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ABSTRACT

Reinforcement learning is a promising framework for solving control problems,
but its use in practical situations is hampered by the fact that reward functions are
often difficult to engineer. Specifying goals and tasks for autonomous machines,
such as robots, is a significant challenge: conventionally, reward functions and
goal states have been used to communicate objectives. But people can communi-
cate objectives to each other simply by describing or demonstrating them. How
can we build learning algorithms that will allow us to tell machines what we want
them to do? In this work, we investigate the problem of grounding language com-
mands as reward functions using inverse reinforcement learning, and argue that
language-conditioned rewards are more transferable than language-conditioned
policies to new environments. We propose language-conditioned reward learning
(LC-RL), which grounds language commands as a reward function represented by
a deep neural network. We demonstrate that our model learns rewards that trans-
fer to novel tasks and environments on realistic, high-dimensional visual environ-
ments with natural language commands, whereas directly learning a language-
conditioned policy leads to poor performance.

1 INTRODUCTION

Figure 1: A task where an agent (green triangle)
must execute the command “go to the fruit bowl.”
This is a simple example where the reward func-
tion is easier to specify than the policy.

While reinforcement learning provides a pow-
erful and flexible framework for describing and
solving control tasks, it requires the practi-
tioner to specify objectives in terms of reward
functions. Engineering reward functions is of-
ten done by experienced practitioners and re-
searchers, and even then can pose a significant
challenge, such as when working with complex
image-based observations. While researchers
have investigated alternative means of specify-
ing objectives, such as learning from demon-
stration (Argall et al., 2009), or through binary
preferences (Christiano et al., 2017), language
is often a more natural and desirable way for
humans to communicate goals.

A common approach to building natural lan-
guage interfaces for reinforcement learning
agents is to build language-conditioned policies
that directly map observations and language commands to a sequence of actions that perform the
desired task. However, this requires the policy to solve two challenging problems together: un-
derstanding how to plan and solve tasks in the physical world, and understanding the language
command itself. The trained policy must simultaneously interpret a command and plan through
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possibly complicated environment dynamics. The performance of the system then hinges entirely
on its ability to generalize to new environments - if either the language interpretation or the phys-
ical control fail to generalize, the entire system will fail. We can recognize instead that the role of
language in such a system is to communicate the goal, and rather than mapping language directly to
policies, we propose to learn how to convert language-defined goals into reward functions. In this
manner, the agent can learn how to plan and perform the task on its own via reinforcement learning,
directly interacting with the environment, without relying on zero-shot transfer of policies. A simple
example is shown in Figure 1, where an agent is tasked with navigating through a house. If an agent
is commanded “go to the fruit bowl”, a valid reward function could simply be a fruit bowl detector
from first-person views of the agent. However, if we were to learn a mapping from language to
actions, given the same goal description, the model would need to generate a different plan for each
house.

In this work, we investigate the feasibility of grounding free-form natural language commands as re-
ward functions using inverse reinforcement learning (IRL). Learning language-conditioned rewards
poses unique computational problems. IRL methods generally require solving a reinforcement learn-
ing problem as an inner-loop (Ziebart, 2010), or rely on potentially unstable adversarial optimization
procedures (Finn et al., 2016; Fu et al., 2018). This is compounded by the fact that we wish to train
our model across multiple tasks, meaning the IRL problem itself is an inner-loop. In order to isolate
the language-learning problem from the difficulties in solving reinforcement learning and adversarial
learning problems, we base our method on an exact MaxEnt IRL (Ziebart, 2010) procedure, which
requires full knowledge of environment dynamics to train a language-conditioned reward function
represented by a deep neural network. While using exact IRL procedures may seem limiting, in
many cases (such as indoor robotic navigation) full environment dynamics are available, and this
formulation allows us to remove the difficulty of using RL from the training procedure. The crucial
insight is that we can use dynamic programming methods during training to learn a reward function
that maps from observations, but we do not need knowledge of dynamics to use the reward function,
meaning during test time we can evaluate using a reinforcement learning agent without knowledge
of the underlying environment dynamics. We evaluate our method on a dataset of realistic indoor
house navigation and pick-and-place tasks using the SUNCG dataset, with natural language com-
mands. We demonstrate that our approach generalizes not only to novel tasks, but also to entirely
new scenes, while directly learning a language-conditioned policy leads to poor performance and
fails to generalize.

2 RELATED WORK

A popular class of approaches to language grounding in reinforcement learning is to directly train
a policy that consumes language as an input. Several works adopt a behavioral cloning approach,
where the model is trained using supervised learning with language-action sequences pairs (Ander-
son et al., 2018; Mei et al., 2016; Sung et al., 2015). A second approach is to forego demonstrations
but instead reward an agent whenever the desired task is completed (Shah et al., 2018; Misra et al.,
2017; Hermann et al., 2017; Branavan et al., 2009). This approach requires reward functions (the
task completion detector) to be hand-designed for the training tasks considered. Another related
approach is semantic parsing, which has also been used to convert language into an executable form
that corresponds to actions within an environment (Forbes et al., 2015; Misra et al., 2014; Tellex
et al., 2011). In a related task to instruction following, Das et al. (2018) consider an embodied
question-answering task where an agent must produce an answer to a question, where the relevant
information lies within the environment. They adopt a hybrid approach, where they pretrain with
supervised learning but also give the agent reward for completing intermediate tasks. Overall, our
experiments show that policy-based approaches have worse generalization performance to new en-
vironments, because the policy must rely on zero-shot generalization at test time as we show in
Section 6.3. While in this paper we argue for the performance benefits of a reward-based approach,
a reason one may want to adopt a policy-based approach over a reward-based one is if one cannot
run RL to train a new policy in a new environment, such as for time or safety reasons.

A second approach to the language grounding problem is to learn a mapping from language to reward
functions. There are several other works that apply IRL or IRL-like procedures to the problem
of language grounding. Perhaps most closely related to our work is MacGlashan et al. (2015),
which also aims to learn a language-conditioned reward function via IRL. However, this method
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requires an extensively hand-designed, symbolic reward function class, whereas we use generic,
differentiable function approximators that can handle arbitrary observations, including raw images.
Bahdanau et al. (2018); Tung et al. (2018) also learn language-conditioned reward functions, but do
not perform IRL, meaning that the objective does not correspond to matching the expert’s trajectory
distribution. Tung et al. (2018) train a task-completion classifier, but do not evaluate their reward on
control problems. The strategy they use is similar to directly regressing onto a ground-truth reward
function, which we include a comparison to in Section 6 to as an oracle baseline. Bahdanau et al.
(2018) adopt an adversarial approach similar to GAIL (Ho & Ermon, 2016), and use the learned
discriminator as the reward function. While this produces a reward function, it does not provide
any guarantees that the resulting reward function can be reoptimized in new environments to yield
behavior similar to the expert. We believe our work is the first to apply language-conditioned inverse
reinforcement learning to environments with image observations and deep neural networks, and we
show that our rewards generalize to novel tasks and environments.

3 BACKGROUND

We build off of the MaxEnt IRL model (Ziebart et al., 2008), which considers an entropy-regularized
Markov decision process (MDP), defined by the tuple (S,A, T , r, γ, ρ0). S,A are the state and
action spaces respectively and γ ∈ (0, 1) is the discount factor. T (s′|s, a) represents the transition
distribution or dynamics. We additionally consider partially-observed environments, where each
state is associated with an observation within an observations space o ∈ O.

The goal of ”forward” reinforcement learning is to find the optimal policy π∗. Let r(τ) =∑T

t=0
γtr(st, at) denote the returns of a trajectory, where τ denotes a sequence of states and actions

(s0, a0, ...sT , aT ). The MaxEnt RL objective is then to find π∗ = argmaxπ Eτ∼π[r(τ) +H(τ)].

Inverse reinforcement learning (IRL) seeks to infer the reward function r(s, a) given a set of expert
demonstrations D = {τ1, ..., τN},. In IRL, we assume the demonstrations are drawn from an optimal
policy π∗(a|s). We can interpret the IRL problem as solving the maximum likelihood problem:

max
θ

Eτ∼D [log pθ(τ)] , (1)

In the MaxEnt IRL framework, optimal trajectories are observed with probabilities proportional to
the exponentiated returns, meaning p(τ) ∝ exp{r(τ)} (Ziebart et al., 2008). Thus, learning a reward
function rθ(τ) is equivalent to fitting an energy-based model pθ(τ) ∝ exp{rθ(τ)} to the maximum
likelihood objective in Eqn 1. The gradient to update the reward function is (Ziebart, 2010):

∇θE[log pθ(τ)] =
∑

s,a

(ρD(s, a)− ρ∗θ(s, a))∇θrθ(s, a) , (2)

where ρD(s, a) represents the state-action marginal of the demonstrations, and ρ∗θ(s, a) represents
the state-action marginal of the optimal policy under reward rθ(s, a).

4 MULTI-TASK IRL

A unique challenge of the language-conditioned IRL problem, compared to standard IRL, is that
the goal is to learn a reward function that generalizes across multiple tasks. While standard IRL
methods are typically trained and evaluated on the same task, we want our language-conditioned
reward function to produce correct behavior when presented with new tasks. Several previous works
consider a multi-task scenario, such as in a Bayesian or meta-learning setting (Li & Burdick, 2017;
Dimitrakakis & Rothkopf, 2012; Choi & Kim, 2012). We adopt a similar approach adapted for
the language-IRL problem, and formalize the notion of a task, denoted by ξ, as an MDP, where
individual tasks may not share the same state spaces, dynamics or reward functions. Each task is
associated with a context cξ which is a unique identifier (i.e. an indicator vector) for that task. Thus,
we wish to optimize the following multi-task objective, where τξ denotes expert demonstrations for
that task:

max
θ

Eξ[Eτξ [log pθ(τξ, cξ)]] (3)
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Algorithm 1 Language-Conditioned Reward Learning (LC-RL)

1: Obtain expert demonstrations and language describing the goal.
2: Initialize reward function rθ.
3: for step t in {1, . . . , N} do
4: Sample task ξ, demonstrations dξ , and language Lξ.
5: Compute optimal q∗(s, a) using q-iteration and ρ∗(s, a) using the forward algorithm.
6: Update reward rθ with the gradient (ρdξ(s, a)− ρ∗(s, a))∇rθ(o, a,Lξ)
7: end for

In order to optimize this objective, we first require that all tasks share the same observation space
and action space, and the reward to be a function of the observation, rather than of the state. For
example, in our experiments, all observations are in the form of 32x24 images taken from simulated
houses, but the state space for each house is allowed to differ (i.e., the houses have different layouts).
This means the same reward can be used across all MDPs even though the state spaces differ.

Second, we share the reward function across all tasks, but substitute a language command Lξ as a
proxy for the context cξ, resulting in a model pθ(τξ,Lξ) that takes as input language, states, and
actions. For computational efficiency we run stochastic gradient descent on the objective in Eqn. 3
by sampling over the set of environments on each iteration.

5 LANGUAGE-CONDITIONED REWARD LEARNING (LC-RL)

We learn language-conditioned reward functions using maximum causal entropy IRL, adapted for a
multi-task setting and rewards represented by language-conditioned convolutional neural networks.
While during training we use dynamic programming methods that require dynamics knowledge,
we do not need knowledge of dynamics to evaluate the reward function. Thus, at test time we can
use standard model-free RL algorithms to learn the task from the inferred reward function in new
environments. Our algorithm is briefly summarized in Algorithm 1.

5.1 COMPUTING EXACT IRL GRADIENT UPDATES

In order to take gradient steps on the objective of Eqn. 3, we update our reward function in terms
of the Maximum Entropy IRL gradient (Ziebart, 2010) according to Eqn. 2. The stochastic gradient
update (for a single task ξ) adapted to our case is:

∇θEτ [log pθ(τξ,Lξ)] =
∑

s,a

(ρd(s, a)− ρ∗θ(s, a))∇θrθ(o(s), a,Lξ)

Where o(s) denotes the observation for state s. Note that during training we need access to the
ground truth states s. While the update depends on the underlying state, the reward itself is only
a function of the observation, the action, and the language. This enables us to evaluate the reward
without knowing the underlying state space and dynamics of the environment. While requiring
dynamics knowledge during training may seem limiting, in practice many environments we may
wish to train a robot in can easily be mapped. This training strategy is analogous to training a robot
in only known environments such as a laboratory, but the resulting reward can be used in unknown
environments.

In order to compute ρ∗θ(s, a), one normally has to first compute the optimal policy with respect to
reward rθ(o, a) using reinforcement learning, and then compute the occupancy measure using the
forward algorithm for Markov chains to compute the state visitation distributions at each time-step.
Because this embeds a difficult RL optimization problem within nested inner-loops, this quickly
becomes computationally intractable. Thus, we train in tabular environments with known dynamics,
where we can compute optimal policies exactly using Q-iteration. However, we emphasize that this
is only a training time restriction, and knowledge of dynamics is not required to evaluate the rewards.
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Figure 2: Our reward function architecture. Our network receives as input a panoramic semantic
image (4 views) and a language command represented as a sequence of one-hot word vectors, and
outputs a scalar reward.

5.2 ARCHITECTURE

Our network architecture is shown in Figure 2. The network has two main modalities of input: a
variable-length language input represented by a sequence of one-hot vectors (one vector for each
tokenized word), and a panoramic image observation.

The language embedding is formed by processing the language input sequence through an LSTM
network, and the final time-step of the topmost layer is used as a fixed-dimensional embedding
elanguage of the input command.

The agent receives image observations in the form of four 32x24 image observations, one for each
cardinal direction view (N, S, E, W). The convolutional neural network (CNN) consists of a sequence
of convolutional and max pool layers, with the final operation being a channel-wise global pooling
operation that produces an image embedding of the same length as the language embedding. Each
image is passed through an identical CNN with shared weights, and the outputs are summed together
to form the image embedding. That is, eimage = CNN(imgN ) + CNN(imgS) + CNN(imgE) +
CNN(imgW ).

Finally, these two embeddings are element-wise multiplied and passed through a fully-connected
network (FC) to produce a reward output. Letting ⊙ denote elementwise multiplication, we have
r = FC(eimage ⊙ elanguage).

We found that the max global-pooling architecture in the CNN was able to select out objects from
a scene and allow the language embedding to modulate which features to attend to. We selected
our architecture via a hyper-parameter search, and found that the choice of using an element-wise
multiplication versus a concatenation for combining embeddings had no appreciable performance
difference, but a global pooling architecture performed significantly better than using a fully con-
nected layer at the end of the CNN.

6 EVALUATION

We evaluate our method within a collection of simulated indoor house environments, built on top of
the SUNCG (Song et al., 2017) dataset. The SUNCG dataset provides a large repository of complex
and realistic 3D environments which we find very suitable for our goals. An example task from our
environment is shown in Figures 3 and 4. An example of a successful execution of a task is showin
in Fig. 5.

6.1 ENVIRONMENT

We consider two typical kinds of tasks that an indoor robot may wish to perform:

• Navigation (NAV): In the navigation task, the agent is given a location which corresponds
to a room or object, and the agent must navigate through the house to reach the target
location. For example, in Fig. 3, the target could be ”cup” or ”laptop” or ”living room”.
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Figure 3: An example task. The green segment
corresponds to the solution of a NAV task, ”go
to the cup”, where the cup is circled in green.
The green plus blue segments represents a path
for the PICK task, ”move the cup to the bed”,
where the bed is circled in blue.

Figure 4: Example first-person RGB (left) and
semantic (right) images from the bedroom in-
side the house depicted in Figure 3. We only
use the semantic labels as input to our model.

Figure 5: Top row: First-person view of an agent executing the task: “move vase to living room”.
The vase is circled in green in the 3rd image. Bottom row: A bird’s eye view of the initial (left) and
final (right) positions of the agent (green triangle) and the vase (green outline).

• Pick-and-place (PICK): In the pick and place task, the agent must move an object from
one location to another. For example, in Fig. 1 the task could be to move the cup from to
the sink to the kitchen table.

Each environment corresponds to one 3D scene, which is discretized into a grid to form a tabular
environment where the grid coordinates plus agent orientation (N, S, E, W) correspond to the state
of the agent. The agent receives observations with two components: one is a free-form language
command, and one is a first-person panoramic image of the environment. Because the agent can
move objects without directly looking at them, the panoramic view gives the agent a full view of its
surroundings. The panoramic image is formed from 4 semantic image observations, one for each
orientation of the agent. Each semantic image observation is 32x32 pixels and contains 61 channels,
one per semantic image class. Each agent is equipped with 4 actions: step forward one grid tile, turn
left or right, or interact with an object.

We generate language commands based on a preset grammar, and using names of objects and loca-
tions associated with the task. These are of the form ”go to X” for NAV tasks, or ”move X to Y” for
PICK tasks, where X and Y stand for names of locations and objects within the environment. We
explicitly do not use step-by-step instruction language such as ”turn left, walk down the hallway, go
through the door”, as these commands remove the planning aspect of the problem and tell the agent
directly which actions to take in order to solve the problem.

The interact action only has meaning within the PICK task. Executing this action will either pick
up an object if the agent is within a 1 meter of an object, or drop an object if the agent is currently
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holding an object. To limit the size of the state space, within a single task, there is only one object
an agent may interact with and two locations the object can be in. This setup only increases the size
of the state-space by a factor of 3. However, different objects may be placed in different locations
across environments, meaning the model still must learn to detect the object in the correct location
rather than memorizing the specific object and location associated with a single task.

6.2 EXPERIMENTAL PROCEDURE

In order to evaluate how well different methods generalize, we split our dataset of tasks into three
segments: a training set, and two test sets – “task” and “house”. The ”task” test set contains tasks
within the same houses as training, but requires the agent to interact with novel combinations of
objects and locations. The ”house” test set contains tasks on entirely new houses that were not in the
training set. The purpose of this split is to investigate varying degrees of generalization: the ”task”
test set requires the model to execute novel language commands, but using landmarks and objects
which were seen during training. The ”house” test set adds another layer of difficulty, requiring the
model to detect familiar objects situated in entirely new scenes.

In total, our dataset contains 1413 tasks (716 PICK, 697 NAV). Across all tasks, there are 14 objects,
and 76 different house layouts. There are 1004 tasks (71%) in the training set, 236 (17%) in the
”task” test set, and 173 (12%) in the ”house” test set.

We evaluate two methods for reward learning. LC-RL refers to the language-conditioned IRL
method outlined in Section 5, which takes as input demonstration and language pairs and learns
a shared reward function across all tasks. In particular, we use 10 demonstrations per task, sampled
from the computed optimal policy. To provide an upper bound for performance, we can also regress
directly onto the ground-truth rewards, a method we label as “Reward Regression”. While this is not
possible in a practical scenario, this evaluation serves to show oracle performance on our task. Note
that our method does not require access to ground-truth rewards, and only uses demonstrations.

Success rates for each reward-learning method are evaluated using two policy learning procedures.
Q-iteration (QI) computes the optimal policy exactly using dynamic programming, which we report
in Table 1. We also experiment with reoptimizing the learned reward using DQN (Mnih et al.,
2015), a sample-based RL method that does not require ground-truth knowledge of the environment
dynamics. We use the position, orientation, and whether an object is held as the observation (this is
identical to the state representation). This experiment represents the testing use-case where we can
evaluate the reward at test-time in novel, unmapped environments despite the fact that at training
time we require dynamics knowledge. However, because the probability that the random policy
receives rewards on our task is tiny, we found that epsilon-greedy exploration was not enough.
Thus, we also report results using a reward shaping term with a state-based potential equal to the
optimal value function (Ng et al., 1999). We note that this shaping term does require dynamics
knowledge compute, but we include this result to highlight the difficulty of the RL problem even if
reward learning is done properly.

We also compare against two baselines derived from GAIL (Ho & Ermon, 2016), using the learned
discriminator as the “reward” function. We first compare to AGILE (Bahdanau et al., 2018), which
modifies GAIL to use a goal-based discriminator and false negative filtering, using DQN as a policy
optimizer and ρ = 0.25. We found it difficult to learn rewards using a reinforcement learning-
based policy optimizer, and the model was only able to solve the simpler NAV environments. This
experiment emphasizes the gap between using a sampling-based solver and an exact solver during
the training of reward-based methods. To create a more fair comparison, we also compare against
GAIL using a dynamic programming solver (labeled GAIL-Exact), and we see that the performance
is comparable to LC-RL on training environments, but performs significantly worse on test envi-
ronments. These results are in line with our intuitions - GAIL and IRL are equivalent in training
scenarios (Ho & Ermon, 2016), but the discriminator of GAIL does not correspond to the true reward
function, and thus performs worse when evaluated in novel environments.

In order compare against a policy-learning approach, we compare against an optimal behavioral
cloning baseline. We train the optimal cloning baseline by computing the exact optimal policy using
Q-iteration, and perform supervised learning to regress directly on to the optimal action probabili-
ties. To make a fair comparison, we keep the policy architecture identical to the reward architecture,
except we add two additional inputs: the orientation indicator and and indicator on whether the ob-
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Table 1: Success rates (in percentages) across task categories. Each result is averaged over 3 seeds.
Test-Task refers to testing on novel tasks within the same houses as training, whereas Test-House
refers to testing novel tasks in novel houses. The AGILE method is described in (Bahdanau et al.,
2018)

Train Test-Task Test-House

PICK NAV Total PICK NAV Total PICK NAV Total

Optimal Policy Cloning 20.7 61.6 40.3 10.1 29.4 19.6 0.0 17.2 8.5

AGILE 0.0 40.9 18.0 0.0 34.1 16.8 0.0 30.6 15.1

GAIL-Exact 59.4 73.5 66.9 49.1 50.4 49.8 23.5 35.4 28.3

LC-RL (ours) 63.8 69.7 66.9 56.7 47.8 51.9 32.1 39.4 36.4

Reward Reg. (Oracle) 87.0 85.0 86.1 82.5 67.0 74.1 70.6 62.3 65.7

Table 2: Success rates (in percentages) on using DQN to re-optimize learned rewards. For reference,
we also include Q-iteration results (labeled QI) from Table 1 as an oracle comparison.

Shaping Train Test-Task Test-House

LC-RL (DQN)
Yes 12.9 14.1 14.9
No 8.0 7.7 8.0

LC-RL (QI) - 66.9 51.9 36.4

Reward Regression (DQN)
Yes 54.7 58.9 57.5
No 7.5 8.3 9.2

Reward Regression (QI) - 86.1 74.1 65.7

ject (during PICK tasks) is held by the agent or not. Each indicator is transformed by an embedding
lookup, and all embeddings are element-wise multiplied along with with the language and image
embeddings in the original architecture.

6.3 EXPERIMENTAL RESULTS

Our main experimental results on reward learning are reported in Table 1, and experiments in re-
optimizing the learned reward function are reported in Table 2. Qualitative results with diagrams
of learned reward functions can be found in Appendix B. Additional supplementary material can be
viewed at https://sites.google.com/view/language-irl, and experiment hyperpa-
rameters are detailed in Appendix A.

We found that both LC-RL and Reward Regression were able to learn reward functions which gener-
alize to both novel tasks and novel house layouts, and both achieve significant performance over the
policy-based approach. As expected, we found that Reward Regression has superior performance
when compared to LC-RL, due to the fact that it uses oracle ground-truth supervision.

We include examples of learned reward functions for both methods in Appendix B. We found that
a common error made by the learned rewards, aside from simply misidentifying objects and loca-
tions, was rewarding the agent for reaching the goal position without placing the object down on
PICK tasks. This is reflected in the results as the performance on PICK tasks is much lower than
that of NAV tasks. Additionally, there is some ambiguity in the language commands, as the same
environment may contain multiple copies of a single object or location, and we do not consider the
case when agents can ask for additional clarification (for example, there are 2 beds in Fig. 3).

We observed especially poor performance from the cloning baseline on both training as well as
testing environments, even though it was trained by directly regressing onto the optimal policy.
We suspect that it is significantly more difficult for the cloning baseline to learn across multiple
environments. Our language is high-level and only consists of descriptions of the goal task (such
as ”move the cup to the bathroom”) rather than step-by-step instructions used in other work such
as Mei et al. (2016) that allow the policy to follow a sequence of instructions. This makes the task
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much more difficult for a policy-learning agent as it needs to learn a mapping from language to
house layouts instead of blindly following the actions specified in the language command.

Regarding re-optimization of the learned rewards, we found that DQN with epsilon-greedy explo-
ration alone achieved poor performance compared to the exact solver and comparable performance
to the cloning baseline (however, note that our cloning baseline was regressing onto the exact opti-
mal actions). Adding a shaping term based on the value-function improves results, but computing
this shaping term requires ground-truth knowledge of the environment dynamics. We also note that
it appears that rewards learned through regression are easier to re-optimize than rewards learned
through IRL. One explanation for this is that IRL rewards appear more “noisy” (for example, see
reward plots in Appendix B, because small variations in the reward may not affect the trajectories
taken by the optimal policy if a large reward occurs at the goal position. However, while RL is train-
ing it may never see the large reward and thus is heavily influenced by small, spurious variations in
the reward. Nevertheless, with proper exploration methods, we believe that language-conditioned
reward learning provides a performant and conceptually simple method for grounding language as
concrete tasks an agent can perform within an interactive environment.

7 CONCLUSION

In this paper, we introduced LC-RL, an algorithm for scalable training of language-conditioned
reward functions represented by neural networks. Our method restricts training to tractable domains
with known dynamics, but learns a reward function which can be used with standard RL methods
in environments with unknown dynamics. We demonstrate that the reward-learning approach to
instruction following outperforms the policy-learning when evaluated in test environments, because
the reward-learning enables an agent to learn and interact within the test environment rather than
relying on zero-shot policy transfer.
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APPENDICES

A EXPERIMENT HYPERPARAMETERS

For our environment, we give the agent a time limit 30 time-steps to complete a task. For the purpose
of reward regression and generating demonstrations, the environment gives a reward of 10 when the
agent successfully completes the task. We sample demonstrations from the optimal policy using this
ground-truth reward. Our MDP solvers use a discount of γ = 0.99.

For our model, we used 10 demonstrations per environment to train IRL, and optimized with Adam
using a learning rate of 5 ∗ 10−4.

For our convolutional neural network, we used a 5x5 convolution with 16 filters, followed by a 3x3
convolution with 32 filters. The size of each embedding was 32. The final fully connected layer
had sizes of 32, and 1 (for the final output). We did not find significant performance differences
increasing the number of filters or embedding sizes.

We selected our architecture through a hyper-parameter sweep, with train and test accuracies pre-
sented below (averaged over 3 seeds each). The main architectures we swept through were whether
to produce the image embedding via a global pooling layer (labeled Pooling) versus a single fully
connected layer (labeled FC) versus FiLM (Perez et al., 2018), and whether to combine the language
and image embeddings using a point-wise multiplication or a pooling operation (labeled Mult) ver-
sus concatenation (labeled Concat).

Train Test-Task

Pooling, Mult 67.3 49.7

Pooling, Add 64.1 45.5

Pooling, Concat 65.8 48.5

FiLM, Mult 60.6 43.2

FiLM, Add 67.0 49.1

FiLM, Concat 63.2 44.6

FC, Mult 53.1 38.4

FC, Add 55.2 39.1

FC, Concat 48.1 35.2

We also conducted a single ablation study over the size of the image below, using the Pooling, Mult
architecture. We found that the impact of the image size between (32 by 24) and (64 by 64) was
negligible, so we selected the smaller image size for computational reasons.

Train Test-Task

32 by 24 67.3 49.7

64 by 64 70.6 51.1

B LEARNED REWARDS AND QUALITATIVE RESULTS

Below is an example of a learned reward (and the computed value function) from our IRL model.
The task presented here is to bring the fruit bowl (green arrow) to the bathroom (red arrow). In the
top row, we plot the reward function, and in the bottom row we plot the resulting value function.
The left column shows the rewards/values before the object (fruit bowl) is acquired, and the right
column shows the rewards/values after. Note that before the object is acquired, the value directs the
agent to the fruit bowl, and once the object is found, the value directs the agent to the bathroom.

In these figures, a blue shaded square means a high values and red means low. The green-outlined
tiles correspond to all locations within a 1-meter radius of the fruit bowl, or all tiles an agent can
pick up the bowl from. The red-outlined tile likewise represents all tiles within a 1-meter radius of
the drop-off location in the bathroom. The blue-outlined square represents the starting location of
the agent.
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Next, we show rewards learned by 3 different methods: inverse reinforcement learning (IRL), GAIL,
and reward regression. Again, low rewards are denoted by red squares and high rewards are denoted
by blue squares. For each task, we also include a birds-eye view of task, where the object is high-
lighted in green and the agent is denoted by a green triangle.

In general, we find that rewards learned by IRL and GAIL tend to be noisy and contain small arti-
facts. This is not unexpected, as both of these methods are sample-based and observe demonstrations
instead of ground-truth rewards as supervision. We believe that such artifacts are detrimental when
using RL to reoptimize the learned reward, as without adequate exploration RL cannot find the large
reward at the true goal state, and instead ends up finding local minima.

IRL GAIL-Exact Reward Regression

Figure 6: Learned rewards and a corresponding birds-eye view rollout for the task ”go to fruit bowl”.
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IRL GAIL-Exact Reward Regression

Figure 7: Learned rewards and a corresponding birds-eye view rollout for the task ”move pan to
living room”.

C OBSERVATION CACHING

The running time for dynamic programming algorithms for solving MDPs (such as q-iteration)
scales with the size of the state space, and in our environments we found reward evaluation becom-
ing a major bottleneck in runtime. One major optimization we make to our algorithm is to cache
computation on repeated observations. Computation-wise, the main bottleneck in Algorithm 1 is
evaluating and back-propagating the reward function at all states and actions, rather than Q-iteration
itself (even though it carries a cubic run-time dependency on the size of the state space). However,
in many environments this is extremely wasteful. For example, in the house depicted in Figure 3,
information about where the cup is located must be included in the state. However, if our observa-
tions are images of what the robot sees, whether the cup is in the kitchen or in the bathroom has no
impact on the images inside the living room. This means that we should only need to evaluate our
reward in each living room images once for both locations of the cup. A major factor in speeding
up our computation was to cache such repeated computation. In practice we found this to be signif-
icant, resulting in 10-100 times speedups on reward computation depending on the structure of the
environment.
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