
International Journal on Software Tools for Technology Transfer (2022) 24:635–659
https://doi.org/10.1007/s10009-022-00663-1

GENERAL

Special Issue: TACAS 2017

From linear temporal logic and limit-deterministic Büchi automata to
deterministic parity automata

Javier Esparza1 · Jan Křetínský1 · Jean-François Raskin2 · Salomon Sickert1,3

Accepted: 7 June 2022 / Published online: 23 July 2022
© The Author(s) 2022

Abstract
Controller synthesis for general linear temporal logic (LTL) objectives is a challenging task. The standard approach involves
translating the LTL objective into a deterministic parity automaton (DPA) by means of the Safra-Piterman construction. One
of the challenges is the size of the DPA, which often grows very fast in practice, and can reach double exponential size in
the length of the LTL formula. In this paper, we describe a single exponential translation from limit-deterministic Büchi
automata (LDBA) to DPA and show that it can be concatenated with a recent efficient translations from LTL to LDBA to
yield a double exponential, ‘Safraless’ LTL-to-DPA construction. We also report on an implementation and a comparison
with other LTL-to-DPA translations on several sets of formulas from the literature.

Keywords Linear temporal logic · Deterministic parity automata · Synthesis

1 Introduction

Limit-deterministic Büchi automata (LDBA, also known
as semi-deterministic Büchi automata) were introduced by
Courcoubetis and Yannakakis (based on previous work by

This work is partly supported by the ERC project PaVeS under the
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 787367, by the DFG projects Verified
Model Checkers (317422601, 436811179) and Group-By Objectives
in Probabilistic Verification (427755713), by the ARC project
Non-Zero Sum Game Graphs: Applications to Reactive Synthesis and
Beyond (Fédération Wallonie-Bruxelles), the EOS project Verifying
Learning Artificial Intelligence Systems (F.R.S.-FNRS & FWO), and
the COST Action 16228 GAMENET (European Cooperation in
Science and Technology).

B Jan Křetínský
jan.kretinsky@in.tum.de

Javier Esparza
esparza@in.tum.de

Jean-François Raskin
jraskin@ulb.ac.be

Salomon Sickert
sickert@in.tum.de

1 Technische Universität München, München, Germany

2 Université libre de Bruxelles, Bruxelles, Belgium

3 The Hebrew University, Jerusalem, Israel

Vardi) to solve the qualitative probabilistic model-checking
problem: Decide if the executions of a Markov chain or
Markov decision process satisfy a given LTL formula with
probability 1 [4,39,40]. The problem faced by these authors
was that fully nondeterministic Büchi automata (NBAs),
which can capture all LTL-recognisable languages, cannot
be used for probabilistic model checking, and deterministic
Büchi automata (DBA), which could be used for probabilis-
tic model checking, cannot capture all LTL-recognisable
languages. The solution was to introduce LDBAs as a
model in-between: as expressive as NBAs, but determinis-
tic enough.

After these papers, LDBAs received little attention. The
alternative path of translating the LTL formula into an equiv-
alent fully deterministic Rabin automaton using Safra’s con-
struction [32] was considered a better option, mostly because
it also solves the quantitative probabilistic model-checking
problem (computing the probability of the executions that
satisfy a formula). However, recent papers have shown
that LDBAs were unjustly forgotten. Blahoudek et al. have
shown that LDBAs are easy to complement [2]. Kini and
Viswanathan have given a single exponential translation of
LTL\GU to LDBA [18]. Finally, Sickert et al. describe in
[9,34,36] two double exponential translations for full LTL
that can also be applied to the quantitative case, and tend to
behave better than Safra’s construction in practice.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-022-00663-1&domain=pdf

636 J. Esparza et al.

In this paper, we add to this trend by showing that LDBAs
are also attractive for synthesis. The classical approach
to the synthesis problem with LTL objectives1 involves a
translation of NBAs to DPAs with the help of the Safra-
Piterman construction [30] or other recent determinisation
constructions, such as [13,17,25]. While limit-determinism
is not ‘deterministic enough’ for the synthesis problem,
we introduce a conceptually simple and worst-case optimal
translation LDBA→DPA.

The presented translation bears some similarities with that
of [12] where, however, a Muller acceptance condition is
used. This condition can also be phrased as aRabin condition,
but not as a parity condition. Moreover, the way of tracking
all possible states and finite runs differs. Furthermore, read-
ers familiar with [13,17] might notice that our construction
tries to identify an (infinite) left-path, which is by definition
accepting, in the reduced split-tree. If we restrict ourselves
to LDBAs, identifying these becomes considerably simpler
compared to the cited approaches. Hence our approach uses
similar ideas, but is stream-lined and simpler.

Together with the translation LTL→LDBA of [9,34,36],
our construction provides a ‘Safraless’ procedure to obtain a
DPA from an LTL formula. However, the direct concatena-
tion of the two constructions does not yield an algorithm of
optimal complexity: the LTL → LDBA translation is double
exponential (and there is a double exponential lower bound),
and so for the LTL→DPA translation we only obtain a triple
exponential bound. We solve this problem by showing that
these LDBAs derived from LTL formulas possess semantic
state annotations that can be used to reduce the amount of
tracked information in the constructed DPA. We then prove
that in this setting the concatenation of the two constructions
remains double exponential.

With the availability of efficient translations from LTL
formulas intoDPAs several tools emerged following the clas-
sical approach to synthesiswith LTLobjectives. First, there is
ltlsyntwhich is part of Spot [5] that uses aNBA→DPA
translation. Second, there isStrix [27,28] that relies on the
translation presented in this paper and which recently won
all LTL tracks of the synthesis competition SyntComp [16].
Besides, the preserved semantic labelling of the states of the
automata allows for heuristics guiding the exploration of the
on-the-fly generated automaton [27], but also for efficient
deployment of learning-based algorithms and lifelong learn-
ing paradigms in LTL synthesis [19]. Such efforts have a
great impact on the practical performance of solutions to this
2-EXPTIME-complete problem. For a detailed description
of the exact implementation details of Strix we refer the
reader to [27].

1 See [3] for an in-depth description of the classical and recent
approaches to LTL synthesis.

In the third and final part, we report on an experimen-
tal evaluation of our LTL→LDBA→DPA construction, and
compare it with other constructions that translate LTL to
DPAs.

Structure of the Paper. Section 2 introduces the necessary
preliminaries about automata. Section 3 defines the transla-
tion LDBA→DPA. Section 4 shows how to compose this
translation with a translation from LTL to LDBAs in such a
way that the resulting DPA is at most doubly exponential in
the size of the LTL formula. Section 5 reports on the experi-
mental evaluation of this worst-case optimal translation, and
Sect. 6 contains our conclusions.

Editorial Note.This is an extended journal version of our pre-
viously published conference paper [8], including full proofs,
more examples, and an extensive evaluation on classical and
new, parametrised benchmarks.

2 Preliminaries

Büchi automata. A (nondeterministic) word automaton
A with Büchi acceptance condition (NBA) is a tuple
(Q, q0, �, δ, α) where Q is a finite set of states, q0 ∈ Q
is the initial state, � is a finite alphabet, δ ⊆ Q × � × Q
is the transition relation, and α ⊆ δ is the set of accept-
ing transitions2. A is deterministic if for all q ∈ Q, for all
σ ∈ �, there exists a unique q ′ ∈ Q such that (q, σ, q ′) ∈ δ

or there exists no such state. Given S ⊆ Q and σ ∈ �, let
postσδ (S) = {q ′ | ∃q ∈ S · (q, σ, q ′) ∈ δ}. Further, we use
q →σ p as a shorthand for (q, σ, p) ∈ δ if δ is clear from
the context.

A run of A on a ω-word w : N → � is a ω-sequence of
states ρ : N → Q such that ρ(0) = q0 and for all positions
i ∈ N, we have that (ρ(i), w(i), ρ(i + 1)) ∈ δ. A run ρ is
accepting if there are infinitely many positions i ∈ N such
that (ρ(i), w(i), ρ(i + 1)) ∈ α. The language defined by A,
denoted by L(A), is the set of ω-words w for which A has an
accepting run.

A limit-deterministic Büchi automaton (LDBA) is a Büchi
automaton A = (Q, q0, �, δ, α) such that there exists a sub-
set Qd ⊆ Q satisfying the three following properties:

1. α ⊆ Qd × � × Qd , i.e. all accepting transitions are tran-
sitions within Qd ;

2 Here, we consider automata on infinite words with acceptance con-
ditions based on transitions. It is well known that there are linear
translations from automata with acceptance conditions defined on tran-
sitions to automata with acceptance conditions defined on states, and
vice-versa.

123

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 637

Fig. 1 An LDBA for the LTL language FGa ∨FGb. The behaviour of
A is deterministic within the subset of states Qd = {2, 3, 4} which is a
trap, the set of accepting transitions are depicted in bold face and they
are defined only between states of Qd . We simplify figure, by using the
alphabet Ap = a, b instead of 2Ap

2. ∀q ∈ Qd · ∀σ ∈ � · ∀q1, q2 ∈ Q · (q, σ, q1) ∈ δ ∧
(q, σ, q2) ∈ δ → q1 = q2, i.e. the transition relation δ is
deterministic within Qd ;

3. ∀q ∈ Qd · ∀σ ∈ � · ∀q ′ ∈ Q · (q, σ, q ′) ∈ δ → q ′ ∈ Qd ,
i.e. Qd is a trap (when Qd is entered it is never left).

Without loss of generality, we assume that q0 ∈ Q \ Qd , and
we denote Q\Qd by Qd . Courcoubetis andYannakakis show
that for every ω-regular language L, there exists an LDBA
A such that L(A) = L [4]. That is, LDBAs are as expressive
as NBAs. An example of LDBA is given in Fig. 1. Note that
the language accepted by this LDBA cannot be recognised
by a deterministic Büchi automaton.

Parity automata. A deterministic word automaton A with
parity acceptance condition (DPA) is a tuple (Q, q0,�, δ, p),
defined as for deterministic Büchi automata with the excep-
tion of the acceptance condition p, which is now a function
assigning an integer in {1, 2, . . . , d}, called a colour, to each
transition in the automaton. Colours are naturally ordered by
the order on integers.

Given a run ρ over a word w, the infinite sequence of
colours traversed by the run ρ is noted p(ρ) and is equal to
p(ρ(0), w(0), ρ(1)) . . . p(ρ(n), w(n), ρ(n+1)) A run
ρ is accepting if the minimal colour that appears infinitely
often along p(ρ) is even. The language defined by A, denoted
by L(A), is the set ofω-wordsw for which A has an accepting
run.

While deterministic Büchi automata are not expressively
complete for the class ofω-regular languages,DPAs are com-
plete for ω-regular languages: for every ω-regular language
L there exists a DPA A such that L(A) = L, see e.g. [30].

Linear Temporal Logic. We introduce linear temporal logic
(LTL) as most authors with the following reduced syntax:

ϕ:= tt | a | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ with a ∈ Ap

Letw be a word over the alphabet 2Ap and let ϕ be a formula.
Let wi = w(i)w(i +1) . . . denote the suffix of w at position
i . The satisfaction relation w |
 ϕ is inductively defined as

follows:

w |
 tt
w |
 a iff a ∈ w(0)
w |
 ¬ϕ iff w �|
 ϕ

w |
 Xϕ iff w1 |
 ϕ

w |
 ϕUψ iff ∃k · wk |
 ψ and ∀ j < k · w j |
 ϕ

Wedenote by L(ϕ):={w ∈ (2Ap)ω | w |
 ϕ} the language
of ϕ. Left-out, but often used LTL operators are then added
as abbreviations. Fϕ:=ttUϕ (eventually) and Gϕ:=¬F¬ϕ.

3 From LDBA to DPA

3.1 Run DAGs and their colouring

Run DAG. A nondeterministic automaton A may have sev-
eral (even an infinite number of) runs on a given ω-word
w. As in [23], we represent this set of runs by means of a
directed acyclic graph structure called the run DAG of A on
w. Given an LDBA A = (Q, Qd , q0, �, δ, α), this graph
Gw = (V , E) has a set of vertices V ⊆ Q × N and edges
E ⊆ V × V defined as follows:

– V = ⋃
i∈N

Vi , where the sets Vi are defined inductively:

– V0 = {(q0, 0)}, and for all i ≥ 1,
– Vi = {(q, i) | ∃(q ′, i − 1) ∈ Vi−1 · q ′ →w(i) q};

– E = {((q, i), (q ′, i + 1)) ∈ Vi × Vi+1 | q →w(i) q ′}.

We denote by V d
i the set Vi ∩ (Qd × {i}) that contains the

subset of vertices of layer i that are associated with states in
Qd .

Observe that all the infinite paths of Gw that start from
(q0, 0) are runs of A on w, and, conversely, each run ρ of A
on w corresponds exactly to one path in Gw that starts from
(q0, 0). So, we call runs the infinite paths in the runDAGGw .
In particular,we say that an infinite path v0v1 . . . vn . . . ofGw

is an accepting run if there are infinitelymany positions i ∈ N

such that vi = (q, i), vi+1 = (q ′, i + 1), and (q, w(i), q ′) ∈
α. Clearly, w is accepted by A if and only if there is an
accepting run in Gw. We denote by ρ(0..n) = v0v1 . . . vn
the prefix of length n + 1 of the run ρ.

Ordering of runs. A function Ord : Q → {1, 2, . . . ,
|Qd |,+∞} is called an ordering of the states of A w.r.t. Qd

if Ord defines a strict total order on the state from Qd , and
maps each state q ∈ Qd to +∞, i.e.:

– for all q ∈ Qd , Ord(q) = +∞,
– for all q ∈ Qd , Ord(q) �= +∞, and
– for all q, q ′ ∈ Qd , Ord(q) = Ord(q ′) implies q = q ′.

123

638 J. Esparza et al.

We extend Ord to vertices in Gw as follows: Ord((q, i)) =
Ord(q).

Starting from Ord, we define the following pre-order on
the set of run prefixes of the run DAG Gw. Let ρ(0..n) =
v0v1 . . . vn and ρ′(0..n) = v′

0v
′
1 . . . v′

n be two run prefixes
of length n + 1, we write ρ(0..n) � ρ′(0..n), if ρ(0..n) is
smaller than ρ′(0..n), which is defined as:

– for all i , 0 ≤ i ≤ n, Ord(ρ(i)) = Ord(ρ′(i)), or
– there exists i , 0 ≤ i ≤ n, such that:

– Ord(ρ(i)) < Ord(ρ′(i)), and
– for all j , 0 ≤ j < i , Ord(ρ(j)) = Ord(ρ′(j)).

This is extended to (infinite) runs as: ρ � ρ′ iff for all i ≥
0 · Ord(ρ(0..i)) � Ord(ρ′(0..i)).

Remark 1 If A accepts a word w, then A has a �-smallest
accepting run for w.

We use the �-relation on run prefixes to order the ver-
tices of Vi that belong to Qd : for two different vertices
v = (q, i) ∈ Vi and v′ = (q ′, i) ∈ Vi , v is �i -smaller
than v′, if there is a run prefix of Gw that ends up in v which
is�-smaller than all the run prefixes that ends up in v′, which
induces a total order among the vertices of V d

i because the
states in Qd are totally ordered by the function Ord.

Lemma 1 For all i ≥ 0, for two different vertices v =
(q, i), v′ = (q ′, i) ∈ V d

i , then either v �i v′ or v′ �i v,
i.e., �i is a total order on V d

i .

Indexing vertices. The index of a vertex v = (q, i) ∈ Vi
such that q ∈ Qd , denoted by Indi (v), is a value in
{1, 2, . . . , |Qd |} that denotes its order in V d

i according to
�i (the �i -smallest element has index 1). For i ≥ 0, we
identify two important sets of vertices:

– Dec(V d
i) is the set of vertices v ∈ V d

i such that

– either there does not exists v′ ∈ V d
i+1 : (v, v′) ∈

E , i.e. v has no successor in V d
i+1 meaning that the

sequence of states monitored so far aborts and does
not lead to an infinite run;

– or there exists a vertex v′ ∈ V d
i+1: (v, v′) ∈ E and

Indi+1(v
′) < Indi (v), i.e. the set of vertices in V d

i
whose (unique) successor in V d

i+1 has a smaller index
value.

– Acc(V d
i) is the set of vertices v = (q, i) ∈ V d

i such that
there exists v′ = (q ′, i + 1) ∈ V d

i+1: (v, v′) ∈ E and
(q, w(i), q ′) ∈ α, i.e. the set of vertices in V d

i that are
the source of an accepting transition on w(i).

Remark 2 Along a (infinite) run, the index of vertices can
only decrease. As the function Ind(·) has a finite range, the
index along a run has to eventually stabilise.

Assigning colours.The set of colours that are used for colour-
ing the levels of the run DAG Gw is {1, 2, . . . , 2 · |Qd | + 1}.
We associate a colour with each transition from level i to
level i + 1 according to the following set of cases:

1. if Dec(V d
i) = ∅ and Acc(V d

i) �= ∅, the colour is 2 ·
minv∈Acc(V d

i) Indi (v).

2. if Dec(V d
i) �= ∅ and Acc(V d

i) = ∅, the colour is 2 ·
minv∈Dec(V d

i) Indi (v) − 1.

3. if Dec(V d
i) �= ∅ and Acc(V d

i) �= ∅, the colour is defined
as the minimal colour among

– codd = 2 · minv∈Dec(V d
i) Indi (v) − 1, and

– ceven = 2 · minv∈Acc(V d
i) Indi (v).

4. if Dec(V d
i) = Acc(V d

i) = ∅, the colour is 2 · |Qq | + 1.

The intuition behind this colouring is as follows: the
colouring tracks (potentially infinite) runs in Qd , as α ⊆
Qd × � × Qd , and tries to produce an even colour that cor-
responds to the smallest index of an accepting run. If in level
i the run DAG has an outgoing transition that is accepting,
then this is a positive event, as a consequence the colour
emitted is even and it is a function of the smallest index of
a vertex associated with an accepting transition from Vi to
Vi+1. Runs in Qd are deterministic but they can merge with
smaller runs or they may abort. When this happens, this is
considered as a negative event because the even colours that
have been emitted by the run that merges with the smaller
run or aborts should not be taken into account anymore. As
a consequence an odd colour is emitted in order to cancel all
the (good) even colours that were generated by the run that
merges or aborts. In that case the odd colour is function of
the smallest index of a run vertex in Vi whose run merges
or aborts. Those two first cases are handled by cases 1 and 2
of the case study above. When both situations happen at the
same time, then the colour is determined by the minimum
of the two colours assigned to the positive and the negative
events. This is handled by case 3 above. And finally, when
there is no accepting transition from Vi to Vi+1 and no merg-
ing or abort, the largest odd colour is emitted as indicated by
case 4 above.

According to this intuition, we define the colour sum-
mary of the run DAG Gw as the minimal colour that appears
infinitely often along the transitions between its levels.
Because of the deterministic behaviour of the automaton in
Qd , each run can only merge at most |Qd | − 1 times with a
smaller one (the size of the range of the function Ind(·)minus
one), and as a consequence of the definition of the above

123

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 639

Fig. 2 The runDAGs automaton of Fig. 1 on thewordw = (ab)ω given
on the left, and on the word w = aabω given on the right, together with
their colourings

colouring, we know that, on word accepted by A, the small-
est accepting run will eventually generate infinitely many
(good) even colours that are never trumped by smaller odd
colours.

Example 1 The left part of Fig. 2 depicts the run DAG of
the limit-deterministic automaton of Fig. 1 on the word
w = abb(ab)ω. Each path in this graph represents a run of
the automaton on this word. The colouring of the run DAG
follows the colouring rules defined above. Between level 0
and level 1, the colour is equal to 7 = 2|Qd |+1, as no accept-
ing edge is taken from level 0 to level 1 and no run merges
(within Qd). The colour 7 is also emitted from level 1 to level
2 for the same reason. The colour 4 is emitted from level 2 to
level 3 because the accepting edge (3, b, 3) is taken and the
index of state 3 in level 2 is equal to 2 (state 4 has index 1 as
it is the end point of the smallest run prefix within Qd). The
colour 3 is emitted from level 3 to level 4 because the run that
goes from 3 to 4 merges with the smaller run that goes from
4 to 4. In order to cancel the even colours emitted by the run
that goes from 3 to 4, colour 3 is emitted. It cancels the even
colour 4 emitted before by this run. Afterwards, colours 3 is
emitted forever. The colour summary is 3 showing that there
is no accepting run in the run DAG.

The right part of Fig. 2 depicts the run DAG of the limit
deterministic automaton of Fig. 1 on the word w = aabω.
The colouring of the run DAG follows the colouring rules
defined above. Between levels 0 and 1, colour 7 is emitted
because no accepting edge is crossed. To the next level, we
see the accepting edge (2, a, 2) and colour 2 · 1 = 2 is emit-
ted. Upon reading the first b, we see again 7 since there is
neither any accepting edge seen nor any merging takes place.
Afterwards, each b causes an accepting edge (3, b, 3) to be
taken. While the smallest run, which visits 4 forever, is not
accepting, the second smallest run that visits 3 forever is
accepting. As 3 has index 2 in all the levels below level 3, the

colour is forever equal to 4. The colour summary of the run
is thus equal to 2 ·2 = 4 and this shows that wordw = aabω

is accepted by our limit-deterministic automaton of Fig. 1.

The following theorem tells us that the colour summary
(the minimal colour that appears infinitely often) can be used
to identify run DAGs that contain accepting runs.

Theorem 1 The colour summary of the run DAG Gw is even
if and only if there is an accepting run in Gw.

Proof (⇒): Assume that the colour summary of Gw is even
and equal to c. Then it must be the case that there exists a
level i ≥ 0 such the colour after level i is always larger than
or equal to c, and infinitely many times equal to c. W.l.o.g.
assume that in level i , there exists a vertex v = (q, i) ∈
Acc(V d

i) and c = 2 · Ind(v). Take the smallest run prefix that
ends up in v, this run prefix will never merge with a smaller
run prefix, and all smaller run prefixes that are active in level
i will not merge or abort, as otherwise, there would exist a
position j ≥ i where the index of the run that passes by
(q, i) would decrease and this would contradict the fact that
for all j ≥ i , all the colours that are emitted are larger than
or equal to c. Let us now consider the suffix of the run that
pass by v = (q, i). As the even colour c is emitted infinitely
many times after level i , we know that this run suffix crosses
infinitely many times α. So this run is accepting and this is
the smallest such run.

(⇐): (Step 1): Now, let us consider the other direction.
Assume that there exists an accepting run of A on a word w.
We first establish the existence of a run ρ which is accepting
and for which there exists a position k ≥ 0 from which ρ

does not merge with any smaller run, and all smaller runs
are non accepting. We identify ρ and k as follows. Among
the accepting runs, we select one that enters first in the set
of states Qd say at level i ≥ 0. They can be several of them,
but we take one that enters Qd via a state q of minimal index
for Ord. Let V d

i be the active states at level i that are in Qd .
The way we have chosen q make sure that all the states in V d

i
with a smaller index than q are the origin of non accepting
runs and clearly as ρ is accepting it cannot merge with one
of those smaller runs. Now, some of those smaller runs may
merge or abort in the future, and each time they merge or
abort, the index of ρ will decrease. But this will happen a
number of times which is bounded by Qd .

(Step 2): Let k be the position when the last merge or abort
of a smaller run prefix happens.

(Step 3): Let us now show that the existence of ρ and this
position k allow us to prove that the colour summary is even.
After position k, there are only odd colours with values larger
than or equal to 2 · Ind(ρ(k)) + 1 because we know that nor
ρ neither smaller runs merge or abort in the future. Also as
ρ is accepting, there will be an infinite number of positions
l ≥ k where the even colour is equal to 2 · Ind(ρ(k))), and

123

640 J. Esparza et al.

only finitely many positions after k may have an even colour
which is less than this value as all runs that are smaller than ρ

are not accepting. So the summary colour is even and equal
to 2 · Ind(ρ(k))). ��

3.2 Construction of the DPA

From an LDBA A = (Q, Qd , q0, �, δ, α) and an order-
ing function Ord : Q → {1, 2, . . . , |Qd |,+∞} compatible
with Qd , we construct a deterministic parity automaton
B = (QB, qB

0 , �, δB , p) that, on a word w, constructs the
levels of the run DAG Gw and the colouring of previous sec-
tion. Theorem 1 tells us that such an automaton accepts the
same language as A.

First, we need some notations. Given a finite set S, we
note P(S) the set of its subsets, and OP(S) the set of its
totally ordered subsets. So if (s,<) ∈ OP(S) then s ⊆
S and < ⊆ s × s is a total strict order on s. For e ∈ s,
we denote by Ind(s,<)(e) the position of e ∈ s among the
elements in s for the total strict order <, with the convention
that the index of the <-minimum element is equal to 1. The
deterministic parity automaton B = (QB, qB

0 , �, δB , p) is
defined as follows.

States and initial state. The set of states is QB = P(Qd)

×OP(Qd), i.e. a state of B is a pair (s, (t,<)) where s is
a set of states outside Qd , and t is an ordered subset of Qd .
The ordering reflects the relative index of each state within
t . The initial state is qB

0 = ({q0}, ({}, {})).
Transition function. Let (s1, (t1,<1)) be a state in QB , and
σ ∈ �, and let us assume that there is a state q ∈ s1 ∪ t1 and
a state q ′ ∈ Q such that (q, σ, q ′) ∈ δ (otherwise δB is not
defined in (s1, (t1,<1)) for σ). Then δB((s1, (t1,<1)), σ) =
(s2, (t2,<2)) where:

– s2 = postσδ (s1) ∩ Qd ;
– t2 = postσδ (s1 ∪ t1) ∩ Qd ;
– <2 is defined from <1 and Ord as follows: ∀q1, q2 ∈ t2:
q1 <2 q2 iff:

1. either, ¬∃q ′
1 ∈ t1 : q1 = δ(q ′

1, σ), and ¬∃q ′
2 ∈ t1 :

q2 = δ(q ′
2, σ), andOrd(q1) < Ord(q2), i.e. none has

a predecessor in Qd , then they are ordered usingOrd;
2. or, ∃q ′

1 ∈ t1 : q1 = δ(q ′
1, σ), and ¬∃q ′

2 ∈ t1 : q2 =
δ(q ′

2, σ),
i.e. q1 has a σ -predecessor in Qd , and q2 not;

3. or ∃q ′
1 ∈ t1 : q1 = δ(q ′

1, σ), and ∃q ′
2 ∈ t1 : q2 =

δ(q ′
2, σ), and min<1{q ′

1 ∈ t1 | q1 = δ(q ′
1, σ)} <

min<1{q ′
2 ∈ t1 | q2 = δ(q ′

2, σ)},
i.e. both have a predecessor in Qd , and they are
ordered according to the order of their minimal par-
ents.

Fig. 3 Upper: DPA that accepts the LTL language FGa ∨ FGb, edges
are decorated with a natural number that specifies its colour. Lower: a
reduced DPA

Colouring. To define the colouring of edges in the deter-
ministic automaton, we need to identify the states q ∈ t1
in a transition (s1, (t1,<1))

σ→ (s2, (t2,<2)) whose indices
decrease when going from t1 to t2 or that abort because they
have no δ-successor for σ . Those are defined as follows:

Dec(t1) =
{

q1 ∈ t1 | Ind(t2,<2)(δ(q1, σ)) < Ind(t1,<1)(q1)
∨¬∃(q1, σ, q) ∈ δ

}

.

Additionally, let Acc(t1) = {q | ∃q ′ ∈ t2 : (q, σ, q ′) ∈ α}
denote the subset of states in t1 that are the source of an
accepting transition.

We assign a colour to each transition (s1, (t1,<1)) →σ

(s2, (t2,<2)) as follows:

1. if Dec(t1) = ∅ and Acc(t1) �= ∅, the colour is 2 ·
minq∈Acc(t1) Ind(t1,<1)(q).

2. if Dec(t1) �= ∅ and Acc(t1) = ∅, the colour is 2 ·
minq∈Dec(t1) Ind(t1,<1)(q) − 1.

3. if Dec(t1) �= ∅ and Acc(t1) �= ∅, the colour is defined as
the minimal colour among

– codd = 2 · minq∈Dec(t1) Ind(t1,<1)(q) − 1, and
– ceven = 2 · minq∈Acc(t1) Ind(t1,<1)(q).

4. if Dec(t1) = Acc(t1) = ∅, the colour is 2 · |Qd | + 1.

Example 2 The DPA of Fig. 3 is the automaton that is
obtained by applying the construction LDBA→DPA defined
above to theLDBAofFig. 1 that recognises theLTL language
FGa∨FGb. Thefigure only shows the reachable states of this
construction. As specified in the construction above, states of

123

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 641

DPA are labelled with a subset of Qd and an ordered subset
of Qd of the original NBA. As an illustration of the defi-
nitions above, let us explain the colour of edges from state
({1}, [4, 3]) to itself on letter b. When the NBA is in state 1,
3 or 4 and letter b is read, then the next state of the automaton
is again 1, 3 or 4. Note also that there are no runs that are
merging in that case. As a consequence, the colour that is
emitted is even and equal to the index of the smallest state
that is the target of an accepting transition. In this case, this
is state 3 and its index is 2. This is the justification for the
colour 4 on the edge. On the other hand, if letter a is read
from state ({1}, [4, 3]), then the automaton moves to states
({1}, [4, 2]). The state 3 is mapped to state 4 and there is
a run merging which induces that the colour emitted is odd
and equal to 3. This 3 trumps all the 4’s that were possibly
emitted from state ({1}, [4, 3]) before.
Theorem 2 The language defined by the deterministic parity
automaton B is equal to the language defined by the limit
deterministic automaton A, i.e. L(A) = L(B).

Proof Let w ∈ �ω and Gw be the run DAG of A on w. It is
easy to show by induction that the sequence of colours that
occur along Gw is equal to the sequence of colours defined
by the run of the automaton B on w. By Theorem 1, the
language of automaton B is thus equal to the language of
automaton A. ��

3.3 Complexity analysis

3.3.1 Upper bound

Let n = |Q| be the size of the LDBA and let nd = |Qd |
be the size of the accepting component. We can bound the
number of different orderings using the series of reciprocals
of factorials (with e being Euler’s number):

|OP(Qd)| = ∑nd
i=0

nd !
(nd−i)!

≤ nd · nd ! · ∑∞
i=0

1
i != e · nd · nd ! ∈ O(2n log n)

Thus the obtainedDPAhasO(2n ·2n log n) ⊆ 2O(n log n) states
and 2nd + 1 ∈ O(n) colours.

3.3.2 Lower bound

We obtain a matching lower bound by strengthening Theo-
rem 8 from [24]:

Lemma 2 There exists a family (Ln)n≥2 of languages (Ln

over an alphabet of n letters) such that for every n the lan-
guage Ln can be recognised by a limit-deterministic Büchi
automaton with 3n + 2 states but cannot be recognised by a
deterministic Parity automaton with less than n! states.

Proof The proof of Theorem 8 from [24] constructs a nonde-
terministic Büchi automaton of exactly this size and which
is in fact limit-deterministic.

Assume there exists a deterministic Parity automata for
Ln with m < n! states. Since parity automata are closed
under complementation, we can obtain a parity automaton
and hence also a Rabin automaton of size m for Ln and thus
a Streett automaton of size m for Ln , a contradiction to The-
orem 8 of [24]. ��
Corollary 1 Every translation from limit-deterministic Büchi
automata of size n to deterministic parity yields automata
with 2
(n log n) states in the worst case.

4 From LTL to DPA in 22
O(n)

In [34,36], we present two different LTL→LDBA transla-
tions. Given a formula ϕ of size n, both translations produce
an asymptotically optimal LDBA with 22

O(n)
states. The

straightforward composition of these translations with the
single exponential LDBA→DPA translation of the previous
section is only guaranteed to be triple exponential, while the
Safra–Piterman and Muller–Schupp constructions produce
DPAs of at most doubly exponential size, if applied to NBAs
constructed from LTL formulas.

In this section, we describe two modifications of our
simple approach relying on additional semantic information
that yield DPAs with 22

O(n)
states. The approach taken by

both modifications is the following: We can view the second
component of the states produced by our construction as a
sequence of states of the LDBA, ordered by their indices.
Since there are 22

O(n)
states in the LDBA for an LTL formula

of length n, the number of such sequences is:

22
2O(n)

If only the length of the sequences (the maximum index)
were bounded by 2n , the number of such sequences would
be bounded by the number of functions 2n → 22

O(n)
which

is:

(22
O(n)

)2
n = 22

O(n)·2n = 22
O(n)

Both modifications prune these state sequences and guar-
antee that their length stay below a suitable threshold such
that the resulting DPAs are asymptotically optimal.

4.1 Pruning by language decomposition

We introduce the main ideas of this approach using the
LDBA3 depicted in Fig. 4 and the corresponding DPA

3 Observe that this language can also be recognisedby aDBA.However,
this particular LDBA illustrates the main idea of construction.

123

642 J. Esparza et al.

Fig. 4 An LDBA A for the LTL language aWb∧GFc.3 The behaviour
of A is deterministic within the subset of states Qd = {3, 4} which is
a trap and contains all accepting transitions which are depicted in bold
face

depicted in Fig. 5 (upper part) obtained by the construction
from the previous section. First, let us examine the LDBA:
the state q4 accepts a superset of the language accepted by q3
and state q2 allows to ‘restart’ failed runs in q4. Second, let
us examine the DPA: the state 〈{2}, [3 < 4]〉 encodes that in
the corresponding run DAG the run in q3 has entered first Qd

before the run in q4. One also immediately sees that the states
〈{2}, [3]〉 and 〈{2}, [3 < 4]〉 are bi-similar and that they can
be collapsed to a single state (lower part). However, inspect-
ing this example closer we can find a different explanation
for this phenomenon. One sees that the states q3 and q4 in the
original LDBA accept if c appears infinitely often and only
differ in the treatment of a. In fact this can be captured by
two classic notions about languages:

– A language S ⊆ �ω is a safety language if there exists a
set of bad prefixes B ⊆ �∗ such that S = �ω − B�ω.
Thus for all words outside the language there exists a
finite witness that the word does not belong to the lan-
guage. We then denote the set of all safety languages by
S.

– A language C ⊆ �ω is a suffix-closed language if C ⊆
�C . Thus all suffixes of aword in the language are also in
the language. We then denote the set of all suffix-closed
languages by C.

The languages of q3 and q4 are in fact an intersection of
languages from S and C. To be more concrete, we have
L(q3) = C ∩ S1 and L(q4) = C ∩ S2 with C = L(GFc),
S1 = L(Ga), S2 = �ω. We now make use of this to remove
nodes from the run-DAG and thus also explain the removal
of 〈{2}, [3 < 4]〉.

Assume we have the situation Vi = {q2, q3}, V d
i = {q3},

and V d
i+1 = {q3, q4}. We argue that we can keep only q3,

redefineV d
i+1:={q3}, and still capture all relevant information

to decide acceptance.We focus on the difficult casewhere the
subtree of q3 ∈ V d

i+1 is rejecting and the subtree of q4 ∈ V d
i+1

Fig. 5 Upper: DPA constructed for the LDBA from Fig. 4, edges are
decorated with a natural number that specifies its colour. Lower: A
reducedDPAobtained through the construction relying onProposition 1

is accepting. Then since q4 is accepting the suffix wi+1 is in
C and thuswi+1 cannot be in S1, which is the safety condition
for q3. Since S1 is a safety language, we will detect this after
a finite prefix and can discard that particular branch of the
run-DAG. Thus for some j > i we have V d

j = {}. Since we
have Vj = {q2} due the self-loop on q2, we get V d

j+1 = {q4}
and this subtree is going to be accepting, since wi ∈ C and
thus also w j ∈ C due to the suffix-closure of C .

Let us now generalise these insights: We call an LDBA
decomposable if δ ∩ (Qd × � × Qd) is deterministic, and
there exists a partition of the states Qd into sets Q1

d , Q
2
d ,

…Qn
d such that for each Qi

d the following holds:

1. ∃C ∈ C ·∀q ∈ Qi
d ·∃S ∈ S ·L(q) = S∩C , i.e., all states in

the component Qi
d can be represented by an intersection

of a safety language and a suffix-closed language,
2. ∀q ∈ Qi

d · ∀σ ∈ � · ∀q ′ ∈ Q · (q, σ, q ′) ∈ δ → q ′ ∈ Qi
d ,

i.e. Qi
d is a trap (when Qi

d is entered it is never left),

3. if q →σ p →σ ′
r for states q ∈ Qd , p, r ∈ Qi

d and
letters σ, σ ′ ∈ �, then there exists p′ ∈ Qd and r ′ ∈ Qi

d

such that q →σ p′ →σ ′
r ′ and L(r) ⊆ L(r ′), i.e. moving

to the partition Qi
d can be delayed, and

4. ∀q ∈ Qd · ∀σ ∈ � · |δ(q, σ) ∩ Qi
d | ≤ 1, i.e. for each

state q ∈ Qd and letter σ we have at most one transition
to Qi

d .

123

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 643

Fig. 6 Structure of the induction step in Lemma 3

In fact, we can obtain by repetitive application of assumption
(3) a generalisation to arbitrary finite words:

Lemma 3 Assume q →σ p →w r →σ ′
s for states q ∈ Qd,

p, r , s ∈ Qi
d and letters σ, σ ′ and (finite) word w ∈ �∗,

then there exists p′, r ′ ∈ Qd and s′ ∈ Qi
d such that q →σ

p′ →w r ′ →σ ′
s′ and L(s) ⊆ L(s′).

Proof We proceed by induction on w. In the case w = ε we
can immediately apply assumption (3).

Case w = w′σ ′′: Consider Fig. 6. In terms of this picture
we need to prove that there exists some t ′′ ∈ Qi

d such that
L(t) ⊆ L(t ′′). We obtain the first part (the solid lines) by
applying the induction hypothesis and have L(s) ⊆ L(s′)
such that s, s′ ∈ Qi

d . Since the transition relation within Qi
d

is deterministic we also obtain L(t) ⊆ L(t ′) (the dotted lines).
Now we apply, assumption (3) on r ′, s′, and t ′ (the dashed
lines) to obtain s′′ and t ′′ such that L(t ′) ⊆ L(t ′′). Then by
transitivity we get L(t) ⊆ L(t ′′). ��

We claim that for each block of the partition Qi
d at most

one state needs to be tracked by a run DAG in order to decide
acceptance. Without loss of generality let us assume that
LDBAs only contain states that are reachable from the ini-
tial state and that can reach an accepting transition. Thus for
any state q ∈ Q we have L(q) �= ∅. Given a decomposable
LDBA with a set of states Q and a suitable partition Q1

d ,
Q2

d , …Qn
d , we define the reduced run DAG G∗

w. This graph
G∗

w = (V , E) has a set of vertices V ⊆ Q × N and edges
E ⊆ V × V defined as follows:

– V = ⋃
i∈N

Vi and Vi = ⋃n
j=0 Vi, j , where Vi,0 contains

the nodes representing runs that are at level i in Qd and
Vi, j contains the nodes that correspond to Q j

d . Formally,
the sets Vi, j are defined inductively as:

V0,0 = {(q0, 0)}
V0, j = ∅
Vi,0 = postw(i−1)

δ (Vi−1,0) ∩ (Qd × {i})
Vi, j =

{
postw(i−1)

δ (Vi−1,0) ∩ (Q j
d × {i}) if Vi−1, j = ∅

postw(i−1)
δ (Vi−1, j) otherwise.

for all i ≥ 1 and all 1 ≤ j ≤ n and where we use

postσδ (Vi, j) = {q ∈ Q | ∃(q ′, i) ∈ Vi, j · (q ′, σ, q) ∈ δ}

to denote the successors of a level in the underlying
automaton.

– E = {((q, i), (q ′, i + 1)) ∈ Vi × Vi+1 | q →w(i) q ′}.

Let us now reconsider the LDBA from Fig. 4. This LDBA
is decomposable with Qd = Q1

d . Property (1) follows from
our previous analysis and (2) is a direct consequence of the
LDBA definition, since we only have single partition, and
(4) follows from the fact that we have at most one transition
from q1 and q2 to Qd under each letter. For (3) observe that
L(q3) ⊆ L(q4) and we have the ‘restarting’ loop in q2. Let us
now see why this pruning is correct:

Proposition 1 There is an accepting run in the reduced run
DAG G∗

w if and only if there is an accepting run in the run
DAG Gw.

Proof (⇒) Observe that G∗
w is a subgraph of Gw, since we

obtain G∗
w from Gw by removing nodes and edges. Thus

every accepting run on G∗
w is also an accepting run on Gw.

(⇐) Assume that Gw = (V , E) has an accepting run. Then
an accepting run eventually transitions from some q ∈ Qd

by reading the letterw(i −1) to some p ∈ Q j
d . Then p ∈ V d

i
and the (deterministic) run starting in (p, i) is accepting. Let
us now see what happens in G∗

w = (V ′, E ′). We proceed by
a case distinction.

Assume V ′
i, j = {p}. Then by definition of G∗

w we also
have a (deterministic) run starting in (p, i) that is identical
to the one in Gw starting in (p, i) which is accepting.

Assume V ′
i, j = ∅ and let r = δ(p, w(i)). Then by

assumption (3) and (4) there exists unique p′ ∈ Qd and
r ′ ∈ Q j

d such that q →w(i−1) p′ →w(i) r ′ and L(r) ⊆ L(r ′).
Since the (deterministic) run (r , i + 1) (in Gw) is accept-
ing, the (deterministic) run starting (r ′, i +1) (in G∗

w) is also
accepting.

It remains to consider the case where V ′
i, j is neither

empty nor simply {p}. By the definition of G∗
w there exists

a unique state p′ ∈ V ′
j,i . If wi ∈ L(p′), then we are also

done since then G∗
w has then an accepting run. Thus assume

wi /∈ L(p′). From wi ∈ L(p) we derive that wi ∈ C for the
suffix-closed language C associated with Q j

d . This follows
from assumption (1). Moreover, assumption (1) tells us that
wi /∈ S for all S ∈ S with L(q ′) = C ∩ S. Finally, since
the LDBA does not contain states q with L(q) = ∅, there
must be a level i ′ > i such that V ′

i ′, j is empty. We then
proceed analogous to the case V ′

i, j = ∅, but make use of
Lemma 3 to bridge the longer distance. To be more precise,
let q →w(i−1) p →w(i) · · · →w(i ′−2) r →w(i ′−1) s be the
sequence of states in the original run-DAG. We then apply

123

644 J. Esparza et al.

Fig. 7 Schematic overview of an LDBA obtained in [34, Theorem 6.2]
for a formula ϕ. Qd is on the left and Qd is on the right hand-side

Lemma 3 to obtain s′ ∈ Q j
d with L(s) ⊆ L(s′) and that is

in V ′
i ′+1, j . Due to the language inclusion, this run is then

accepting. ��
Wenowcan apply the construction fromSect. 3.2 to obtain

a DPA tracking the reduced run DAG G∗
w. Assume that the

LDBA has m states and n partitions. Then each Vi has at
most cardinality n + 1 and thus the resulting DPA has at
most (m + 1)n+1 states.

A suitable LTL → LDBA translation. We now show that
decomposable LDBAs exist and these are in fact produced by
the recent LTL→LDBA translation defined in [34][Theorem
6.2].

Proposition 2 For all LTL formulas ϕ, the procedure of [34]
[Theorem 6.2] produces a LDBAwhich is decomposable and
has at most 2n partitions, where n is the the length of ϕ.

Proof Let us first sketch the structure of the resulting LDBA.
A schema of the structure can be found Fig. 7. The states
of the LDBA are a disjoint union of the set Reach(ϕ),
forming the states for the initial component, and QXi ,Yi ,
forming the states for the accepting component. Further,
the latter is parametrised by sets Xi and Yi which depend
on the formula ϕ. Within the initial component, we have a
deterministic transition relation, named af , and states that
can be identified by LTL formulas. The accepting compo-
nent is constructed as follows: for fixed sets X and Y , let
AX ,Y = (QX ,Y , q0,X ,Y , �, δX ,Y , α) be the intersection of
the following deterministic Büchi automata (DBA):

– A1
ϕ,X accepts the language of a syntactic safe formula

obtained from ϕ and X .
– A2

X ,Y accepts the language of
∧

i GFψi , where ψi is
derived from X and Y .

– A3
X ,Y accepts the language of

∧
j Gψ j , where ψ j is a

syntactic safe formula derived from X and Y .

The overall transition relation δ for the LDBA A is the
union of af , δX ,Y , and the yet-to-be-defined δ�. δ� con-
nects the initial component with the accepting component.

It contains exactly one edge for each state in Reach(ϕ) to a
state in QX ,Y .

We now claim that the partition Qd = Reach(ϕ), Q1
d =

QX1,Y1 , Q
2
d = QX2,Y2 , …, Qm

d = QXm ,Ym is a suitable
partition to show that the LDBA A is decomposable. For this
observe, that af , δX ,Y are deterministic transition relations.
Lastly, we need to verify that for each QX ,Y the assumptions
(1-4) hold:

1. By construction, AX ,Y is derived by an intersection,
every state in q ∈ QX ,Y recognises the intersection
L(

∧
i GFψi) ∈ C and a safety language.

2. By construction Q is a disjoint union and no transitions
leaving QX ,Y have been added, thus QX ,Y is a trap.

3. This assumption is proven by the technical [34][Lemma
4.20] relating af and ·[·]ν , which is the essential compo-
nent of δ�.

4. Finally, it can be easily verified by looking at the defini-
tion δ� in [34][Theorem 6.2], that there exists at most
one transition from the initial component to each of the
partitions.

Lastly we claimed that there are at most 2n , where n is
the size of the formula, partitions. For this observe that Xi

and Y j are according to [34][Theorem 6.2] subsets of two
disjoint sets containing only subformulas of ϕ and thus there
exist at most 2n possible choices for Xi and Y j . ��

4.2 Pruning by language subsumption

Fix an LDBA with a set of states Q. Assume the exis-
tence of an oracle: a list of statements of the form L(q) ⊆
⋃

q ′∈Qq
L(q ′) where q ∈ Q and Qq ⊆ Q. We use the oracle

to define a mapping that associates to each run DAG Gw a
‘reduced DAG’ G∗

w, defined as the result of iteratively per-
forming the following four-step operation:

– Find the first Vi in the currentDAGsuch that the sequence
(v1, i) � (v2, i) � · · · � (vni , i) of vertices of V d

i
contains a vertex (vk, i) for which the oracle ensures

L(vk) ⊆
⋃

j<k

L(v j) (*)

We call (vk, i) a redundant vertex.
– Remove (vk, i) from the sequence, and otherwise keep

the ordering �i unchanged (thus decreasing the index of
vertices (v,
) with
 > k).

– Remove any vertices (if any) that are no longer reachable
from vertices of V1.

123

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 645

We define the colour summary of G∗
w in exactly the same

way as the colour summary of Gw. The DAG G∗
w satisfies

the following crucial property:

Proposition 3 The colour summary of the run DAG G∗
w is

even if and only if there is an accepting run in Gw.

Proof “⇒”: The ‘only-if’ direction can be proven as in The-
orem 1 verbatim, only replacing Gw by G∗

w. The reason why
the argumentation is still correct, is that the discussed “small-
est run prefix that ends up in v” (now inG∗

w) is actually a real
run prefix (inGw) since it never secondarily merged. Indeed,
runs only merge into smaller ones.

“⇐”: (Step 1): For the ‘if’ direction, we first use the proof
Theorem 1, Step 1, verbatim, obtaining the smallest accept-
ing run in Gw.

Additionally, we prove that this (smallest) constructed run
ρ is actually a run inG∗

w . For a contradiction, assume that this
is not the case and ρ = ρ1(vk, i)ρ2 where (vk, i) is the first
vertex on ρ that secondarily merged. Then there is (v j , i) ∈
Vi ∩ (Qd × {i}) with v j � vk and L(v j) contains the label
of the run (vk, i)ρ2, accepted by some run (v j , i)ρ′

2 in Gw.
Since (v j , i) �i (vk, i), we also have a run prefix ρ′

1(v j , i) �
ρ1(vk, i), and thus an accepting run ρ′

1(v j , i)ρ′
2 in Gw such

that ρ′
1(v j , i)ρ′

2 � ρ1(vk, i)ρ2 = ρ, a contradiction with
minimality of ρ.

(Step 2): Let k be the position when the last merge of a
smaller run prefix happens in G∗

w (not Gw).
(Step 3): We use the proof Theorem 1, Step 3, verbatim,

proving the colour summary is even. ��
Themapping onDAGs induces a reduced DPA as follows.

The states are the pairs (s, (t,<)) such that (t,<) does not
contain redundant vertices. There is a transition (s1, (t1,<
))

a→ (s2, (t2,<)) with colour c iff there is a word w and an
index i such that (s1, (t1,<)) and (s2, (t2,<)) correspond to
the i-th and (i +1)-th levels of G∗

w, and a and c are the letter
and colour of the step between these levels in G∗

w. Observe
that the set of transitions is independent of the words chosen
to define them.

The equivalence between the initial DPA A and the
reduced DPA Ar follows immediately from Proposition 3:
A accepts w iff Gw contains an accepting run iff the colour
summary of G∗

w is even iff Ar accepts w.

Example 3 Consider the LDBA of Fig. 1 and an oracle given
by L(4) = ∅, ensuring L(4) ⊆ ⋃

i∈I L(i) for any I ⊆ Q.
Then 4 is always redundant and merged, removing the two
rightmost states of the DPA of Fig. 3 (left), resulting in the
DPA of Fig. 3 (right). However, for the sake of technical
convenience, we shall refrain from removing a redundant
vertex when it is the smallest one (with index 1).

Since the construction of the reducedDPA is parametrised
by an oracle, the obvious question is how to obtain an oracle

that does not involve applying an expensive language inclu-
sion test. Let us give a first example in which an oracle can
be easily obtained:

Example 4 Consider an LDBA where each state v =
{s1, . . . , sk} arose from some powerset construction on an
NBA in such a way that L({s1, . . . , sk}) = L(s1) ∪ · · · L(sk).
An oracle can, for instance, allow us to merge whenever
vk ⊆ ⋃

j<k v j , which is a sound syntactic approximation
of language inclusion. This motivates the following formal
generalisation.

Let LB = {Li | i ∈ B} be a finite set of languages,
called base languages. We call LC := {⋃L | L ⊆ LB} the
join-semilattice of composed languages. We shall assume an
LDBA with some LB such that L(q) ∈ LC for every state q.
We say that such an LDBA has a base LB . In other words,
every state recognises a union of some base languages. (Note
that every automaton has a base of atmost linear size.)When-
ever we have states v j recognising

⋃
i∈I j Li with I j ⊆ B

for every j , the oracle allows us to merge vertices vk satis-
fying Ik ⊆ ⋃

j<k I j . Intuitively, the oracle declares a vertex
redundantwhenever the simple syntactic check on the indices
allows for that.

Let V1 = ⋃
i∈I1 Li , · · · Vj = ⋃

i∈I j Li be a sequence of
languages of LC where the reduction has been applied and
there are no more redundant vertices. The maximum length
of such a sequence is given already by the base LB and we
denote it width(LB).

Lemma 4 For any LB, we have width(LB) ≤ |LB | + 1.

Proof We provide an injective mapping of languages in the
sequence (except for V1) into B. Since I2 � I1, there is
some i ∈ I2 \ I1 and we map V2 to this i . In general, since
Ik �

⋃k−1
j=1 I j , we also have i ∈ Ik \ ⋃k−1

j=1 I j and we map
Vk to this i . ��

On the one hand, the transformation of LDBA to DPA
without the reduction yields 2O(|Q|·log |Q|) states.On the other
hand,we cannowshow that the second component of reduced
LDBA with a base can be exponentially smaller. Further, let
us assume the LDBA is initial-deterministic, meaning that
δ ∩ (Qd × � × Qd) is deterministic, thus not resulting in
blowup in the first component.

Corollary 2 For every initial-deterministic LDBA with base
of size m, there is an equivalent DPA with 2O(m2) states.

Proof The number of composed languages is LC = 2m .
Therefore, the LDBA has at most 2m (nonequivalent) states.
Hence the construction produces at most

|LC | · |LC |O(width(LB)) = 2m · (2m)O(m) = 2O(m2)

states since the LDBA is initial-deterministic, causing no
blowup in the first component. ��

123

646 J. Esparza et al.

4.3 Bases for LDBAs obtained from LTL formulas

We prove that the width for LDBA arising from the LTL
transformation is only singly exponential in the formula size.
To this end, we need to recall a property of the LTL→LDBA
translation of [36]. Since partial evaluation of formulas plays
a major role in the translation, we introduce the following
definition. Given an LTL formula ϕ and sets T and F of
LTL formulas, let ϕ[T , F] denote the result of substituting
tt (true) for each occurrence of a formula of T in ϕ, and
similarly ff (false) for formulas of F . The following property
of the translation is proven in “Appendix A”.

Proposition 4 For every LTL formula ϕ, every state s of the
LDBA of [36] is labelled by an LTL formula label(s) such
that (i) L(s) = L(label(s)) and (ii) label(s) is a Boolean
combination of subformulas of ϕ[Ts, Fs] for some Ts and
Fs. Moreover, the LDBA is initial-deterministic.

As a consequence, we can bound the corresponding base:

Corollary 3 For every LTL formula ϕ, the LDBA of [36] for
ϕ has a base of size 2O(|ϕ|).

Proof Firstly, we focus on states using the same ϕ[Ts, Fs].
The language of each state can be defined by a Boolean for-
mula over O(|ϕ|) atoms. Since every Boolean formula can
be expressed in the disjunctive normal form, its language is
a union of the conjuncts. The conjunctions thus form a base
for these states. There are exponentially many different con-
junction in the number of atoms. Hence the base is of singly
exponential size 2O(|ϕ|) as well.

Secondly, observe that there are only 2O(|ϕ|) different for-
mulas ϕ[Ts, Fs] and thus only 2O(|ϕ|) different sets of atoms.
Altogether, the size is bounded by 2O(|ϕ|) · 2O(|ϕ|) = 2O(|ϕ|)

��
Theorem 3 For every LTL formula ϕ, there is a DPA with
22

O(|ϕ|)
states.

Proof The LDBA for ϕ has base of singly exponential size
2O(|ϕ|) by Corollary 3 and is initial-deterministic by Propo-
sition 4. Therefore, by Corollary 2, the size of the DPA is

doubly exponential, in fact 2(2O(|ϕ|))2 = 22
O(|ϕ|) ��

This matches the lower bound 22

(n)

by [22] as well as the
upper bound by the Safra-Piterman approach. Finally, note
that while the breakpoint constructions in [36] is analogous
to Safra’s vertical merging, the merging introduced here is
analogous to Safra’s horizontal merging.

4.4 Comparing the two pruningmethods

We presented two different pruning techniques to achieve an
asymptotically optimal LTL→DPA translation. The ques-
tion is how to they compare on conceptual level, is one

stronger than the other? No, in fact they are incompara-
ble. Consider Fig. 5. Here, the first construction removes the
ranking [3 < 4] but this cannot be achieved by the second
construction. On the other hand, is is clear that language-
based pruning technique can be applied to any LDBA (by
using a language inclusions checks) and thus is applicable to
larger set of LDBAs.

5 Experimental evaluation

We showed that our determinisation construction, which is
considerably simpler compared to other constructions, can be
combined with semantic pruning of tracked states. This then
yields an asymptotical optimal construction. This simplicity
is achieved by a detour over LDBAs and one would expect
that this incurs inefficiencies in practice. In this section, we
provide experimental evidence that this not the case.

5.1 Method

Metric. We compare the size (number of states, number of
colours) of produced automata since this is a good indicator
of the size of the arena in the automata-theoretic approach to
synthesis. In contrast, we do not include any resource con-
sumption analysis, i.e. measurements of computation time or
allocated memory. Not only are these values highly depen-
dent on implementation details but, foremost, as shown by
[27] on-the-fly computation of the state-space and additional
compositional constructions are highly relevant for the over-
all computation time in the context of synthesis. For each
input formula ϕi , we compare sizes ai and bi achieved by
different methods and are interested in the achieved improve-
ment factor, which is their ratio ai/bi . In order to aggregate
the factors into an average one, given that the involved num-
bers can be hugely different, it is appropriate to use the
geometric average of the ratios:

n

√
√
√
√

n∏

i=1

ai
bi

=
n
√∏n

i=1 ai

n
√∏n

i=1 bi

Consequently, for each approach and a set of inputs, we dis-
play the the geometric average of the sizes since, for each
pair of approaches, the respective ratio immediately yields
the desired comparison.

Competing Translations. We compare seven configurations
from three different groups of translations that yield DPAs
(with the acceptance condition defined on transitions):

– via NBAs:

123

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 647

N1 ltl2tgba4 ([5], 2.8.5): The tool implements a
portfolio approach for constructing small automata, in
our configuration DPAs. If the formula is not covered
by one of the specialised constructions, a version of
the Safra determinisation procedure [31] with several
optimisations is used. Thus one can argue that it is the
state-of-the-art portfolio translator.

N2 nbadet5 ([26]6): The tool implements the construc-
tion presented [25] with additional optimisations [26].
We useltl2tgba -B to translate LTL formulas into
NBAs with the acceptance condition defined on states,
since in the tested version of the tool acceptance con-
ditions on transitions are not supported. Note that such
a detour causes a blowup in the intermediate NBA.

– via DRAs (deterministic Rabin automata):

D1 ltl2dgra (asymmetric), dgra2dra, dra
2dpa7: This approach uses the direct translation to
deterministic generalised Rabin automata (DGRA)
that has been described in [7] and revised and cor-
rected in [10]. This configuration uses all available
optimisations, including the usual reduction rules for
Rabin pairs, e.g. [10]. This approach treats the least-
(F, U, M) and greatest-fixed-point operators (G, W,
R) ‘asymmetrically’, and has only a proven triple
exponential upper bound.Wecombine itwith the IAR
(index-appearance record) construction as improved
in [21].

D2 ltl2dra (symmetric), dra2dpa7: This
approach uses the direct translation toDRAs based on
the ‘Master-Theorem’ [9,34] and uses optimisations
described in detail in [34]. As in the previous case,
we combine it with the IAR construction of [21].

– via LDBAs:

LD1 ltl2dpa (asymmetric)7: This translation com-
bines the construction presented here with the ‘asym-
metric’ translation LTL→LDBA presented in [36],
which treats least- (F, U, M) and greatest-fixed-point
operators (G,W, R) differently.

LD2 ltl2dpa (symmetric)7: This translation com-
bines the construction presented here with the ‘sym-
metric’ translationLTL→LDBAbasedon the ‘Master-
Theorem’ presented in [9,34], which treats least- (F,

4 We use the CLI flags: –parity –deterministic.
5 We use the recommended CLI flags: -k -j -t -i -r -o -m
-d -u2.
6 We evaluate the state of the implementation defined by commit
cb12b3d6479555c2201e9cd190496d3d1fbe524a.
7 The source-code of all these tools is located in the repository of [20]
and we evaluate the state of the implementation defined by commit
69c6557141b9d29ab0f37405c45fb75fa7f8608d.

Table 1 Parametrised formulas set

χ1,n = (. . . ((a1Ua2)Ua3) . . .Uan+1)

χ2,n = a1U(a2U(. . . (anUan+1) . . .))

χ3,n = G(a1 → a1U(. . . (an ∧ anUan+1)))

χ4,n = ∧n
i=1(Fai ∨ Gai+1)

χ5,n = ∧n
i=1 FGai

χ6,n = ∧n
i=1 GFai

χ7,n = (∧n
i=1 GFai

) → GFb

χ8,n = (∧n
i=1 GFai

) ↔ GFb

χ9,n = ∧n
i=1(GFai ∨ FGai+1)

χ10,n = GF(a ↔ Xna)

χ11,n = ∨n
i=0 FG((¬)i a ∨ Xi b)

U, M) and greatest-fixed-point operators (G, W, R)
symmetrically.

LDp ltl2dpa (portfolio)7: Here, we combine the
previous translations with a portfolio of translations
for fragments that directly yield DPAs [9,34,35]. This
portfolio approach is important in comparison to the
configuration N1where similar steps are taken. More-
over, since complementation of DPAs is trivial, this
configuration translates both the formula and its nega-
tion to DPAs Aϕ , A¬ϕ , constructs the complement
A¬ϕ , and picks the smaller of Aϕ and A¬ϕ .

Input Formula Sets. We base the evaluation on two sets of
formulas: the first set consists of the well-known ‘Dwyer’-
patterns [6] that collects 55 LTL formulas specifying com-
mon properties; the second set is obtained by instantiating the
11 parametrised formulas from Table 1. These families are
partly taken from [14,29,38] or are simple combinations ofU,
GF, and FG formulas8. The second set of formulas is useful
to isolate and analyse strong- and weak points of the com-
pared translations. Furthermore, we abstained from using
randomly generated formulas, because in our experience it
is unclear what this implies for practice, since formulas from
real-world examples usually have a high degree of structure
compared to randomly generated formulas.

The formula sets are obtained by executinggenltl9 with
the corresponding parameters. Each formula and its negation
is then added to the set of formulas. We take the follow-
ing steps to reduce the influence of specific simplification
rules and to remove (close to) duplicate entries: first, we
bring formulas into negation normal form; second, we apply
a standard set of LTL simplification rules [1,11,29,33,37]
with the goal to neutralise the effect LTL simplifier in the
evaluation; third, we normalise the atomic propositions and

8 This collection of parametrised formulas has been used before in [34].
9 genltl is a component of Spot [5] to generate LTL formulas from
existing patterns. We use the version genltl (spot) 2.7.2.

123

648 J. Esparza et al.

remove formulas that are equal modulo renaming of atomic
propositions.

As a consequence, the number of formulas we consider
is less than the number of formulas of the corresponding
original publication. For example, [6] lists 55 formulas, but
we remove six entries: e.g., only one ofGa,G¬a, and Fa is
added to the formula set. Note that we always evaluate the
translation also on the negation of each formula. However,
we do not remove duplicates across the two formula sets.

5.2 Results

The measured automata sizes for the LTL formulas are listed
in Tables 2 and 4. We refer by ϕ to formulas of the pattern
set, and by χ to formulas of the parametrised set. Further, we
write ϕ instead of ¬ϕ. We sort the rows of the table by the
difference in the orders of magnitude of sizes yielded by the
considered configurations. More precisely, we compute max

min
for each row, where min refers to the number of states of the
smallest automaton and max refers to the number of states
of the largest automaton, and sort in descending order. In the
main body of the paper, we list only the top 10 rows according
to this order to highlight themost interesting differences. The
remaining results are located in Appendix B.

5.3 Discussion

Table 2 and Table 4, which contain the formulas with the
largest differences in size, suggest the following conclusions.

Variants of the LDBA approach. There are several cases
where LD1 produces dramatically smaller automata than LD2,
e.g., the first four rows of Table 2. Nevertheless, there are also
many cases where LD2 is slightly smaller LD1, e.g., the fol-
lowing rows in that table andmost of the formulas of Table 4.
Thus both techniques have their merit, with their ratio close
to 1 and the asymmetric being ‘safer’ if only one is to be
used.

Observe that the same behaviour occurs with the pair
D1 and D2, reflecting the fact that this difference stems
from the difference between the asymmetric and symmet-
ric approaches. This pattern is already noticeable for the
intermediate constructions, i.e, the sizes of the constructed
LDBAs and DRAs, respectively. The geometric averages for
this intermediate step are 6.16, 5.68, 4.75, and 4.80 on the
patterns set for LD1, LD2, D1, and D2, respectively, and 7.47,
7.94, 4.85, and 5.51 on the parametrised set. The complete
results are located in “Appendix B”.

The portfolio approach LDp yields not only the smaller of
the two results, but its dedicated constructions tailored to spe-
cial fragments yield yet smaller LDBAs and correspondingly

Table 2 This table displays the
results for the ‘Dwyer’-patterns
set. The table list number of
states, followed by the number
of colours (if larger than 1) and
is sorted descending in regards
to the largest difference in order
of magnitude differences, as
explained in the text. The results
for the remaining 88 formulas
are located in Appendix B. We
write 1

n�, σ ,
n√
�, and med., for

the average, the standard
deviation, the geometric
average, and the median,
respectively, for the number of
states considering the whole
data set

LTL N1 N2 D1 D2 LD1 LD2 LDp

ϕ49 12(3) 19(4) 20(6) 1588(12) 15(7) 838(12) 15(7)

ϕ44 10(3) 17(4) 22(6) 437(12) 15(7) 492(12) 15(7)

ϕ39 17 8(2) 85(8) 256(6) 175(8) 385(8) 10(4)

ϕ14 6 6(2) 12(4) 70(4) 7(4) 172(10) 7(4)

ϕ33 4 4(2) 29(6) 6(4) 13(4) 6(2) 6(2)

ϕ44 9(3) 25(5) 30(6) 17(6) 58(9) 17(6) 16(7)

ϕ34 3 3(2) 17(6) 13(4) 19(6) 13(4) 6(2)

ϕ49 15(3) 36(5) 39(6) 23(6) 74(9) 23(6) 16(7)

ϕ28 4 4(2) 8(4) 20(6) 6(2) 18(4) 4(2)

ϕ39 6 22(4) 22(6) 17(5) 14(3) 10(4) 10(4)
1
n� 4.49 5.34 7.21 29.01 8.26 24.36 4.61

σ 2.94 5.16 10.31 166.13 19.35 104.41 2.84
n√
� 3.91 4.26 4.87 5.14 4.86 5.21 4.03

med. 4.0 4.0 4.0 4.0 4.0 4.0 4.0

ϕ14 G(a ∨ (b ∧ c)U(c ∨ (b ∧ c)U(c ∨ (b ∧ c)U(c ∨ (b ∧ c)U(c ∨ Gb ∨ bWc)))))

ϕ28 G(a ∨ Gb ∨ cU(b ∨ (c ∧ d ∧ X(cUe))))

ϕ33 G(a ∨ Gb ∨ (b ∨ c ∨ X(bR(b ∨ d)))U(b ∨ e))

ϕ34 G(a ∨ G(b ∨ XGc) ∨ (b ∨ d ∨ X(dR(c ∨ d)))U(d ∨ e))

ϕ39 G(a ∨ (b ∨ X(cRd) ∨ X(cU(d ∧ Fe)))U(c ∨ G(b ∨ X(cRd) ∨ X(cU(d ∧ Fe)))))

ϕ44 G(a ∨ (b ∨ cU(c ∧ d ∧ X(cUe)))U(c ∨ G(b ∨ (d ∧ XFe))))

ϕ49 G(a ∨ (b ∨ cU(c ∧ d ∧ e ∧ X((c ∧ e)U f)))U(c ∨ G(b ∨ (d ∧ e ∧ X(eU f)))))

123

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 649

Table 3 Excerpt of Table 2 highlighting the effect of negation and complementation used in the portfolio approach

LTL N1 N2 D1 D2 LD1 LD2 LDp

ϕ39 17 8(2) 85(8) 256(6) 175(8) 385(8) 10(4)

ϕ39 6 22(4) 22(6) 17(5) 14(3) 10(4) 10(4)

ϕ44 10(3) 17(4) 22(6) 437(12) 15(7) 492(12) 15(7)

ϕ44 9(3) 25(5) 30(6) 17(6) 58(9) 17(6) 16(7)

ϕ49 12(3) 19(4) 20(6) 1588(12) 15(7) 838(12) 15(7)

ϕ49 15(3) 36(5) 39(6) 23(6) 74(9) 23(6) 16(7)

Table 4 This table displays the
results for the parametrised set
(Table 1). The table is structured
as Table 2 and the results for the
remaining 56 formulas are
located in Appendix B

LTL N1 N2 D1 D2 LD1 LD2 LDp

χ9,4 2937(5) 3220(6) 1392(10) 196(10) 471(10) 337(14) 24(6)

χ6,5 5 472(3) 120(2) 120(2) 5(2) 5(2) 5(2)

χ8,4 189(2) 1562(4) 155(11) 201(5) 262(3) 201(3) 20(4)

χ7,4 91(2) 241(3) 24(4) 24(4) 4(4) 4(4) 4(3)

χ9,3 154(4) 152(6) 36(8) 26(8) 51(8) 37(10) 6(5)

χ11,4 15 314(2) 62(3) 15(3) 15(3) 15(3) 15(2)

χ6,4 4 89(3) 24(2) 24(2) 4(2) 4(2) 4(2)

χ7,3 24(2) 66(3) 6(4) 6(4) 3(4) 3(4) 3(3)

χ11,4 15 49(3) 244(2) 244(2) 15(2) 15(2) 15(2)

χ8,4 77(2) 299(3) 66(4) 56(4) 20(4) 56(4) 20(4)
1
n� 61.47 115.45 42.53 24.03 23.47 20.11 8.91

σ 358.12 435.39 171.80 47.10 65.63 48.95 9.13
n√
� 8.16 17.46 9.32 8.53 7.36 7.14 5.71

med. 7.0 16.5 6.5 6.5 5.5 5.0 5.0

also DPAs for several formulas. Overall, not surprisingly, a
portfolio approach entails a considerable advantage.

Safra versus IAR versus LDBA determinisation Our LDBA
determinisation in a portfolio configuration (LDp) is on-par
with N1 on the pattern set, the average ratio being 103%, and
takes the lead in the parametrised setting, the average ratio
being 70% there.

For LD1 and LD2, without post-processing and portfolio
techniques, the difference to N1 grows (with the ratios 124%
and 133%, respectively). Yet, on the parametrised set they
are still better than the the portfolio N1 (with 90% and 87%,
respectively).

One of the reasons for the discrepancy between compar-
isons on the pattern set and on the parametrised set is that the
parametrised set contains several ‘simpler’ formulas that are
recognisable by a deterministic Büchi or deterministic co-
Büchi automaton, as indicated by N1 only needing a single
colour. In these ‘simple’ cases, several techniques are known,
and implemented in N1, to reduce the number of states in the
automata.

The other Safra-based approach N2 tends to yield larger
automata than N1.

Comparing the IAR and LDBA-determinisation
approaches, interestingly, there are significant differences in
both directions on many formulas; yet the ratios are close to
1 on the pattern set, showing they are quite incomparable.
However, the latter takes the lead on the parametrised set.

Summary The portfolio approaches are the clear winners.
While N1 may produce slightly smaller automata in many
cases, LDp produces in several cases significantly smaller
automata. Both approaches are practically used in the LTL
synthesis: N1 is used in ltlsynt [15] and a variant of LDp

is used in Strix [27]. We leave open the question, whether
implementing a portfolio for the IAR approach would also
yield a competitive configuration.

Finally, having pointed out the differences, it is important
to keep in mind that, for a substantial part of the formulas,
all participating tools yield small automata, not differing dra-
matically, as one can see by inspecting “Appendix B”.

6 Conclusion

We have presented a simple, ‘Safraless’, and asymptoti-
cally optimal translation from LTL and LDBA to DPA.

123

650 J. Esparza et al.

Furthermore, the translation is suitable for an on-the-fly
implementation and deployment in the LTL synthesis, which
has been successfully demonstrated by Strix [27], the win-
ner of the LTL-synthesis track of SyntComp 2018 [16] and
2019.10

A Proof of Proposition 4

We start by recalling the LTL→LDBA translation of [36].

Preliminaries. The translation assumes that formulas are in
negation normal form, given by the syntax

ϕ::= tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

where a belongs to a finite set of atomic propositions. Every
formula over the usual syntax of LTL (with negation and the
X and U operators) can be normalised with linear blowup if
formulas are represented by their syntax DAGs, where two
occurrences of the same subformula are represented by the
same node.

We recall the af function introduced in [7,36], and some
of its properties. Let σ be a letter. The formula af (ϕ, σ), read
“ϕ after σ”, is inductively defined as follows [7,36]:

af (tt, σ) = tt
af (ff, σ) = ff

af (a, σ) =
{
tt if a ∈ σ

ff if a /∈ σ

af (¬a, σ) =
{
ff if a ∈ σ

tt if a /∈ σ

af (ϕ ∧ ψ, σ) = af (ϕ, σ) ∧ af (ψ, σ)

af (ϕ ∨ ψ, σ) = af (ϕ, σ) ∨ af (ψ, σ)

af (Xϕ, σ) = ϕ

af (Gϕ, σ) = af (ϕ, σ) ∧ Gϕ

af (Fϕ, σ) = af (ϕ, σ) ∨ Fϕ

af (ϕUψ, σ) = af (ψ, σ) ∨ (af (ϕ, σ) ∧ ϕUψ)

Furthermore, we define: af (ϕ, ε) = ϕ, and af (ϕ, σw) =
af (af (ϕ, σ),w) for every letter σ and every finite word w.
The function af has the following two properties [7,36] for
every formula ϕ, finite word v, and ω-word w:

(i) σw |
 ϕ iff w |
 af (ϕ, σ).
(ii) af (ϕ, σ) is a boolean combination of subformulas of ϕ.

A formula is proper if it is neither a conjunction nor a
disjunction. The propositional formula ϕP of a formula ϕ

is the result of substituting every maximal proper subfor-
mula ψ of ϕ by a propositional variable xψ . For example,

10 http://www.syntcomp.org/syntcomp-2019-results/

if ϕ = Xb ∨ (G(a ∨ Xb) ∧ Xb) with ψ1 = Xb and
ψ2 = G(a∨Xb), then ϕP = xψ1 ∨ (xψ2 ∧ xψ1). Two formu-
las ϕ, ϕ′ are propositionally equivalent, denoted ϕ ≡P ϕ′,
if ϕP and ϕ′

P are equivalent. So, for example, Xb is propo-
sitionally equivalent to Xb ∨ (G(a ∨ Xb) ∧ Xb). Observe
that propositional equivalence implies equivalence, but the
contrary does not hold. For example, Fa ∧ Ga and Ga are
equivalent, but not propositionally equivalent.

The states of the LDBA for an LTL formula are equiva-
lence classes of formulas (or tuples thereof) with respect to
propositional equivalence. However, we abuse language and
write that the states are formulas or tuples of formulas.

Translating LTL to LDBA. Fix a formula ϕ. We describe the
LDBAAϕ . We use ϕ = c∨XG(a∨Fb) as running example.
We abbreviate ψ := (a∨Fb), and write ϕ = c∨XGψ . The
LDBA Aϕ is shown in Fig. 8.

The LDBAAϕ consists of two deterministic components,
called the initial and accepting components, and denoted
Ain and Aac, respectively—in Fig. 8 they are shown above
and below the dashed line. The accepting component Aac

is the union (defined componentwise for states, transitions,
and accepting states) of subcomponents AG , one for each
set G of G-subformulas of ϕ–that is, if ϕ has n different G-
subformulas, then Aac is the union of 2n subcomponents).
Transitions ofAϕ labeled by an alphabet letter connect either
two states ofAin, or two states of the same subcomponent of
Aac. Further, for each state q of Ain and each set G there is
an ε-transition leading from q to a state of AG .
Initial componentAin: Define the set of formulas reachable
from ϕ as Reach(ϕ) = {ψ | ∃w. ψ = af (ϕ,w)}. The set of
states ofAin is Reach(ϕ). The initial state is ϕ. The transition
function δin is given by δin(ψ, a) = af (ψ, a). Intuitively,Ain

monitors the formula that has to hold at the current moment
for ϕ to hold at the beginning.
Accepting component Aac: The accepting component Aac

is the union of subcomponents AG , one for each G ⊆ G(ϕ).
Let G(ϕ) denote the set of allG-subformulas of ϕ. Given

a set G ⊆ G(ϕ) and a formula ψ , we write ψ[G] as an
abbreviation for ψ[G, G(ϕ) \ G], i.e., for the result of sub-
stituting tt for each maximal occurrence of a formula of G
in ψ , and ff for each maximal occurrence of a formula of
G(ϕ) \ G in ψ . For example, if G = {G(a ∨ Gb)} then
Gb ∨ X(a ∧ G(a ∨ Gb))[G] = ff ∨ X(a ∧ tt) ≡ Xa.

Each subcomponentAG is a product of DBAs: One for the
formulaϕ[G], and one for each formula of the formG(ψ[G]),
where Gψ ∈ G. Observe that ϕ[G] is a G-free formula,
and G(ψ[G]) does not have nested Gs. For example, if G =
{G(a ∨Gb)}, thenAG is the product of three DBAs, one for
ϕ[G], one for G(b[G]) = Gb, and a third one for G((a ∨
Gb)[G]) = G(a ∨ ff) ≡P Ga. We call the DBAs for ϕ[G]
and G(ψ[G]) the monitors.

123

http://www.syntcomp.org/syntcomp-2019-results/

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 651

Fig. 8 Automaton A for
ϕ = c ∨ XG(a ∨ Fb). The
initial component is above the
dashed line, the accepting
component below

Monitor for ϕ[G]. The set of states is Reach(ϕ[G]), the tran-
sition function δϕ[G] is given by δϕ[G](ψ, σ) = af (ψ, σ).
The only final state is tt. The initial state is left unspecified.

� Lemma 2 of [36] shows that the ϕ[G]-monitor accepts a
word w from a state q iff w satisfies the formula q.

Monitor for G(ψ[G]). Let us abbreviate ψ[G] as ψ ′. The
monitor for Gψ ′ is the DBA U(Gψ ′) = (2Ap,Reach(ψ ′) ×
Reach(ψ ′), δ, (ψ ′, tt), F) where

– δ((ξ1, ξ2) , σ)

=
{

(af (ξ2, σ) ∧ ψ ′ , tt) if af (ξ1, σ) ≡P tt

(af (ξ1, σ) , af (ξ2, σ) ∧ ψ ′) otherwise

– F = {((ξ1, ξ2) , σ, p) ∈ Q×2Ap×Q | af (ξ1, σ) ≡P tt}

� Lemma 5 of [36] proves that U(Gψ ′) accepts a word w

(from its initial state (ψ ′, tt)) iff w |
 Gψ ′.

Product. Fix a set G = {Gψ1, . . . ,Gψn} ⊆ G of G-
subformulas of ϕ. For every index 1 ≤ i ≤ n, let Ui =
(2Ap, Qi , δi , q0i , Fi) be the monitor forG(ψi [G]). The prod-
uct of these monitors is the generalised deterministic Büchi
automaton

P(G) = (2Ap,
n∏

i=1

Qi ,

n∏

i=1

δi , (q01, . . . , q0n), {F ′
1, . . . , F

′
n})

where ((q1, . . . , qn), σ, (q, q ′
1, . . . , q

′
n)) is a transition of

F ′
i iff (qi , σ, q ′

i) ∈ Fi .

� Lemma 5 of [36] proves that P(G) accepts w iff w |

G(ψ[G]) for all Gψ ∈ G.

SubcomponentAG . The subcomponent is the product of the
monitor for ϕ[G] and P(G):

AG = (2Ap , Reach(ϕ[G]) ×
n∏

i=1

Qi ,

δϕ[G] ×
n∏

i=1

δi , {{} × F ′
1, . . . , {} × F ′

n})

� We have: AG accepts a word w from the state (ϕ′[G],
q01, . . . , q0n) iff w |
 ϕ′[G] ∧ G(ψ[G]).

Connecting ε-transitions: Finally, we describe the ε-
transitions connecting the initial component Ain to the
accepting component Aac. There is an ε-transition for each
state ϕ′ of Ain and each set G = {Gψ1, . . . ,Gψn} ⊆ G(ϕ).
The transition is

(
ϕ′, ε, (ϕ′[G],G(ψ1[G]), . . . ,G(ψn[G]))

)
.

� Theorem 1 of [36] proves that w |
 ϕ iffAϕ accepts w.

This concludes the description of Aϕ .

123

652 J. Esparza et al.

Proof of Proposition 4 We start by generalizing Lemma 5 of
[36] as follows:

Lemma 5 U(Gψ ′) accepts a word w from a state (ξ1, ξ2) iff
w |
 Gψ ′ ∧ ξ1 ∧ ξ2.

Proof We first claim that there is a formula ξ such that ξ1 ∧
ξ2 ≡ ξ ∧ ψ ′. If (ξ1, ξ2) = (ψ ′, tt), then ξ = tt. Otherwise
there is (ξ ′

1, ξ
′
2) and σ such that δ((ξ ′

1, ξ
′
2), σ) = (ξ1, ξ2). By

the definition of the transition function, either ξ1 = η1 ∧ ψ ′
for some η1, or ξ2 = η2∧ψ ′ for some η2, and we can choose
ξ accordingly.

By this result, we have af (ξ1 ∧ ξ2, σ) ≡ af (ξ ∧ ψ ′, σ) ≡
af (ξ, σ)∧af (ψ ′, σ) for every state (ξ1, ξ2) and letter σ , and
so in particular

af (ξ1, σ) ∧ af (ξ2, σ) |
 af (ψ ′, σ) (1)

We now prove the lemma. Let v be a finite word lead-
ing from the initial state (ψ ′, tt) to (ξ1, ξ2). We proceed by
induction of the length of v.
Basis. v = ε. Then (ξ1, ξ2) = (ψ ′, tt), and so w |
 Gψ ′ ∧
ξ1 ∧ ξ2 iff w |
 Gψ ′ ∧ ψ ′ ≡ Gψ ′. By Lemma 5 of [36]
w |
 Gψ ′ iff U(Gψ ′) accepts w from (ψ ′, tt), and we are
done.
Step. v = v′σ for some word v′ and letter σ . Then there
is a state (ξ ′

i , ξ
′
2) such that δ((ψ ′, tt), v′) = (ξ ′

1, ξ
′
2) and

δ((ξ ′
1, ξ

′
2), v

′) = (ξ1, ξ2). By induction hypothesis a word
w is accepted from (ξ ′

1, ξ
′
2) iff w |
 Gψ ′ ∧ ξ ′

1 ∧ ξ ′
2. We

consider two cases.
If af (ξ ′

1, σ) ≡P tt, then by the definition of δ we have
δ((ξ ′

1, ξ
′
2), σ) = (af (ξ ′

2, σ) ∧ ψ ′, tt). It follows:

U(Gψ ′) acceptsw from(ξ1, ξ2)

iff (determinism)

U(Gψ ′) accepts σw from(ξ ′
1, ξ

′
2)

iff (induction hypothesis)
σw |
 Gψ ′ ∧ ξ ′

1 ∧ ξ ′
2

iff (fundamental property of af)
w |
 af (Gψ ′ ∧ ξ ′

1 ∧ ξ ′
2 , σ)

iff (definition of af)
w |
 Gψ ′ ∧ af (ψ ′σ) ∧ af (ξ ′

1, σ) ∧ af (ξ ′
2, σ)

iff (Equation 1)
w |
 Gψ ′ ∧ af (ξ ′

1, σ) ∧ af (ξ ′
2, σ)

We conclude the proof by showing Gψ ′ ∧ af (ξ ′
1, σ) ∧

af (ξ ′
2, σ) ≡ Gψ ′ ∧ ξ1 ∧ ξ2. It suffices to prove ξ1 ∧ ξ2 ≡

af (ξ ′
1, σ) ∧ af (ξ ′

2, σ) ∧ ψ ′. Consider two cases:

– af (ξ ′
1, σ) ≡P tt. Then, by the definition of U(Gψ ′), we

have ξ1 = af (ξ ′
2, σ) ∧ ψ ′ and ξ2 = tt, and we are done.

– af (ξ ′
1, σ) �≡P tt. Then, by the definition of U(Gψ ′), we

have ξ1 = af (ξ ′
1, σ) and ξ2 = af (ξ ′

1, σ)∧ψ ′, and we are
done. ��

We can now proceed to prove Proposition 4.
Proposition 4 For every LTL formula ϕ, every state s of
the LDBA of [36] for ϕ can be labelled by an LTL formula
label(s) such that (i) L(s) = L(label(s)) and (ii) label(s) is
a Boolean combination of subformulas of ϕ[Ts, Fs] for some
Ts and Fs . Moreover, the LDBA is initial-deterministic.

Further, label(s) can be computed in linear time from the
descriptor of s.

Proof Recall the two properties of the af function. For every
formula ϕ, finite word v, and ω-word w:

(i) vw |
 ϕ iff w |
 af (ϕ, v).
(ii) af (ϕ, v) is a boolean combination of subformulas of ϕ.

Therefore, every formula of Reach(ϕ) is a boolean com-
bination of subformulas of ϕ.

Let s be a state ofAin, and let v be any finite word leading
from s0 to s. By Theorem 1 of [36], we have L(s0) = L(ϕ).
By (i), L(af (ϕ, v)) = {w | vw ∈ L(ϕ)}. Since Ain is deter-
ministic, L(s) = {w | vw ∈ L(s0)} = {w | vw ∈ L(ϕ)} =
L(af (ϕ, v)). So we can take label(s) = s.

We consider now the case that s belongs to Aac. Then
there is a set G = (Gψ1, . . . ,Gψn) such that s belongs
to AG . By the definition of AG as product of DBAs, s is
of the form (ϕ′[G], (ξ11, ξ21), . . . , (ξ1n, ξ2n)), where ϕ′[G]
is a state of the monitor for ϕ[G], and (ξ1i , ξ2i) is a state
of the monitor for G(ψi [G]). Further, the words recognised
from s are those simultaneously recognized from ϕ′[G],
(ξ11, ξ21), . . . , (ξ1n, ξ2n) in their respective automata. By
Lemma 5, the words recognised from s are those satisfying
ϕ′[G]∧ξ11∧ξ21∧ . . .∧ξ1n ∧ξ2n . We choose label(s) as this
formula. It remains to show that each conjunct of label(s) is
a boolean combination of formulas of sf(ϕ)[G].

– By the definition of the monitor for ϕ[G], the formula
ϕ′[G] belongs to Reach(ϕ[G]), and by (ii) we are done.

– By the definition of the monitor forG(ψi [G]), the formu-
las ξ1i and ξ2i belong to Reach(ψi [G]). By (ii), they are
boolean combinations of subformulas ofψi [G]. Sinceψi

is a subformula of ϕ, they are also boolean combinations
of subformulas of ϕ[G], and so a boolean combination of
formulas of sf(ϕ)[G]. ��

B Additional experimental results

We list in Table 5 the complete and normalised ‘Dwyer’-
pattern formula set. Tables 6 and 7 contain missing entries
from Tables 2, and 8 contains entries missing from Table 4,
respectively. Moreover, we list the sizes of the intermediate
automata in Tables 9 and 10.

123

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 653

Table 5 Complete and
normalised ‘Dwyer’-pattern
formula set

ϕ1 Ga

ϕ2 Ga ∨ bUa

ϕ3 G(a ∨ Gb)

ϕ4 G(a ∨ b ∨ Gb ∨ cUb)

ϕ5 G(a ∨ b ∨ cWb)

ϕ6 aW(a ∧ b)

ϕ7 Ga ∨ F(a ∧ Fb)

ϕ8 G(a ∨ b ∨ bW(b ∧ c))

ϕ9 G(a ∨ b ∨ bU(b ∧ c))

ϕ10 aW(aW(aW(aW(Ga))))

ϕ11 Ga ∨ (a ∧ b)U(a ∨ (a ∧ b)U(a ∨ (a ∧ b)U(a ∨ (a ∧ b)U(a ∨ bUa))))

ϕ12 aW(a ∧ bW(bW(bW(bW(Gb)))))

ϕ13 G(a ∨ Gb ∨ (b ∧ c)U(b ∨ (b ∧ c)U(b ∨ (b ∧ c)U(b ∨ (b ∧ c)U(b ∨ cUb)))))

ϕ14 G(a ∨ (b ∧ c)U(c ∨ (b ∧ c)U(c ∨ (b ∧ c)U(c ∨ (b ∧ c)U(c ∨ Gb ∨ bWc)))))

ϕ15 aWb

ϕ16 Ga ∨ bU(a ∨ c)

ϕ17 Ga ∨ F(a ∧ bWc)

ϕ18 G(a ∨ b ∨ Gb ∨ cU(b ∨ d))

ϕ19 G(a ∨ b ∨ cW(b ∨ d))

ϕ20 G(a ∨ Fb)

ϕ21 Ga ∨ (b ∨ aU(a ∧ c))Ua

ϕ22 G(a ∨ G(b ∨ Fc))

ϕ23 G(a ∨ b ∨ Gb ∨ (c ∨ bU(b ∧ d))Ub)

ϕ24 G(a ∨ b ∨ (c ∨ bU(b ∧ d))Wb)

ϕ25 aW(a ∧ b ∧ X(aUc))

ϕ26 Ga ∨ bU(a ∨ (b ∧ c ∧ X(bUd)))

ϕ27 aW(a ∨ bW(b ∧ c ∧ X(bUd)))

ϕ28 G(a ∨ Gb ∨ cU(b ∨ (c ∧ d ∧ X(cUe))))

ϕ29 G(a ∨ bW(c ∨ (b ∧ d ∧ X(bUe))))

ϕ30 aUb ∨ G(a ∨ XGc)

ϕ31 Ga ∨ (a ∨ b ∨ X(aR(a ∨ c)))U(a ∨ d)

ϕ32 aW(a ∧ (bUc ∨ G(b ∨ XGd)))

ϕ33 G(a ∨ Gb ∨ (b ∨ c ∨ X(bR(b ∨ d)))U(b ∨ e))

ϕ34 G(a ∨ G(b ∨ XGc) ∨ (b ∨ d ∨ X(dR(c ∨ d)))U(d ∨ e))

ϕ35 G(a ∨ XGb ∨ XF(b ∧ Fc))

ϕ36 Ga ∨ (b ∨ X(aRc) ∨ X(aU(c ∧ Fd)))Ua

ϕ37 G(a ∨ G(b ∨ XGc ∨ XF(c ∧ Fd)))

ϕ38 G(a ∨ Gb ∨ (c ∨ X(bRd) ∨ X(bU(d ∧ Fe)))Ub)

ϕ39 G(a ∨ (b ∨ X(cRd) ∨ X(cU(d ∧ Fe)))U(c ∨ G(b ∨ X(cRd) ∨ X(cU(d ∧ Fe)))))

ϕ40 G(a ∨ F(b ∧ XFc))

ϕ41 Ga ∨ (b ∨ aU(a ∧ c ∧ X(aUd)))Ua

ϕ42 G(a ∨ G(b ∨ (c ∧ XFd)))

ϕ43 G(a ∨ Gb ∨ (c ∨ bU(b ∧ d ∧ X(bUe)))Ub)

ϕ44 G(a ∨ (b ∨ cU(c ∧ d ∧ X(cUe)))U(c ∨ G(b ∨ (d ∧ XFe))))

ϕ45 G(a ∨ F(b ∧ c ∧ X(cUd)))

ϕ46 Ga ∨ (b ∨ aU(a ∧ c ∧ d ∧ X((a ∧ d)Ue)))Ua

ϕ47 G(a ∨ G(b ∨ (c ∧ d ∧ X(dUe))))

ϕ48 G(a ∨ Gb ∨ (c ∨ bU(b ∧ d ∧ e ∧ X((b ∧ e)U f)))Ub)

ϕ49 G(a ∨ (b ∨ cU(c ∧ d ∧ e ∧ X((c ∧ e)U f)))U(c ∨ G(b ∨ (d ∧ e ∧ X(eU f)))))

123

654 J. Esparza et al.

Table 6 This table is a continuation of Table 2

LTL N1 N2 D1 D2 LD1 LD2 LDp

ϕ13 7 7(2) 22(4) 7(4) 7(2) 25(10) 7(2)

ϕ45 4 6(3) 6(4) 5(2) 15(6) 5(2) 4(2)

ϕ43 4 4(2) 6(4) 12(6) 4(2) 12(4) 4(2)

ϕ48 4 4(2) 6(4) 12(6) 4(2) 12(4) 4(2)

ϕ38 8 22(4) 8(2) 8(3) 9(3) 8(2) 8(2)

ϕ38 20 9(2) 20(4) 22(6) 17(6) 21(4) 8(2)

ϕ37 5 5(2) 8(4) 9(4) 14(5) 9(4) 5(2)

ϕ13 8 8(2) 19(2) 8(2) 8(2) 8(2) 8(2)

ϕ14 7 7(2) 16(3) 7(3) 7(7) 7(3) 7(7)

ϕ35 4 4(2) 4(4) 7(4) 9(5) 7(4) 4(2)

ϕ23 3 3(2) 4(4) 7(6) 3(2) 7(4) 3(2)

ϕ43 5 5(2) 8(2) 5(2) 11(2) 5(2) 5(2)

ϕ48 5 5(2) 8(2) 5(2) 11(2) 5(2) 5(2)

ϕ24 4 8(3) 4(2) 4(2) 4(3) 4(2) 4(2)

ϕ35 4 8(4) 4(2) 4(3) 5(3) 4(2) 4(2)

ϕ24 3 3(2) 6(6) 3(4) 5(4) 3(4) 3(2)

ϕ37 5 9(4) 5(2) 5(3) 6(3) 5(2) 5(2)

ϕ40 4 7(3) 4(2) 5(2) 6(4) 5(2) 4(2)

ϕ28 5 5(2) 8(2) 5(2) 6(2) 5(2) 5(2)

ϕ29 3 3(2) 4(4) 4(4) 5(2) 4(4) 3(2)

ϕ23 4 4(2) 4(2) 4(2) 6(2) 4(2) 4(2)

ϕ40 6 5(2) 4(3) 6(5) 5(3) 6(4) 4(2)

ϕ45 6 4(2) 4(3) 5(5) 5(3) 5(4) 4(2)

ϕ41 4 4(2) 6(2) 4(2) 4(2) 4(2) 4(2)

ϕ34 4 4(2) 6(2) 6(2) 6(2) 6(2) 6(2)

ϕ32 4 4(2) 4(2) 4(2) 6(2) 4(2) 4(2)

ϕ46 4 4(2) 6(2) 4(2) 4(2) 4(2) 4(2)

ϕ20 2 3(3) 2(2) 2(2) 2(3) 2(2) 2(2)

ϕ4 3 3(2) 4(4) 3(4) 3(2) 3(2) 3(2)

ϕ9 3 4(3) 3(2) 3(2) 3(3) 3(2) 3(2)

ϕ18 3 3(2) 4(4) 4(4) 3(2) 4(2) 3(2)

ϕ25 3 3(2) 3(2) 3(2) 4(2) 3(2) 3(2)

ϕ25 3 3(2) 3(2) 4(2) 3(2) 4(2) 3(2)

ϕ22 3 4(4) 3(2) 3(2) 4(3) 3(2) 3(2)

ϕ22 3 3(2) 4(3) 3(4) 4(3) 3(4) 3(2)

ϕ42 3 4(2) 4(3) 3(4) 4(3) 3(4) 4(2)

ϕ47 3 4(2) 4(3) 3(4) 4(3) 3(4) 4(2)

ϕ17 4 5(3) 4(2) 4(2) 5(3) 4(2) 4(3)

ϕ26 4 4(2) 5(2) 4(2) 4(2) 4(2) 4(2)

ϕ31 4 4(2) 5(2) 5(2) 5(2) 5(2) 5(2)

ϕ31 4 4(2) 5(2) 5(2) 5(2) 5(2) 5(2)

ϕ27 4 4(2) 4(2) 4(2) 5(2) 4(2) 4(2)

ϕ27 4 4(2) 4(2) 5(2) 4(2) 5(2) 4(2)

ϕ42 4 5(4) 4(2) 5(2) 4(2) 5(2) 5(2)

ϕ47 4 5(4) 4(2) 5(2) 4(2) 5(2) 5(2)

ϕ29 4 4(2) 4(2) 4(2) 5(2) 4(2) 4(2)

ϕ32 4 4(2) 4(2) 5(2) 4(2) 5(2) 4(2)

Table 6 continued

LTL N1 N2 D1 D2 LD1 LD2 LDp

ϕ33 5 5(2) 6(2) 6(2) 6(2) 6(2) 6(2)

ϕ1 2 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)

ϕ1 1 1(2) 1(2) 1(2) 1(2) 1(2) 1(2)

ϕ15 2 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)

ϕ15 2 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)

ϕ2 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ2 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ6 2 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)

ϕ6 2 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)

ϕ16 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ16 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ3 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ5 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

Table 7 This table is a continuation of Table 6

LTL N1 N2 D1 D2 LD1 LD2 LDp

ϕ4 4 4(2) 4(2) 4(2) 4(2) 4(2) 4(2)

ϕ20 2 2(2) 2(3) 2(4) 2(3) 2(4) 2(2)

ϕ3 2 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)

ϕ5 2 2(2) 2(4) 2(2) 2(2) 2(2) 2(2)

ϕ7 2 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)

ϕ17 3 3(2) 3(3) 3(4) 3(3) 3(4) 3(3)

ϕ7 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ8 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ19 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ18 4 4(2) 4(2) 4(2) 4(2) 4(2) 4(2)

ϕ9 2 2(2) 2(3) 2(4) 2(3) 2(4) 2(2)

ϕ8 2 2(2) 2(4) 2(2) 2(2) 2(2) 2(2)

ϕ19 2 2(2) 2(4) 2(2) 2(2) 2(2) 2(2)

ϕ21 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ30 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ21 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ30 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

ϕ10 6 6(2) 6(2) 6(2) 6(2) 6(2) 6(2)

ϕ10 5 5(2) 5(2) 5(2) 5(2) 5(2) 5(2)

ϕ26 4 4(2) 4(2) 4(2) 4(2) 4(2) 4(2)

ϕ36 5 5(2) 5(2) 5(2) 5(2) 5(2) 5(2)

ϕ41 4 4(2) 4(2) 4(2) 4(2) 4(2) 4(2)

ϕ36 6 6(2) 6(2) 6(2) 6(2) 6(2) 6(2)

ϕ12 7 7(2) 7(2) 7(2) 7(2) 7(2) 7(2)

ϕ12 6 6(2) 6(2) 6(2) 6(2) 6(2) 6(2)

ϕ46 4 4(2) 4(2) 4(2) 4(2) 4(2) 4(2)

ϕ11 7 7(2) 7(2) 7(2) 7(2) 7(2) 7(2)

ϕ11 7 7(2) 7(2) 7(2) 7(2) 7(2) 7(2)

123

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 655

Table 8 This table is a continuation of Table 4

LTL N1 N2 D1 D2 LD1 LD2 LDp

χ8,3 35(2) 179(4) 28(9) 57(5) 43(3) 57(3) 12(4)

χ9,2 22(3) 17(4) 4(6) 4(6) 4(6) 4(6) 2(4)

χ7,4 5(2) 37(4) 4(3) 4(3) 4(3) 4(3) 4(3)

χ3,3 11 17(3) 56(8) 13(2) 82(9) 13(2) 10(2)

χ7,2 9(2) 21(3) 2(4) 2(4) 2(4) 2(4) 2(3)

χ6,3 3 23(3) 6(2) 6(2) 3(2) 3(2) 3(2)

χ11,2 7 44(2) 15(3) 7(3) 7(3) 7(3) 7(2)

χ9,4 65(5) 132(8) 24(6) 24(6) 24(6) 24(6) 24(6)

χ9,3 16(4) 35(6) 6(5) 6(5) 6(5) 6(5) 6(5)

χ8,3 20(2) 64(3) 14(4) 21(4) 12(4) 21(4) 12(4)

χ8,2 8(2) 30(4) 6(7) 14(5) 8(3) 14(3) 6(4)

χ8,2 7(2) 21(3) 4(4) 7(4) 6(4) 7(4) 6(4)

χ10,4 16 73(2) 65(3) 42(3) 65(3) 42(3) 31(2)

χ9,2 5(3) 12(6) 2(4) 2(4) 2(4) 2(4) 2(4)

χ10,3 8 36(2) 25(3) 16(3) 25(3) 16(3) 15(2)

χ10,4 16 39(3) 65(2) 31(2) 31(2) 31(2) 31(2)

χ10,2 4 17(2) 9(3) 6(3) 9(3) 6(3) 6(3)

χ11,2 7 21(3) 27(2) 27(2) 7(2) 7(2) 7(2)

χ7,3 4(2) 12(4) 3(3) 3(3) 3(3) 3(3) 3(3)

χ10,3 8 19(3) 25(2) 15(2) 15(2) 15(2) 15(2)

χ4,4 42 42(2) 42(2) 115(2) 63(2) 115(2) 42(2)

χ3,3 12 21(2) 15(3) 11(4) 12(3) 11(4) 9(2)

χ5,3 1 3(3) 1(2) 1(2) 1(2) 1(2) 1(2)

χ7,2 3(2) 5(4) 2(3) 2(3) 2(3) 2(3) 2(3)

χ5,4 1 3(3) 1(2) 1(2) 1(2) 1(2) 1(2)

χ5,5 1 3(3) 1(2) 1(2) 1(2) 1(2) 1(2)

χ2,4 5 5(2) 11(2) 5(2) 5(2) 5(2) 5(2)

χ10,2 4 9(3) 9(2) 7(2) 7(2) 7(2) 6(3)

χ4,3 18 18(2) 18(2) 36(2) 24(2) 36(2) 18(2)

χ11,1 3 6(3) 4(2) 4(2) 3(2) 3(2) 3(2)

χ3,2 5 8(3) 6(4) 5(2) 9(5) 5(2) 5(2)

χ4,4 41 41(2) 41(2) 41(2) 66(2) 41(2) 41(2)

χ4,3 17 17(2) 17(2) 17(2) 26(2) 17(2) 17(2)

χ5,3 1 2(2) 1(3) 1(3) 1(3) 1(3) 1(2)

χ5,4 1 2(2) 1(3) 1(3) 1(3) 1(3) 1(2)

χ5,5 1 2(2) 1(3) 1(3) 1(3) 1(3) 1(2)

χ4,2 7 7(2) 7(2) 7(2) 10(2) 7(2) 7(2)

χ4,2 8 8(2) 8(2) 11(2) 9(2) 11(2) 8(2)

χ6,3 3 4(2) 3(3) 3(3) 3(3) 3(3) 3(2)

χ3,1 3 4(3) 3(2) 3(2) 3(3) 3(2) 3(2)

χ11,1 3 4(2) 4(3) 3(3) 3(3) 3(3) 3(2)

χ6,4 4 5(2) 4(3) 4(3) 4(3) 4(3) 4(2)

χ2,3 4 4(2) 5(2) 4(2) 4(2) 4(2) 4(2)

χ3,2 4 5(2) 5(3) 5(4) 4(3) 5(4) 4(2)

χ6,5 5 6(2) 5(3) 5(3) 5(3) 5(3) 5(2)

χ2,2 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

χ1,2 4 4 4(2) 4(2) 4(2) 4(2) 4(2)

Table 8 continued

LTL N1 N2 D1 D2 LD1 LD2 LDp

χ2,2 3 3(2) 3(2) 3(2) 3(2) 3(2) 3(2)

χ1,2 4 4(2) 4(2) 4(2) 4(2) 4(2) 4(2)

χ3,1 2 2(2) 2(3) 2(4) 2(3) 2(4) 2(2)

χ1,3 8 8 8(2) 8(2) 8(2) 8(2) 8(2)

χ2,3 4 4(2) 4(2) 4(2) 4(2) 4(2) 4(2)

χ1,3 8 8(2) 8(2) 8(2) 8(2) 8(2) 8(2)

χ1,4 16 16 16(2) 16(2) 16(2) 16(2) 16(2)

χ2,4 5 5(2) 5(2) 5(2) 5(2) 5(2) 5(2)

χ1,4 16 16(2) 16(2) 16(2) 16(2) 16(2) 16(2)

Table 9 This table displays the sizes of the intermediate automata for
the ‘Dwyer’-patterns set. The table list number of states, followed by
the number of acceptance sets (if larger than 1) and is sorted descending
in regards to the largest difference in order of magnitude differences, as
explained in the text. We write 1

n�, σ ,
n√
�, and med., for the average,

the standard deviation, the geometric average, and the median, respec-
tively, for the number of states. For D1 and D2 we list the sizes of the
intermediate DRAs and for LD1 and LD2 the sizes of the intermediate
LDBAs

LTL D1 D2 LD1 LD2

ϕ49 22(6) 118(16) 19 63

ϕ14 16(4) 7(2) 45 14

ϕ14 11(6) 67(8) 14 47

ϕ44 20(6) 75(14) 19 47

ϕ13 22(4) 7(4) 14 29

ϕ43 8(2) 5(2) 19 5

ϕ48 8(2) 5(2) 19 5

ϕ39 54(16) 123(8) 40 38

ϕ33 20(8) 6(4) 14 13

ϕ43 6(4) 11(6) 9 19

ϕ48 6(4) 11(6) 9 19

ϕ23 4(4) 6(6) 7 13

ϕ39 29(6) 10(4) 20 26

ϕ35 4(6) 7(4) 11 8

ϕ24 6(6) 3(4) 8 8

ϕ47 4(2) 3(4) 7 8

ϕ28 8(4) 15(6) 10 19

ϕ34 8(12) 13(4) 19 15

ϕ13 19(2) 8(2) 8 8

ϕ38 8(2) 8(2) 18 9

ϕ4 4(4) 3(4) 6 7

ϕ9 2(2) 2(4) 4 5

ϕ45 5(8) 5(2) 11 5

ϕ42 4(2) 3(4) 7 7

ϕ29 4(4) 4(4) 9 8

ϕ44 18(14) 14(6) 27 20

ϕ34 6(2) 6(2) 12 6

ϕ18 4(4) 4(4) 6 8

123

656 J. Esparza et al.

Table 9 continued

LTL D1 D2 LD1 LD2

ϕ23 4(2) 4(2) 8 4

ϕ40 4(2) 6(4) 8 6

ϕ45 4(2) 5(4) 8 6

ϕ32 4(2) 4(2) 8 4

ϕ32 4(2) 5(2) 8 6

ϕ17 4(2) 3(4) 5 6

ϕ22 3(2) 3(2) 6 4

ϕ22 4(2) 3(4) 6 6

ϕ40 3(4) 5(2) 6 5

ϕ36 6(2) 6(2) 11 7

ϕ20 2(2) 2(2) 4 3

ϕ20 2(2) 2(4) 4 4

ϕ28 8(2) 5(2) 9 5

ϕ17 4(2) 4(2) 7 6

ϕ24 4(2) 4(2) 7 5

ϕ29 4(2) 4(2) 7 4

ϕ37 8(6) 9(4) 13 10

ϕ49 26(14) 19(6) 30 22

ϕ9 3(2) 3(2) 5 4

ϕ25 3(2) 3(2) 5 3

ϕ30 3(2) 3(2) 5 4

ϕ31 5(2) 5(2) 8 6

ϕ35 4(2) 4(2) 6 5

ϕ27 4(2) 4(2) 6 4

ϕ41 6(2) 4(2) 4 4

ϕ46 6(2) 4(2) 4 4

ϕ37 5(2) 5(2) 7 6

ϕ38 20(4) 20(6) 27 22

ϕ2 3(2) 3(2) 4 3

ϕ16 3(2) 3(2) 4 3

ϕ7 3(2) 3(2) 4 4

ϕ25 3(2) 4(2) 4 4

ϕ21 3(2) 3(2) 4 4

ϕ26 5(2) 4(2) 4 4

ϕ26 4(2) 4(2) 5 4

ϕ27 4(2) 5(2) 5 5

ϕ41 4(2) 4(2) 5 5

ϕ42 4(2) 5(2) 5 5

ϕ47 4(2) 5(2) 5 5

ϕ46 4(2) 4(2) 5 5

ϕ11 8(2) 7(2) 7 7

ϕ11 7(2) 7(2) 8 7

ϕ1 2(2) 2(2) 2 2

ϕ1 1(2) 1(2) 1 1

ϕ15 2(2) 2(2) 2 2

ϕ15 2(2) 2(2) 2 2

ϕ2 3(2) 3(2) 3 3

Table 9 continued

LTL D1 D2 LD1 LD2

ϕ6 2(2) 2(2) 2 2

ϕ6 2(2) 2(2) 2 2

ϕ16 3(2) 3(2) 3 3

ϕ3 3(2) 3(2) 3 3

ϕ5 3(2) 3(2) 3 3

ϕ4 4(2) 4(2) 4 4

ϕ3 2(2) 2(2) 2 2

ϕ5 2(4) 2(2) 2 2

ϕ7 2(2) 2(2) 2 2

ϕ8 3(2) 3(2) 3 3

ϕ19 3(2) 3(2) 3 3

ϕ18 4(2) 4(2) 4 4

ϕ8 2(4) 2(2) 2 2

ϕ19 2(4) 2(2) 2 2

ϕ21 3(2) 3(2) 3 3

ϕ30 3(2) 3(2) 3 3

ϕ10 6(2) 6(2) 6 6

ϕ10 5(2) 5(2) 5 5

ϕ31 5(2) 5(2) 5 5

ϕ36 5(2) 5(2) 5 5

ϕ33 6(2) 6(2) 6 6

ϕ12 7(2) 7(2) 7 7

ϕ12 6(2) 6(2) 6 6
1
n� 6.52 8.68 8.21 8.29

σ 7.35 1.95 7.57 10.07
n√
� 4.75 4.80 6.16 5.68

med. 4.0 4.0 6.0 5.0

123

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 657

Table 10 This table displays the sizes of the intermediate automata for
the parametrised set (Table 1). The table is structured as Table 9

LTL D1 D2 LD1 LD2

χ8,4 4(10) 201(4) 9 54

χ8,3 3(8) 57(4) 7 26

χ8,4 5(10) 56(4) 10 21

χ8,2 2(6) 14(4) 5 12

χ8,3 4(8) 21(4) 8 12

χ11,3 62(2) 15(2) 16 16

χ7,4 1(10) 1(10) 6 6

χ6,5 1(10) 1(10) 6 6

χ5,5 1(2) 1(2) 6 6

χ9,4 96(16) 58(16) 29 29

χ3,3 26(8) 13(2) 43 16

χ7,3 1(8) 1(8) 5 5

χ6,4 1(8) 1(8) 5 5

χ5,4 1(2) 1(2) 5 5

χ9,4 1(8) 1(8) 5 5

χ4,4 42(2) 115(2) 67 112

χ3,2 6(4) 5(2) 15 8

χ7,2 1(6) 1(6) 4 4

χ6,3 1(6) 1(6) 4 4

χ5,3 1(2) 1(2) 4 4

χ9,3 1(6) 1(6) 4 4

χ9,2 2(6) 2(6) 6 6

χ10,4 65(2) 31(2) 31 31

χ4,3 18(2) 36(2) 27 38

χ3,1 2(2) 2(4) 4 5

χ9,3 6(10) 10(10) 13 13

χ9,2 1(4) 1(4) 3 3

χ2,4 11(2) 5(2) 5 5

χ8,2 3(6) 7(4) 6 7

χ11,2 15(2) 7(2) 8 8

χ10,4 65(2) 42(2) 33 33

χ3,3 15(2) 11(4) 20 22

χ3,2 5(2) 5(4) 8 10

χ11,1 2(4) 2(4) 4 4

χ10,3 25(2) 15(2) 15 15

χ4,2 8(2) 11(2) 11 13

χ10,3 25(2) 16(2) 17 17

χ5,3 1(2) 1(2) 2 2

χ5,4 1(2) 1(2) 2 2

χ5,5 1(2) 1(2) 2 2

χ4,2 7(2) 7(2) 11 7

χ3,1 3(2) 3(2) 5 4

χ11,2 5(6) 5(6) 8 8

χ10,2 9(2) 6(2) 9 9

χ7,2 2(2) 2(2) 3 3

χ4,3 17(2) 17(2) 23 17

Table 10 continued

LTL D1 D2 LD1 LD2

χ6,3 3(2) 3(2) 4 4

χ7,3 3(2) 3(2) 4 4

χ11,1 4(2) 3(2) 4 4

χ10,2 9(2) 7(2) 7 7

χ6,4 4(2) 4(2) 5 5

χ7,4 4(2) 4(2) 5 5

χ2,3 5(2) 4(2) 4 4

χ4,4 41(2) 41(2) 49 41

χ11,3 19(8) 19(8) 16 16

χ6,5 5(2) 5(2) 6 6

χ2,2 3(2) 3(2) 3 3

χ1,2 4(2) 4(2) 4 4

χ2,2 3(2) 3(2) 3 3

χ1,2 4(2) 4(2) 4 4

χ1,3 8(2) 8(2) 8 8

χ2,3 4(2) 4(2) 4 4

χ1,3 8(2) 8(2) 8 8

χ1,4 16(2) 16(2) 16 16

χ2,4 5(2) 5(2) 5 5

χ1,4 16(2) 16(2) 16 16
1
n� 11.26 14.79 10.82 12.29

σ 18.02 29.73 11.81 16.11
n√
� 4.85 5 .51 7.47 7.94

med. 4.0 5.0 6.0 6.0

Acknowledgements The authors want to thank Michael Luttenberger
for helpful discussions and the anonymous reviewers for constructive
feedback.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

658 J. Esparza et al.

References

1. T, Babiak, Křetínský, M., Rehák, V., Strejcek, J.: LTL to Büchi
automata translation: Fast and more deterministic. In: TACAS.
LNCS 7214, 95–109 (2012). https://doi.org/10.1007/978-3-642-
28756-5_8

2. Blahoudek, F., Heizmann, M., Schewe, S., Strejcek, J., Tsai, M.:
Complementing semi-deterministic Büchi automata. In: TACAS.
LNCS 9636, 770–787 (2016). https://doi.org/10.1007/978-3-662-
49674-9_49

3. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reac-
tive synthesis. In: E.M. Clarke, T.A. Henzinger, H. Veith, R. Bloem
(eds.) Handbook of Model Checking, pp. 921–962. Springer
(2018). https://doi.org/10.1007/978-3-319-10575-8_27

4. Courcoubetis, C., Yannakakis, M.: The complexity of probabilis-
tic verification. J. ACM 42(4), 857–907 (1995). https://doi.org/10.
1145/210332.210339

5. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T.,
Renault, E., Xu, L.: Spot 2.0 - A framework for LTL and ω-
automata manipulation. In: C. Artho, A. Legay, D. Peled (eds.)
Automated Technology for Verification and Analysis - 14th Inter-
national Symposium, ATVA 2016, Chiba, Japan, October 17-20,
2016, Proceedings, Lecture Notes in Computer Science, vol. 9938,
pp. 122–129 (2016). https://doi.org/10.1007/978-3-319-46520-
3_8

6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification
patterns for finite-state verification. In: M.A. Ardis, J.M. Atlee
(eds.) Proceedings of the Second Workshop on Formal Meth-
ods in Software Practice, March 4-5, 1998, Clearwater Beach,
Florida, USA, pp. 7–15. ACM (1998). https://doi.org/10.1145/
298595.298598

7. Esparza, J., Křetínský, J.: From LTL to deterministic automata: a
safraless compositional approach. In: CAV, LNCS, vol. 8559, pp.
192–208 (2014). https://doi.org/10.1007/978-3-319-08867-9_13

8. Esparza, J., Kretínský, J., Raskin, J., Sickert, S.: From LTL
and limit-deterministic büchi automata to deterministic parity
automata. In: A. Legay, T. Margaria (eds.) Tools and Algorithms
for the Construction and Analysis of Systems—23rd International
Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, Lec-
ture Notes in Computer Science, vol. 10205, pp. 426–442 (2017).
https://doi.org/10.1007/978-3-662-54577-5_25

9. Esparza, J., Kretínský, J., Sickert, S.: One theorem to rule them
all: A unified translation of LTL into ω-automata. In: A. Dawar,
E. Grädel (eds.) Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018, pp. 384–393. ACM (2018). https://doi.org/10.
1145/3209108.3209161

10. Esparza, J., Křetínský, J., Sickert, S.: From LTL to deterministic
automata: a safraless compositional approach. Formal Methods in
Syst. Des. 49(3), 219–271 (2016). https://doi.org/10.1007/s10703-
016-0259-2

11. Etessami, K., Holzmann, G.J.: Optimizing büchi automata. In:
CONCUR, pp. 153–167 (2000). https://doi.org/10.1007/3-540-
44618-4_13

12. Finkbeiner, B.: Automata, games, and verification .
(2015)https://www.react.uni-saarland.de/teaching/automata-
games-verification-15/downloads/notes.pdf

13. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees
for büchi word automata, with application to determinization. Inf.
Comput. 245, 136–151 (2015). https://doi.org/10.1016/j.ic.2014.
12.021

14. Geldenhuys, J., Hansen, H.: Larger automata and lesswork for LTL
model checking. In: SPIN. LNCS 3925, 53–70 (2006). https://doi.
org/10.1007/11691617_4

15. Jacobs, S., Basset, N., Bloem, R., Brenguier, R., Colange, M., Fay-
monville, P., Finkbeiner, B., Khalimov, A., Klein, F., Michaud, T.,
Pérez, G.A., Raskin, J., Sankur, O., Tentrup, L.: The 4th reactive
synthesis competition (SYNTCOMP 2017): Benchmarks, partici-
pants & results. In: D. Fisman, S. Jacobs (eds.) Proceedings Sixth
Workshop on Synthesis, SYNT@CAV 2017, Heidelberg, Ger-
many, 22nd July 2017, EPTCS, vol. 260, pp. 116–143 (2017).
https://doi.org/10.4204/EPTCS.260.10

16. Jacobs, S., Bloem,R., Colange,M., Faymonville, P., Finkbeiner, B.,
Khalimov,A., Klein, F., Luttenberger,M.,Meyer, P.J.,Michaud, T.,
Sakr, M., Sickert, S., Tentrup, L., Walker, A.: The 5th reactive syn-
thesis competition (SYNTCOMP 2018): Benchmarks, participants
& results. CoRR abs/1904.07736 (2019)

17. Kähler, D., Wilke, T.: Complementation, disambiguation, and
determinization of büchi automata unified. In: L. Aceto,
I. Damgård, L.A. Goldberg, M.M. Halldórsson, A. Ingólfsdóttir,
I. Walukiewicz (eds.) Automata, Languages and Programming,
35th International Colloquium, ICALP 2008, Reykjavik, Ice-
land, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms,
Automata, Complexity, and Games, Lecture Notes in Computer
Science, vol. 5125, pp. 724–735. Springer (2008). https://doi.org/
10.1007/978-3-540-70575-8_59

18. Kini, D., Viswanathan, M.: Limit deterministic and probabilistic
automata for LTL \ GU. In: TACAS, LNCS, vol. 9035, pp. 628–
642 (2015). https://doi.org/10.1007/978-3-662-46681-0_57

19. Kretínský, J., Manta, A., Meggendorfer, T.: Semantic labelling and
learning for parity game solving in LTL synthesis. In: ATVA, Lec-
ture Notes in Computer Science, vol. 11781, pp. 404–422. Springer
(2019)

20. Kretínský, J., Meggendorfer, T., Sickert, S.: Owl: A library for
ω-words, automata, and LTL. In: S.K. Lahiri, C.Wang (eds.) Auto-
matedTechnology forVerification andAnalysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10,
2018, Proceedings,LectureNotes inComputer Science, vol. 11138,
pp. 543–550. Springer (2018). https://doi.org/10.1007/978-3-030-
01090-4_34

21. Kretínský, J., Meggendorfer, T., Waldmann, C., Weininger, M.:
Index appearance record for transforming rabin automata into par-
ity automata. In: A. Legay, T.Margaria (eds.) Tools andAlgorithms
for the Construction and Analysis of Systems - 23rd International
Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, Lec-
ture Notes in Computer Science, vol. 10205, pp. 443–460 (2017).
https://doi.org/10.1007/978-3-662-54577-5_26

22. Kupferman, O., Rosenberg, A.: The blowup in translating LTL to
deterministic automata. In: MoChArt, LNCS, vol. 6572, pp. 85–94.
Springer (2010)

23. Kupferman,O.,Vardi,M.Y.:Weak alternating automata are not that
weak.ACMTrans.Comput. Log.2(3), 408–429 (2001). https://doi.
org/10.1145/377978.377993

24. Löding, C.: Optimal bounds for transformations of omega-
automata. In: C.P. Rangan, V. Raman, R. Ramanujam (eds.)
Foundations of Software Technology and Theoretical Computer
Science, 19th Conference, Chennai, India, December 13–15, 1999,
Proceedings, Lecture Notes in Computer Science, vol. 1738, pp.
97–109. Springer (1999)

123

https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/978-3-319-10575-8_27
https://doi.org/10.1145/210332.210339
https://doi.org/10.1145/210332.210339
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1145/298595.298598
https://doi.org/10.1145/298595.298598
https://doi.org/10.1007/978-3-319-08867-9_13
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1007/s10703-016-0259-2
https://doi.org/10.1007/s10703-016-0259-2
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1007/3-540-44618-4_13
https://www.react.uni-saarland.de/teaching/automata-games-verification-15/downloads/notes.pdf
https://www.react.uni-saarland.de/teaching/automata-games-verification-15/downloads/notes.pdf
https://doi.org/10.1016/j.ic.2014.12.021
https://doi.org/10.1016/j.ic.2014.12.021
https://doi.org/10.1007/11691617_4
https://doi.org/10.1007/11691617_4
https://doi.org/10.4204/EPTCS.260.10
https://doi.org/10.1007/978-3-540-70575-8_59
https://doi.org/10.1007/978-3-540-70575-8_59
https://doi.org/10.1007/978-3-662-46681-0_57
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1145/377978.377993
https://doi.org/10.1145/377978.377993

From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata... 659

25. Löding, C., Pirogov, A.: Determinization of büchi automata: Uni-
fying the approaches of safra and muller-schupp. In: C. Baier,
I. Chatzigiannakis, P. Flocchini, S. Leonardi (eds.) 46th Interna-
tional Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9–12, 2019, Patras, Greece, LIPIcs, vol. 132,
pp. 120:1–120:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.120

26. Löding,C., Pirogov,A.:Newoptimizations and heuristics for deter-
minization of büchi automata. In: Y. Chen, C. Cheng, J. Esparza
(eds.) Automated Technology for Verification and Analysis - 17th
International Symposium, ATVA 2019, Taipei, Taiwan, October
28–31, 2019, Proceedings, Lecture Notes in Computer Science,
vol. 11781, pp. 317–333. Springer (2019). https://doi.org/10.1007/
978-3-030-31784-3_18

27. Luttenberger, M., Meyer, P.J., Sickert, S.: Practical synthesis of
reactive systems from LTL specifications via parity games. Acta
Inf (2019). https://doi.org/10.1007/s00236-019-00349-3

28. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive
synthesis strikes back! In: CAV (I), pp. 578–586 (2018). https://
doi.org/10.1007/978-3-319-96145-3_31

29. Müller, D., Sickert, S.: LTL to deterministic emerson-lei automata.
In: GandALF, pp. 180–194 (2017). https://doi.org/10.4204/
EPTCS.256.13

30. Piterman, N.: From nondeterministic Büchi and Streett automata to
deterministic parity automata. Log. Methods Comput. Sci. (2007).
https://doi.org/10.2168/LMCS-3(3:5)2007

31. Redziejowski, R.R.: An improved construction of deterministic
omega-automaton using derivatives. Fundam. Inf. 119(3–4), 393–
406 (2012). https://doi.org/10.3233/FI-2012-744

32. Safra, S.: On the complexity of omega-automata. In: FOCS, pp.
319–327 (1988). https://doi.org/10.1109/SFCS.1988.21948

33. Sickert, S.: Linear temporal logic.Archive of Formal Proofs (2016).
https://www.isa-afp.org/entries/LTL.shtml

34. Sickert, S.: A unified translation of linear temporal logic
to ω-automata. Ph.D. thesis, Technical University of Munich,
Germany (2019). http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-
20190801-1484932-1-4

35. Sickert, S., Esparza, J.: An efficient normalisation procedure for
linear temporal logic and very weak alternating automata. In: LICS
2020 (under submission)

36. Sickert, S., Esparza, J., Jaax, S., Kretínský, J.: Limit-deterministic
büchi automata for linear temporal logic. In: Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part II, pp. 312–332
(2016). https://doi.org/10.1007/978-3-319-41540-6_17

37. Somenzi, F., Bloem, R.: Efficient büchi automata from LTL for-
mulae. In: CAV, pp. 248–263 (2000). https://doi.org/10.1007/
10722167_21

38. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal mon-
itors for systemC. Formal Methods Syst. Des. 41(3), 236–268
(2012). https://doi.org/10.1007/s10703-011-0139-8

39. Vardi, M.Y.: Automatic verification of probabilistic concurrent
finite-state programs. In: FOCS, pp. 327–338 (1985). https://doi.
org/10.1109/SFCS.1985.12

40. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to auto-
matic program verification (preliminary report). In: LICS, pp.
332–344 (1986)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.4230/LIPIcs.ICALP.2019.120
https://doi.org/10.1007/978-3-030-31784-3_18
https://doi.org/10.1007/978-3-030-31784-3_18
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.2168/LMCS-3(3:5)2007
https://doi.org/10.3233/FI-2012-744
https://doi.org/10.1109/SFCS.1988.21948
https://www.isa-afp.org/entries/LTL.shtml
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20190801-1484932-1-4
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20190801-1484932-1-4
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/s10703-011-0139-8
https://doi.org/10.1109/SFCS.1985.12
https://doi.org/10.1109/SFCS.1985.12

	From linear temporal logic and limit-deterministic Büchi automata to deterministic parity automata
	Abstract
	1 Introduction
	2 Preliminaries
	3 From LDBA to DPA
	3.1 Run DAGs and their colouring
	3.2 Construction of the DPA
	3.3 Complexity analysis
	3.3.1 Upper bound
	3.3.2 Lower bound

	4 From LTL to DPA in 22mathcalO(n)
	4.1 Pruning by language decomposition
	4.2 Pruning by language subsumption
	4.3 Bases for LDBAs obtained from LTL formulas
	4.4 Comparing the two pruning methods

	5 Experimental evaluation
	5.1 Method
	5.2 Results
	5.3 Discussion

	6 Conclusion
	A Proof of Proposition 4
	B Additional experimental results
	Acknowledgements
	References

