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Abstract

We study the large deviation rate functional for the empirical distribution of indepen-
dent Brownian particles with drift. In one dimension, it has been shown by Adams,
Dirr, Peletier and Zimmer that this functional is asymptotically equivalent (in the
sense of Γ-convergence as the time-step goes to zero) to the Jordan–Kinderlehrer–Otto
functional arising in the Wasserstein gradient flow structure of the Fokker–Planck
equation. In higher dimensions, part of this statement (the lower bound) has been
recently proved by Duong, Laschos and Renger, but the upper bound remained open,
since their proof of the upper bound relies on regularity properties of optimal trans-
port maps that are restricted to one dimension. In this note we present a new proof of
the upper bound, thereby generalising the result of Adams, Dirr, Peletier and Zimmer
to arbitrary dimensions.
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1 Introduction

In the recent paper [1], Adams, Dirr, Peletier and Zimmer unveiled a fundamental

connection between two seemingly unrelated aspects of diffusion equations. They

connected the large deviation rate functional for the empirical measure of a system

of independently diffusing particles to the entropy gradient flow structure of diffusion

equations in the Wasserstein space of probability measures. Let us informally describe

these two concepts and their connection here, before giving rigorous statements in

Section 2.

Large deviations for independently diffusing particles

We consider n indistinguishable particles evolving according to the stochastic differ-

ential equations

dXi(t) = −∇Ψ(Xi(t)) dt+
√
2 dWi(t) , (1.1)

where (W1(t), . . . ,Wn(t))t≥0 is a collection of independent standard R
d-valued Brownian

motions. We assume that Ψ : Rd → R is twice continuously differentiable and that
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From large deviations to Wasserstein gradient flows

its Hessian is uniformly bounded from below. Let ρ
(n)
t := n−1

∑n
i=1 δXi(t) denote the

empirical measure of (Xi(t))
n
i=1. If the initial values Xi(0) are chosen deterministically

such that ρ
(n)
0 converges weakly to some fixed measure ρ0 ∈ P(Rd), then, for each t ≥ 0,

it is a classical result that the empirical measure ρ
(n)
t converges almost surely to the

unique solution of the Fokker-Planck equation

∂tρt = ∆ρt + div(ρt∇Ψ) (1.2)

with initial condition ρ0, see, e.g., [4, 7] for much stronger results. Under suitable growth

conditions on Ψ, a Sanov-type theorem implies that the random measures (ρ
(n)
t )n satisfy

a large deviation principle of the form

P[ρnt ≈ ρ̄] ∼ exp
(

−nIt(ρ̄|ρ0)
)

,

where the rate functional is given by

It(ρ̄|ρ0) := inf
γ∈Γ(ρ0,ρ̄)

H(γ|ρ0,t) , (1.3)

see [10, Proposition 3.2] and [13, Theorem A.1]. Here, ρ0,t ∈ P(Rd×R
d) denotes the joint

law of a solution (X0, Xt) to (1.1) with random initial condition X0 ∼ ρ0 (independent of

the Brownian motion), H(·|ρ0,t) denotes the relative entropy with respect to ρ0,t, and

Γ(ρ0, ρ̄) is the set of probability measures γ ∈ P(Rd ×R
d) with marginals ρ0 and ρ̄. For

background on large deviation theory we refer the reader to [5, 7].

In this paper we are interested in the short-time behaviour of the rate functional

It(·|ρ0) and its relation to the Wasserstein gradient structure of the Fokker-Planck

equation.

The Wasserstein gradient structure of the Fokker-Planck equation

A seminal result by Jordan-Kinderlehrer-Otto [9] asserts that the Fokker-Planck

equation (1.2) can be regarded as the gradient flow equation of the relative entropy

F(ρ) :=







∫

Rd

ρ(x) log ρ(x) dx+

∫

Rd

Ψ(x)ρ(x) dx ρ(dx) = ρ(x) dx ,

+∞ otherwise ,

in the Wasserstein space of probability measures (P2(R
d),W2). This result can be

rigorously interpreted in different ways, e.g., using the theory of gradient flows in metric

spaces, or using an infinite-dimensional Riemannian structure on the space of probability

measures; see [2] for details. Here we present the original interpretation from [9] in

terms of the convergence of a discrete “minimizing movement” scheme, which can be

seen as an analogue of the implicit Euler scheme for the gradient flow equation. For

ρ0 ∈ P2(R
d) and t > 0, define Jt(·|ρ0) : P2(R

d) → R ∪ {+∞} by

Jt(ρ̄|ρ0) := F(ρ̄)−F(ρ0) +
1

2t
W2(ρ0, ρ̄)

2 , and set St[ρ0] := argmin
ρ̄∈P(Rd)

Jt(ρ̄|ρ0) . (1.4)

Since this minimisation problem has a unique minimiser, St[ρ0] is well defined. The

JKO-functional Jt can be used to construct an iterative discretisation scheme: it was

shown in [9] that

ρt := lim
n→∞

(

St/n

)n
[ρ0]

exists for each t > 0 and satisfies the Fokker-Planck equation (1.2).
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From large deviations to Wasserstein gradient flows

Relating It and Jt

The main result of [1] unveils a relation between the large deviation principle and the

Wasserstein gradient flow structure. Roughly speaking, it asserts that the functionals It
and 1

2Jt are asymptotically equivalent as t→ 0. More precisely, it was shown that

It(·|ρ0)−
1

4t
W2(·, ρ0)2 → 1

2
F(·)− 1

2
F(ρ0) as t→ 0 , (1.5)

in the sense of Γ-convergence. This result provides an appealing microscopic explanation

for the emergence of the Wasserstein gradient flow structure at the macroscopic level.

The proof of this theorem in [1] required two strong technical assumptions. Firstly,

the result was limited to one space dimension. Secondly, the proof required highly

restrictive regularity assumptions on the involved measures.

In a subsequent paper [6], Duong, Laschos and Renger were able to remove the

strong regularity assumptions. Their approach is based on a different representation

of the rate functional It due to Dawson and Gärtner [4] (see also [7]), that we shall

describe in Section 2. The proof of the lower bound in the Γ-convergence result in [6]

is valid in arbitrary dimensions. However, the remaining part of the argument (the

construction of a recovery sequence) is restricted to one dimension, since it relies on

regularity estimates for optimal transport maps which are known to be false in multiple

dimensions.

In this note we shall provide a different argument for the construction of a recovery

sequence that works in arbitrary dimensions. Combined with the result from [6], this

completes the proof of (1.5) in arbitrary dimensions. We refer to Theorem 2.2 below for

a precise statement.

Structure of the paper

In Section 2 we give a detailed statement of the main convergence result. In Section

3 we collect well-known results about Wasserstein gradient flows that will be used in the

proof. Section 4 contains the proof of the convergence result. For completeness, we also

include the proof of the lower bound taken from [6]. In the appendix we provide a short

proof of the equivalence of different formulations of the Benamou–Brenier formula.

2 Statement of the main result

In this section we shall rigorously introduce the three objects appearing in the main

result of this paper: the Wasserstein metric W2, the relative entropy functional F , and

the large deviation rate functional Iτ .

The Wasserstein metric

Let P2(R
d) := {ρ ∈ P(Rd) :

∫

|x|2 ρ(dx) <∞} denote the set of probability measures with

finite second moment. The L2-Wasserstein distance between ρ0, ρ1 ∈ P2(R
d) is defined

by

W2(ρ0, ρ1) := inf
π∈Γ(ρ0,ρ1)

(
∫

Rd×Rd

|x− y|2 π(dx, dy)
)1/2

,

where the infimum is taken over all couplings π of ρ0 and ρ1, i.e., Γ(ρ0, ρ1) denotes the

collection of all π ∈ P(Rd ×R
d) with π(· ×R

d) = ρ0(·) and π(Rd × ·) = ρ1(·).
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The relative entropy

Throughout this paper we assume that Ψ : Rd → R is twice continuously differentiable

and λ-convex for some λ ∈ R, i.e., HessΨ(x) ≥ λ Id for all x ∈ R
d. The relative entropy

functional F : P2(R
d) → R ∪ {+∞} is defined by

F(ρ) :=







∫

Rd

f(x) log f(x) dx+

∫

Rd

Ψ(x)f(x) dx if ρ(dx) = f(x) dx ,

+∞ otherwise .

This functional is well-defined, since the assumption on the second moment implies that

the negative parts of f log f and Ψf are integrable with respect to the Lebesgue measure.

If ρ is absolutely continuous with respect to the Lebesgue measure, then F can be

written as a relative entropy with respect to the equilibrium measure ν(dx) = e−Ψ(x) dx.

Namely,

F(ρ) =

∫

Rd

g(x) log g(x) dν(x) ,

where ρ(dx) = g(x)ν(dx).

We also introduce the relative Fisher information G : P2(R
d) → [0,+∞] defined by

G(ρ) =







∫

{g>0}

|∇g(x)|2
g(x)

dν(x) if ρ(dx) = g(x)ν(dx), g ∈W 1,1
loc (R

d) ,

+∞ otherwise .

The large deviation rate functional

The definition of the rate functional Iτ involves a weighted Sobolev norm of negative

order 1. Let D = C∞
c (Rd) be the space of test functions and let D′ be the dual space of

distributions. Given ρ ∈ P(Rd), we define the weighted H−1(ρ)-norm of s ∈ D′ by the

duality formula

‖s‖2−1,ρ := sup
f∈D

〈s, f〉2
∫

Rd

|∇f |2 dρ
,

where the supremum runs over all smooth test functions f ∈ D for which the denominator

does not vanish. Using the identity b2/a2 = supt∈R 2tb− t2a2, one obtains the equivalent

formula

‖s‖2−1,ρ = sup
f∈D

{

2〈s, f〉 −
∫

|∇f |2 dρ
}

.

For fixed ρ0 ∈ P2(R
d) and τ > 0, the functional Iτ (·|ρ0) : P2(R

d) → [0,+∞] is defined

by

Iτ (ρ̄|ρ0) := inf
(ρt)t∈AC2(ρ0,ρ̄)

1

4τ

∫ 1

0

∥

∥∂tρt − τ∆ρt − τ div(ρt∇Ψ)
∥

∥

2

−1,ρt

dt , (2.1)

where AC2(ρ0, ρ1) denotes the set of 2-absolutely continuous curves (ρt)t∈[0,1] with values

in
(

P2(R
d),W2

)

and boundary conditions ρ|t=0 = ρ0 and ρ|t=1 = ρ1. We refer to Section 3

for the definition of 2-absolutely continuity. Intuitively, Iτ (ρ̄|ρ0) is the value of an optimal

control problem, which requires to interpolate between ρ0 and ρ̄ in such a way that

deviations from the Fokker-Planck equation

∂tρt = τ∆ρt + τ div(ρt∇Ψ)

are minimised.
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Remark 2.1. Under two different sets of growth conditions on the potential Ψ, coined

‘subquadratic’ and ‘superquadratic’, the term inside the infimum of (2.1) is the large

deviation rate functional for trajectories [0, τ ] → P(Rd) of the empirical measure of

independent particles, see [4]. Using the contraction principle, it was proved in [6,

Cor. 4.10] that the large deviation rate functional for the empirical measure at the

end time τ is obtained by taking the infimum over (1-)absolutely continuous curves in

(P2(R
d),W2) with the right boundary conditions. In the subquadratic case, it follows from

the proof of [6, Prop. 4.6] that if ρ0 ∈ P2(R
d) and F(ρ0) <∞, any weakly continuous curve

with
∫ τ

0
‖∂tρt−∆ρt−div(ρt∇Ψ)‖2 dt <∞, is also 2-Wasserstein absolutely continuous. In

the superquadratic case, the same result was proved in [8, Lem. 2.1]. Therefore, under

both sets of conditions on Ψ, we can take the infimum over 2-absolutely continuous

curves in (P2(R
d),W2), hence the large deviation rate functional (1.3) coincides with

(2.1). In the rest of this paper we will not be concerned with the exact conditions under

which these expressions coincide, but rather take (2.1) as the object of study. For more

details, see [6, Section 4].

Now we are ready to state the main theorem of this paper:

Theorem 2.2 (Main result). Let Ψ ∈ C2(Rd) be λ-convex for some λ ∈ R. Then, for every

ρ0 ∈ P2(R
d) such that G(ρ0) <∞, we have

Iτ ( · | ρ0)−
W 2

2 (ρ0, · )
4τ

Γ−−−→
τ→0

1

2
F( · )− 1

2
F(ρ0) (2.2)

in the sense of Γ-convergence. More precisely:

(i) For any ρ1 ∈ P2(R
n) and any sequence {ρτ1}τ ⊆ P2(R

d) converging to ρ1 in the

2-Wasserstein metric, we have

lim inf
τ→0

(

Iτ (ρ
τ
1 | ρ0)−

W 2
2 (ρ0, ρ

τ
1)

4τ

)

≥ 1

2
F(ρ1)−

1

2
F(ρ0) . (2.3)

In addition, if ν(Rd) =
∫

Rd e
−Ψ(x) dx <∞, then the lower bound (2.3) also holds for

any weakly converging sequence {ρτ1}τ ⊆ P2(R
d).

(ii) For any ρ1 ∈ P2(R
d) there exists a sequence {ρτ1}τ ⊆ P2(R

d) converging to ρ1 in

the 2-Wasserstein metric such that

lim sup
τ→0

(

Iτ (ρ
τ
1 | ρ0)−

W 2
2 (ρ0, ρ

τ
1)

4τ

)

≤ 1

2
F(ρ1)−

1

2
F(ρ0) . (2.4)

As discussed in the introduction, this theorem was first proved in dimension 1 in [1]

under more restrictive conditions on the measures ρ0 and ρ1. Part (i) has been extended

to arbitrary dimensions in [6]. The novel contribution of our paper is a proof of (ii) in

arbitrary dimensions.

Remark 2.3. The right-hand side in (2.3) and (2.4) is well-defined in R ∪ {+∞}, since
our assumptions on ρ0 imply that F(ρ0) < ∞. This is a consequence of the HWI-

inequality by Otto and Villani [12] (see also [15, Corollary 20.13]), which asserts that

F(ρ) ≤W2(ρ, ν)
√

G(ρ)− λ
2W

2
2 (ρ, ν).

3 Ingredients of the proof

The Benamou–Brenier formula

It will be convenient to work with the dynamic characterisation of the Wasserstein

distance due to Benamou–Brenier [3], which asserts that, for ρ0, ρ1 ∈ P2(R
d),

W 2
2 (ρ0, ρ1) = inf

(ρt)t∈AC2(ρ0,ρ1)

{
∫ 1

0

‖∂tρt‖2−1,ρt
dt

}

, (3.1)
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For p ≥ 1, recall that a curve (ρt)t∈[0,1] is said to be p-absolutely continuous with respect

to W2, if there exists a scalar function m ∈ Lp(0, 1) satisfying W2(ρs, ρt) ≤
∫ t

s
m(r) dr for

all 0 ≤ s < t ≤ 1. We use the notation (ρt)t ∈ ACp(ρ0, ρ1). If p = 1, we simply say that

(ρt)t∈[0,1] is absolutely continuous. In this case, the metric derivative

|ρ̇t| := lim
h→0

W2(ρt+h, ρt)

h

exists for a.e. t ∈ (0, 1), see, e.g., [2, Theorem 1.1.2] for more details. It can be shown

that (3.1) implies the identity

|ρ̇t| = ‖∂tρt‖−1,ρt
. (3.2)

We refer to Appendix A for an equivalent formulation of the Benamou–Brenier formula

which is commonly used in the literature on optimal transport and to [2, Theorem 8.3.1]

for a proof of (3.1), (3.2) in this formulation.

Relative entropy, Fisher information, and heat flow

A seminal result by McCann [11] asserts that the λ-convexity of Ψ implies displace-

ment λ-convexity of F , see also [14, Theorem 5.15]. This means that for any constant

speed W2-geodesic (ρt)t∈[0,1] ⊆ P2(R
d) and any t ∈ [0, 1], we have

F(ρt) ≤ (1− t)F(ρ0) + tF(ρ1)−
λ

2
t(1− t)W 2

2 (ρ0, ρ1) . (3.3)

In particular, F is finite along geodesics as soon as it is finite at the endpoints. The fact

that the relative Fisher-information does not enjoy this property is the source of several

complications in [6]. We recall further that F is lower semicontinuous with respect to

W2-convergence, see [2, Remark 9.4.2 and Lemma 9.4.3].

The semigroup associated to the Fokker–Planck equation (1.2) will be denoted by

(Pt)t≥0. More precisely, for ρ ∈ P2(R
d) we set Ptρ := ρt, where (ρt)t is the unique

distributional solution to the Fokker–Planck equation (1.2) with ρ0 = ρ. This solution can

be obtained using, e.g., the metric theory of gradient flows for (generalised) λ-convex

functionals, see [2, Thm. 11.2.8].

In the following result we collect some well-known results on the behaviour of the

semigroup (Pt)t≥0.

Lemma 3.1. The following assertions hold:

1. The curve t 7→ Ptρ is continuous on [0,∞) and locally absolutely continuous on

(0,∞) with respect to W2.

2. For all ρ, σ ∈ P2(R
d) and all t ≥ 0 we have the contraction estimate:

W2(Ptρ, Ptσ) ≤ e−λtW2(ρ, σ) . (3.4)

Moreover, for any curve (ρs)s that is absolutely continuous with respect to W2 we

have

‖∂s(Ptρs)‖−1,Ptρs
≤ e−λt‖∂sρs‖−1,ρs

. (3.5)

3. For all ρ ∈ P2(R
d) and t > 0 we have

F(Ptρ) <∞ , G(Ptρ) <∞ , (3.6)
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as well as the bounds

F(Ptρ) ≤ F(ρ) , G(Ptρ) ≤ e−2λtG(ρ) . (3.7)

Finally, for any W2-geodesic (ρs)s∈[0,1] with F(ρ0),F(ρ1) <∞, we have as tց 0:

F(Pt[ρs]) ր F(ρs) uniformly for s ∈ [0, 1] . (3.8)

Proof. For part (1) and the properties (3.4), (3.6) and (3.7), see [2, Theorems 11.2.1

and 11.2.8]. The estimate (3.5) follows immediately from (3.4) and (3.2). It remains to

prove the statement (3.8), which is less standard. Note first that by (3.3) we have that

s 7→ F(ρs) is continuous and bounded. Our aim is to show that for every ε > 0 there

exists δ > 0 such that F(ρs) − F(Ptρs) < ε whenever t < δ and s ∈ [0, 1]. Assume the

contrary, i.e., that there exist ε > 0 and sequences tk → 0 and (sk) ⊂ [0, 1] such that for

all k,

F(ρsk)−F(Ptkρsk) ≥ ε . (3.9)

By compactness we can assume that sk → s0 as k → ∞ for some s0 ∈ [0, 1]. We claim

that Ptkρsk → ρs0 inW2-distance as k → ∞. Indeed, again by (3.4) the triangle inequality

yields

W2(ρs0 , Ptkρsk) ≤ W2(ρs0 , Ptkρs0) +W2(Ptkρs0 , Ptkρsk)

≤ W2(ρs0 , Ptkρs0) + e−λtkW2(ρs0 , ρsk) ,

and the claim follows from the continuity of Pt at t = 0 and the continuity of the curve

(ρs). Passing to the limit k → ∞ in (3.9), using the continuity of s 7→ F(ρs) and the lower

semicontinuity of F with respect to W2, we obtain the following contradiction:

0 = F(ρs0)−F(ρs0) ≥ lim sup
k→∞

(

F(ρsk)−F(Ptkρsk)
)

≥ ε ,

which completes the proof.

We conclude this section by stating some useful identities for the derivative of the

entropy. In fact, for any absolutely continuous curve (ρt)t∈[0,1] with F(ρt) ∈ R for all t

and
∫ 1

0
G(ρt) dt <∞ we have that t 7→ F(ρt) is absolutely continuous with

d

dt
F(ρt) = −

〈

∂tρt,∆ρt + div(ρt∇Ψ)
〉

−1,ρt

(3.10)

for a.e. t ∈ [0, 1], see [6, Lemma 2.3]. In particular, if ρt satisfies the Fokker-Planck

equation we have

− d

dt
F(ρt) = ‖∆ρt + div(ρt∇Ψ)‖2−1,ρt

= G(ρt) , (3.11)

where the second equality follows from (A.3).

4 Proof of the main result

Upper bound

In this section we prove existence of the recovery sequence, i.e., statement (ii) of

Theorem 2.2. For this purpose we define the set Q :=
{

ρ ∈ P2(R
d) : G(ρ) < ∞

}

. Note

that F(ρ) < ∞ for all ρ ∈ Q in view of Remark 2.3. Below we will prove the following

two claims:
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Claim 4.1. For all ρ0, ρ1 ∈ Q we have as τ → 0,

Iτ (ρ1 | ρ0)−
1

4τ
W 2

2 (ρ0, ρ1) →
1

2
F(ρ1)−

1

2
F(ρ0) . (4.1)

Claim 4.2. For every ρ ∈ P2(R
d) there exists a sequence (ρn)n ⊆ Q such that

W 2
2 (ρ

n, ρ) → 0 and F(ρn) → F(ρ) .

The existence of the recovery sequence then follows from a straightforward diagonal

argument, see [6, Proposition 6.2] for details.

Proof of Claim 4.1: We only need to prove the limsup inequality for the left-hand side

of (4.1), since the liminf inequality will be proved in the subsection below. If ρ0 = ρ1
the claim is immediate, so we take distinct measures ρ0, ρ1 ∈ Q, and take a geodesic

(ρt)t∈[0,1] connecting ρ0 and ρ1. We will approximate this curve by running the semigroup

for a small time ε = ε(τ) > 0, which will be determined below. A careful choice of ε as a

function of τ is crucial for our argument. We thus consider the curve (ρεt )t∈[0,1] defined

by

ρεt =















Ptρ0 , 0 ≤ t ≤ ε ,

Pερ t−ε

1−2ε

, ε ≤ t ≤ 1− ε ,

P1−tρ1 , 1− ε ≤ t ≤ 1 .

For the sake of brevity, we shall write Lρ = ∆ρ + div(ρ∇Ψ). Using the definition of

Iτ (ρ1 | ρ0) and the second identity (3.11), we obtain

Iτ (ρ1 | ρ0)−
W 2

2 (ρ0, ρ1)

4τ

≤ 1

4τ

(
∫ 1

0

‖∂tρεt − τLρεt‖
2
−1,ρε

t

dt−W 2
2 (ρ0, ρ1)

)

=
1

4τ

(
∫ 1

0

‖∂tρεt‖2−1,ρε
t

dt−W 2
2 (ρ0, ρ1)

)

− 1

2

∫ 1

0

〈∂tρεt ,Lρεt 〉−1,ρε
t
dt+

τ

4

∫ 1

0

G(ρεt ) dt .

We shall estimate these three terms separately. Let cλ, kλ > 0 be sufficiently large so that
e−2λε

1−2ε ≤ 1 + kλε and
∫ ε

0
e−2λt dt ≤ cλε for all ε ∈ (0, 14 ). Using the semigroup estimates

(3.7) and (3.5) and the Benamou–Brenier formula (3.1), the first term can be bounded by

∫ 1

0

‖∂tρεt‖2−1,ρε
t

dt =

∫ ε

0

‖Lρεt‖2−1,ρε
t

dt+
1

1− 2ε

∫ 1

0

‖∂t(Pερt)‖2−1,Pερt
dt+

∫ 1

1−ε

‖Lρεt‖2−1,ρε
t

dt

≤
∫ ε

0

G(Ptρ0) dt+
e−2λε

1− 2ε

∫ 1

0

‖∂tρt‖2−1,ρt
dt+

∫ 1

1−ε

G(P1−tρ1) dt

≤ cλεG(ρ0) + (1 + kλε)W
2
2 (ρ0, ρ1) + cλεG(ρ1) .

For the third term we use (3.7) to obtain

∫ 1

0

G(ρεt ) dt ≤ cλε(G(ρ0) + G(ρ1)) + h(ε) , where h(ε) =

∫ 1

0

G(Pερt) dt .

We claim that h(ε) is finite for each ε > 0. Indeed, using (3.7) and (3.11) we obtain

G(Pερt)

∫ ε

0

e2λ(ε−s) ds ≤
∫ ε

0

G(Psρt) ds = F(ρt)−F(Pερt) . (4.2)

The right-hand side is uniformly bounded in t thanks to the λ-convexity of F and the

uniform convergence (3.8). Consequently, h(ε) <∞.
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To treat the second term, we can thus use (3.10) to obtain

∫ 1

0

〈∂tρεt ,Lρεt 〉−1,ρε
t
dt = F(ρ0)−F(ρ1) .

Combining these three bounds, we infer that

Iτ (ρ1 | ρ0)−
W 2

2 (ρ0, ρ1)

4τ
≤ 1

2
F(ρ1)−

1

2
F(ρ0) + ε

cλ
4

(

τ +
1

τ

)

(

G(ρ0) + G(ρ1)
)

+
kλε

4τ
W 2

2 (ρ0, ρ1) +
τ

4
h(ε) .

We claim that ε = ε(τ) can be chosen as a function of τ such that

ε(τ)

τ
→ 0 and τh

(

ε(τ)
)

→ 0 as τ → 0 . (4.3)

This yields the limsup inequality in (4.1). The corresponding liminf inequality will follow

from (2.3).

It thus remains to prove the claim (4.3). For ε > 0 we set

g(ε) :=
√

ε/h(ε) .

Writing g(ε) =
√

εe2λε/e2λεh(ε), it follows from (3.7) that g is strictly increasing on

(0, ε0) for ε0 sufficiently small. Taking into account that h(0) > 0 since ρ0 6= ρ1, we note

that limε→0 g(ε) = 0. To show that g is right-continuous, note that for each t ∈ [0, 1],

the function Gt : ε 7→ G(Pερt) is lower semicontinuous and non-negative, see e.g. [2,

Proposition 10.4.14]. Fatou’s lemma implies that h :=
∫ 1

0
Gt dt is lower semicontinuous

as well. Hence g is upper semicontinuous and thus right-continuous, since it is also

increasing. It follows from these properties that we can define

ε(τ) := g−1(τ) := inf
{

ε : g(ε) > τ
}

as the generalised inverse of g. We shall show that this function has the desired

properties.

Since g is right-continuous, we note that g(ε(τ)/2) ≤ τ ≤ g(ε(τ)), which implies that

the expressions in (4.3) can be estimated from above by

ε(τ)

τ
≤ 2

√

ε(τ)

2
h

(

ε(τ)

2

)

, τh
(

ε(τ)
)

≤
√

ε(τ)h(ε(τ)) .

It thus suffices to show that εh(ε) → 0 as ε→ 0. To show this, note that ε−1
∫ ε

0
e2λs ds ≥

min{1, eλ/2} =: k̃λ for all ε ∈ (0, 14 ). Therefore, (4.2) yields

k̃λεG(Pερt) ≤ F(ρt)−F(Pερt) .

By (3.8) the right-hand side converges to 0 as ε → 0, uniformly for t ∈ [0, 1]. It follows

that

εh(ε) = ε

∫ 1

0

G(Pερt) dt → 0

as ε→ 0, which completes the proof.

Proof of Claim 4.2: We approximate ρ ∈ P2(R
d) by applying the semigroup. The first

inequality in (3.6) yield that Pερ ∈ Q for any ε > 0, and Lemma 3.1(1) implies that Pερ

approximates ρ in W2-distance. Finally, since F is lower semicontinuous with respect to

W2, the convergence F(Pερ) → F(ρ) as ε→ 0 follows from (3.7).

ECP 20 (2015), paper 89.
Page 9/12

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4315
http://ecp.ejpecp.org/


From large deviations to Wasserstein gradient flows

Lower bound

For completeness, we reproduce here the short proof of statement (i) in Theorem 2.2,

the lower bound, as given in [DLR13, Theorem 5.1, see erratum].

Proof. By definition of the infimum in (2.1), there exists a sequence of absolutely contin-

uous curves (ρτt )t∈[0,1] such that

Iτ (ρ
τ
1 | ρ0) + τ ≥ 1

4τ

∫ 1

0

∥

∥∂tρ
τ
t − τ(∆ρτt + div(ρτt ∇Ψ))

∥

∥

2

−1,ρτ
t

dt .

In particular, the right-hand side is finite for all τ > 0. Since (ρτt )t is assumed to be

2-absolutely continuous, we infer that
∫ 1

0
‖∂tρτt ‖2−1,ρτ

t

dt is finite as well, and therefore

∫ 1

0

G(ρτt ) dt =
∫ 1

0

‖∆ρτt + div(ρτt ∇Ψ)‖2−1,ρτ
t

dt <∞ .

It follows that that t 7→ F(ρτt ) is absolutely continuous and the identity (3.10) holds. Thus

we can estimate

Iτ (ρ
τ
1 | ρ0) + τ ≥ 1

4τ

∫ 1

0

∥

∥∂tρ
τ
t − τ(∆ρτt + div(ρτt ∇Ψ))

∥

∥

2

−1,ρτ
t

dt

=
1

4τ

∫ 1

0

‖∂tρτt ‖2−1,ρτ
t

dt− 1

2

∫ 1

0

〈∂ρτt ,∆ρτt + div(ρτt∇Ψ)〉−1,ρτ
t
dt

+
τ

4

∫ 1

0

∥

∥∆ρτt + div(ρτt∇Ψ)
∥

∥

2

−1,ρτ
t

dt

≥ 1

4τ
W 2

2 (ρ0, ρ
τ
1) +

1

2
F(ρτ1)−

1

2
F(ρ0) ,

where the last line follows from the Benamou–Brenier formula (3.1). The claim (2.3)

then follows from the lower semicontinuity of F with respect to W2.

If
∫

Rd e
−Ψ(x) dx <∞, the result follows by applying the lower semicontinuity of F with

respect to weak convergence in the final step.

We finish by remarking that in the statement of Theorem 2.2(i), the assumption of

Wasserstein convergence cannot be weakened to weak convergence if the equilibrium

measure ν does not have finite mass. A counterexample can be found in the erratum to

[6].

A Equivalent formulations of the Benamou–Brenier formula

The Benamou–Brenier formula in optimal transport asserts that for ρ0, ρ1 ∈ P2(R
d),

W 2
2 (ρ0, ρ1) = inf

(ρt)t∈AC(ρ0,ρ1)

{
∫ 1

0

|||∂tρt|||2−1,ρt
dt

}

. (A.1)

In this formula, the norm |||·|||−1,ρ is defined by

|||s|||2−1,ρ := inf
v∈L2(ρ;Rd)

{
∫

Rd

|v(x)|2 dρ(x) : s+ div(ρv) = 0

}

. (A.2)

for ρ ∈ P(Rd) and s ∈ D′. It can be shown that the infimum in this definition is uniquely

attained, and its minimiser can be characterised as follows: a solution v ∈ L2(ρ;Rd) to

the “continuity equation” s + div(ρv) = 0 is optimal in (A.2) if and only if it belongs to

the space of generalised gradient vector fields defined by

Hρ := {∇ψ : Rd → Rd | ψ ∈ D}L
2(ρ;Rd)

.
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We refer to [2, Section 8.4] for the proof of these facts. Note in particular that

|||div(ρ∇ψ)|||2−1,ρ =

∫

Rd

|∇ψ(x)|2 dρ(x) (A.3)

whenever ∇ψ ∈ L2(ρ;Rd).

The following lemma relates the norm |||·|||−1,ρ to ‖·‖−1,ρ defined in Section 2.

Lemma A.1. Let ρ ∈ P(Rd) and s ∈ D′. Then ‖s‖−1,ρ = |||s|||−1,ρ.

Proof. Suppose first that |||s|||−1,ρ <∞, and let v ∈ L2(ρ;Rd) be the unique minimiser in

the definition of |||s|||−1,ρ. If |||s|||−1,ρ = 0, it follows that v vanishes ρ-a.e., hence 〈s, f〉 = 0

for all f ∈ D, which implies that ‖s‖−1,ρ = 0. Assume now, without loss of generality, that

|||s|||2−1,ρ =
∫

|v|2 dρ = 1. Then,

‖s‖−1,ρ = sup
f∈D

{

〈− div(ρv), f〉
∣

∣

∣

∣

∫

Rd

|∇f |2 dρ = 1

}

= sup
f∈D

{
∫

Rd

v · ∇f dρ
∣

∣

∣

∣

∫

Rd

|∇f |2 dρ = 1

}

= sup
f∈D

{

1

2

∫

Rd

|v|2 + |∇f |2 − |v −∇f |2 dρ
∣

∣

∣

∣

∫

Rd

|∇f |2 dρ = 1

}

= sup
f∈D

{

1− 1

2

∫

Rd

|v −∇f |2 dρ
∣

∣

∣

∣

∫

Rd

|∇f |2 dρ = 1

}

.

Since v ∈ Hρ, it follows from this computation that ‖s‖−1,ρ = 1 = |||s|||−1,ρ.

On the other hand, if ‖s‖−1,ρ <∞, it follows from 〈s, f〉 ≤ ‖s‖−1,ρ · ‖∇f‖L2(ρ;Rd) that

the mapping

T : {∇f : f ∈ D} → R, ∇f 7→ 〈s, f〉

extends to a bounded linear functional T : (Hρ, ‖·‖L2(ρ;Rd)) → R of norm ‖s‖−1,ρ. Hence,

the Riesz representation theorem implies that 〈s, f〉 =
∫

Rdv · ∇f dρ for some v ∈ Hρ with

‖v‖L2(ρ;Rd) = ‖s‖−1,ρ. It follows that |||s|||−1,ρ ≤ ‖v‖L2(ρ;Rd). In view of the first part of the

proof, the latter inequality is in fact an equality.

As a consequence of this lemma we infer that the Benamou–Brenier formulas in (3.1)

and (A.1) are equivalent.
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