
From Lifestyle Vlogs to Everyday Interactions

David F. Fouhey, Wei-cheng Kuo, Alexei A. Efros, Jitendra Malik

University of California, Berkeley

Abstract

A major stumbling block to progress in understanding

basic human interactions, such as getting out of bed or

opening a refrigerator, is lack of good training data. Most

past efforts have gathered this data explicitly: starting with

a laundry list of action labels, and then querying search

engines for videos tagged with each label. In this work,

we do the reverse and search implicitly: we start with a

large collection of interaction-rich video data and then an-

notate and analyze it. We use Internet Lifestyle Vlogs as the

source of surprisingly large and diverse interaction data.

We show that by collecting the data first, we are able to

achieve greater scale and far greater diversity in terms of

actions and actors. Additionally, our data exposes biases

built into common explicitly gathered data. We make sense

of our data by analyzing the central component of interac-

tion – hands. We benchmark two tasks: identifying semantic

object contact at the video level and non-semantic contact

state at the frame level. We additionally demonstrate future

prediction of hands.

1. Introduction

The lack of large amounts of good training data has long

been a bottleneck for understanding everyday interactions.

Past attempts to find this data have been largely unsuc-

cessful: there are large action recognition datasets but not

for everyday interaction [38, 21], and laboriously obtained

datasets [35, 23, 43, 11] which depict everyday interaction,

but in which people are hired to act out each datapoint.

The problem is that past methods have taken the ap-

proach of explicit data gathering – starting with a pre-

determined taxonomy, they attempt to directly find exam-

ples of each category. Along the way, they have fallen vic-

tim to dataset bias [40] in the form of a discrepancy between

the world of reality and the world of tagged things. This

discrepancy dooms attempts to explicitly search for exam-

ples of everyday interactions (“opening a microwave”, for

instance, yields few good results Try it!) because there are

few reasons to tag these videos. Accordingly, most video

efforts have focused on actions that can be found directly

Implicit Data Gathering

Explicit Data Gathering

Opening fridge

Getting out of bed

…Jumping into pool

… My daily routine

Figure 1. Past work aimed at gathering everyday interaction data

has been explicit, directly searching for a predetermined list of cat-

egories. Unfortunately, direct search does not work for everyday

interactions like getting out of bed or opening a refrigerator since

they are rarely tagged. Effort has thus focused on things which are

tagged, often unusual events. We present implicit gathering as an

alternative: everday interactions exist buried in other data; we can

search for data that contains them and mine them. We demonstrate

this by finding a new 14-day/114K video/10.7K uploader dataset

of everyday interaction occuring naturally.

in the world of tagged things (e.g., high jump) as opposed

to everyday ones that are impossible to find directly (e.g.,

opening a fridge). Some researchers have identified this

problem, and have proposed the solution of collection-by-

acting [35, 23, 43, 11] in which people are hired to act out

a script. This moves us considerably closer towards under-

standing everyday interactions, but collection-by-acting is

difficult to scale and make diverse. But even if we ignore

the struggle to find data, this explicit approach is still left

with two serious bias issues, both of which we document

empirically. First, the examples we recover from the world

of tagged things tend to be atypical: Internet search results

for a concept as basic as “bedroom” (Try it!) are hopelessly

staged, taken at a particular distance, and almost always de-

pict made beds. Second, there are glaring gaps in terms of

both missing categories and missing negatives.

This paper proposes the alternative of implicit data gath-

ering. The intuition is that while we cannot find tagged
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Figure 2. An overview of our dataset VLOG, which we obtain by mining the vast amounts of everyday interaction that exists implicitly

in other data. We compare sample frames from our dataset in comparison with video-collection-by-acting efforts such as [35, 23, 8, 28].

everyday interaction data, it exists implicitly inside other

content that has different tags. We can find this superset of

data, mine it for the data we want, and then annotate and

analyze it. For us, this superset is Lifestyle Vlogs, videos

that people purportedly record to show their lives. As de-

scribed in Section 3, we mine this data semi-automatically

for interaction examples to produce VLOG, a new large-

scale dataset documenting everyday interactions. VLOG,

illustrated in Figure 2, is far larger and orders of magnitude

more diverse than past efforts, as shown in Section 4. This

shows the paradoxical result that while implicit searching is

less direct, it is more effective at obtaining interaction data.

While implicit gathering is more effective than explicit

gathering for interaction data, it also poses challenges. Ex-

plicitly gathered data has a list of categories predating the

data, but implicitly gathered data depicts a natural long-tail

of interaction types and must be annotated post-hoc. We fo-

cus on the central figure of interaction, human hands, and

propose two concrete tasks in Section 5: (1) identifying

hand contact state in a frame irrespective of category, which

naturally covers the entire dataset; (2) identifying if one of

a number of objects was interacted with in the video. This

quantifies interaction richness, provides an index for other

researchers, and permits benchmarking of standard meth-

ods. We additionally provide labels like scene categories

and hand bounding-boxes that we use to explore our data.

Our data and labels let us explore a large world of hu-

mans interacting with their environment naturally. We first

show that VLOG reveals biases built into popular explicitly-

gathered datasets in Section 6. Having demonstrated this,

we analyze how well current algorithms work on our VLOG

data and tasks in Section 7. Finally, looking towards the

grand goal of understanding human interaction, we show

applications of our data and labels for tasks like hand future

prediction in Section 8.

2. Related Work

This paper takes a step towards understanding everyday

interactions and thus touches on a number of areas of com-

puter vision.

At the motivational level, the work is about affordances,

or opportunities for interaction with the world [10]. This

area has been extensively studied in vision, typically aiming

to infer affordances in still images [12, 14, 32, 47, 46], un-

derstand scenes by observing them over time [9, 6], or use

them as a building block for scene understanding [20]. A

fundamental stumbling block for these efforts has been the

difficulty of gathering interaction-rich video data at scale.

While egocentric/life-logging efforts like [37, 30, 8, 28]

do offer ways to obtain large amounts of data in terms of

volume, achieving diversity and coverage is an open chal-

lenge. One contribution of this paper towards these efforts

is demonstrating how to obtain large scale interaction-rich

data at scale while achieving diversity as well as a concrete

dataset that can be used to study humans “in-the-wild” from

a variety of angles, including benchmarks.

In this paper, we gather a large collection of videos and

annotate it post-hoc with a variety of interaction labels.

From this angle, our paper could be viewed as similar to

other action recognition efforts such as [35, 7, 8, 31, 42].

The primary distinction is that we focus on everyday actions

and gather our data implicitly, rather than explicitly search-

ing for it. Most work focuses on non-everyday actions like

“high jump”; the work that does focus on everyday actions

[35, 23, 11] gathers it explicitly by acting. As we show, we

can gather this data without searching for it directly, achiev-

ing greater scale and diversity and, as we will show, avoid-

ing some sources of data bias. The contemporary effort of

[13] also gathers data implicitly, but from films; its data is

complementary and has more human-human interaction and

4992



(a) Search Youtube

216K Video Candidates (2.5 Years)

Low Video-level Purity

(b) Classify Thumbnails

Templated, 

Multilingual Domain 

Queries:

“Morning routine”,
“realistic ditl 2015”,
“mijn realistische

routine”, “Ma routine

d'apres-midi”, …

20K Video Samples (90 Days)

High Video-level Purity

(c) Shot Detection

Furniture interactions

Subscribe 

and like!

Close-ups

Manipulating 

small objects
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Product 

placements

572K Static Clip Pool (52 Days)

Low Clip-Level Purity

(d) Classify Frames

139K Clips (16 Days, 6 Hours)

High Clip-Level Purity

Figure 3. An illustration of the automatic gathering process. Starting with a set of templated queries, we (a) search youtube (b) identify

promising videos using their thumbnails (c) break these videos into clips (d) identify promising clips. Throughout the process, the amount

of data steadily decreases but the purity steadily increases. Finally, the remaining clips are cleaned by humans.

less human-object interaction.

3. Collecting Interaction-Rich Episodes

We aim to get find data that is rich in everyday interac-

tions. As argued in the introduction, direct search does not

work, leading to efforts aimed at “acting out” daily activities

[39, 23, 35, 11]. By virtue of their gathering approach, these

datasets often have many desirable properties for studying

interaction compared to random Youtube videos. For in-

stance, many depict a single scene and feature a static cam-

era, which make many learning tasks easier. We now show

how to achieve a large scale while retaining features of man-

ual gathering efforts.

Our insight is that one can find interaction-rich genres

and mine these videos for data. As a concrete example, we

show how to do this with a genre of YouTube video referred

to as Lifestyle Vlogs (Video-log1). These are an immensely

popular and multicultural phenomenon of videos that pur-

port to document the ordinary daily lives of their recorders

and feature titles like “Daily Cleaning Routine!” or “A day

in the life of a stay at home mom”. As [22] notes, the rou-

tines are, at some level, aspirational as opposed to accurate.

Nonetheless, even if the series of actions (waking at 7AM

with a cup of black coffee) represents an ideal, at an interac-

tion level (e.g., pouring a cup of coffee), the data is realistic.

Unfortunately, examples of interaction are interspersed be-

tween camera pans of a well-kept house and monologues.

We thus distill our dataset semi-automatically, illustrated

in Fig. 3. Each step hones in on an increasingly pure subset.

We (i) we generate a large candidate video pool; (ii) filter

with relevance feedback; (iii) segment videos into clips; (iv)

filter clips by motion and content; (v) filter the clips with

annotators. Additional details are in the supplemental.

Finding Videos. We first find a Lifestyle VLOG corpus.

We define a positive video as one that depicts people inter-

acting with the indoor environment from a 3rd person. We

additionally exclude videos only about makeup and “unbox-

ing” videos about purchases.

1An archetypal example that appears in our dataset is https://

youtu.be/DMZ_pRBd0dg

We use templated queries based on themes (“daily rou-

tine 2013”) or activities involved (“tidying bedroom”), in-

cluding 6 main English query templates and 3 templates

translated into 13 European languages. These give 823

unique queries. We retrieve the top 1K hits on YouTube,

yielding 216K unique candidate videos. The results are

23% pure at a video level: failures include polysemy (e.g.,

“gymnastic routine”), people talking about routines, and

product videos.

This candidate corpus is too large (∼14TB) and noisy

to contemplate downloading and we thus filter with the

four thumbnails that can be fetched from YouTube inde-

pendently of the video. We labeled 1.5K videos as rel-

evant/irrelevant. We then represent each video by sum-

mary statistics of the pool5 activations of an ILSVRC-

pretrained [33] Alexnet [24] on its thumbnails, and train a

linear SVM. We threshold and retrieve 20K videos.

Finding Episodes Within Videos. This gives an initial

dataset of lifestyle VLOGs with high purity at the video

level; however, the interaction events are buried among a

a mix of irrelevant sequences and camera motion.

We first segment the videos into clips based on camera

motion. Since we want to tag the start of a slow pan while

also not cutting at a dramatic appearance change due to a

fridge opening, we use an approach based on homography

fitting on SIFT [26] matches. The homography and SIFT

match count are used to do shot as well as static-vs-moving

detection. After discarding clips shorter than 2s, this yields

a set of 572K static clips.

Many remaining clips are irrelevant, such as subscription

pleas or people talking to the camera. Since the irrelevant

clips resemble the irrelevant videos, we reuse the SVM on

CNN activations approach for filtering. This yields 139K

clips that mostly depict human interactions.

Manual Labeling. Finally, workers flag adult content

and videos without humans touching something with their

hands. This yields our final set of 114K video clips, show-

ing the automatic stages work at 82% precision.
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Table 1. How VLOG compares to the most similar recent existing video datasets that could be used to study everyday interactions.

For comparison, we list representative action recognition datasets with any overlap. VLOG achieves the scale of many contemporary

action recognition efforts while also having features desirable for studying interaction: high demonstrator diversity, high resolution, static

cameras, and open-world-like data. Legend: Diversity: # of unique uploaders or actors; %VGA+: what % is at least VGA resolution;

1st/3rd: person perspective; Implicit: whether the data was gathered without explicitly finding the actions of interest.

Video Scale Diversity Resolution Attributes

Dataset Frames Length Count Participants Mean % VGA+ 1st/3rd Static Implicit

VLOG 37.2M 14d, 8h 114K 10.7K 660× 1183 86% 3rd X X

Something-Something [11] 13.1M 5d, 1h 108K 1.1K 100× 157 0% 3rd × ×

Charades [35] 8.6M 3d, 8h 9.8K 267 671× 857 56% 3rd × ×

AVA [13] 5.2M 2d 192 192 451× 808 26% 3rd × X

Instructions [1] 795.6K 7h, 22m 150 < 150 521× 877 51% 3rd × ×

Watch-n-Patch [43] 78K 3h, 50m 458 7 1920× 1080 100% 3rd X ×

CAD-120 [23] 61.5K 41m 120 4 480× 640 100% 3rd X ×

GTEA [8] 544.1K 5h, 2m 30 5 960× 1280 100% 1st × X

ADL [28] 978.6K 9h, 4m 20 20 960× 1280 100% 1st × X

MPI Cooking [31] 881.8K 9h, 48m 5.6K 12 1224× 1624 100% 3rd X X

↑ Everyday Interaction ↑ ↓ Activity Recognition ↓

Kinetics [21] 91M 35d, 7h 305K - 658× 1022 69% 3rd × ×

ActivityNet [7] 69M 27d, 0h 20K - 640× 1040 76% 3rd × ×

UCF 101 [38] 2.2M 1d, 1h 23K - 240× 320 0% 3rd × ×

4. The VLOG Dataset

We now analyze the resulting underlying data in context

of past efforts. We have freely released this data along

with all annotations and split information to the com-

munity. Here, we focus on the data itself: as a starting

point, we provide a number of annotations; however, since

our data was gathered before our labels were defined, the

data can be easily relabeled, and the videos themselves can

serve as labels for unsupervised learning.

As shown in Table 1, VLOG is closer in sheer volume to

traditional activity datasets like ActivityNet and two days

longer than all of the every other dataset listed. However,

VLOG is distinguished not just in size but also in diversity:

it has ≈ 9.4× more source than Something-Something and

≈ 40× more sources than Charades (and is more balanced

in terms of uploaders, Gini coefficient 0.57 vs 0.74). We can

put this diversity in perspective by calculating how many

frames you could sample before expecting to see the same

person (for datasets where this information is available). In

CAD-120, it is just 2; Watch-n-Patch is 3; Charades is 10;

and VLOG 58. We report additional dataset statistics about

VLOG (e.g., scene types, distribution of video length) in the

supplemental.

Compared to direct gathering efforts (e.g., CAD-120) in

which there are direct incentives for quality, crawling ef-

forts come at the cost of a lack of control. Nonetheless, our

average resolution approaches that of in-lab efforts. This is

because our content creators are motivated: some intrinsi-

cally and some because they make money via advertising.

Indeed, many videos are shot from tripods and, as the fig-

ures show, most are lit and exposed well.

Our paper is best put in context with video datasets, but

of course there are image-based interaction datasets such

as HICO [5] and V-COCO [15]. As image-based data,

though, both depend on someone taking, uploading, and

tagging a photo of the interaction. Accordingly, despite

directly searching for refrigerator and microwave interac-

tions, HICO contains only 59 and 22 instances of each.

VLOG, as we will next see, has far more despite directly

searching for neither.

5. Labels

While implicit gathering scales better, it presents chal-

lenges for annotation. Explicitly gathered data naturally

maps to categories and tasks since it was obtained by find-

ing data for these categories; implicitly gathered data, on

the other hand, naturally depicts a long tail distribution. We

can quantify this in VLOG by analyzing the entry-level cat-

egories (examples appear in supplemental) being interacted

with in a 500 image sample: standard species richness es-

timation techniques [3] give an estimate of 346 categories

in the dataset. This is before even distinguishing objects

more finely (e.g., wine-vs-shampoo bottles) or before dis-

tinguishing interactions in terms of verbs (e.g., open/pick

up/pour from bottle).

Faced with this vast tail, we focus on the crucial part

of the interaction, the hands, and pose two tasks. The first

is whether the hands interact with one of a set of semantic

objects in the clip. As a side benefit, this helps quantify our

data in comparison to explicit efforts and gives an index

into the dataset, which is useful for things like imitation

learning. The second task is the contact state of the hands
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Box Brush Cabinet Cellphone Clothing Cup

Door Drawers Food Fork Knife Laptop

Microwave Oven Pen/Pencil Pillow Plate Refrigerator

Sink Spoon St. Animal Table Toothbrush Towel

Bag Bed Bedding Bottle/Tube BowlBook/Paper

Figure 4. Examples of each of our 30 objects being interacted with.

at a frame level. This describes human behavior in a way

that is agnostic to categories and therefore works across all

object categories in the dataset.

In addition to labels, we use the YouTube uploader id

to define standard 50/25/25 train/val/test splits where each

uploader appears only in one split.

5.1. Hand/Semantic Object Annotations

We frame this as whether a human interacts with any in-

stance of each of a set of 30 objects (i.e., 30 binary, clip-

level tasks). We focus on clip-level annotation because our

many of our clips are short, meaning that clip-level super-

vision is quite direct in these cases. Note independent tasks

are necessary since people may do multiple things.

Vocabulary. Since our data was collected implicitly, we

must determine a vocabulary. An entirely new one would

preclude studying transfer, but an entirely existing one

would spend effort on objects that are not present. We re-

solve these competing aims by taking an empirical approach

but favoring COCO objects. We exhaustively described

which objects were interacted with in a subset of our data;

we select 30 categories by identifying frequent objects spe-

cific to our dataset (e.g., bedding, doors) and COCO objects

that are sufficiently frequent (e.g., fridges, microwaves).

Annotation. We asked workers to annotate the videos at a

clip level based on whether the human made hand contact

with an instance of that object category. Following [34],

multiple annotators were asked to annotate a few objects

(8) after watching a video. Video/object set pairs where an-

notators could not come to a consensus were marked as in-

conclusive. This and all labeling was done through a crowd-

sourcing service, which used standard quality-control such

as consensus labeling, qualifications, and sentinels. Sample

labels are shown in Fig. 4

Labels. Fig. 5 shows that the human/object interactions are

unevenly distributed. Microwaves, for instance, are inter-

acted with far less frequently (< 0.3%) than cell phones or

beds. Nonetheless, there are 296 instances, making it the

largest collection available. Moreover, since this was ob-
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Figure 5. Hand/Semantic Object Label frequency

tained without searching for microwave, we expect similar

quantities of many other objects can be obtained easily.

Comparison. We now compare the scope of VLOG in

terms of object interaction with any existing dataset. We

examined 15 VLOG categories that overlap cleanly with

any of [35, 23, 43, 5, 15]. First, most datasets have catas-

trophic gaps: [35] has 2 microwaves, for instance, and [23]

has no laptops among many other things. Averaging across

the categories, VLOG has 5× the number of examples com-

pared to the largest of past work. This measure, moreover,

does not account for diversity: all 36 microwave videos of

[23] depict the same exact instance, for example. Bed is the

largest relative difference since many source videos start in

the morning. The only category in which VLOG lags is

doors with only 2179 compared to Charades’ 2663.

5.2. Hand Contact State Annotations

We then annotate the hand contact state of a large set

of frames. This automatically entirely covers the space of

videos: irrespective of which object is being interacted with,

we can identify that there is interaction.

Vocabulary. Our vocabulary first identifies whether 0, 1,

or 2+ people are present; images with 1 person are labeled

with how many hands are visible and how many (but not

which) visible hands are in contact, defined as touching

something other than the human’s body or worn clothing.

This gives 6 hand states and 8 total categories.

Annotation. We annotate a random 219K subset of frames;

images without worker agreement are marked as inconclu-

sive. We can trivially convert these labels into “future” la-

bels for problems like contact anticipation.

5.3. Additional Data Annotations

Finally, to better understand the nature of the data, we

annotated it with additional labels. Since our videos are

single scenes taken from a static camera, we mark frames

from the middle of the video.

Scene Classification. We annotate scenes as being shot

in one of 5 categories (bathroom, bedroom, dining room,

kitchen, living room) or none-of-the-above. The five cate-

gories cover 76% of our data.

Proxemics. We annotate distance to the nearest object via
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Figure 6. We show examples of frequent confusions as well as

their top prediction and confidence. Often the model is confident

and wrong; sometimes it is baffled by easy images.

Hall’s proxemic categories [16]: intimate (< .45m), per-

sonal (< 1.2m), social (< 3.7m), public (3.7m+).

Human Configurations. To characterize the distribution

of people, we annotate 20K images with the visibility of the

head, torso, hands, and feet by categorizing the image into

the six common visibility configurations (capturing 92% of

the data), as well as none of the above or no human visible.

Hand Location. We further annotate 5K images with

bounding box locations of hands from our contact images.

6. Exploring Biases of Explicit Data

We first examine to what extent current recognition sys-

tems can make sense of VLOG by applying standard mod-

els for scene classification and object detection that were

trained on standard datasets (both gathered explicitly). Be-

fore describing the experiments, we note that VLOG has

no blatant domain shift issues: it shows objects and scenes

in normal configurations shot from real sensors with little

blur. Nonetheless, our experiments show failures that we

trace back to biases caused by explicit gathering. We note

that our claim is that VLOG captures a chunk of the visual

world that is poorly documented by existing datasets, not

that VLOG is an unbiased look at the world – all datasets

have biases, especially in prior probabilities.

Scene Classification. We take a Densenet-161 [19] model

trained on the 1.8M image Places365-Standard dataset [50]

and apply it to VLOG. Specifically we classify each frame

labeled with scene class into 365 scene categories from

Places365. We quantify performance with top-5 accuracy.

The off-the-shelf network struggles: in contrast to 85%

top-5 accuracy on the original dataset, it gets just 45% on

VLOG. The degradation is not graceful: kitchens are often

seen as laboratories or an ice cream parlor (sample mistakes

are in Fig 6), and reaching 80% accuracy requires using the

top-27 error. One hypothesis might be that VLOG is just

intrinsically harder: however, humans were all able to come

to a consensus on these frames and a simple model with

no fine-tuning (linear SVM on pretrained Resnet-50 [17]

activations) is able to achieve 72% top-1 accuracy.

The cause is a domain shift from the world of images

tagged with scene classes to the world of images from those
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Figure 7. Detection False Positives. We show sample high-

confidence (>0.9) detections from Faster RCNN on VLOG. These

suggest COCO contains shortcut solutions to some classes, namely

blobby textures for giraffes and shelves for refrigerators.

scenes classes. Examining the source dataset, Places365,

reveals sterile kitchens with uncluttered counters and bed-

rooms with made beds (7% were unmade in a 200 im-

age sample). The photos are also taken from a distance

to show off the scene (34% at social and 18% at intimate

distance compared to 8% and 40% in VLOG). Thus it is

not surprising that the network fails on views of a dresser

in a bedroom or an in-use stovetop, and accuracy at so-

cial/personal/intimate distance is 66.8%/48.7%/27.9%.

Object detection. We take the publicly available VGG-16

[36]-based faster RCNN [29] network. This was trained on

COCO [25] to detect 80 categories of objects. We run this

detector at 3Hz and max-aggregate over the video.

We find a number of failure modes that we trace back

to a lack of the right negatives. Fig. 7 shows sample confi-

dent detections for giraffe and refrigerator; these are thresh-

olded at >0.9, corresponding to >99% and >96% precision

on COCO and come from a larger set of false positives on

blobby textures and shelf-like patterns. Since VLOG has

many refrigerators, we can quantify performance at this op-

erating point for refrigerators. We count a detection as cor-

rect if it contains the object of interest: the 96% precision on

COCO (computed the same way) translates to a far worse

44% precision on VLOG, with similar recall.

We hypothesize these failures occur because of missing

negatives due to explicit gathering. COCO was gathered

explicitly looking for giraffes rather than documenting the

savannah and so there are no leopards to force the network

to go beyond texture classification. We find similar false

positive issues for zebras, whose texture is unique, but not

for bears (whose texture must be distinguished from dogs).

Similarly, most refrigerator false positives are photos that

are unlikely – e.g., cleaning an empty bookshelf. Finally,

we note that finding this out via COCO is difficult – giraffe

has the highest overall AP for the method, and refrigerator

is the second highest of the appliances.

7. Benchmarking Interactions

Now that we have analyzed some difficulties current off-

the-shelf models have in interpreting VLOG, we analyze

how well we can learn to understands hands interacting with
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Table 2. Results on Hand/Semantic Object Interaction Classification (Average precision).
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Key R50 31.3 21.7 62.5 57.6 50.7 51.0 25.6 17.3 11.2 16.4 39.9 34.0 19.6 34.8 19.9 40.1 12.5 26.1 47.4 39.3 20.5 23.8 33.2 7.2 46.4 48.7 24.3 44.6 19.9 24.5 17.9

µ R50 36.1 27.0 67.4 63.0 57.4 56.0 29.3 20.3 17.4 20.0 45.8 39.4 21.9 45.0 25.4 45.3 14.8 30.2 53.9 42.5 22.1 29.8 36.4 8.7 52.8 54.0 28.0 52.0 21.2 33.3 23.6

I3D K 28.1 20.2 56.9 54.3 47.1 45.3 21.8 14.8 22.8 16.3 36.5 32.4 16.6 32.7 12.5 36.1 12.6 29.4 35.6 17.7 13.3 25.3 30.5 6.6 27.3 45.1 23.9 30.0 15.1 39.1 24.2

FT R50 40.5 29.8 68.9 65.8 64.5 58.3 32.9 22.1 19.0 24.3 53.9 45.6 28.8 49.1 28.8 49.6 19.5 37.7 62.9 48.2 23.8 36.6 39.2 12.3 56.3 58.7 31.1 57.2 26.8 39.9 22.8

FT I3D-K 39.6 24.9 71.7 71.4 61.9 57.1 27.1 19.2 33.9 20.7 50.2 45.7 24.6 54.7 19.2 50.5 19.3 41.9 53.2 27.5 21.3 36.9 42.9 12.6 42.2 59.9 33.9 46.0 23.5 59.6 34.7

the world in VLOG. Our goal in this section is to understand

how well existing techniques work on VLOG; introducing

new architectures for video and image understanding is be-

yond the scope of this work, although our error modes sug-

gest likely future directions.

7.1. Hand/Semantic Object Interaction

We first analyze our human-object contact benchmark, a

set of 30 video-level binary decisions. We quantify perfor-

mance with average precision.

Models. Our models are inspired by what was done in Cha-

rades [35]. We begin with single frame models. The first

two use a linear SVM on aggregated final-layer activations

of a single-frame ILSVRC-pretrained [33] Resnet-50. We

try the following, all L2-normalized: (Key R50) one mid-

dle frame, which shows how much is explained by a scene

glimpse; (µ R50) the mean of the feature vector over time.

Finally, we fine-tune the model on VLOG (FT R50); at test

time, we average over evenly spaced locations. We next use

standard action recognition, using the Kinetics-pretrained

[21] RGB version of I3D [4], the class of models that is

state of the art on [35]. We train a linear SVM on average

activations (I3D-K); as well as fine-tune it on VLOG (FT

I3D-K). Note the base architecture, Inception-v1, has lower

spatial resolution and depth than Resnet50.

Results. We show quantitative results in Table 2. Fine-

tuning improves results, and the I3D exhibits far larger

gains compared to Resnet50, suggesting a large domain

gap between Kinetics and VLOG. Some objects, mainly

textureless or small ones interacted with in distinctive mo-

tions – bedding, brushes, toothbrushes, and towels – benefit

tremendously from the temporal signal in I3D. Others, usu-

ally appliances like microwaves and refrigerators, benefit

from Resnet50’s higher spatial resolution and depth.

We see a number of areas for improvement. A single

frame does poorly but also gets 78% of the performance rel-

ative to the best method, suggesting that current techniques

are missing lots of information. Further analysis shows that

mAP drops at social distance: FT I3D-K 39.6% → 28.2%,

with large drops for manipulated objects like cups or knives.

Table 3. Accuracy for hand-state prediction in the present as well

as 6, 12, 30, and 60 frames in the future.

Now +6f +12f +30f +60f

R50 43.6 41.9 40.4 37.5 35.7

FT R50 56.4 49.6 45.9 41.0 37.8

FT R50+Pseudo Labels 58.2 53.1 49.6 43.8 39.4

This suggests we may need architectures that can transfer

from up-close examples to far-away ones or focus more

closely on hands.

7.2. Hand Contact State

While semantic labels provide one view of our data,

VLOG’s long-tail ensures that many interactions will go

uncategorized since they do not fall into one of the 30 cate-

gories we have labeled. We therefore also investigate hand

contact state, in particular in both the current frame and in

the future (by simply training on frames before the labeled

one). This is an 8-way image classification task and we

quantify it with accuracy.

Models. We use the same Resnet50 models (pretrained and

fine-tuned). Our labels are sparse temporally; we generate

Pseudo-labels by adding the predictions of an initial model

on 1M training video frames into the training set.

Results. We show results in Table 3; for reference, sim-

ply reporting the training mode gets 20%. The models

consistently outperform this, even 2s into the future. The

most common confusions are issues in terms of counting

the number of hands visible. The pseudo-labels consistently

give a boost (and training longer on the same data did not).

One concern we had was that the system may be ex-

ploiting a bias to solve the task. We examined CAM ac-

tivations [49] and found the network focused on hands and

faces; to quantify it further, we tried to decode the features

to hand pixel labels. We freeze the convolutional layers and

learn a linear model on top in a fully convolutional fashion.

As a proxy to the segmentation, we use the hand bounding

boxes. Using 10/100/3000 labeled images for training, this

model gets 31.3/40.5/47.8 IoU, substantially outperforming

the Imagenet pretrained model (17.3/33.5/41.5). This sug-
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Input δ = 2f 8f 16f 32f Input δ = 2f 8f 16f 32f

Figure 8. Where will the hands go? By having an enormous dataset of hands interacting with the world, we can begin learning models of

how everyday interactions play out. Here, we show outputs from a model that predicts where hands will be in the future 2, 8, 16, and 32

frames in the future. It has learned plausible dynamics, including identifying that people using cellphones are unlikely to put them down.

gests that the network has indeed learned about hands.

7.3. Hand Detection

We then analyze hand detection, testing on other

datasets. This shows that our data is sufficiently varied

to work on other datasets un-finetuned. Additionally, this

serves the practical purpose of having a detector that works

on the wide variety of poses in VLOG, such as: upper-half

views with a torso and head (37%), egocentric-like hands-

only views (31%), and full body (7%).

Model. We train a VGG16-based [36] faster RCNN [29]

using standard settings and joint training.

Results. The most similar dataset with human hands in

videos with both egocentric and third person hands is Ego-

Hands [2], which has a similar number of labeled im-

ages (and slightly more annotated boxes). EgoHands fails

on VLOG, getting 29.5 AP compared to 67.6 training on

VLOG. In the other direction, training on VLOG does well,

getting 70.9 compared to 90.4 from training on EgoHands

(note EgoHands tests on people seen at training). As fur-

ther evidence, on a third dataset [27], training on VLOG far

surpasses using EgoHands (56.3 vs 31.4).

8. Exploring A Large Set of Hands in Contact

Independent of particular tasks and benchmarks, VLOG

represents a world of humans interacting with objects that

has been indexed in many ways. This has obvious applica-

tions in tasks like future prediction [41], intuitive physics

[44], imitation learning from videos [45], and grasp analy-

sis [18]. We look forward to seeing what can be done with

the dataset, but conclude with a concrete demonstration of

the sorts of things that can be done with a large collection

of hands in action: we predict future locations of hands.

We build a model that takes an image and predicts the

hand locations δ frames in the future. This problem has

been tackled in lab settings such as in [23]; here, we do

it on large-scale web data. We modify a standard dilated

Resnet-54 [48] (details in supplemental) as follows: we in-

troduce a 2-layer network that maps δ to feature maps; the

base feature map and δ feature map are then concatenated

and fused by 3 convolutional layers to predict hand segmen-

tation. As training data, we run the segmentation model

from Section 7.3 on training frames; we trim these to 156K
frames where there is significant change. We then learn a

model for δ = 2, . . . , 32. Note training this way requires

video data from a stationary camera.

We show some predictions in Fig. 8 on held-out data

while varying the timescale δ. Our model has learned rea-

sonable dynamics of where hands go: in many cases, the

hand will continue moving in the direction of likely motion;

in others, such as when humans are holding cell phones, our

model has learned that people will keep their hands still.

9. Discussion

We conclude with a few lessons learnt. The most im-

portant to us is that explicitly asking for what you want is

counterproductive: it is easier, not harder, to be implicit.

In the process, we find a slice of the visual world that is

not documented well by existing explicitly gathered data,

including popular datasets. There is good news though:

there are ways to get this data easily and computer vision

has reached a maturity where it can automate much of the

process. Additionally, it can make headway on the difficult

problem of understanding hands in action. There is still a

long way to go until we understand everyday interactions,

but we believe this data puts us on the right path.
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