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Abstract. Liveness temporal properties state that something “good” eventually
happens, e.g., every request is eventually granted. In Linear Temporal Logic
(LTL), there is no a priori bound on the “wait time” for an eventuality to be
fulfilled. That is, Fθ asserts that θ holds eventually, but there is no bound on the
time when θ will hold. This is troubling, as designers tend to interpret an eventu-
ality Fθ as an abstraction of a bounded eventuality F≤kθ, for an unknown k, and
satisfaction of a liveness property is often not acceptable unless we can bound
its wait time. We introduce here PROMPT-LTL, an extension of LTL with the
prompt-eventually operator Fp. A system S satisfies a PROMPT-LTL formula ϕ
if there is some bound k on the wait time for all prompt-eventually subformulas of
ϕ in all computations of S. We study various problems related to PROMPT-LTL,
including realizability, model checking, and assume-guarantee model checking,
and show that they can be solved by techniques that are quite close to the standard
techniques for LTL.

1 Introduction

Since the introduction of temporal logic into computer science [11], temporal logic, in
its many different flavors, has been widely accepted as an appropriate formal framework
for the description of on-going behavior of reactive systems [10]. Temporal proper-
ties are traditionally classified into safety and liveness properties [2]. Intuitively, safety
properties assert that nothing bad will ever happen during the execution of the system,
and liveness properties assert that something good will happen eventually. Temporal
properties are interpreted with respect to systems that generate infinite computations.
In satisfying liveness properties, there is no bound on the “wait time”, namely the time
that may elapse until an eventuality is fulfilled. For example, the LTL formula Fθ is
satisfied at time i if θ holds at some time j ≥ i, but j − i is not a priori bounded.

In many applications, it is important to bound the wait time. This has given rise to
formalisms in which the eventually operator F is replaced by a bounded-eventually
operator F≤k. The operator is parameterized by some k ≥ 0, and it bounds the wait
time to k [4,9]. Since we assume that time is discrete, the operator F≤k is simply a
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syntactic sugar for an expression in which the next operator X is nested. Indeed, F≤kθ
is just θ ∨ X(θ ∨ X(θ∨ k−4. . . ∨Xθ)).

A drawback of the above formalism is that the bound k needs to be known in advance,
which is not the case in many applications. For example, it may depend on the system,
which may not yet be known, or it may change, if the system changes. In addition, the
bound may be very large, causing the state-based description of the specification (e.g.,
an automaton for it) to be very large too. Thus, the common practice is to use liveness
properties as an abstraction of such safety properties: one writes Fθ instead of F≤kθ
for an unknown or a too large k.

For some temporal logics, the abstraction is sound, in the sense that if a system S
satisfies a liveness property ψ, then there is a bound k, which depends on S, such that
S also satisfies the formula obtained from ψ by replacing all occurrences of F in ψ by
F≤k. For example, it is shown in [9] that in the case of CTL, taking k to be the number
of states in S does it. Thus, if a state s satisfies AFθ, then it also satisfies AF≤kθ, for
k = |S|, and similarly for EFθ. Intuitively, since θ is a state formula, a wait time that is
greater than |S| indicates that the wait time may also be infinite (by looping in a cycle
that ought to be taken during the wait time), and may also be shortened to at most |S|
(by skipping such cycles).

So the abstraction of safety properties by liveness properties is sound for CTL. Is
it sound also for the linear temporal logic LTL? Consider the system S described in
Figure 1 below. While S satisfies the LTL formula FGq, there is no k ≥ 0 such that S
satisfies F≤kGq. To see this, note that for each k ≥ 0, the computation that first loops
in the first state for k times and only then continues to the second state, satisfies the
eventuality Gq with wait time k + 1.

S : q ¬q q

Fig. 1. S satisfies FGq but does not satisfy F≤kGq, for all k ≥ 0

It follows that the abstraction of safety properties by liveness properties is not sound
in the linear-time approach (which is more popular with users, cf. [7]). This is troubling,
as designers tend to interpret eventualities as bounded eventualities, and satisfaction of
a liveness property is often not acceptable unless we can bound its wait time.1

In this work we introduce and study an extension of LTL that addresses the above
problem. In addition to the usual temporal operators of LTL, our logic, PROMPT-LTL,
has a new temporal operator that is used for specifying eventualities with a bounded
wait time. We term the operator prompt eventually and denote it by Fp. Let us define
the semantics of PROMPT-LTL formally. For a PROMPT-LTL formula ψ and a bound
k ≥ 0, let ψk be the LTL formula obtained from ψ by replacing all occurrences of Fp

by F≤k. Then, a system S satisfies ψ iff there is k ≥ 0 such that S satisfies ψk.

1 Note that the reduction of liveness to safety as described in [3] is performed by squaring the
state space rather than trying to bound the wait time of eventualities. Thus, it is not related to
the discussion in this paper.
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Note that while the syntax of PROMPT-LTL is very similar to that of LTL, its seman-
tics is defined with respect to an entire system, and not with respect to computations.
For example, while each computation π in the system S from Figure 1 has a bound
kπ ≥ 0 such that Gq is satisfied in π with wait time kπ, there is no k ≥ 0 that bounds
the wait time of all computations. It follows that, unlike linear temporal logics, we can-
not characterize a PROMPT-LTL formula ψ over a set AP of atomic propositions by a
set of computations Lψ ⊆ (2AP )ω such that a system S satisfies ψ iff the language of
S is contained in Lψ. On the other hand, unlike branching temporal logics, if two sys-
tems agree on their languages, then they agree also on the satisfaction of all PROMPT-
LTL formulas. Thus, PROMPT-LTL intermediates between the linear and branching
approaches: as in the linear approach, the specification refers to the set of computations
of the system rather than its computation tree; as in the branching approach, we cannot
consider these computations individually.

As further motivation to a prompt eventuality operator, consider the formula Fa →
Fb. A system may satisfy G¬a ∨ Fb but have no bound on the wait time to the satis-
faction of the eventuality. When a user checks Fa → Fb, it is quite likely that what he
has in mind is G¬a ∨ Fpb. The user may not know a bound k such that G¬a ∨ X≤kb
should be checked. It is also possible that what the user has in mind is ”assume Fa;
assert Fb”, where the bound for b ought to depend on the bound for a. Our semantics
distinguishes these three different understandings of Fa → Fb.

We study the basic problems of PROMPT-LTL. Consider a PROMPT-LTL formula ψ
over AP . The set AP may be partitioned to sets I and O of input and output signals.
Consider also a system S. We study the following problems: realizability (is there a
strategy f : (2I)∗ → 2O such that all the computations generated by f satisfy ψ?),
model checking (does S satisfy ψ?), and assume-guarantee model checking (given an
additional PROMPT-LTL formula ϕ, is it the case that for all systems S′, if S‖S′ satisfies
ϕ, then S‖S′ also satisfies ψ?). Since a system that satisfies a PROMPT-LTL formula
may consist of a single regular computation, the satisfiability problem for prompt-LTL
can be easily reduced to LTL satisfiability (simply replace all occurrences of Fp by F).
For the other problems, similar reductions do not work, and we have to develop a new
technique in order to solve them. Let us describe our technique briefly.

Consider a prompt-LTL formula ψ over AP . Let p be an atomic proposition not in
AP . Think about p as a description of one of two colors, say green (p holds) and red
(p does not hold). Each computation of the system can be partitioned to blocks such
that states of the same block agree on their color. We show that a system S satisfies a
PROMPT-LTL formula ψ iff there is some bound k ≥ 0 such that we can color each
computation π of S so that the induced blocks are of length k, and whenever a suffix of
π has to satisfy an eventuality, the eventuality is fulfilled within two blocks. Indeed, the
latter condition holds iff all eventualities have wait time at most 2k.

The key idea behind our technique is that rather than searching for a bound k for
the prompt eventualities, which can be quite large, it is enough to make sure that there
is a coloring in which all blocks are of a (not necessarily bounded) finite length, and
then use some regularity argument in order to conclude that the size of the blocks could
actually be bounded. Forcing the blocks to be of a finite length can be done by requir-
ing the colors to alternate infinitely often. As for regularity, in the case of realizability,
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regularity follows from the finite-model property of tree automata. In the case of
(assume-guarantee) model checking, regularity follows from the finiteness of the
system.

The complexities that follow from our algorithms are encouraging: reasoning about
PROMPT-LTL is not harder than reasoning about LTL: realizability is 2EXPTIME-
complete, and model checking and assume-guarantee model checking are PSPACE-
complete. For LTL, many heuristics have been studied and applied. Some of them are
immediately applicable for PROMPT-LTL (c.f., optimal translations of formulas to au-
tomata), and some should be extended to the prompt setting (e.g., bad-cycle detection
algorithms). We also study some theoretical aspects of PROMPT-LTL, such as the abil-
ity to translate PROMPT-LTL formulas to branching-temporal logics (a translation to the
μ-calculus is always possible, but may involve a significant blow up), and the ability to
determine whether a PROMPT-LTL formula has an equivalent LTL formula (PSPACE-
complete).

2 Prompt Linear Temporal Logic

The logic PROMPT-LTL extends LTL [11] by a prompt-eventually operator Fp. The
syntax of PROMPT-LTL formulas (in negation normal form) is given by the gram-
mar below, for a set AP of atomic propositions: ϕ ::= AP | ¬AP | ϕ ∨ ϕ | ϕ ∧
ϕ | Xϕ | Fpϕ | ϕUϕ | ϕRϕ. The semantics of a PROMPT-LTL formula is defined with
respect to an infinite word w = w0, w1, . . . over the alphabet 2AP , a position i ≥ 0 in
w, and a bound k ≥ 0. We use (w, k, i) |= ϕ to indicate that ϕ holds in location i of w
with bound k. The relation |= is defined by induction on the structure of ϕ as follows.

– For propositions, Boolean connectives, and LTL temporal operators, the definition
is independent of k and coincides with the one for LTL.2

– (w, i, k) |= Fpϕ iff there exists j such that i ≤ j ≤ i + k and (w, j, k) |= ϕ.

We use Fθ and Gθ to abbreviate trueUθ and falseRθ, respectively. Note that the nega-
tion of Fp is not expressible in PROMPT-LTL, thus the logic is not closed under nega-
tion. Given a PROMPT-LTL formula ϕ, let live(ϕ) be the LTL formula obtained from ϕ
by replacing every prompt-eventually operator Fp by a standard eventually operator F.

A (labeled) transition system is S = 〈AP, S, ρ, s0, L〉, where AP is a finite set of
atomic propositions, S is a finite set of states, ρ ⊆ S × S is a total transition relation,
s0 ∈ S0 is an initial state, and L : S → 2AP maps each state s to the set of propositions
that hold in s. When ρ(s, s′), we say that s′ is a successor of s, and s is a predecessor
of s′. A computation of S is an infinite sequence of states π = s0, s1, . . . ∈ Sω such
that for all i ≥ 0, we have ρ(si, si+1). The computation π induces the trace L(π) =
L(s0) · L(s1) · · ·.

Given a system S and a PROMPT-LTL formula ϕ over AP , we say that S satisfies
ϕ, denoted S |= ϕ, if there exists some k ≥ 0 such that for all traces w of S, we have
(w, 0, k) |= ϕ. We then say that S satisfies ϕ with bound k. Note that when S �|= ϕ,
then for every k ≥ 0, there exists a trace w such that (w, 0, k) �|= ϕ.

2 Recall that in LTL we have that π, i |= θRψ iff for all j ≥ i, if π, j �|= ψ, then for some k,
i ≤ k < j, we have π, k |= θ.
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In [1], Alur et al. study an extension of LTL in which the temporal operators F and
G are replaced by the operators F≤x,F>y,G≤x, and G>y, for variables x and y (the
same variable may be used in different operators, but, to ensure decidability, the same
variable cannot participate in both a lower and an upper bound). Given a system S and
a formula in their logic, one can ask whether there is an assignment to the variables for
which the system satisfies the formula, with the expected interpretation of the bounded
operators.3 Our logic can be viewed as a special case of the logic studied in [1], in
which only eventualities are parameterized, and only with upper bounds. The algorithms
suggested by Alur et al. are rather involved. By giving up the operators F>y,G≤x, and
G>y , whose usefulness is debatable, we get a much simpler model-checking algorithm,
which is also similar to the classical LTL model-checking algorithm. We are also able
to a solve the realizability and the assume-guarantee model checking problems.

The Alternating-Color Technique. We now describe the key idea of our technique
for reasoning about PROMPT-LTL formulas. Let p be an atomic proposition not in AP .
We think about p as a description of one of two colors, say green (p holds) and red (p
does not hold). Each computation of the system can be partitioned to blocks such that
states of the same block agree on their color. Our technique is based on the idea that
bounding the wait time of prompt eventualities can be reduced to forcing all blocks to
be of a bounded length, and forcing all eventualities to be fulfilled within two blocks,
We now make this intuition formal.

Consider a word w = σ0, σ1, . . . ∈ (2AP )ω. Let p be a proposition not in AP . A
p-coloring of w is a word w′ = σ′

0, σ
′
1, . . . ∈ (2AP∪{p})ω such that w′ agrees with w

on the propositions in AP ; i.e., for all i ≥ 0, we have σ′
i ∩ AP = σi. We refer to the

assignment to p as the color of location i and say that i is green if p ∈ σ′
i and is red

if p �∈ σ′
i. We say that p changes at i if either i = 0 or the colors of i − 1 and i are

different (that is, p ∈ σ′
i−1 iff p /∈ σ′

i). We then call i a p-change point. A subword
σ′

i, . . . , σ
′
i′ is a p-block if all positions in the subword have the same color, and i and

i′ + 1 are p-change points. We then say that i and i′ + 1 are adjacent p-change points.
For k ≥ 0, we say that w′ is k-spaced, k-bounded, and k-tight (with respect to p) if
w′ has infinitely many blocks, and all the blocks are of length at least k, at most k, and
exactly k, respectively.

Consider the formula altp = GFp ∧ GF¬p. It requires that the proposition p alter-
nates infinitely often. Given a PROMPT-LTL formula ϕ, let relp(ϕ) denote the formula
obtained from ϕ by (recursively) replacing each subformula of the form Fpψ by the
LTL formula (p → (pU(¬pUψ))) ∧ (¬p → (¬pU(pUψ))). Note that the definition
is recursive, thus relp(ϕ) may be exponentially larger than ϕ. The number of sub-
formulas of relp(ϕ), however, is linear in the number of subformulas of ϕ, and it is
this number that plays a role in the complexity analysis (equivalently, the size of the
DAG-presentation of relp(ϕ) is linear in the size of the DAG presentation of ϕ). For
a PROMPT-LTL formula ϕ, we define c(ϕ) = altp ∧ relp(ϕ). Thus, c(ϕ) forces the
computation to be partitioned into infinitely many blocks, and requires each prompt

3 The work in [1] studies many more aspects of the logic, like the problem of deciding whether
the formula is satisfied with all assignments, the problem of finding an optimal assignment, and
other decidability issues.
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eventuality to be satisfied in the current or next block or in the position immediately
after the next block (within two blocks, for short),

Lemma 1. Consider a PROMPT-LTL formula ϕ, a word w, and a bound k ≥ 0.

1. If (w, 0, k) |= ϕ, then (w′, 0) |= c(ϕ), for every k-spaced p-coloring w′ of w.
2. If w′ is a k-bounded p-coloring of w such that (w′, 0) |= c(ϕ), then (w, 0, 2k) |= ϕ.

The alternating-color technique sets the basis to reasoning about a PROMPT-LTL for-
mula ϕ by reasoning about the LTL formula c(ϕ). The formula c(ϕ), however, does
not require the blocks in the colored computation to be of a bounded length. Indeed, the
conjunct altp only forces the colors to be finite, and it does not prevent, say, a p-coloring
in which each block is longer than its predecessor block, and which is not k-bounded,
for all k ≥ 0. Thus, the challenge of forcing the p-coloring to be k-bounded for some k
remains, and we have to address it in each of the decision procedures described in the
following sections.

3 Realizability

Given an LTL formula ψ over the sets I and O of input and output signals, the re-
alizability problem for ψ is to decide whether there is a strategy f : (2I)∗ → 2O

such that all the computations generated by f satisfy ψ [13]. Formally, a computation
w ∈ (2I∪O)ω is generated by f if w = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . and for all
j ≥ 0, we have oj = f(i0 · i1 · · · ij). Thus, the interaction is initiated by the environ-
ment that generates i0, and the first state in the computation is labeled i0 ∪ f(i0). Then,
the environment generates i1, and the second state in the computation is i1 ∪ f(i0 · i1),
and so on. It is known that if some strategy that realizes ψ exists, then there also exists
a regular strategy (i.e, a strategy generated by a finite-state transducer) that realizes ψ
[6]. Formally, a transducer is D = 〈I, O, Q, η, q0, L〉, where I and O are the sets of
input and output signals, Q is a finite set of states, η : Q × 2I → Q is a deterministic
transition function, q0 ∈ Q is an initial state, and L : Q → 2O maps each state to a set
of output signals. The transducer D generates f in the sense that for every τ ∈ (2I)∗,
we have f(τ) = L(η(τ)), with the usual extension of η to words over 2I .

We first show that PROMPT-LTL realizability of a formula ϕ cannot be simply re-
duced to the realizability of live(ϕ). Thus, we describe a formula ϕ such that live(ϕ) is
realizable, but for every strategy f that realizes ϕ and for every candidate bound k ≥ 0,
there is a computation w generated by f such that (w, 0, k) �|= ϕ. Let I = {i} and
O = {o}. We define ϕ = o ∧ (G(i → o)) ∧ ((X¬o)Ri) ∧ (FpGo).

Thus, a computation satisfies ϕ if o holds in the present and whenever i holds, when-
ever i does not hold in some position, then o does not hold in this position or in an
earlier one, and the computation prompt-eventually reaches a position from which o
holds everywhere. It is not hard to see that live(ϕ) is realizable. Indeed, the strategy
that sets o to true everywhere except in the first time that i is false realizes live(ϕ).
On the other hand, ϕ is not realizable. To see this, note that the position in which the
input i is set to false can be delayed arbitrarily by the environment, forcing a delay also
in the fulfillment of the Go eventuality. Thus, for every candidate bound k ≥ 0, the
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input sequence in which i is false at the (k + 1)-th position cannot be extended to a
computation that satisfies FpGo with bound k.

The good news is that while realizability of ϕ cannot be reduced to the realizability
of live(ϕ), it can be reduced to the realizability of c(ϕ). Intuitively, it follows from the
fact that in a regular strategy, the fact that all blocks are of a finite length does imply
that they are also of a bounded length. Formally, we have the following.

Theorem 1. A PROMPT-LTL formula ϕ over input signals I and output signals O is
realizable iff the LTL formula c(ϕ) over input signals I and output signals O ∪ {p} is
realizable.

Since LTL realizability is 2EXPTIME-complete and every LTL formula is also a
PROMPT-LTL formula, we can conclude:

Theorem 2. The problem of prompt realizability is 2EXPTIME-complete in the size of
the formula.

As demonstrated above, the alternating-color technique is very powerful in the case of
realizability. Indeed, the challenge of forcing the p-coloring to be k-bounded for some k
is taken care of by the regularity of the strategy. We now proceed to the model-checking
problem, where a reduction to c(ϕ) is not sufficiently strong.

4 Model Checking

In this section we describe an algorithm for solving the model-checking problem for
PROMPT-LTL. An alternative algorithm is described for the richer parameterized linear
temporal logic in [1]. Our algorithm is much simpler, and it deviates from the standard
LTL model-checking algorithm only slightly. In addition, as we show in Section 6, the
idea behind our algorithm can be applied also in order to solve assume-guarantee model
checking, which is not known to be the case with the algorithm in [1]. Our algorithm
is based on the automata-theoretic approach to LTL model-checking, and we first need
some definitions.

A nondeterministic Büchi word automaton (NBW for short) is A = 〈Σ, S, δ, s0, α〉,
where Σ is a finite alphabet, S is a finite set of states, δ : S × Σ → 2S is a transition
function, s0 ∈ S is an initial state, and α ⊆ S is a Büchi acceptance condition. A run
of A on a word w = w0 · w1 · · · is an infinite sequence of states s0, s1, . . . such that s0
is the initial state and for all j ≥ 0, we have sj+1 ∈ δ(sj , wj). For a run r = s0, s1, . . .,
let inf(r) = {s ∈ S | s = si for infinitely many i’s} be the set of all states occurring
infinitely often in the run. A run is accepting if inf(r) ∩ α �= ∅. That is, the run visits
infinitely many states from α. A word w is accepted by A if there exists some accepting
run of A over w. The language of A, is the set of words accepted by A.

Theorem 3. [17] For every LTL formula ϕ over AP there exists an NBW Aϕ over the
alphabet 2AP such that Aϕ accepts exactly all words that satisfy ϕ. The number of
states of Aϕ is at most exponential in the number of subformulas of ϕ.

In order to check whether a system S satisfies an LTL formula ϕ, one takes the product
of S with the NBW A¬ϕ and tests the product for non-emptiness [16]. Indeed, a path in
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this product witnesses a computation of S that does not satisfy ϕ. As discussed in Sec-
tion 1, in the case of PROMPT-LTL we cannot translate formulas to languages. More-
over, we also cannot simply apply the alternating-color technique: even if we check
the nonemptiness of the product of the system (an augmentation of it in which the
proposition p behaves nondeterministically, thus all p-colorings are possible) with the
automaton for altp ∧ ¬relp(ϕ), a path in this product only implies that for some bound
k ≥ 0, the formula ϕ is not satisfied in S with bound k. For proving that S does not
satisfy ϕ we have to prove something stronger, namely, that ϕ is not satisfied in S with
bound k, for all bounds k ≥ 0. For that, we do take the product of the system with the
automaton for altp ∧ ¬relp(ϕ), but add a twist to the nonemptiness check: we search
for a path in the product in which each p-block contains at least one state that repeats.
Such a state indicates that for all bounds k ≥ 0, the p-block can be pumped to a p-block
of length greater than k, implying that ϕ cannot be satisfied in S with bound k. We now
formalize this intuition.

A colored Büchi graph is a tuple G = 〈{p}, V, E, v0, L, α〉, where p is a proposition,
V is a set of vertices, E ⊆ V × V is a set of edges, v0 ∈ V is an initial vertex,
L : V → 2{p} describes the color of each vertex, and α ⊆ V is a set of accepting states.
A path π = v0, v1, v2, . . . of G is pumpable if all its p-blocks have at least one state that
repeats. Formally, if i and i′ are adjacent p-change points, then there are positions j and
j′ such that i ≤ j < j′ < i′ and vj = vj′ . Also, π is fair if it visits α infinitely often.
The pumpable nonemptiness problem is to decide, given G, whether is has a pumpable
fair path.

Let c(ϕ) = altp ∧ ¬relp(ϕ). That is, we relativize the satisfaction of Fp to the new
proposition p, negate the resulting formula, and require the proposition p to alternate in-
finitely often. Let Ac(ϕ) = 〈2AP∪{p}, Q, δ, q0, α〉 be the NBW for c(ϕ) per Theorem 3.
Consider a system S = 〈AP, S, ρ, s0, L〉. We now define the product of S with Ac(ϕ)
by means of a colored Büchi graph. Note that S does not refer to the proposition p, and
we duplicate its state space in order to have in the product all possible p-colorings of
computations in S. Thus, the product is P = 〈{p}, S × {{p}, ∅}× Q, M, 〈s0, {p}, q0〉,
L, S ×{{p}, ∅}×α〉, where M(〈s, c, q〉, 〈s′, c′, q′〉) iff ρ(s, s′) and q′ ∈ δ(q, L(s)∪c),
and L(〈s, c, q〉) = c.

It is not hard to see that a path π = 〈s0, c0, q0〉, 〈s1, c1, q1〉, 〈s2, c2, q2〉, . . . in P
corresponds to a computation s0, s1, s2, . . . of S, a p-coloring L(s0) ∪ c0, L(s1) ∪
c1, L(s2) ∪ c2, . . . of the trace that the computation induces, and a run q0, q1, q2, . . .
of Ac(ϕ) on this p-coloring.

Theorem 4. The system S does not satisfy ϕ iff the product of S and Ac(ϕ) is pumpable
nonempty.

In Section 5, we study the problem of deciding whether a colored Büchi graph is
pumpable-nonempty, and prove that it is in NLOGSPACE and can also be solved in
linear time. This, together with Theorems 3 and 4, imply the upper bound in the fol-
lowing theorem. The lower bound follows from the known lower bound for LTL.

Theorem 5. The model-checking problem for PROMPT-LTL is PSPACE-complete and
can be solved in time exponential in the length of the formula and linear in the size of
the system.
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Note that while the pumpable nonemptiness problem to which PROMPT-LTL model-
checking is reduced is a variant of the nonemptiness problem to which LTL model
checking is reduced, the construction of the product is almost the same. In particular,
the extensive work on optimal compilation of LTL formulas to NBW (see survey in
[15]), is applicable to our solution too.

Remark 6. The model-checking algorithm of the parametric linear temporal logic of
[1] is based on the observation that if a PROMPT-LTL formula ϕ is satisfied in a system
S, then it is satisfied with bound k, for some k that is exponential in ϕ and polynomial
in S. One cannot hope to improve this bound. Indeed, for every n ≥ 1, we can define a
PROMPT-LTL formula ψn of size linear in n such that a systems satisfies ψn iff in all its
computations, the atomic proposition q corresponds to an n-bit counter, and the value
of the counter promptly eventually reaches 2n − 1. Clearly, ψn is promptly satisfied,
but the minimal bound k with which ψn is satisfied with bound k (in some system) is
exponential in n.
The algorithm in [1] can also be used in order to find the minimal bound. It is an open
question whether the minimal bound can be found using our simplified algorithm.

5 Algorithms for Colored Büchi Graphs

In Section 4 we reduced model-checking for PROMPT-LTL to pumpable nonemptiness
problems for colored Büchi graphs. In this section we solve this problems, and provide
space and time bounds.

Theorem 7. The pumpable nonemptiness problem for colored Büchi graphs is
NLOGSPACE-complete and can be solved in linear time.

Proof: Let G = 〈{p}, V, E, v0, L, α〉. We start with the space complexity. Essen-
tially, as with standard Büchi nonemptiness, the pumpable nonemptiness problem can
be solved by a sequence of reachability tests. In addition to reaching a vertex v in α
that is reachable from itself, the algorithm should make sure that the paths from v0
to v and from v to itself are pumpable. Thus, in each p-block, the algorithm should
guess a repeated vertex (and check that it indeed repeats). Also, an easy reduction from
reachability shows hardness in NLOGSPACE.

We now move to the time complexity. For standard Büchi nonemptiness, one looks
for a reachable nontrivial strongly connected component that intersects α. In the colored
case, we should further check that each p-block in the path can be pumped. We do
this by making sure that every green p-block contains at least one vertex that belongs
to a nontrivial strongly connected component in the graph of the green vertices, and
similarly for the red p-blocks.

Consider the graph Gg = 〈Vg, Eg〉 obtained from G by restricting attention to green
vertices. Thus, Vg = {v ∈ V | L(v) = {p}} and Eg = E ∩ (Vg ×Vg). The graph Gr =
〈Vr, Er〉 is defined similarly. We can find the maximal strongly connected components
(MSCC) of Gg and Gr in linear time [14] (note we are interested also in MSCCs that
are not reachable from v0 in Gg and Gr). Let Sg ⊆ Vg and Sr ⊆ Vr denote the union
of all non-trivial MSCCs in Gg and Gr, respectively.
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Let backg(Sg) be the vertices that can reach some vertex in Sg , and let e-backg(Sg)
be the edges that are used to reach these vertices. We tag the vertices in backg(Sg) \ Sg

by the tag B. Formally, we define backg
0(Sg) = Sg and backg

i+1(Sg) = {v ∈ Vg | ∃v′ ∈
backg

i (Sg) and (v, v′) ∈ E}. Then, backg(Sg) = Sg ∪ (
⋃

i≥1 backg
i (Sg)) × {B}. For

a vertex u ∈ backg(Sg), let ver (u) be the vertex in V that induces u; that is, the
vertex obtained from u by ignoring its tag, if exists. Then, e-backg(Sg) = {〈u, u′〉 :
E(ver (u), ver(u′)) and there is i ≥ 0 such that u ∈ backg

i+1(Sg) and u′ ∈ backg
i (Sg)}.

In a similar way, we define forwardg(Sg) to be the set of vertices that are reachable from
some vertex in Sg (with vertices not in Sg tagged with F) and define e-forwardg(Sg)
to be the edges that are used to reach these vertices. The sets backr, e-backr, forwardr,
and e-forwardr are defined similarly. Another type of edges we need are edges between
p-blocks. Let Eg→r = {〈u, u′〉 : E(ver(u), ver (u′)), u ∈ forwardg(Sg), and u′ ∈
backr(Sr)} be the set of edges along which the color changes from green to red, and
let Er→g be the set of edges along which the color changes from red to green.

Consider now the graph G′ = 〈V ′, E′〉, where V ′ = backg(Sg) ∪ forwardg(Sg) ∪
backr(Sr)∪forwardr(Sr), and E′ = e-forwardg(Sg)∪e-forwardr(Sr)∪e-backg(Sg)∪
e-backr(Sr) ∪ Eg→r ∪ Er→g . Note that the vertices in Sg and Sr appear in G′ with no
tag. Other vertices (these in Vg that can reach an MSCC in Sg along green vertices and
can also be reached from a different MSCC in Sg along green vertices, and similarly
for Vr) may appear in G′ with both tags, thus the number of vertices in G′ is at most
twice the number of vertices in G.

Intuitively, the graph G′ contains exactly all the pumpable computations of G. In-
deed, along each p-block, there must exists a vertex that belongs to an MSCC of the
graph of the corresponding color. In the full version, we prove that G is pumpable
nonempty iff G′ has some non-trivial MSCC that is reachable from v0 (possibly tagged
with B) and contains a vertex from α.

We analyze the time it takes to construct G′ and to check whether it has a non-trivial
MSCC that intersects α. Clearly, the MSCC decomposition of Gg and Gr can be done
in linear time. The search for backg and forwardg is done by backward (resp. forward)
propagation from Sg , during which the edges in e-backg and e-forwardg can be marked.
The case of backr and forwardr is similar. This stage can be completed in linear time
as well. Finally, the MSCC decomposition of G′ is completed again in linear time, thus
the overall running time is linear.

We note than our algorithm is based in MSCC-decomposition. It is an open question
whether a linear-time algorithm based on nested depth-first-search can be found (see
discussion of these types of algorithms in [15]).

Remark 8. The algorithm described above are explicit. A symbolic PROMPT-LTL
model checking algorithm follows from the translation of PROMPT-LTL to the
μ-calculus described later in Theorem 14. The translation, however, involves a signifi-
cant blow up. A symbolic algorithm that performs well on the colored Büchi graphs is
left open. For standard Büchi graphs, algorithms can be classified as ones that are based
on a nested fixed point that calculates the set of states that can reach α infinitely often
[8], and ones that calculate symbolically the MSCC of the graph [5]. We believe that
algorithms of the second type can be extended to colored graphs.
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6 Assume-Guarantee Model Checking

For two systems S = 〈AP, S, ρ, s0, L〉 and S′ = 〈AP, S′, ρ′, s′0, L
′〉, the parallel com-

position of S with S′, denoted S‖S′, is the system that contains all the joint behaviors
of S and S′. Formally, S‖S′ = 〈AP, S′′, ρ′′, s′′0 , L′′〉, where S′′ ⊆ S × S′ contains ex-
actly all pairs that agree on their label, that is 〈s, s′〉 ∈ S′′ iff L(s) = L′(s′). Then, s′′0 =
〈s0, s

′
0〉 and ρ′′(〈s, s′〉, 〈t, t′〉) iff ρ(s, t) and ρ′(s′, t′). Finally, L′′(〈s, s′〉) = L(s).

An assume-guarantee specification for a system S is a pair of two specifications ϕ1
and ϕ2. The system S satisfies the specification, denoted 〈ϕ1〉S〈ϕ2〉, if it is the case that
for all systems S′, if S‖S′ satisfies ϕ1, then S‖S′ also satisfies ϕ2 [12]. In the context
of LTL it is not hard to see that 〈ϕ1〉S〈ϕ2〉 iff S |= ϕ1 → ϕ2. Intuitively, since the ‖
operator amounts to taking the intersection of the languages of S and S′, it is sound to
restrict attention to systems S′ that correspond to single computations of S. In the case
of PROMPT-LTL, we can also restrict attention to single computations, but we have to
take the bounds into an account. Formally, we have the following.

Lemma 2. Consider a system S and PROMPT-LTL formulas ϕ1 and ϕ2. The specifi-
cation 〈ϕ1〉S〈ϕ2〉 does not hold iff there is a bound k1 ≥ 0 such that for every bound
k2 ≥ 0, there is a trace w of S such that (w, 0, k1) |= ϕ1 but (w, 0, k2) �|= ϕ2.

Since refuting assume-guarantee specifications refer to two bounds, we extend the
alternating-color technique to refer to two sets of colors. The atomic proposition p par-
titions the computation to blocks that bound k1, and a new atomic proposition q does
the same for k2. According to Lemmas 1 and 2, refuting 〈ϕ1〉S〈ϕ2〉 amounts to finding
a bound k1 ≥ 0 such that for all bounds k2 ≥ 0, there is a computation w of S such that
w has a k1-bounded p-coloring that satisfies altp ∧relp(ϕ1), but w also has a k2-spaced
q-coloring that satisfies altq ∧ ¬relq(ϕ2). Indeed, such a computation satisfies ϕ1 with
bound k1, and does not satisfy ϕ2 with bound k2.

We now show that the pumpable nonemptiness technique developed in Section 4 for
solving the model-checking problem can be used also for solving the assume-guarantee
model-checking problem, only that now the corresponding colored Büchi graphs are
colored with two sets of colors, one for ϕ1 and one for ϕ2. Also, the definition of when
a path in the graph is pumpable corresponds to the intuition above.

A colored Büchi graph of degree two is a tuple G = 〈{p, q}, V, E, v0, L, α〉. It is
similar to a colored Büchi graph, only that now there are two sets of colors, described
by p and q. Accordingly, L : V → 2{p,q}. Also, α is a generalized Büchi condition
of index 2, thus α = {α1, α2}. A path π = v0, v1, v2, . . . of G is pumpable if we can
pump all its q-blocks without pumping its p-blocks. Formally, if i and i′ are adjacent
q-change points, then there are positions j, j′, and j′′ such that i ≤ j < j′ < j′′ < i′,
vj = vj′′ and p ∈ L(vj) iff p /∈ L(vj′). Also, π is fair if it visits both α1 and α2
infinitely often. The pumpable nonemptiness problem is to decide, given G, whether it
has a pumpable fair path.

Let c(ϕ1) = altp ∧ relp(ϕ1) and c(ϕ2) = altq ∧ ¬relq(ϕ2), and let Ac(ϕ1) =
〈2AP∪{p}, Q1, δ1, q

1
0 , α1〉, and Ac(ϕ2) = 〈2AP∪{q}, Q2, δ2, q

2
0 , α2〉 be the correspond-

ing NBWs (per Theorem 3). We define the product P of S with Ac(ϕ1) and Ac(ϕ2)

as the colored Büchi graph of degree two. Thus, P = 〈{p, q}, S × 2{p,q} × Q1 ×
Q2, M, 〈s0, {p, q}, q1

0, q
2
0〉, L, {S × 2{p,q} × α1 × Q2, S × 2{p,q} × Q1 × α2}〉, where
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M(〈s, c, q1, q2〉, 〈s′, c′, q′1, q′2〉) iff ρ(s, s′), q′1 ∈ δ1(q1, L(s) ∪ (c ∩ {p})), and q′2 ∈
δ2(q2, L(s) ∪ (c ∩ {q})). Finally, L(〈s, c, q1, q2〉) = c.

Theorem 9. The specification 〈ϕ1〉S〈ϕ2〉 does not hold iff the product of S with Ac(ϕ1)
and Ac(ϕ2) is pumpable nonempty,

As detailed in the full version, solving the nonemptiness of colored Büchi graphs of de-
gree two requires a slight modification of the algorithms in Section 5; we have to add the
requirement that every q-block includes more than one p-block. The complexities stay
the same, NLOGSPACE-complete and in linear time. This, together with Theorems 3
and 9, imply the upper bound in the following theorem. The lower bound follows from
the known lower bound for LTL.

Theorem 10. The assume-guarantee model-checking problem for PROMPT-LTL is
PSPACE-complete and can be solved in time exponential in the length of the formu-
las and linear in the size of the system.

Remark 11. For LTL, fairness constraints about the system can be specified in the
formula. Thus, checking that ϕ2 holds in all computations that satisfy the fairness con-
straint ϕ1 can be reduced to model checking ϕ1 → ϕ2. A fairness assumption can also
be specified in PROMPT-LTL. Here, however, one has to allow the fairness assump-
tion and the specification to be satisfied with different bounds. Thus, fairness should be
reduced to checking 〈ϕ1〉S〈ϕ2〉.

For two formulas ϕ1 and ϕ2, we say that ϕ1 implies ϕ2 iff for every system S, if S
satisfies ϕ1, then it also satisfies ϕ2. In the case of LTL, ϕ1 implies ϕ2 iff the formula
ϕ1 → ϕ2 is valid. In the case of PROMPT-LTL, ϕ1 implies ϕ2 iff 〈ϕ1〉U〈ϕ2〉, where
U is the universal system (a clique over 2AP that contains all traces over AP ). Indeed,
since for every system S we have that S‖U = S, then 〈ϕ1〉U〈ϕ2〉 does not hold iff
there is a system S such that if S satisfies ϕ1 but S �|= ϕ2. Since U is exponential in
AP , and the PSPACE complexity of assume-guarantee model checking originates from
an algorithm that is polynomial in the formulas and only logarithmic in the system,
we have the following (the lower bound follows from the PSPACE hardness of LTL
implication).

Theorem 12. The implication problem for PROMPT-LTL is PSPACE-complete.

7 Expressiveness

In this section we study expressiveness aspects of PROMPT-LTL. We show that a
PROMPT-LTL formula ϕ has an equivalent LTL formula iff ϕ and live(ϕ) are equiv-
alent, thus the problem of deciding whether ϕ can be translated to LTL is PSPACE-
complete. Since the semantics of PROMPT-LTL is defined with respect to a system, a
natural question is whether we can translate PROMPT-LTL formulas to branching tem-
poral logics. We show that indeed, all PROMPT-LTL formulas can be translated to the
μ-calculus.

All our results refer to finite-state systems. Thus, we say that two formulas ϕ and ϕ′

are equivalent iff for all finite systems S, we have that S |= ϕ iff S |= ϕ′.
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Some PROMPT-LTL formulas ϕ are equivalent to the LTL formula live(ϕ). For ex-
ample, it is not hard to see that Fpr is equivalent to Fr, for an atomic proposition r. On
the other hand, as demonstrated in Section 1, the PROMPT-LTL formula FpGr is not
equivalent to the LTL formula FGr. Is FpGq equivalent to another LTL formula? A
negative answer follows from the fact that for every PROMPT-LTL formula ϕ, there is
some LTL formula equivalent to ϕ iff ϕ is equivalent to live(ϕ). Since the implication
live(ϕ) → ϕ can be checked in PSPACE (the other direction is always valid), we have
the following. The lower bound is proven by a reduction from LTL satisfiability.

Theorem 13. Deciding whether a PROMPT-LTL formula has an equivalent LTL for-
mula is PSPACE-complete.

It is not hard to prove that the PROMPT-LTL formula FpGq is equivalent to the CTL
formula AFAGq. Indeed, a system satisfies both formulas iff there is a bound k ≥ 0
such that all the computations may visit a state in which q does not hold only in the first
k positions. One may wonder whether this argument can be generalized, leading to a
simple translation of PROMPT-LTL formulas to CTL � formulas: given a PROMPT-LTL
formula ϕ, translate it to a CTL� formula ϕ′ by (recursively) replacing all subformulas
of the form Fpθ by FAθ (and adding an external A). To see that the reduction does
not hold in general, consider the PROMPT-LTL formula ϕ = Fp(Xq ∨ Gq). While
the system S from Figure 1 satisfies ϕ (with bound 3), the system S does not satisfy
the CTL� formula ϕ′ = AFA(Xq ∨ Gq). The question whether PROMPT-LTL can be
expressed in CTL� is open. On the other hand, the two-color technique can be used in
order to translate a PROMPT-LTL formula over P to alternating parity tree automaton
over the alphabet 2P∪{p}, and then to the μ-calculus over P . Formally, we have the
following.

Theorem 14. Every PROMPT-LTL formula has an equivalent μ-calculus formula of
exponential length.
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