λ2)q̇,

T1(q, S1)Ṡ1 = λ1q̇2 + κ
(

T2(q, S2)− T1(q, S1)
)

,

T2(q, S2)Ṡ2 = λ2q̇2 + κ
(

T1(q, S1)− T2(q, S2)
)

,

where we used ∂Ui
∂Si

(q, Si) = Ti(q, Si),
∂U1
∂q = −p1(q, S1)α1, and ∂U2

∂q = p2(q, S2)α2.

These equations recover those derived in [55], (51)–(53). We have d
dt E = 0, where E = 1

2 Mq̇2 +

U1(q, S1) + U(q, S2), consistent with the fact that the system is isolated. The rate of total entropy production is

d

dt
S =

(
λ1

T1 +
λ2

T2

)

q̇2 + κ
(T2 − T1)2

T1T2 ≥ 0.

The equations of motion for the adiabatic piston are obtained by setting κ = 0.

3.2.2. Variational Formulation for Systems with Friction, Heat Conduction, and Internal Mass Transfer

We extend the previous case to one in which the subsystems ΣA not only exchange work and heat
but also exchange matter. In general, each subsystem may itself have several compartments, in which
case the variables are those listed in Equation (40). For simplicity, we assume that each subsystem has
only one compartment. The reader can easily extend this approach to the general case. The Lagrangian
is thus a function:

L : TQ ×R
P ×R

P → R, (q, v, S1, ..., SP, N1, ..., NP) 7→ L (q, v, S1, ..., SP, N1, ..., NP) ,

where SA and NA are the entropy and number of moles of subsystem ΣA, A = 1, ..., P. Since the
previous cases are presented in detail above, we here just present the variational formulation and the
resulting equations of motion.

Find the curves q(t), SA(t), ΓA(t), ΣA(t), WA(t), NA(t) which are critical for the variational

condition

δ
∫ t2

t1

[

L (q, q̇, S1, ..., SP, N1, ..., NP) + ẆANA + Γ̇A(SA − ΣA)
]

dt +
∫ t2

t1

〈
Fext, δq

〉
dt = 0, (51)

subject to the phenomenological constraint

∂L

∂SA
Σ̇A =

〈

Ffr(A), q̇
〉

+ JABΓ̇B + J B→AẆA, for A = 1, ..., P, (52)

and for variations subject to the variational constraint

∂L

∂SA
δΣA =

〈

Ffr(A), δq
〉

+ JABδΓB + J B→AδWA, for A = 1, ..., P, (53)

with δq(ti) = δWA(ti) = δΓA(ti) = 0, i = 1, 2, A = 1, ..., P.
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From Equations (51)–(53), we obtain the following system of evolution equations for the curves
q(t), SA(t), and NA(t):







d

dt

∂L

∂q̇
−

∂L

∂q
=

P

∑
A=1

Ffr(A) + Fext,

d

dt
NA =

P

∑
B=1

J B→A, A = 1, ..., P,

∂L

∂SA
ṠA =

〈

Ffr(A), q̇
〉

−
P

∑
B=1

JAB

(
∂L

∂SB
−

∂L

∂SA

)

−
P

∑
B=1

J B→A ∂L

∂NA
, A = 1, ..., P.

(54)

We also obtain the conditions

Γ̇A = −
∂L

∂SA
=: TA, ẆA = −

∂L

∂NA
=: µA, Σ̇A = ṠA, A = 1, ..., P,

where we defined the temperature TA and the chemical potential µA of the subsystem ΣA. The variables
ΓA and WA are again the thermodynamic displacements associated with the processes of heat and
matter transfer.

The total energy satisfies d
dt E = Pext

W and the detailed energy balances can be carried out as in
Equation (47) and yields here

PB→A
H+M = JAB(T

A − TB).

The rate of total entropy production of the system is computed as

Ṡ = −
P

∑
A=1

1
TA

〈

Ffr(A), q̇
〉

+ ∑
A<B

JAB

(
1

TB
−

1
TA

)

(TB − TA) + ∑
A<B

J B→A

(
µB

TB
−

µA

TA

)

.

From the second law of thermodynamics, the total entropy production must be positive and hence
suggests the phenomenological relations

F
fr(A)
i = −λA

ij q̇j,





TA−TB

TATB JAB

J B→A



 = LAB





TB − TA

µB

TB − µA

TA



 , (55)

where the symmetric part of the n × n matrices λA and of the 2 × 2 matrices LAB are positive.
The entries of these matrices are phenomenological coefficients determined experimentally, which may
generally depend on the state variables. From Onsager’s reciprocal relations, the 2 × 2 matrix

LAB =





LHH
AB LHM

AB

LMH
AB LMM

AB





is symmetric for all A, B. The matrix elements LHH
AB and LMM

AB are related to the processes of heat
conduction and diffusion between ΣA and ΣB. The coefficients LMH

AB and LHM
AB describe the cross-effects,

and hence are associated with discrete versions of the process of thermal diffusion and the Dufour
effect. Thermal diffusion is the process of matter diffusion due to the temperature difference between
the compartments. The Dufour effect is the process of heat transfer due to difference of chemical
potentials between the compartments.

Example 4 (Heat conduction and diffusion between two compartments). We consider a closed system

consisting of two compartments, as illustrated in Figure 6. The compartments are separated by a permeable wall
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through which heat conduction and diffusion is possible. The system is closed and, therefore, there is no matter

transfer with exterior, while we have heat and mass transfer between the compartments.

N
1 N 2

S
1 S2

J 1→2

Compartment Compartment 1 2

J12

Figure 6. Non-simple closed system with a single chemical species, experiencing diffusion and heat
conduction between two compartments.

The Lagrangian of this system is

L(S1, S2, N1, N2) = −U1(S1, N1)− U2(S2, N2),

where Ui(Si, Ni) is the internal energy of the ith chemical species and the volume is assumed to be constant.

In this case, the system in Equation (54) specifies







Ṅ1 = J 2→1, Ṅ2 = J 1→2,

T1Ṡ1 = −J12(T2 − T1)−J 2→1µ1,

T2Ṡ2 = −J12(T1 − T2)−J 1→2µ2,

(56)

where

TA =
∂U

∂SA
, µA =

∂U

∂NA
, A = 1, 2

are the temperatures and chemical potentials of the Ath compartments. From Equation (56), it follows that the

equation for the total entropy S = S1 + S2 of the system is

Ṡ = J12(T1 − T2)

(
1

T1 −
1

T2

)

+ J 1→2
(

µ1

T1 −
µ2

T2

)

≥ 0,

from which the phenomenological relations are obtained as in Equation (55). The energy balance in each

compartment is
d

dt
U1 = −J12(T2 − T1),

d

dt
U2 = −J12(T1 − T2),

which shows the relation between the flux J12 and the power P1→2 = J12(T2 − T1) exchanged between the

two compartments due to heat conduction, diffusion, and their cross-effects. The total energy E = U1 + U2

is conserved.

Remark 3 (General structure of the variational formulation for adiabatically closed systems). In each of

the situation considered, the variational constraint can be systematically obtained from the phenomenological

constraint by replacing the time derivative by the delta variation for each process. For the most general case

treated above, we have the following correspondence:

∂L

∂SA
Σ̇A =

〈

Ffr(A), q̇
〉

+ JABΓ̇B + J B→AẆA
 

∂L

∂SA
δΣA =

〈

Ffr(A), δq
〉

+ JABδΓB + J B→AδWA.
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In the above, the quantities to be determined from the state variables by phenomenological laws are Ffr(A),

JAB, and J B→A.

The structure of our variational formulation is better explained by adopting a general point of view. If we

denote by Q the thermodynamic configuration manifold and by x ∈ Q the collection of all the variables of the

thermodynamic system, for instance, x = (q, SA, NA, WA, ΓA, ΣA), A = 1, ..., P in the preceding case, then the

variational formulation for an adiabatically closed system falls into the following abstract setting. Given a

Lagrangian L : TQ → R, an external force F ext : TQ → T∗Q, and fiber-preserving maps Aα : TQ → T∗Q,

Aα(x, v) ∈ T∗
xQ, α = 1, ..., k, the variational formulation reads as follows:

δ
∫ t2

t1

L(x(t), ẋ(t))dt +
∫ t2

t1

〈
F ext(x(t), ẋ(t)), δx(t)

〉
dt = 0, (57)

where the curve x(t) satisfies the phenomenological constraint

Aα(x, ẋ)·ẋ = 0, for α = 1, ..., k, (58)

and for variations δx subject to the variational constraint

Aα(x, ẋ)·δx = 0, for α = 1, ..., k, (59)

with δx(t1) = δx(t2) = 0.

This yields the system of equations







d

dt

∂L

∂ẋ
−

∂L

∂x
−F ext = λα Aα(x, ẋ),

Aα(x, ẋ)·ẋ = 0, α = 1, ..., k.
(60)

It is clear that all the variational formulations for the adiabatically closed system considered above fall

into this category by appropriately choosing x, L(x, ẋ), F ext(x, ẋ), and Aα(x, ẋ). The energy defined by

E(x, v) =
〈

∂L
∂v , v

〉

−L(x, v) satisfies d
dtE =

〈
F ext, ẋ

〉
.

The constraints involved in this variational formulation admit an intrinsic geometric description.

The variational constraint (Equation (59)) defines the subset CV ⊂ TQ×Q TQ given by

CV = {(x, v, δx) ∈ TQ×Q TQ | Aα(x, v)·δx = 0, for α = 1, ..., k},

so that CV(x, v) := CV ∩
(
{(x, v)} × TxQ

)
is a vector subspace of TxQ for all (x, v) ∈ TQ.

The phenomenological constraint (Equation (58)) defines the subset CK ⊂ TQ given by

CK = {(x, v) ∈ TQ | Aα(x, v)·v = 0, for α = 1, ..., k}.

Then, one notes that the constraint CK can be intrinsically defined from CV as

CK = {(x, v) ∈ TQ | (x, v) ∈ CV(x, v)}.

Constraints CV and CK related in this way are called nonlinear nonholonomic constraints of thermodynamic

type (see [1,64]).
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3.3. Open Thermodynamic Systems

The thermodynamic systems that we considered so far are restricted to the adiabatically closed
cases. For such systems, interaction with the exterior is only through the exchange of mechanical work,
and hence the first law for such systems reads

d

dt
E =

〈
Fext, q̇

〉
= Pext

W .

We now consider the more general case of open systems exchanging work, heat, and matter with
the exterior. In this case, the first law reads

d

dt
E = Pext

W + Pext
H + Pext

M ,

where Pext
H is the power associated with the transfer of heat into the system and Pext

M is the power
associated with the transfer of matter into the system. As we recall below, the transfer of matter into or
out of the system is associated with a transfer of work and heat. By convention, Pext

W and Pext
H denote

uniquely the power associated with work and heat that is not associated with a transfer of matter.
The power associated with a transfer of heat or work due to a transfer of matter is included in Pext

M .
In order to get a concrete expression for Pext

M , let us consider an open system with several ports,
a = 1, ..., A, through which matter can flow into or out of the system. We suppose, for simplicity,
that the system involves only one chemical species and denote by N the number of moles of this
species. The mole balance equation is

d

dt
N =

A

∑
a=1

J a,

where J a is the molar flow rate into the system through the ath port so that J a > 0 indicates the flow
into the system and J a < 0 indicates the flow out of the system.

As matter enters or leaves the system, it carries its internal, potential, and kinetic energy.
This energy flow rate at the ath port is the product EaJ a of the energy per mole (or molar energy)
Ea and the molar flow rate J a at the ath port. In addition, as matter enters or leaves the system,
it also exerts work on the system that is associated with pushing the species into or out of the system.
The associated energy flow rate is given at the a-th port by J a paVa, where pa and Va are the pressure
and the molar volume of the substance flowing through the ath port. From this, we get the expression

Pext
M =

A

∑
a=1

J a(Ea + pa
V

a). (61)

We refer, for instance, to [65,66] for the detailed explanations of the first law for open systems.
We present below an extension of the variational formulation to the case of open systems. In order

to motivate the form of the constraints that we use, we first consider a particular case of simple open
system, namely, the case of a system with a single chemical species N in a single compartment with
constant volume V and without mechanical effects. In this particular situation, the energy of the
system is given by the internal energy written as U = U(S, N), since V = V0 is constant. The balance
of moles and energy are respectively given by

d

dt
N =

A

∑
a=1

J a,
d

dt
U =

A

∑
a=1

J a(Ua + pa
V

a) =
A

∑
a=1

J a
H

a

(see Equation (61)), where Ha = Ua + paVa is the molar enthalpy at the ath port and where Ua, pa,
and Va are, respectively, the molar internal energy, the pressure, and the molar volume at the ath
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port. From these equations and the second law, one obtains the equations for the rate of change of the
entropy of the system as

d

dt
S = I +

A

∑
a=1

J a
S

a, (62)

where Sa is the molar entropy at the ath port and I is the rate of internal entropy production of the
system given by

I =
1
T

A

∑
a=1

J a (Ha − TSa − µ) , (63)

with T = ∂U
∂S being the temperature and µ = ∂U

∂N being the chemical potential. For our variational
treatment, it is useful to rewrite the rate of internal entropy production as

I =
1
T

A

∑
a=1

[

J a
S (T

a − T) + J a(µa − µ)
]

,

where we define the entropy flow rate J a
S := J aSa and also use the relation Ha = Ua + paVa =

µa + TaSa. The thermodynamic quantities known at the ath port are usually the pressure pa and
the temperature Ta, from which the other thermodynamic quantities, such as µa = µa(pa, Ta) or
Sa = Sa(pa, Ta), are deduced in light of the state equations of the gas.

Here, we only show the variational formulation for a simplified case of open systems, namely,
an open system with only one entropy variable and one compartment with a single species. So,
the open system is a simple system. The reader is referred to [3] for the more general cases of open
systems, such as the extensions of Equations (29)–(31) and (51)–(53) to open systems, as well as for the
case when the mechanical energy of the species is taken into account.

The state variables needed to describe the system are (q, v, S, N) ∈ TQ, and the Lagrangian is
a map

L : TQ ×R×R → R, (q, v, S, N) 7→ L(q, v, S, N),

We assume that the system has A ports, through which species can flow out of or into the system,
and B heat sources. As above, µa and Ta denote the chemical potential and temperature at the ath port,
and Tb denotes the temperature of the bth heat source.

Find the curves q(t), S(t), Γ(t), Σ(t), W(t), N(t) which are critical for the variational condition

δ
∫ t2

t1

[

L(q, q̇, S, N) + ẆN + Γ̇(S − Σ)
]

dt +
∫ t2

t1

〈
Fext, δq

〉
dt = 0, (64)

subject to the phenomenological constraint

∂L

∂S
Σ̇ =

〈

Ffr, q̇
〉

+
A

∑
a=1

[

J a(Ẇ − µa) + J a
S (Γ̇ − Ta)

]

+
B

∑
b=1

J b
S (Γ̇ − Tb), (65)

and for variations subject to the variational constraint

∂L

∂S
δΣ =

〈

Ffr, δq
〉

+
A

∑
a=1

[

J aδW + J a
S δΓ

]

+
B

∑
b=1

J b
S δΓ, (66)

with δq(t1) = δq(t2) = 0, δW(t1) = δW(t2) = 0, and δΓ(t1) = δΓ(t2) = 0.

We note that the variational constraint (Equation (66)) follows from the phenomenological
constraint (Equation (65)) by formally replacing the time derivatives Σ̇, q̇, Ẇ, Γ̇ by the corresponding
virtual displacements δΣ, δq, δW, δΓ and by removing all the terms that depend uniquely on
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the exterior, i.e., the terms J aµa, J a
S Ta, and J b

S Tb. Such a systematic correspondence between
the phenomenological and variational constraints extends to open systems the correspondence for
adiabatically closed systems verified in Equations (25) (26), (30) (31), (43) (44), (52) (53);
see also Remarks 1 and 3. Note that the action functional in Equation (64) has the same form as that in
the case of adiabatically closed systems.

Taking variations of the integral in Equation (64), integrating by parts, and using δq(t1) = δ(t2) = 0,
δW(t1) = δW(t2) = 0, and δΓ(t1) = δΓ(t2) = 0 and using the variational constraint (Equation (66)),
we obtain the following conditions:

δq :
d

dt

∂L

∂q̇i
−

∂L

∂qi
= Ffr

i + Fext
i , i = 1, ..., n,

δS : Γ̇ = −
∂L

∂S
,

δW : Ṅ =
A

∑
a=1

J a,

δN : Ẇ = −
∂L

∂N
,

δΓ : Ṡ = Σ̇ +
A

∑
a=1

J a
S +

B

∑
b=1

J b
S .

(67)

By the second and fourth equations, the variables Γ and W are thermodynamic displacements as
before. The main difference from the earlier cases is that now Ṡ and Σ̇ are no longer equal. The physical
interpretation of Σ is given below. From Equation (65), it follows that the system of evolution equations
for the curves q(t), S(t), N(t) is defined by







d

dt

∂L

∂q̇
−

∂L

∂q
= Ffr + Fext,

d

dt
N =

A

∑
a=1

J a,

∂L

∂S

(

Ṡ −
A

∑
a=1

J a
S −

B

∑
b=1

J b
S

)

=
〈

Ffr, q̇
〉

−
A

∑
a=1

[

J a
( ∂L

∂N
+ µa

)

+ J a
S

(∂L

∂S
+ Ta

)]

−
B

∑
b=1

J b
S

(∂L

∂S
+ Tb

)

.

(68)

The energy balance for this system is computed as

d

dt
E =

〈
Fext, q̇

〉

︸ ︷︷ ︸

=Pext
W

+
B

∑
b=1

J b
S Tb

︸ ︷︷ ︸

=Pext
H

+
A

∑
a=1

(J aµa + J a
S Ta)

︸ ︷︷ ︸

=Pext
M

.

From the last equation in Equation (68), the rate of entropy of the system is found by the equation

Ṡ = I +
A

∑
a=1

J a
S +

B

∑
b=1

J b
S , (69)

where I is the rate of internal entropy production given by

I = −
1
T

〈

Ffr, q̇
〉

︸ ︷︷ ︸

mechanical friction

+
1
T

A

∑
a=1

[

J a
(

µa − µ
)

+ J a
S

(

Ta − T
)]

︸ ︷︷ ︸

mixing of matter flowing into the system

+
1
T

B

∑
b=1

J b
S

(

Tb − T
)

︸ ︷︷ ︸

heating

.
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From the last Equations (67) and (69), we notice that Σ̇ = I is the rate of internal entropy production.
The second and third terms in Equation (69) represent the entropy flow rate into the system associated
with the ports and the heat sources. The second law requires I ≥ 0, whereas the sign of the rate of
entropy flow into the system is arbitrary.

Example 5 (A piston device with ports and heat sources Figure 7). We consider a piston with mass m

moving in a cylinder containing a species with internal energy U(S, V, N). We assume that the cylinder has two

external heat sources with entropy flow rates J bi , i = 1, 2, and two ports through which the species is injected

into or flows out of the cylinder with molar flow rates J ai , i = 1, 2. The entropy flow rates at the ports are given

by J ai
S = J aiSai .

F
ext

F
fr

q

, ,

, ,

p

p

T

T

J

J

a

a

1

2

a

a

1

2

a

a

1

2

b1
T

b2
TJ

b1
J
b2

S S, ,

m

U(q, S, N)

Figure 7. A piston device with ports and heat sources.

The variable q characterizes the one-dimensional motion of the piston such that the volume occupied by the

species is V = αq, with α the sectional area of the cylinder. The Lagrangian of the system is

L(q, q̇, S, N) =
1
2

mq̇2 − U(S, Aq, N).

The variational formulations (Equations (64)–(66)) yield the evolution equations for q(t), S(t), N(t)

mq̈ = p(q, S, N)α + Ffr + Fext, Ṅ =
A

∑
a=1

J a, Ṡ = I +
2

∑
i=1

J ai
S +

2

∑
j=1

J
bj

S ,

where p(q, S, N) = − ∂U
∂V is the pressure and I = Σ̇ is the internal entropy production given by

I = −
1
T

Ffrq̇ +
1
T

2

∑
i=1

[

(µai − µ) + S
ai (Tai − T)

]

J ai +
1
T

2

∑
j=1

J
bj

S (Tbj − T).

The first term represents the entropy production associated with the friction experienced by the moving

piston, the second term is the entropy production associated with the mixing of gas flowing into the cylinder at

the two ports a1, a2, and the third term denotes the entropy production due to the external heating. The second

law requires that each of these terms is positive. The energy balance holds as

d

dt
E = Fextq̇

︸ ︷︷ ︸

=Pext
W

+
2

∑
j=1

J
bj

S Tbj

︸ ︷︷ ︸

=Pext
H

+
2

∑
i=1

(J ai µai + J ai
S Tai )

︸ ︷︷ ︸

=Pext
M

.
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Remark 4 (Inclusion of chemical reactions). The variational formulations presented so far can be extended

to include several chemical species undergoing chemical reactions. Let us denote by I = 1, ..., R the chemical

species and by a = 1, ..., r the chemical reactions. Chemical reactions may be represented by

∑
I

ν′
a
I I

a(1)

⇄
a(2)

∑
I

ν′′
a
I I, a = 1, ..., r,

where a(1) and a(2) are the forward and backward reactions associated with reaction a, and ν′′
a
I , ν′

a
I are the

forward and backward stoichiometric coefficients for component I in reaction a. Mass conservation during each

reaction is given by

∑
I

mIν
a
I = 0 for a = 1, ..., r (Lavoisier law),

where νa
I := ν′′

a
I − ν′

a
I , and mI is the molecular mass of species I. The affinity of reaction a is the state

function defined by Aa = −∑
R
I=1 νa

I µI , a = 1, ..., r, where µI is the chemical potential of the chemical species I.

The thermodynamic flux associated with reaction a is the rate of extent denoted Ja.

The thermodynamic displacements are W I and νa such that

Ẇ I = µI , I = 1, ..., R and ν̇a = −Aa, a = 1, ..., r. (70)

For chemical reactions in a single compartment assumed to be adiabatically closed and without mechanical

components, the variational formulation is given as follows.

Find the curves S(t), NI(t), W I(t), νa(t), I = 1, ..., R, a = 1, ..., r, which are critical for the variational

condition

δ
∫ t2

t1

[

L(N1, ..., NR, S) + Ẇ I NI

]

dt = 0, (71)

subject to the phenomenological and chemical constraints

∂L

∂S
Ṡ = Jaν̇a and ν̇a = νa

I Ẇ I , a = 1, ..., r, (72)

and for variations subject to the variational constraints

∂L

∂S
δS = Jaδνa and δνa = νa

I δW I , a = 1, ..., r, (73)

with δW I(t1) = δW I(t2) = 0, I = 1, ..., R.

The variational formulations (Equations (71)–(73)) yield the evolution equations for chemical reactions

ṄI = Jaνa
I , I = 1, ..., R and TṠ = JaA

a,

together with the conditions in Equation (70).
Chemical reactions can be included in of all the thermodynamic systems considered previously by combining

the variational formulations given by Equations (71)–(73) for chemical reactions with the variational formulations

given by Equations (29)–(31), (51)–(53), and (64)–(66).

Remark 5 (General structure of the variational formulation for open systems). As opposed to the

adiabatically closed case, the phenomenological and variational constraints depend explicitly on time t ∈ R for

the case of open systems. In addition, the phenomenological constraint involves an affine term that depends

only on the properties at the ports. From a general point of view, letting Q be the configuration manifold,
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these constraints are defined by the maps Aα : R× TQ → T∗Q, A(t, x, v) ∈ T∗
xQ, with Aα(t, x, v) ∈ T∗

xQ,

and Bα : R× TQ → R, α = 1, ..., k, where t ∈ R and (x, v) ∈ TQ.

Given a time-dependent Lagrangian L : R× TQ → R and an external force F ext : R× TQ → T∗Q,

the variational formulations in Equations (57)–(59) are extended as follows.

δ
∫ t2

t1

L(t, x(t), ẋ(t))dt +
∫ t2

t1

〈
F ext(t, x(t), ẋ(t)), δx(t)

〉
dt = 0, (74)

where the curve x(t) satisfies the phenomenological constraint

Aα(t, x, ẋ)·ẋ + Bα(t, x, ẋ) = 0, for α = 1, ..., k. (75)

and for variations δx subject to the variational constraint

Aα(t, x, ẋ)·δx = 0, for α = 1, ..., k. (76)

with δx(t1) = δx(t2) = 0.

This yields the system of equations







d

dt

∂L

∂ẋ
−

∂L

∂x
−F ext = λα Aα(t, x, ẋ)

Aα(t, x, ẋ)·ẋ + Bα(t, x, ẋ) = 0, α = 1, ..., k.
(77)

The variational formulation for open systems falls into this category by appropriately choosing x and L.

For instance, for Equations (64)–(66), one has x = (q, S, N, W, Γ, Σ), and L is the integrand in Equation (64).
Note that in Equation (74), we chose the Lagrangian to be time-dependent for the sake of generality. In fact, all the

variational formulations for thermodynamics presented above generalize easily to time-dependent Lagrangians.

We refer to [3] for a full treatment.

The energy defined by E(t, x, v) =
〈

∂L
∂v , v

〉

−L(t, x, v) satisfies the energy balance equation

d

dt
E =

〈
F ext, ẋ

〉
− λαBα −

∂L

∂t
. (78)

In the application to open thermodynamic systems, the first term is identified with Pext
W , the second term is

identified with Pext
H+M, while the third term is due to the explicit dependence of the Lagrangian on the time.

4. Variational Formulation for Continuum Thermodynamic Systems

In this section, we extend Hamilton’s principle of continuum mechanics (12) to nonequilibrium
continuum thermodynamics, in the same way as Hamilton’s principle of classical mechanics
(Equation (2)) was extended to the finite-dimensional case of discrete thermodynamic systems in
Section 3.

We consider a multicomponent compressible fluid subject to the irreversible processes of viscosity,
heat conduction, and diffusion. In presence of irreversible processes, we impose no-slip boundary
conditions, hence, the configuration manifold for the fluid motion is the manifold Q = Diff0(D) of
diffeomorphisms that keep the boundary ∂D pointwise fixed.

We assume that the fluid has P components with mass densities ̺A(t, X), A = 1, ..., P in the
material description, and we denote by S(t, X) the entropy density in the material description.
The motion of the multicomponent fluid is given as before by a curve of diffeomorphisms
ϕt ∈ Diff0(D), but now ϕ̇t is interpreted as the barycentric material velocity of the multicomponent
fluid. The Lagrangian of the multicomponent fluid with irreversible processes is

L : T Diff0(D)×F (D)×F (D)P → R, (ϕ, ϕ̇, S, ̺1, ..., ̺P) 7→ L(ϕ, ϕ̇, S, ̺1, ..., ̺P),
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where F (D) denotes a space of functions on D and is given by

L(ϕ, ϕ̇, S, ̺1, ..., ̺P) = K(ϕ, ϕ̇, ̺1, ..., ̺P)− U(ϕ, S, ̺1, ..., ̺P)

=
∫

D

[
1
2

̺(X)|ϕ̇(X)|2 − E
(
̺1(X), ..., ̺P(X), S(X),∇ϕ(X)

)
]

d3X.
(79)

The first term is the total kinetic energy of the fluid, where ̺ := ∑
P
A=1 ̺A is the total mass density.

The second term is minus the total internal energy of the fluid, where E is a general expression for
the internal energy density written in terms of ̺A(X), S(X), and the deformation gradient ∇ϕ(X).
As in Equation (16), E satisfies the material covariance assumption and depends on the deformation
gradient only through the Jacobian Jϕ. As in Equation (18), there is a function ǫ, the internal energy
density in the spatial representation, such that

E
(
̺1, ..., ̺P,∇ϕ)

)
= ϕ∗

[
ǫ(ρ1, ..., ρP, s)

]
, for ρA = ϕ∗̺A, s = ϕ∗S. (80)

In the spatial description, the Lagrangian Equation (79) reads as

ℓ(v, s, ρ1, ..., ρP) =
∫

D

[
1
2

ρ|v|2 − ε(ρ1, ..., ρP, s)

]

d3x.

Note that in absence of irreversible process, the Lagrangian (79) would just be defined on the
tangent bundle T Diff(D) with ̺A = ̺refA, A = 1, ..., P and S = Sref seen as fixed parameters, exactly as
in Equation (15) for the single-component case.

Remark 6 (Material vs spatial variational principle). As we present below, the variational formulation for

continuum thermodynamical systems in the material description is the natural continuum (infinite-dimensional)

version of that of discrete (finite-dimensional) thermodynamical systems described in Section 3. This is analogous

to the conservative reversible case recalled earlier, namely, the Hamilton principle (Equation (12)); associated

with the material description of continuum systems is the natural continuum version of the classical Hamilton

principle Equation (2). This is why we first consider below in Section 4.1 the variational formulation of

continuum systems in the material description and deduce from it the variational formulation in the spatial

description later in Section 4.2. The latter is more involved since it contains additional constraints, as we have

seen in the conservative reversible case in Section 2.3.

4.1. Variational Formulation in the Lagrangian Description

The variational formulation of a multicomponent fluid subject to the irreversible processes of
viscosity, heat conduction, and diffusion is the continuum version of the variational formulations
(Equations (51)–(53)) for finite-dimensional thermodynamic systems with friction, heat, and mass
transfer. Analogous to the thermodynamic fluxes Ffr, JAB, J B→A are the viscous stress, the entropy
flux density, and the diffusive flux density given by Pfr, JS, JA in the material description. Total mass
conservation imposes the condition ∑

P
A=1 JA = 0.

We give below the variational formulation for a general Lagrangian with density L , i.e.,

L(ϕ, ϕ̇, S, ̺1, ..., ̺P) =
∫

D
L

(
ϕ, ϕ̇,∇ϕ, S, ̺1, ..., ̺P

)
d3X. (81)

The continuum version of the variational formulations (Equations (51)–(53)) that we propose are
the following.
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Find the curves ϕ(t), S(t), Γ(t), Σ(t), WA(t), ̺A(t) which are critical for the variational condition:

∫ T

0

∫

D

[

L
(

ϕ, ϕ̇,∇ϕ, S, ̺1, ..., ̺P

)
+ ẆA̺A + Γ̇(S − Σ)

]

d3Xdt = 0 (82)

subject to the phenomenological constraint

∂L

∂S
Σ̇ = −Pfr : ∇ϕ̇ + JS · ∇Γ̇ + JA · ∇ẆA (83)

and for variations subject to the variational constraint

∂L

∂S
δΣ = −Pfr : ∇δϕ + JS · ∇δΓ + JA · ∇δWA (84)

with δϕ(ti) = δΓ(ti) = δWA(ti) = 0, i = 1, 2, and with δϕ|∂D = 0.

Taking variations of the integral in Equation (82), integrating by parts, and using δϕ(ti) = δΓ(ti) =

δWA(ti) = 0, i = 1, 2, and δϕ|∂D = 0, it follows that

∫ t2

t1

∫

D

[
( ∂L

∂ϕa
δϕa −

∂

∂t

∂L

∂ϕ̇a
−

∂

∂A

∂L

∂ϕa
,A

)

δϕa +
∂L

∂S
δS +

( ∂L

∂̺A
+ ẆA

)

δ̺A

− ˙̺AδWA − (Ṡ − Σ̇)δΓ + Γ̇(δS − δΣ)

]

d3Xdt = 0.

Using the variational constraint (Equation (84)), integrating by parts, and collecting the terms
proportional to δϕ, δΓ, δS, δWA, and δ̺A, we get

δϕ :
d

dt

∂L

∂ϕ̇
+ DIV

( ∂L

∂∇ϕ
+ Γ̇

∂L

∂S

−1

Pfr
)

−
∂L

∂ϕ
= 0

δΓ : Ṡ = DIV
(

Γ̇
∂L

∂S

−1

JS

)

+ Σ̇, δS : Γ̇ = −
∂L

∂S
,

δWA : ˙̺ A = DIV
(

Γ̇
∂L

∂S

−1

JA

)

, δ̺A : ẆA = −
∂L

∂̺A
,

(85)

together with the boundary conditions

∫

∂D
PfrB

a NBδϕadS = 0,
∫

∂D
JS · NδΓdS = 0,

∫

∂D
JA · NδWAdS = 0,

where N is the outward-pointing unit normal vector field to ∂D. The first boundary term vanishes
since δϕ|∂D = 0 from the no-slip boundary condition. The second and third conditions give

JS · N = 0 and JA · N = 0, A = 1, ..., P, on ∂D,

i.e., the fluid is adiabatically closed.
From the third and fifth conditions in Equation (85), we have Γ̇ = − ∂L

∂S = T, the temperature
in the material representation, and ẆA = − ∂L

∂̺A
= ΥA, a generalization of the chemical potential

of component A in the material representation. The second equation in Equation (85) thus reads as
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Ṡ + DIV JS = Σ̇ and attributes to Σ the meaning of entropy generation rate density. From the first and
fourth equation and the constraint, we get the system







d

dt

∂L

∂ϕ̇
+ DIV

( ∂L

∂∇ϕ
− Pfr

)

−
∂L

∂ϕ
= 0

˙̺A + DIV JA = 0, A = 1, ..., P

T(Ṡ + DIV JS) = Pfr : ∇ϕ̇ − JS · ∇T− JA · ∇ΥA,

(86)

for the fields ϕ(t, X), ̺A(t, X), and S(t, X). The parameterization of the thermodynamic fluxes Pfr, JS,
JA in terms of the thermodynamic forces are discussed in the Eulerian description below.

4.2. Variational Formulation in the Eulerian Description

While the variational formulation is simpler in the material description, the resulting equations
of motion are usually written and studied in the spatial description. It is therefore useful to have
an Eulerian version of the variational formulations (Equations (82)–(84)). In order to obtain such
a variational formulation, all the variables used in Equations (82)–(84) must be converted to their
Eulerian analogue. We have already seen the relations s = ϕ∗S and ρA = ϕ∗̺A between the Eulerian
and Lagrangian mass densities and entropy densities, where the pull-back notation is defined in
Equation (17). The Eulerian quantities associated with Σ, Γ, and WA are defined as follows

σ = ϕ∗Σ, γ = Γ ◦ ϕ−1, wA = WA ◦ ϕ−1.

The Eulerian version of the Piola–Kirchhoff viscous stress tensor Pfr is the viscous stress tensor
σfr obtained via the Piola transform (see [2,48]).

From the material covariance assumption, the Lagrangian (81) can be rewritten exclusively in
terms of spatial variables as

ℓ
(
v, s, ρ1, ..., ρP

)
=

∫

D
L
(
v, s, ρ1, ..., ρP

)
d3x,

where the Lagrangian density is defined by

L
(
v, s, ρ1, ..., ρP

)
= ϕ∗ [L (v ◦ ϕ, ϕ∗ρ1, ..., ϕ∗ρP, ϕ∗s)] .

Using all the preceding relations between Lagrangian and Eulerian variables, we can rewrite the
variational formulations Equations (82)–(84) in the following purely Eulerian form.

Find the curves v(t), s(t), γ(t), σ(t), wA(t), ρA(t) which are critical for the variational condition

∫ T

0

∫

D

[

L
(
v, s, ρ1, ..., ρP

)
+ Dtw

AρA + Dtγ(s − σ)
]

d3xdt = 0 (87)

subject to the phenomenological constraint

∂L

∂s
D̄tσ = −σfr : ∇v + jS · ∇Dtγ + jA · ∇Dtw

A (88)

and for variations δv = ∂tζ + v · ∇ζ − ζ · ∇v, δρA, δwA, δs, δσ, and δγ subject to the
variational constraint

∂L

∂s
D̄δσ = −σfr : ∇ζ + jS · ∇Dδγ + jA · ∇DδwA (89)
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with ζ(ti) = δγ(ti) = δwA(ti) = 0, i = 1, 2, and with ζ|∂D = 0.

In Equations (87)–(89), we use the notations Dt f = ∂t f + v · ∇ f , D̄t f = ∂t f + div( f v),
Dδ f = δ f + ζ · ∇ f , and D̄δ f = δ f + div( f ζ) for the Lagrangian time derivatives and variations
of functions and densities.

The variational formulations (Equations (87)–(89)) yield the system







(∂t + £v)
∂L

∂v
= ρA∇

∂L

∂ρA
+ s∇

∂L

∂s
+ div σfr

D̄tρA + div jA = 0, A = 1, ..., P

∂L

∂s
(D̄ts + div js) = −σfr :∇v − js ·∇

∂L

∂s
− jA ·∇

∂L

∂ρA
,

(90)

together with the conditions

D̄tσ = D̄ts + div js, Dtγ = −
∂L

∂s
, DtwA = −

∂L

∂ρA
.

In Equation (90), £v denotes the Lie derivative defined as £vm = v · ∇m +∇vT · m + m div v.
We refer to [2] for a detailed derivation of these equations from the variational formulations
(Equations (87)–(89)).

The multicomponent Navier–Stokes–Fourier equations. For the Lagrangian

ℓ
(
v, s, ρ1, ..., ρP

)
=

∫

D

[
1
2

ρ|v|2 − ǫ(ρ1, ..., ρP, s
)
]

d3x

we get






ρ(∂tv + v · ∇v) = −∇p + div σfr

D̄tρA + div jA = 0, A = 1, ..., P

T(D̄ts + div js) = σfr : ∇v − js · ∇T − jA · ∇µA

(91)

with µA = ∂ǫ
∂ρA

, T = ∂ǫ
∂s , and p = µAρA + Ts − ǫ.

The system of Equation (91) needs to be supplemented with phenomenological expressions for
the thermodynamic fluxes σfr, jS, jA in terms of the thermodynamic affinities Def v, ∇T, ∇µA compatible
with the second law. It is empirically accepted that for a large class of irreversible processes and
under a wide range of experimental conditions, the thermodynamic fluxes Jα are linear functions of
the thermodynamic affinities Xα, i.e., Jα = LαβXβ, where the transport coefficients Lαβ(...) are state
functions that must be determined by experiments or, if possible, by kinetic theory. Besides defining
a positive quadratic form, the coefficients Lαβ(...) must also satisfy Onsager’s reciprocal relations [8]
due to the microscopic time reversibility and the Curie principle associated with material invariance
(see, for instance, [67–70]). In the case of the multicomponent fluid, writing the traceless part of σfr

and Def v as (σfr)(0) = σfr − 1
3 (Tr σfr)δ and (Def v)(0) = Def v − 1

3 (div v)δ, we have the following
phenomenological linear relations

−

[

jS

jA

]

=

[

LSS LSB

LAS LAB

] [

∇T

∇µB

]

,
1
3

Tr σfr = ζ div v, (σfr)(0) = 2µ(Def v)(0),

where all the coefficients may depend on (s, ρ1, ..., ρP). The first linear relation describes the vectorial
phenomena of heat conduction (Fourier law), diffusion (Fick law), and their cross-effects (Soret and
Dufour effects); the second relation describes the scalar processes of bulk viscosity with coefficient
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ζ ≥ 0, and the third relation is the tensorial process of shear viscosity with coefficient µ ≥ 0.
The associated friction stress reads

σfr = 2µ Def v +
(

ζ −
2
3

µ
)

(div v)δ.

All these phenomenological considerations take place with the phenomenological constraint
(Equation (88)) and the associated variational constraint (Equation (89)), but they are not involved in
the variational condition (87). Note that our variational formulation holds independently on the linear
character of the phenomenological laws.

Remark 7. For simplicity, we chose the fluid domain D as a subset of R3 endowed with the Euclidean metric.

More generally, the variational formulation can be intrinsically written on Riemannian manifolds (see [2]).

Making the dependence of the Riemannian metric explicit, even if it is given by the standard Euclidean metric,

is important for the study of the covariance properties [49].

5. Concluding Remarks

In this paper, we survey our recent developments on the Lagrangian variational formulation
for nonequilibrium thermodynamics developed in [1–3], which is a natural extension of Hamilton’s
principle in mechanics to include irreversible processes.

Before going into details, we briefly review Hamilton’s principle as it applies to
(finite-dimensional) discrete systems in classical mechanics, as well as to (infinite-dimensional)
continuum systems. Then, in order to illustrate our variational formulation for nonequilibrium
thermodynamics, we first start with the finite dimensional case of adiabatically closed systems together
with representative examples, such as a piston containing an ideal gas, a system with a chemical species
experiencing diffusion between several compartments, an adiabatic piston with two cylinders, and a
system with a chemical species experiencing diffusion and heat conduction between two compartments.
Then, we extend the variational formulation to open finite-dimensional systems that can exchange
heat and matter with the exterior. This case is illustrated with the help of a piston device with ports
and heat sources. We also demonstrate how chemical reactions can be naturally incorporated into our
variational formulation.

Second, we illustrate the variational formulation with the infinite-dimensional case of
continuum systems by focusing on a compressible fluid with the irreversible processes due
to viscosity, heat conduction, and diffusion. The formulation is first given in the Lagrangian
(or material) description because it is in this description that the variational formulation is a natural
continuum extension of the one for discrete systems. The variational formulation in the Eulerian
(or spatial) description is then deduced by Lagrangian reduction and yields the multicomponent
Navier–Stokes–Fourier equations.

One of the key issue of our variational formulation is the introduction and the use of the
concept of thermodynamic displacement, whose time derivative corresponds to the affinity of the
process. Thermodynamic displacement allows for systematically developing the variational constraints
associated with the nonlinear phenomenological constraints. The variational formulations presented
in this paper use the entropy as an independent variable, but a variational approach based on the
temperature can be also developed by considering free energy Lagrangians (see [4]).

Further Developments

Associated with our variational formulation of nonequilibrium thermodynamics, there are the
following interesting and important topics, which we have not described here due to lack of space,
but they are quite relevant to the variational formulation of nonequilibrium thermodynamics, reviewed
in this paper.
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• Dirac structures and Dirac systems: It is well known that when the Lagrangian is regular,
the equations of classical mechanics can be transformed into the setting of Hamiltonian systems.
The underlying geometric object for this formulation is the canonical symplectic form on the phase
space T∗Q of the configuration manifold. When irreversible processes are included, this geometric
formulation is lost because of the degeneracy of the Lagrangians and the presence of the nonlinear
nonholonomic constraints. Hence, one may ask: what is the appropriate geometric object that
generalizes the canonical symplectic form in the formulation of thermodynamics? In [64,71],
it was shown that the evolution equations for both adiabatically closed and open systems can
be geometrically formulated in terms of various classes of Dirac structures induced by the
phenomenological constraint and from the canonical symplectic form on T∗Q or on T∗(Q ×R).

• Reduction by symmetry: When symmetries are available, reduction processes can be applied to
the variational formulation of thermodynamics, thereby extending the process of Lagrangian
reduction from classical mechanics to thermodynamics. This is illustrated in Section 4.2 for
the Navier–Stokes–Fourier equation, but it can be carried out in general for all the variational
formulations presented in this paper. For instance, we refer to [72] for the case of simple
thermodynamic systems on Lie groups with symmetries.

• Variational discretization: Associated with the variational formulation in this paper, there exist
variational integrators for the nonequilibrium thermodynamics of simple adiabatically closed
systems (see [72,73]). These integrators are structure-preserving numerical schemes that are
obtained by a discretization of the variational formulation. The structure-preserving property
of the flow of such systems is an extension of the symplectic property of the flow of variational
integrators for Lagrangian mechanics.

• Modeling of thermodynamically consistent models: The variational formulation for thermodynamics
can be also used to derive new models, which are automatically thermodynamically consistent.
We refer to [74] for an application of the variational formulation to atmospheric thermodynamics
and its pseudo-incompressible approximation.
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