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From Lipschitzian to non-Lipschitzian characteristics: 
continuity of behaviors 

M.K. Camlibel' M.K.K. Cevik2 

Abstract 

Linear complementarity systems are used to model dis- 
continuous dynamical systems such as networks with ideal 
diodes and mechanical systems with unilateral constraints. 
In these systems mode changes are modeled by a relation 
between nonnegative, complementarity variables. We con- 
sider approximating systems obtained by replacing this non- 
Lipschitzian relation with a Lipschitzian function and inves- 
tigate the convergence of the solutions of the approximat- 
ing system to those of the ideal system as the Lipschitzian 
characteristic approaches to the (non-Lipschitzian) comple- 
mentarity relation. It is shown that this kind of convergence 
holds for linear passive complementarity systems for which 
solutions are known to exist and to be unique. Moreover, 
this result is extended to systems that can be made passive 
by pole shifting. 

1 Introduction 

The well-posedness (in the sense of existence and unique- 
ness of solutions) of a class of hybrid systems, namely com- 
plementarity systems, has been the main theme of our pre- 
vious work (see [l, 2,5,7,10,11] and also [6,8] for related 
work). Having networks with ideal diodes as the most typi- 
cal examples (see for other examples [4]), the complemen- 
tarity systems are of the form 

where the inequalities are understood componentwise, 
which implies together with the orthogonality relation that 
ui = 0 or yi = 0 for all i. Of course, one has to be 
precise about what a solution of such a system means. In 
[ 1,2,5,7,10,11], solution concepts for several families of 
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systems (la)-( lb) (e.g. linear, Hamiltonian etc.) are devel- 
oped and sufficient conditions for well-posedness are pre- 
sented. Notice that the so-called complementarity condi- 
tions (IC) as depicted in Figure 1 do not define a function 
between U and y .  However, a slight perturbation of the piece 

t u  

Figure 1: Complementarity characteristic and one of its possible 
approximations 

with infinite slope allows to express U as a piecewise-linear 
(and hence Lipschitz continuous) function of y .  Naturally, 
one might expect/desire that this approximated characteris- 
tic generates trajectories 'close' to ones of complementar- 
ity system (1). However, it is not hard to find examples 
for which this property does not hold whenever the com- 
plementarity system is ill-posed. The main objective of the 
present paper is to prove the convergence of the trajecto- 
ries generated by the Lipschitzian characteristics to those 
generated by the (non-Lipschitzian) complementarity char- 
acteristic for a class of well-posed complementarity systems 
including linear passive ones. We will mainly focus on the 
linear complementarity systems given by 

X = A x + B u  
y = C x + D u  
0 5 U I  y 2 0. 

It can be verified that the linear system (2a)-(2b) with the 
approximated characteristic of Figure 1 is equivalent to the 
complementarity system given by 

x' = A,x' + B,u' 
y e  = C,x' + D,ue 
0 I: U E  I ye 2 0 

(3a) 
(3b) 
(3c) 

with (A, ,  B,, C,, D E )  = (A ,  B ,  C, D + €1) in the sense 
that there is a one-to-one correspondence between the tra- 
jectories of the two systems. Keeping this equivalence in 
mind, we will investigate the convergence of the trajectories 
of general linear complementarity systems instead of some 
specific approximation schemes. Later on, several approxi- 
mation schemes including the one depicted in Figure 1 will 
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be treated as special cases of our general setting. Continu- 
ity of linear dynamical systems are addressed for instance 
in [3,13]. While continuity is defined via pointwise conver- 
gence of trajectories in [13], [3] considers continuity in the 
graph topology. What we understand as continuity is quite 
close to the notion used in [13]. Our treatment heavily re- 
lies on the concept of passivity. In particular, the infinite 
zero structure imposed by passivity. 

The organization of the paper is as follows. In the next sec- 
tion, we recall several facts such as CarathCodory solution 
of a differential equation, and the definition and character- 
ization of the notion of passivity in order to be reasonably 
self-contained. Section 3 is devoted to linear complemen- 
tarity systems. After recalling the solution concept devel- 
oped previously for such systems, we will present known 
well-posedness results under the passivity assumption. In 
section 4, these results will be extended to the class of sys- 
tems that we call passifiable by pole shifting. This will be 
followed by results on convergence in section 5. In sec- 
tion 6 some examples will be treated as special cases of the 
general framework of the previous section. By means of 
an example, it will be illustrated that the trajectories of the 
approximating systems are not convergent for the irregular 
initial states. The paper will be closed by conclusions in 
section 8 and an appendix containing the proofs. 

2 Preliminaries 

Consider the continuous-time, linear and time-invariant sys- 
tem 

k ( t )  = A z ( t )  + Bu(t) 
y ( t )  = Cx(t) + DU(t) 

(4a) 
(4b) 

where z ( t )  E Rn, u(t) E R", y(t) E R" and A, B, C, 
and D are matrices with appropriate sizes. We denote (4) 
by 'UA B, C, 0). 

A triple (u ,x ,y)  E C r + n + m ( t ~ , t l )  is said to be an &- 
solution of C(A,  B,  C, D )  if it satisfies (4a) in the sense of 
CarathCodory, i.e., for almost all t E [ to ,  t l ] ,  (4b) holds and 

~ ( t )  = x(to) + ~ ; [ A Z ( S )  + Bu(s)]ds. ( 5 )  

Next, we recall the definition of the passivity notion. 

Definition 2.1 [12] The system C ( A ,  B,  C, D) given by 
(4) is said to be passive (dissipative with respect to the sup- 
ply  rate uTy) if there exists a function V : Rn -+ R+ (a 
storage function), such that 

V(x(to)) + f 1  uT(t)y(t)dt 2 V(z(t11) (6)  

holds for all to  and tl with tl 2 to ,  and all Cz-solutions 

t o  

( U ,  X , Y )  E L y + n + m ( t ~ ,  t i )  of C(A,  B,  C,D) .  

We state a well-known result on passive systems which 
characterizes passivity in terms of linear matrix inequalities. 

Lemma 2.2 [12] Assume that ( A ,  B,  C )  is minimal. Then 
C(A ,  B ,  C, D )  is passive ifand only ifthe matrix inequali- 
ties 

[ a T K + K A  K B - C T ]  < o  
- ( D + D T )  - K = KT > Oand 

B T K  - 

have a solution. Moreover; V ( x )  = $xTKx is a quadratic 
storage function if and only i f  K is a solution of the above 
matrix inequalities. 

In what follows, we introduce the following notation. 

Notation 2.3 For a given matrix quadruple ( A ,  B, C, D) 
and K ,  K: ( 2 ) denotes the matrix 

3 Linear Complementarity systems 

The main objects of study in the present paper are linear 
complementarity systems, that is to say, linear systems. with 
complementarity conditions given by 

We denote the linear complementarity system (7) by 
LCS(A, B ,  C, D). Next, we shall define what is meant by 
a solution of a linear complementarity system by clarifying 
the meaning of the complementarity conditions in (7c). 

Definition 3.1 The triple ( U ,  x ,  y) E Ly+n+m(O, T).is a 
solution of LCS(A, B ,  C, 0) on [0, T ]  with initial state z o  
if the following conditions hold. 

1. ( U ,  x ,  y) is a &-solution of C(A, B ,  C, D) on [0 ,  TI. 

2. For almost all t E [0, TI, 0 5 u(t)  I y(t) 2 0. 

The initial state is said to be regular if there exists a solution 
with this initial state and irregular otherwise. 

Throughout the paper, we will frequently use the following 
assumption. 

Assumption 3.2 ( A ,  B,  C) is a minimal representation and 
B is of full column rank. 
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The passivity of the system C(A,  B ,  C, D), together with 
Assumption 3.2, guarantees the existence and unique- 
ness of solutions (in the sense of Definition 3.1) to 
LCS(A, B, C, D)as will be presented in the next theorem. 
Before stating these results, we recall the notion of a dual 
cone. For a given nonempty set S, we say that the set 
{v I vTw 2 0 for all w E S} is the dual cone of S. It 
is denoted by S*. In particular, the dual cone of the set 
SO = {U I v 2 0, Dv 2 0, and vTDv '= 0) plays an 
important role in the above mentioned characterization. 

Theorem 3.3 Consider a matrix quadruple (A, B ,  C, D )  
satisfying Assumption 3.2. Suppose that C(A, B ,  C, D) is 
passive. Let T > 0 be given. Then, there exists a unique 
solution of LCS(A, B, C, D )  on [0, T] with initial state xo 
if and only ifCx0 E S;. 

The proof can be found in [ 1,5]. 

4 Passifiability by pole shifting 

In this section, we will extend the well-posedness results 
presented in Theorem 3.3 to a class of nonpassive sys- 
tems. To do so, note that if (u,x,y) is a solution of 
LCS(A, B, C, D) with some initial state then eP'(u, x, y) 
is a solution of LCS(A + P I ,  B, C,  D) with the same ini- 
tial state and vice versa. Clearly, it may be possible to find 
p such that the pole-shifred system C(A + p l ,  B ,  C, D )  is 
passive even C(A, B,  C, D )  is not passive. Hence, above 
mentioned correspondence ensures us to apply Theorem 3.3 
to systems which can be made passive by pole shifting. In 
what follows, this class of systems will be introduced. 

Definition 4.1 The quadruple (A, B ,  C, D )  is said to be 
passijiable by pole shifting if there exists p E IR such that 
C(A + PI, B ,  C,  D )  is passive. 

Next, we give necessary and sufficient conditions for passi- 
fiability by pole shifting in the following theorem. 

Theorem 4.2 Consider U matrix quadruple (A, B, C, D) 
satisfying Assumption 3.2. Let E be such that ker E = {0} 
and im E = ker ( D  + DT). Then (A, B ,  C, D) is passiji- 
uble by pole shifting i f  and only if D is nonnegative definite 
and ETCBE is symmetric positive definite. 

In the light of the discussion preceding Definition 4.1, we 
can extend the well-posedness results presented in Theorem 
3.3 to the class of passifiable systems. 

Corollary 4.3 Theorem 3.3 still holds if C ( A ,  B, C, D) is 
passijiable by pole shifring rather than passive. 

5 Continuity of behaviors 

In this section, we will present some continuity results for 
linear complementarity systems. In this respect, only spe- 
sific approximations are admissible. 

Definition 5.1 The sequence' { (A,, B,, C,, De)} is said to 
be an admissible approximation of (A, B, C, D )  if the fol- 
lowing conditions hold. 

1. D, is positive definite for all sufficiently small E. 

2. { ( A , , B , , C e , D , ) }  converges to ( A , B , C , D )  as E 
tends to zero. 

Note that the positive definiteness of D, implies passifia- 
bility by pole shifting. Also note that approximating linear 
complementarity systems have unique solution for all initial 
states. 

Now we can present the main result of this section. 

Theorem 5.2 Consider a matrix quadruple (A, B, C, D) 
satisfying Assumption 3.2. Suppose that C(A, B, C, D) 
is passijiable by pole shifing. Let T > 0 and a reg- 
ular initial state of LCS(A, B ,  C, D) xo be given. Also 
let { ( A , ,  B, , C,, De)} be an admissible approximation of 
(A, B ,  C, 0) and let (U',  x', y') be the unique solution of 
LCS(A,, B,, C,, D E )  on [0, T ]  with the initial state 20. If 
{U'}  is bounded then {xe} converges (strongly) to x and 
{(U€, y')} converges weakly to ( U ,  y) in &-sense as E tends 
to zero. 

As illustrated in the following example, not all admissible 
approximations produce bounded u-trajectories. 

Example 5.3 Consider the linear complementarity system 
LCS(A, B ,  C, D)given by 

X I  = U1 
x2 = U2 

Y1 =XI 

y2 = 2 2  

O < u l y 2 0  

and the approximating systems LCS(A,, B,, C,, D,)given 
by 

X€ - 
1 - 4  

x; = U ;  

y; = x; - ex; + EkUf 

y; = --Ex; + x; + E%; 

0 5 U' I ye 2 0. 

It is easy to see that the above approximations are 
admissible. The unique solution ( U ' ,  x' , ye) of 
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LCS(A, ,  B,, c,, D,) with the initial state x o  = [O 11 
can be computed as 

One can check that 

L 

on a given interval [O,T]. 
bounded unless k 5 2. 

Consequently, {U,}  is not 

6 Examples 

We consider two types of approximation schemes in this 
section. It will be shown that these two schemes are addmis- 
sible approximations. Consider a quadruple (A ,  B ,  C, D )  
satisfying Assumption 3.2, and suppose that C(A, B ,  C, D )  
is passive. 

For the first scheme in Figure 6,  it can be verified that 
the overall system can be written as LCS(A, , B, , C,, D e )  
where ( A , , B , , C , , D , )  = (A ,  B , C , D  + €1). Since 

. C(A, B , C , D )  is passive, D, > 0 for all e > 0. Besides, 
{ (A, ,  B,,  C,, D e ) }  converges to ( A ,  B ,  C, D )  as E tends to 
zero. Therefore, { (A, ,  B, ,  C,, D E ) }  is an admissible ap- 
proximation. For the second scheme, one can check that 

Figure 2: Examples of characteristics that give admissible ap- 
proximations 

the overall system can be rewritten as LCS(A,, B,,  C,, D,)  
where A, = A - eB(1 + - E D ) - ~ C ,  B, = B(l + E D ) - ' ,  

It can be verified that D, > 0 for all e > 0. Since 
{ ( A , ,  B,,  C,, D , ) }  converges to ( A ,  B ,  C, D )  as E tends to 
zero, it follows that { (.4,, B,,  C,, 0,)) is an admissible ap- 
proximation of (A ,  B,  C, D ) .  

Then, Theorem 5.2 imply that the trajectories of these ap- 
proximating systems converge to those of LCS(A, B ,  C, D )  
in both cases provided that u-trajectories are bounded. 

C, = ( ~ - - E ~ ) ( I + - E D ) - ' C ,  a d D ,  = (EI+D)( I+ED)- ' .  

7 Irregular initial states 

So far, what has been done is to investigate the convergence 
of the solutions, only those with a regular initial state of 

. .  
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the limit system, of approximating systems. Although the 
limit system does not have solutions with the irregular ini- 
tial states, the admissible approximations have. Then, it is 
natural to raise the question if and. in what sense the ap- 
proximating solutions with irregular initial states converge. 
By means of the following example, we will illustrate that 
different approximations may yield. different limits in this 
case. 

Example 7.1 Consider the LCS(A, B ,  C, 0) given by 

x 1  = U 1  + 2u2 
22 = 2 U l  + U 4  

Y1 = 5 1  

Y2 = x2 

0 < U  I y 2 0, 

the approximating systems LCS(A,, B, ,  C,, D,)  given by 

x; = U ;  + 2uq 
2; = 2u; + U ;  

yf = x; + € U ;  

y; = x ;  + €U;  

0 5 uc I yL 2 0 

and LCS (A,,  B,  , C, , D, ) given by 

2: = U: + 2u; 
x; = 2 4  + U; 

y; = x y  + pu: + 2& 
y[ = x; 4- 2puf + pug 

0 5 U ,  I y, 2 0. 

Evidently, both { ( A , ,  B, ,  c,, DE)} and 
{ (A , ,  B,  , C,, 0,)) qualify as admissible approx- 
imations of ( A , B , C , D ) .  Let (uc,z ' ,yc)  and 
( u p ,  211, y,) denote the solutions of LCS(A,, B,, C,, D , )  
and LCS( A,, B,, C, , 0,) with the initial state 
xo = [ -5  -1IT. It can be checked that both { U ' }  

and { U " }  are convergent in the distributional sense. Indeed, 

they converge to [3 - - l] S and [ 5 01 6 ,  
respectively. The fact that these approximations converge 
to different limits naturally weakens the power of ideal 
modeling in this context. In fact, it shows that the ideal 
model cannot capture the fast dynamics of the actual 
system. 

8 Conclusions 

We have considered linear complementarity systems de- 
scribed by linear time invariant systems coupled to ideal 
diode type complementarity characteristics. It is known 
that these systems possess unique solutions if the underly- 
ing linear system is passive. For these systems, it has been 



shown that the solutions of the system obtained by approx- 
imating the complementarity characteristic by a smoother 
Lipschitzian characteristic converge to the solution of the 
complementarity system as the approximating characteris- 
tics get closer to the complementarity one. 

Motivated by the relation between the solutions of a lin- 
ear complementarity system and its pole-shifted version, we 
have introduced the notion of passifiability by pole shifting. 
After establishing necessary and sufficient conditions under 
which a given linear system can be made passive by pole 
shifting, the same convergence result has been proved for 
such systems. 

Appendix: Proofs 

To prove Theorem 4.2, we need the following technical 
lemma. 

Lemma 8.1 Let A, B E Rmxn and let A be of full row 
rank. Then, there exists a symmetric positive definite mtr ix  
X such that AX = B if and only if BAT is symmetric 
positive dejnite. 

Proof only if: Postmultiplying AX = B by AT,  we get 
A X A ~  = B A ~ .  Since x = xT > 0, B A ~  =  AB^ > 0. 

if: Note that A can be written as A = [ I  01 V for some 
nonsingular V E RnXn. Postmultiplying both sides of 
AX = B by V T  and defining Y := V X V T ,  we get 
[ I  01 Y = BVT.  Clearly, finding a solution to the lat- 
ter equation with Y = Y T  > 0 is equivalent to finding a 
solution to AX = B with X = X T  > 0. Let Y and BVT 
be partitioned as follows: 

yll "12 BVT = [B1 B2] . 
= [Y2, Y,,] 

To satisfy [I 01 1' = BVT, we can take Y I ~  = Bz and 
Y11 = B1 = BVT [ I  0IT = BAT. Hence, by the hy- 
pothesis Y1l = Yd > 0. It remains to determine & and 
Y22 in such a way that Y = Y T  > 0. Choose Y.1 = Y z  
and Y.2 = I + YAY,-;lY12. Then, it follows from 

that Y = Y T  > 0. 

Proof of Theorem 4.2 if: Since both E and B are of full 
column rank, the equation ETC = E T B T K  has a sym- 
metric positive definite solution K according to Lemma 8.1. 
Define p = Amaz(K). Let F be such that ker F = ( 0 )  
and im F = (im E ) I .  Note that im E @ im F = Rm. 

Clearly, F T D F  is nonnegative definite. Suppose that 
wTFTDFu = 0, i.e., (D + D T ) F u  = 0. This means 
that Fw E im E. It is easy to see that w = 0. Hence, 
we can conclude that F T D F  is positive definite. Define 
a = &Xmaz(ATK + KA) ,  P = &,IIKBF - CTFJI and 
y = -'Amin(FT(D + D T ) F ) .  Notethat y < 0. Take 

p 5 $ - a and note that a+p is nonpositive definite. 
It can be verified that (A + PI, B ,  C, D )  is passive with the 
storage function V ( s )  = sTKz .  Indeed, 

' 

2@ 

[ p 71 

[z] TK( Apl E)  [z]  = z T ( A T K  + KA)z  + 2pzTKz 

+ 22T(KB - CT)u - U T ( D  + DT)u 

= zT(ATK + KA)z  + 2pxTKx 
+ 2zT(KB - C T ) F ~ f  - uTFT(D + DT)Fuf 

where.u = Eu, + F u f .  From the Rayleigh-Ritz (see e.g. [9, 
Theorem 5.2.2.21) and Cauchy-Schwarz inequalities, we get 

Since K is positive definite and minimality of (A, B, C) im- 
plies that ( A  + p l ,  B ,  C )  is also minimal, we can conclude 
that ( A  + PI, B ,  C, D) is passive due to Lemma 2.2. 

only if: If (A ,  B ,  C, 0) is passifiable by pole shifting then 
there exist a p E R and K = KT > 0 such that 
IC( Apl E )  is nonpositive definite. It follows that D is 
nonnegative definite and ( K B  - C T ) E  = 0. The latter to- 
gether with the hypothesis that B is of full column rank im- 
plies that ETCBE is symmetric positive definite because 
E ~ C B E  = E ~ B ~ K B E .  

Proof of Theorem 5.2 Without loss of generality, we can 
assume that C(A, B ,  C, D) is passive due to the discussion 
preceeding Definition 4.1. Since U' is bounded for all suffi- 
ciently small E, it has a weakly convergent subsequence, say 
{U'"} .  Let U be the weak limit of this subsequence. Define 
the operators 

0 (Tv ) ( t )  = eA(t-S)Bv(s) ds,, 

,v(s) ds, 0 (xu)@) = s," eAc(t-s)B 

0 (S,v)(t) = D,w(t). 

It can be verified that 

0 S, is nonnegative definite for all sufficiently small e,  
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0 7 is a compact operator, 

0 {SEkuQ} converges to Du, 

0 { C,, 7;, u t k  - CTuQ } converges to zero, 

0 {eAc.xo} converges to eA.xo. 

Therefore, [2, Theorem 6.91 implies that 

0 { x ' ~ }  converges (strongly) to x where x = Tu, 

[8] Y.J. Lootsma, A.J. van der Schaft, and M.K. 
Camlibel. Uniqueness of solutions of relay systems. Au- 
tomatica, 35(3):467-478, 1999. 

[9] H. Lutkepohl. Handbook of Matrices. Wiley, New 
York, 1996. 
[lo] A.J. van der Schaft and J.M. Schumacher. The 
complementary-slackness class of hybrid systems. Math- 
ematics of Control, Signals and Systems, 9:266-301, 1996. 
[l 11 A.J. van der Schaft and J.M. Schumacher. Comple- 
mentarity modelling of hybrid systems. IEEE Transactions 
on Automatic Control, 43(4):483-490,1998. 

0 {y'k} converges weakly to y := C x  + Du, [ 121 J. C. Willems. Dissipative dyn'amical systems. Arch. 
Rational Mech. Anal., 45:321-393,1972. 
[13] J. C. Willems and J.W. Nieuwenhuis. Continuity of 
latent variable models. IEEE Transactions on Automatic 

0 ( U ,  x, y) is a solution of LCS(A, B,  C, D) on [0, TI 
J with the initial state 20. 

Control, 36528-538, 1991. 
,We already know from Theorem 3.3 that this solution is 
unique. Then, it follows from [2, Lemma 6.1 item 21 that 
not only a subsequence of { U ' }  but {U ' }  itself converges 
weakly to U as e tends to zero.. 
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