
       

FROM: Large–scale Earth Structure from Analyses of Free Oscillation Splitting
and Coupling

Guy Masters, Gabi Laske, and Freeman Gilbert

I.G.P.P., U.C.S.D., La Jolla, California 92093-0225, U.S.A.

In: E. Boschi, G. Ekstr¨om and A. Morelli (eds) ”Problems in Geophysics for the New Millennium”,
Istituto Nazionale di Geofisica e Vulcanologia, Editrice Compositori, Bologna, Italy, 2000

APPENDIX A – A mode tutorial

This appendix describes some basic theoretical results – a more complete treatment can be found in Lapwood

and Usami (1981) and Dahlen and Tromp (1998).

Since departures from spherical symmetry are small (particularly in the deep Earth), it is useful to consider an

approximate Earth model which is spherically symmetric, non-rotating, and elastically isotropic. Departures

from this state (anelasticity, anisotropy, rotation and three-dimensional structure) are supposed sufficiently small

that they can be treated by perturbation theory. The model is assumed to be initially quiescent and in a state of

hydrostatic equilibrium. The equations governing the small oscillations of such a body are given by:

ρ0
∂2s
∂t2

= ∇ · T −∇(srρ0g0)− ρ0∇φ1 + r̂g0∇ · (ρ0s) + f (A1)

and

∇2φ1 = −4πG∇ · (ρ0s) (A2)

Equation (A1) is the linearized equation for conservation of momentum.ρ0 is the unperturbed density ands is

the displacement field. The acceleration due to gravity is given byg(r) = −r̂g0(r), T is the elastic stress tensor

andf is a body force density used to represent the earthquake source (f = 0 when the Earth is in free oscillation).

Since the motion of the Earth causes a disturbance of the gravitational potential which in turn affects the motion,

we must also solve Poisson’s equation (equation (A2)) whereφ1 is the perturbation in the gravitational potential

associated with the motion. Considering the linearized momentum equation (A1), the force densities contributing

to the acceleration of material at a fixed point in space are respectively: 1) elastic forces caused by the deformation

of the body, 2) motion of material in the initial stress field, 3) forces due to the change in gravitational potential,

and 4) forces due to motion within the initial gravitational field.
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We seek solutions to equations (A1) and (A2) which satisfy certain boundary conditions on the displacement field

and the tractions acting on interfaces (the traction acting on a surface with normaln̂ is T · n̂). In particular, the

displacement field must be continuous everywhere except at a fluid-solid boundary where slip is allowed. The

tractions on horizontal surfaces must be continuous at all interfaces and must vanish at the free surface. The usual

way to proceed is to use separation of variables and expand the displacement field in vector spherical harmonics.

We recognize that there may be more than one solution to equations (A1) and (A2) and designate thek’th solution

by sk where:

sk = r̂ kU +∇1 kV − r̂ × (∇1 kW ) (A3)

∇1 = θ̂θθ∂θ + φ̂φφ cosecθ∂φ is the horizontal gradient operator andkU , kV andkW are scalar functions of position.

We now expandkU , kV andkW in ordinary spherical harmonics as well asφ1k. Each of these functions have an

expansion of the form

kU =
∞∑
l=0

l∑
m=−l

kU
m
l (r)Y m

l (θ, φ)

kV =
∞∑
l=0

l∑
m=−l

kV
m
l (r)Y m

l (θ, φ), etc.


(A4)

where theY m
l (θ, φ) are fully normalized spherical harmonics (Edmonds, 1960):

Y m
l (θ, φ) = (−1)m

[
2l + 1

4π
· (l −m)!

(l +m)!

]1
2
Pm
l ( cosθ)eimφ (A5)

and thePm
l are associated Legendre functions. Figure 17 illustrates some of theY m

l ’s geographical shapes in the

Hammer–Aitoff projection we also use to illustrate splitting functions.

To proceed, we adopt a constitutive relation for the material to relateT to the deformation of the body. In

the simplest case, a perfectly elastic relation is adopted (the weak attenuation being amenable to treatment by

perturbation theory) andT = C : εεε whereεεε is the strain tensor andC is a fourth-order tensor of elastic moduli. In

component form, the constitutive relation is

Tij = Cijklεkl,

where summation over repeated indices is implied. The most general elastic Earth exhibiting spherical symmetry

is “transversely isotropic” (i.e. seismic velocities in the radial direction are different from velocities in the tangent

plane) and is described by five elastic moduli which, in Love notation, are: A,C,L,N, and F. An elastically

isotropic body is described by two elastic moduli:λ andµwhereµ is known as the shear modulus or rigidity. The
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results for an isotropic body can be recovered from those for a transversely isotropic body using the substitutions:

A = C = λ + 2µ, F = λ, and L = N =µ.

Substitution of these forms into equations (A1) and (A2) results in four coupled second-order ordinary differential

equations governing the radial dependence of the scalars in equation (A4). (For clarity, we drop the subscripts

onU , V ,W , andΦ so, in the next equationU ≡ kU
m
l etc.)

1
r2

(
d

dr
r2dΦ1

dr

)
− l(l + 1)

Φ1

r2 =

− 4πG

[
d

dr
(ρ0U ) + ρ0F

]
−ρ0ω

2
kU =

d

dr

(
CU ′ + FF

)
−1
r

[
2(F− C)U ′ +2(A− N− F)F + l(l + 1)LX]

−ρ0Φ′1 + g0
(
(ρ0U )′ + ρ0F

)
− (ρ0g0U )′

−ρ0ω
2
kV =

d

dr
(LX)

+
1
r

[(A − N)F +FU ′ + 3LX − NV
r

(l + 2)(l − 1)

]
−ρ0Φ1

r
− ρ0g0U

r



(A6)

−ρ0ω
2
kW =

d

dr
(LZ) +

1
r

[
3LZ − NW

r
(l + 2)(l − 1)

]
(A7)

where

X = V ′ +
U − V
r

, Z = W ′ − W

r
, F =

1
r

(2U − l(l + 1)V )

and a prime denotes radial derivative. Note that the equations are dependent upon harmonic degree (`) but are

independent of azimuthal order numberm. Consider equation (A7). For a chosen harmonic degree and frequency,

the solution to these equations will not necessarily match the boundary conditions, notably vanishing of traction

at the free surface. There are however, discrete frequencies for each` when solutionsW (r) can be found which

match all boundary conditions. Such frequencies are the frequencies of free toroidal oscillation of the Earth. For

a particular̀ , the mode with the lowest frequency of free oscillation is labelled0T`, the next highest is1T` and

so on. The displacement field of then’th modenT` which has frequencynω` say is proportional to

nsml =

[
θ̂θθ cosecθ nWl(r)

∂Y m
l

∂φ
− φ̂φφ nWl(r)

∂Y m
l

∂θ

]
ei nωlt (A8)

3



   

for −l ≤ m ≤ l. This kind of motion is called toroidal because it consists of twisting on concentric shells.

Toroidal motion can be sustained only in a solid so toroidal modes are confined to the mantle (another class is

confined to the inner core but cannot be observed at the surface). Note that there is no radial component of motion

and no compression or dilation so there is no perturbation to the gravitational field. This is not true for solutions

to the other three coupled ODEs (equation (A6)). Again there are discrete frequencies for a fixed harmonic

degree where solutions can be found which match all boundary conditions. These are the frequencies of free

spheroidal motion (sometimes called poloidal motion). For a particular`, the mode with the lowest frequency of

free oscillation is labelled0S`, the next highest is1S` and so on. The displacement field of then’th modenS`

which has frequencynω` say is proportional to

nsml =

[
r̂ nUl(r)Y

m
l (θ, φ) + θ̂θθ nVl(r)

∂Y m
l

∂θ
(θ, φ) + cosecθφ̂φφ nVl(r)

∂Y m
l

∂φ
(θ, φ)

]
einωlt (A9)

Note that in both equations (A8) and (A9), for eachn and` there are 2̀+ 1 modes of oscillation with exactly the

same frequency since the governing equations do not depend uponm. This is the phenomenon of degeneracy

which is a consequence of the assumed symmetry of the Earth model. This group of 2` + 1 modes is called a

“multiplet” while the individual members of the multiplet are called “singlets”. Departures of the Earth from

spherical symmetry remove the degeneracy and, in general, each singlet within a multiplet will have a slightly

different frequency.

We can also use the results given above to compute the elastic energy density of a mode. The total elastic energy

of a mode is:

E =
∫
V

εεε∗ · ·C : εεε dV (A10)

where the double dots indicate tensor contraction. This can be written in terms of the mode scalars as:

E =
∫ [

l(l + 1)(l − 1)(l + 2)
N
r2W

2 + l(l + 1)LZ2

]
r2 dr (A11)

for toroidal modes, and

E =
∫ [

l(l + 1)(l − 1)(l + 2)
N
r2V

2 + l(l + 1)LX2 + 2FU ′F + (A − N)F 2 + CU ′2
]
r2 dr (A12)

for spheroidal modes. For an elastically isotropic material, we can divide the elastic energy into its shear and

compressional components by substituting the bulk modulusKs for λ using the relationshipKs = λ + 2/3µ

yielding
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E =
∫ [ µ

r2 l(l + 1)(l − 1)(l + 2)W 2 + µl(l + 1)Z2
]
r2 dr (A13)

for toroidal modes, and

E =
∫ [ µ

r2 l(l + 1)(l − 1)(l + 2)V 2 + µl(l + 1)X2 +
µ

3
(2U ′ − F )2 +Ks(U

′ + F )2
]
r2 dr (A14)

for spheroidal modes. The integrands are plotted in Figure 18 for some representative modes of oscillation and

show how a particular mode samples the Earth.

Returning now to equations (A8) and (A9). For a spherical Earth model, all singlets within a multiplet have the

same frequency so it is easy to sum all singlets to get an expression for a synthetic seismogram for a multiplet:

u(r , r0) =
∑̀
m=−`

ns
m
l (r )na

m
l (r0)ei nωlt (A15)

where the real part is understood. For simplicity, we are considering a single component of recording (e.g. ther̂

component) with a receiver atr and the source atr0. Theaml are excitation factors for each singlet which can be

computed using a moment tensor model of the source (Gilbert and Dziewonski, 1975; Dahlen and Tromp, 1998).

This equation is equivalent to equation (4) in the text when no 3D structure is present. For a particular source, we

use thej index to indicate a specific recording at locationr and thek index to indicate one of the 2` + 1 singlets.

Letting ω̄ ≡ nω` andRjk ≡ ns
m
l (r ) then

uj =
∑
k

Rjkake
iω̄t (A16)

This equation is modified when 3D structure is present and an application of perturbation theory results in equation

(4) where the vectora = ak, k = 1, ...,2` + 1 is now weakly time dependent with the time dependence given by

equation (5):

a(t) = exp (iHt) · a(0) (A17)

andH is the all-importantsplitting matrixwhere all of the effects of 3D structure are encoded. As noted in the

text, the elements ofH are linearly related tostructure coefficients(equations 11 and 12) which is the usual way

we describe the effects of 3D structure on a mode. For 3D elastic perturbations,H ≡ E and
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Emm′ =
∑
s

γmm
′

s cm−m
′

s ; (A18)

Thects are the elastic structure coefficients and are linear functionals of the spherical harmonic expansion coeffi-

cients for 3D structure (equation 2). Theγs are integrals over three spherical harmonics:

γmm
′

s =
∫
Ω

Y m∗
` Y m−m′

s Y m′
` dΩ (A19)

which can be easily computed. Iterative spectral fitting assumes an initial guess for a set ofctss and computes a

synthetic seismogram,u0. The derivative of a seismogram with respect to acts is computed by differentiatinga(t)

with respect to acts. Let

e(t) =
∂a(t)
∂cts

so
∂u(t)
∂cts

= R · e(t)eiω̄t (A20)

Iterative spectral fitting proceeds by iteratively solving:

u(t)− u0(t) =
∂u(t)
∂cts

· δcts (A21)

for perturbations to the structure coefficients,δcts. The fitting is typically done in the frequency domain in a

small frequency band around a mode of interest. The method can be highly non-linear and requires a model of

the source to computea ande. The matrix AR technique described in the body of the text circumvents these

problems.

APPENDIX B: Coriolis Coupling and Splitting parameters

We shall make reference to Appendix D of Dahlen and Tromp (1998). We write U, V and W for the displacement

scalers u,v and w in their notation. Let us write the elastic splitting matrix in the form

E = E3D + W + (Vell+cen − ω2
0Tell)/2ω0 (B1)

whereω0 (sometimes written ¯ω) is the reference or fiducial frequency for a set of coupled multiplets. The effects

of Vell+cen−ω2
0Tell cannot be distinguished from those of aspherical structure (c0

2) and it is customary to calculate

Vell+cen − ω2
0Tell for a 1D model and subtract it from equation (B1) so that
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E = E3D + W (B2)

In equation (B2)E3D is the elastic splitting matrix due to 3D structure andW is due to the Coriolis force.

For a split spheroidal multiplet (a self–coupled block ofE) the diagonal ofE3D is symmetric inm because it

represents axisymmetric structure. It is well known thatW in this case is diagonal and linear inm. Let

φm = 3m/[(2` + 1)̀ (` + 1)] (B3)

Then

∑
m

φmE
3D
mm = 0 (B4)

and

∑
m

φmWmm =
∑
m

Emm = χ · Ω (B5)

whereχ is the Coriolis splitting parameter

χ =

a∫
0

ρ(r)
[
V 2 + 2UV

]
r2 dr (B6)

We see thatχ can be determined from the splitting matrix. It is a linear integral constraint on the 1D density.

For a Coriolis–coupled spheroidal–toroidal pair of multipletsnSl andn′Tl′ we must havè′ = `± 1. In this case

the diagonal of the coupling block ofE for which t = 0(m′ = m) is odd inm. Let

φm = 3(δ``′+1S`m/` + δ``′−1S`′m/`
′) (B7)

whereS`m = [(` +m)(`−m)/(2` + 1)(2̀ − 1)]
1
2 then equation (B4) is again true and

∑
m

φmEmm = −iζΩ (B8)
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whereζ is the Coriolis coupling parameter

ζ =

a∫
0

ρ(r)WA(r)r2 dr (B9)

andWA(r) is given in equation (D.71) of Dahlen and Tromp (1998). We see thatζ, like χ, is a linear constraint

on the 1D density. Both can be recovered fromE.

Every spheroidal multiplet (` > 0) is a potential source for a value ofχ and every Coriolis–coupled spheroidal–

toroidal pair is a potential source for a value ofζ. There are hundreds of the former and many tens of the latter

below 5 mHz. Consequently, it is reasonable to expect to be able to resolve the 1D density with great accuracy

in the not too distant future.
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Figure 17. Some low–order spherical harmonics plotted in Hammer–Aitoff projection. Note that the singlets of

a spheroidal mode have these shapes on the r̂ component of recordings on a spherical Earth (equation A3).
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Energy Densities for some Inner-Core Sensitive Modes

shear
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Figure 18. Energy densities for compression and shear as a function of radius for a selection of inner-core sensitive

modes.
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