
From Local Explanations to Global Understanding with
Explainable AI for Trees

Scott M. Lundberg1,2, Gabriel Erion2,3, Hugh Chen2, Alex DeGrave2,3, Jordan M. Prutkin4,
Bala Nair5,6, Ronit Katz7, Jonathan Himmelfarb7, Nisha Bansal7, Su-In Lee2,*

1Microsoft Research

2Paul G. Allen School of Computer Science and Engineering, University of Washington

3Medical Scientist Training Program, University of Washington

4Division of Cardiology, Department of Medicine, University of Washington

5Department of Anesthesiology and Pain Medicine, University of Washington

6Harborview Injury Prevention and Research Center, University of Washington

7Kidney Research Institute, Division of Nephrology, Department of Medicine, University of
Washington

Abstract

Tree-based machine learning models such as random forests, decision trees, and gradient boosted
trees are popular non-linear predictive models, yet comparatively little attention has been paid to
explaining their predictions. Here, we improve the interpretability of tree-based models through
three main contributions: 1) The first polynomial time algorithm to compute optimal explanations
based on game theory. 2) A new type of explanation that directly measures local feature
interaction effects. 3) A new set of tools for understanding global model structure based on
combining many local explanations of each prediction. We apply these tools to three medical
machine learning problems and show how combining many high-quality local explanations allows
us to represent global structure while retaining local faithfulness to the original model. These tools
enable us to i) identify high magnitude but low frequency non-linear mortality risk factors in the
US population, ii) highlight distinct population sub-groups with shared risk characteristics, iii)
identify non-linear interaction effects among risk factors for chronic kidney disease, and iv)
monitor a machine learning model deployed in a hospital by identifying which features are
degrading the model’s performance over time. Given the popularity of tree-based machine learning
models, these improvements to their interpretability have implications across a broad set of
domains.

*Corresponding: suinlee@cs.washington.edu.
Author contributions
S.M.L. and S.I.L conceived the study. S.M.L. designed algorithms, designed visualizations, designed metrics, ran experiments, and
contributed writing. G.E. ran experiments, designed visualizations, and contributed writing. H.C. designed algorithms, ran
experiments, and contributed writing. A.D. performed dataset creation. R.K., J.H., and N.B. did dataset selection, model vetting, and
defined the chronic kidney disease prediction problem. J.P., B.N., R.K., J.H., and N.B. each contributed writing and helped procure
and interpret datasets. S.I.L. supervised research, method development, and contributed writing.

HHS Public Access
Author manuscript
Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

Published in final edited form as:
Nat Mach Intell. 2020 January ; 2(1): 56–67. doi:10.1038/s42256-019-0138-9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

One sentence summary:

Exact game-theoretic explanations for ensemble tree-based predictions that guarantee desirable
properties.

Machine learning models based on trees are the most popular non-linear models in use today
[1, 2]. Random forests, gradient boosted trees, and other tree-based models are used in
finance, medicine, biology, customer retention, advertising, supply chain management,
manufacturing, public health, and other areas to make predictions based on sets of input
features (Figure 1A left). For these applications, models often must be both accurate and
interpretable, where interpretability means that we can understand how the model uses input
features to make predictions [3]. However, despite the rich history of global interpretation
methods for trees, which summarize the impact of input features on the model as a whole,
much less attention has been paid to local explanations, which reveal the impact of input
features on individual predictions (i.e., for a single sample) (Figure 1A right).

Current local explanation methods include: 1) reporting the decision path, 2) using a
heuristic approach that assigns credit to each input feature [4], and 3) applying various
model-agnostic approaches that require repeatedly executing the model for each explanation
[3, 5–8]. Each current method has limitations. First, simply reporting a prediction’s decision
path is unhelpful for most models, particularly those based on multiple trees. Second, the
behavior of the heuristic credit allocation has yet to be carefully analyzed; we show here that
it is strongly biased to alter the impact of features based on their tree depth. Third, since
model-agnostic methods rely on post hoc modeling of an arbitrary function, they can be
slow and suffer from sampling variability.

We present TreeExplainer, an explanation method for trees that enables the tractable
computation of optimal local explanations, as defined by desirable properties from game
theory. TreeExplainer bridges theory to practice by building on previous model-agnostic
work based on classic game-theoretic Shapley values [3, 6, 7, 9–11]. It makes three notable
improvements.

1. Exact computation of Shapley value explanations for tree-based

models.

Classic Shapley values can be considered “optimal” since, within a large class of
approaches, they are the only way to measure feature importance while maintaining several
natural properties from cooperative game theory [3, 11]. Unfortunately, in general these
values can only be approximated since computing them exactly is NP-hard [12], requiring a
summation over all feature subsets. Sampling-based approximations have been proposed [3,
6, 7]; however, using them to compute low variance versions of the results in this paper for
even our smallest dataset would consume years of CPU time (particularly for interaction
effects). By focusing specifically on trees, we developed an algorithm that computes local
explanations based on exact Shapley values in polynomial time. This provides local
explanations with theoretical guarantees of local accuracy and consistency [3] (Methods).

Lundberg et al. Page 2

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Extending local explanations to directly capture feature interactions.

Local explanations that assign a single number to each input feature, while very intuitive,
cannot directly represent interaction effects. We provide a theoretically grounded way to
measure local interaction effects based on a generalization of Shapley values proposed in
game theory literature [13]. We show that this approach provides valuable insights into a
model’s behavior.

3. Tools for interpreting global model structure based on many local

explanations.

The ability to efficiently and exactly compute local explanations using Shapley values across
an entire dataset enables the development of a range of tools to interpret a model’s global
behavior (Figure 1B). We show that combining many local explanations lets us represent
global structure while retaining local faithfulness [14] to the original model, which produces
detailed and accurate representations of model behavior.

Explaining predictions from tree models is particularly important in medical applications,
where the patterns a model uncovers can be more important than the model’s prediction
performance [15, 16]. To demonstrate TreeExplainer’s value, we use three medical datasets,
which represent three types of loss functions: 1) Mortality, a dataset with 14,407 individuals
and 79 features based on the NHANES I Epidemiologic Followup Study [17], where we
model the risk of death over twenty years of followup. 2) Chronic kidney disease, a dataset
that follows 3,939 chronic kidney disease patients from the Chronic Renal Insufficiency
Cohort study over 10,745 visits, where we use 333 features to classify whether patients will
progress to end-stage renal disease within 4 years. 3) Hospital procedure duration, an
electronic medical record dataset with 147,000 procedures and 2,185 features, where we
predict duration of a patient’s hospital stay for an upcoming procedure (Supplementary
Methods 1).

In this paper, we discuss how the accuracy and interpretability of tree-based models make
them appropriate for many applications. We then describe why these models need more
precise local explanations and how we address that need with TreeExplainer. Next, we
extend local explanations to capture interaction effects. Finally, we demonstrate the value of
explainable AI tools that combine many local explanations from TreeExplainer (https://
github.com/suinleelab/treeexplainer-study).

Advantages of tree-based models

Tree-based models can be more accurate than neural networks in many applications. While
deep learning models are more appropriate in fields like image recognition, speech
recognition, and natural language processing, tree-based models consistently outperform
standard deep models on tabular-style datasets, where features are individually meaningful
and lack strong multi-scale temporal or spatial structures [18] (Supplementary Results 1).
The three medical datasets we examine here all represent tabular-style data. Gradient

Lundberg et al. Page 3

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/suinleelab/treeexplainer-study
https://github.com/suinleelab/treeexplainer-study

boosted trees outperform both pure deep learning and linear regression across all three
datasets (Figure 2A; Supplementary Methods 2).

Tree-based models can also be more interpretable than linear models due to model-mismatch
effects. It is well-known that the bias/variance trade-off in machine learning has implications
for model accuracy. Less well appreciated is that this trade-off also affects interpretability.
Simple high-bias models (such as linear models) seem easy to understand, but they are
sensitive to model mismatch, i.e., where the model’s form does not match its true
relationships in the data [19]. This mismatch can create hard-to-interpret model artifacts.

To illustrate why low-bias models can be more interpretable than high-bias ones, we
compare gradient boosted trees to linear logistic regression using the mortality dataset. We
simulate a binary outcome based on a participant’s age and body mass index (BMI), and we
vary the amount of non-linearity in the simulated relationship (Figure 2B). As expected, by
increasing non-linearity, the bias of the linear model causes accuracy to decline (Figure 2C).
Perhaps unexpectedly, it also causes interpretability to decline (Figure 2D). We know that
the model should depend only on age and BMI, but even a moderate amount of non-linearity
in the true relationship causes the linear model to begin using other irrelevant features
(Figure 2D), and the weight placed on these features is driven by complex cancellation
effects that are not readily interpretable (Supplementary Figure 1). When a linear model
depends on cancellation effects between irrelevant features, the function itself is not
complicated, but the meaning of the features it depends on become subtle: they are no longer
being used primarily for their marginal effects, but rather for their interaction effects. Thus,
even when simpler high-bias models achieve high accuracy, low-bias ones may be
preferable, and even more interpretable, since they are likely to better represent the true
data-generating mechanism and depend more naturally on their input features
(Supplementary Methods 3).

Local explanations for trees

Current local explanations for tree-based models are inconsistent. To our knowledge, only
two tree-specific approaches can quantify a feature’s local importance for an individual
prediction. The first is simply reporting the decision path, which is unhelpful for ensembles
of many trees. The second is an unpublished heuristic approach (proposed by Saabas [4]),
which explains a prediction by following the decision path and attributing changes in the
model’s expected output to each feature along the path (Supplementary Results 3). The
Saabas method has not been well studied, and we demonstrate here it is biased to alter the
impact of features based on their distance from a tree’s root (Supplementary Figure 4A).
This bias makes Saabas values inconsistent, where increasing a model’s dependence on a
feature may actually decrease that feature’s Saabas value (Supplementary Figure 5). This is
the opposite of what an effective attribution method should do. We show this difference by
examining trees representing multi-way AND functions, for which no feature should have
more credit than another. Yet Saabas values give splits near the root much less credit than
those near the leaves (Supplementary Figure 4A). Consistency is critical for an explanation
method since it makes comparisons among feature importance values meaningful.

Lundberg et al. Page 4

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Model-agnostic local explanation approaches are slow and variable (Supplementary
Methods 4; Supplementary Results 4). While model-agnostic local explanation approaches
can explain tree models, they rely on post hoc modeling of an arbitrary function and thus can
be slow and/or suffer from sampling variability when applied to models with many input
features. To illustrate this, we generate random datasets of increasing size and then explain
(over)fit XGBoost models with 1,000 trees. This runtime of this experiment shows a linear
increase in complexity as the number of features increases; model-agnostic methods take a
significant amount of time to run over these datasets, even though we allowed for non-trivial
estimate variability (Supplementary Figure 4D) and used only a moderate number of
features (Supplementary Figure 4C) (Supplementary Methods 3). While often practical for
individual explanations, model-agnostic methods can quickly become impractical for
explaining entire datasets (Supplementary Figure 4C–F).

TreeExplainer provides fast local explanations with guaranteed consistency. It bridges theory
to practice by reducing the complexity of exact Shapley value computation from exponential
to polynomial time. This is important since within the class of additive feature attribution
methods, a class that we have shown contains many previous approaches to local feature
attribution [3], results from game theory imply the Shapley values are the only way to satisfy
three important properties: local accuracy, consistency, and missingness. Local accuracy
(known as additivity in game theory) states that when approximating the original model f for
a specific input x, the explanation’s attribution values should sum up to the output f(x).
Consistency (known as monotonicity in game theory) states that if a model changes so that
some feature’s contribution increases or stays the same regardless of the other inputs, that
input’s attribution should not decrease. Missingness (null effects and symmetry in game
theory), is a trivial property satisfied by all previous explanation methods.

TreeExplainer enables the exact computation of Shapley values in low order polynomial
time by leveraging the internal structure of tree-based models. Shapley values require a
summation of terms over all possible feature subsets, TreeExplainer collapses this
summation into a set of calculations specific to each leaf in a tree (Methods). This represents
an exponential complexity improvement over previous exact Shapley methods. To compute
the impact of a specific feature subset during the Shapley value calculation, TreeExplainer
uses interventional expectations over a user-supplied background dataset [11]. But it can
also avoid the need for a user-supplied background dataset by relying only on the path
coverage information stored in the model (which is usually from the training dataset).

Efficiently and exactly computing the Shapley values guarantees that explanations are
always consistent and locally accurate, improving results over previous local explanation
methods in several ways:

• Impartial feature credit assignment regardless of tree depth. In contrast to Saabas
values, Shapley values allocate credit uniformly among all features participating
in multi-way AND operations (Supplementary Figures 4A–B) and thereby avoid
inconsistency problems (Supplementary Figure 5).

• No estimation variability (Supplementary Figures 4C–F). Since solutions from
model-agnostic sampling methods are approximate, TreeExplainer’s exact

Lundberg et al. Page 5

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

explanations eliminate the additional burden of checking their convergence and
accepting a certain amount of noise in the estimates (other than noise from the
choice of a background dataset).

• Strong benchmark performance (Figure 3; Supplementary Figures 6–7). We
designed 15 metrics to comprehensively evaluate the performance of local
explanation methods; we applied these metrics to ten different explanation
methods across three different model types and three datasets. Results for the
chronic kidney disease dataset, shown in Figure 3, demonstrate consistent
performance improvements for TreeExplainer.

• Consistency with human intuition (Supplementary Figure 8). We evaluated how
well explanation methods match human intuition by comparing their outputs
with human consensus explanations of 12 scenarios based on simple models.
Unlike the heuristic Saabas values, Shapley-value-based explanation methods
agree with human intuition in all tested scenarios (Supplementary Methods 7).

TreeExplainer also extends local explanations to measure interaction effects. Traditionally,
local explanations based on feature attribution assign a single number to each input feature.
The simplicity of this natural representation comes at the cost of conflating main and
interaction effects. While interaction effects between features can be reflected in the global
patterns of many local explanations, their distinction from main effects is lost in each local
explanation (Figure 4B–G).

We propose SHAP interaction values as a richer type of local explanation. These values use
the ‘Shapley interaction index’ from game theory to capture local interaction effects. They
follow from generalizations of the original Shapley value properties [13] and allocate credit
not just among each player of a game, but among all pairs of players. The SHAP interaction
values consist of a matrix of feature attributions (interaction effects on the off-diagonal and
the remaining effects on the diagonal). By enabling the separate consideration of interaction
effects for individual model predictions, TreeExplainer can uncover significant patterns that
might otherwise be missed.

Local explanations as building blocks for global insights

Previous approaches to understanding a model globally focused on using simple global
approximations [2], finding new interpretable features [20], or quantifying the impact of
specific internal nodes in a deep network [21–23] (Supplementary Results 2). We present
methods that combine many local explanations to provide global insight into a model’s
behavior. This lets us retain local faithfulness to the model while still capturing global
patterns, resulting in richer, more accurate representations of the model’s behavior.

Local model summarization reveals rare high-magnitude effects on mortality risk and
increases feature selection power. Combining local explanations from TreeExplainer across
an entire dataset enhances traditional global representations of feature importance by: (1)
avoiding the inconsistency problems of current methods (Supplementary Figure 5), (2)
increasing the power to detect true feature dependencies in a dataset (Supplementary Figure
9), and (3) enabling us to build SHAP summary plots, which succinctly display the

Lundberg et al. Page 6

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

magnitude, prevalence, and direction of a feature’s effect. SHAP summary plots avoid
conflating the magnitude and prevalence of an effect into a single number, and so reveal rare
high magnitude effects. Figure 4A (right) reveals the direction of effects, such as men (blue)
having a higher mortality risk than women (red); and the distribution of effect sizes, such as
the long right tails of many medical test values. These long tails mean features with a low
global importance can be extremely important for specific individuals. Interestingly, rare
mortality effects always stretch to the right, which implies there are many ways to die
abnormally early when medical measurements are out-of-range, but not many ways to live
abnormally longer (Supplementary Results 5).

Local feature dependence reveals both global patterns and individual variability in mortality
risk and chronic kidney disease. SHAP dependence plots show how a feature’s value (x-
axis) impacts the prediction (y-axis) of every sample (each dot) in a dataset (Figures 4B and
E). They provide richer information than traditional partial dependence plots
(Supplementary Figure 10). For the mortality model, SHAP dependence plots reproduce the
standard risk inflection point of systolic blood pressure [24], while also highlighting that the
impact of blood pressure on mortality risk differs for people of different ages (Figure 4B).
These types of interaction effects show up as vertical dispersion in SHAP dependence plots
(Supplementary Results 6).

For the chronic kidney disease model, a dependence plot again clearly reveals a risk
inflection point for systolic blood pressure. However, in this dataset the vertical dispersion
from interaction effects appears to be partially driven by differences in blood urea nitrogen
(Figure 4E). Correctly modeling blood pressure risk while retaining interpretabilty is vital
because blood pressure control in select chronic kidney disease (CKD) populations may
delay progression of kidney disease and reduce the risk of cardiovascular events.

Local interactions reveal sex-specific life expectancy changes during aging as well as
inflammation effects in chronic kidney disease. Using SHAP interaction values, we can
decompose the impact of a feature on a specific sample into interaction effects with other
features. This helps us measure global interaction strength as well as decompose SHAP
dependence plots into interaction effects at a local (i.e., per sample) level (Figures 4B–D). In
the mortality dataset, plotting the SHAP interaction value between age and sex shows a clear
change in the relative risk between men and women over a lifetime (Figure 4G). The largest
difference in risk between men and women occurs at age 60; the increased risk for men
could be driven by their increased cardiovascular mortality relative to women near that age
[25]. This pattern is not clearly captured without SHAP interaction values because being
male always confers greater risk of mortality than being female (Figure 4A).

In the chronic kidney disease model, we identify an interesting interaction (Figure 4F): high
white blood cell counts are more concerning to the model when they are accompanied by
high blood urea nitrogen. This supports the notion that inflammation may interact with high
blood urea nitrogen to hasten kidney function decline [26, 27] (Supplementary Results 7).

Local model monitoring reveals previously invisible problems with deployed machine
learning models. Using TreeExplainer to explain a model’s loss, instead of a model’s

Lundberg et al. Page 7

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

prediction, can improve our ability to monitor deployed models. Monitoring models is
challenging because of the many ways relationships between the input and model target can
change post-deployment. Detecting when such changes occur is difficult, so many bugs in
machine learning pipelines go undetected, even in core software at top tech companies [28].
We demonstrate that local model monitoring helps debug model deployments and identify
problematic features (if any) directly by decomposing the loss among the model’s input
features.

We simulated a model deployment with the hospital procedure duration dataset using the
first year of data for training and the next three years for deployment. We present three
examples: one intentional error and two previously undiscovered problems. (1) We
intentionally swapped the labels of operating rooms 6 and 13 partway through the
deployment to mimic a typical feature pipeline bug. The overall loss of the model’s
prediction gives no indication of the bug (Figure 5A), whereas the SHAP monitoring plot for
the room 6 feature clearly identifies the labeling error (Figure 5B). (2) Figure 5C shows a
spike in error for the general anesthesia feature shortly after the deployment window begins.
This spike corresponds to a subset of procedures affected by a previously undiscovered
temporary electronic medical record configuration problem. (3) Figure 5D shows an
example of feature drift over time, not of a processing error. During the training period and
early in deployment, using the ‘atrial fibrillation’ feature lowers the loss; however, the
feature becomes gradually less useful over time and eventually degrades the model. We
found this drift was caused by significant changes in atrial fibrillation ablation procedure
duration driven by technology and staffing changes (Supplementary Figure 11). Current
deployment practice monitors both the overall loss of a model (Figure 5A) over time and
potentially statistics about input features. Instead, TreeExplainer lets us directly monitor the
impact individual features have on a model’s loss (Supplementary Results 8).

Local explanation embeddings reveal population subgroups relevant to mortality risk and
complementary diagnostic indicators in chronic kidney disease. Unsupervised clustering and
dimensionality reduction are widely used to discover patterns characterizing subgroups of
samples (e.g., study participants), such as disease subtypes [29, 30]. These techniques have
two drawbacks: 1) the distance metric does not account for discrepancies among units/
meaning of features (e.g., weight vs. age), and 2) an unsupervised approach cannot know
which features are relevant for an outcome of interest and so should be weighted more
strongly. We address both limitations using local explanation embeddings to embed each
sample into a new “explanation space.” Running clustering in this new space will yield a
supervised clustering, where samples are grouped based on their explanations. Supervised
clustering naturally accounts for the differing units of various features, highlighting only the
changes relevant to a particular outcome.

Running hierarchical supervised clustering using the mortality model results in many groups
of people that share a similar mortality risk for similar reasons (Figure 6A). This grouping of
samples can reveal high level structure in datasets that would not be revealed using standard
unsupervised clustering (Supplementary Figure 12) and has various applications, from
customer segmentation, to model debugging, to disease sub-typing. Analogously, we can
also run PCA on local explanation embeddings for chronic kidney disease samples. This

Lundberg et al. Page 8

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

uncovers two primary categories of risk factors that identify unique individuals at risk of
end-stage renal disease: (1) factors based on urine measurements, and (2) factors based on
blood measurements (Figures 6B–D). This pattern is notable because it continues as we plot
more top features (Supplementary Figure 13). The separation between blood and urine
features is consistent with the fact that clinically these factors should be measured in
parallel. This type of insight into the overall structure of kidney risk is not at all apparent in
a standard unsupervised embedding (Supplementary Figure 14; Supplementary Results 9).

Discussion

The potential impact of local explanations for tree-based machine learning models is
widespread. Explanations can help satisfy transparency requirements, facilitate human/AI
collaboration, and aid model development, debugging, and monitoring.

Tree-based machine learning models are widely used in many regulated domains, such as
healthcare, finance, and public services. Improved interpretability is vital for these
applications. In healthcare, the unknowing deployment of “Clever Hans” predictors that
depend on spurious correlations could lead to serious patient harm [31, 32]. In finance,
consumer protection laws require explanations for credit decisions, and no accepted standard
exists for how to produce these for complex tree-based models [33]. In public service
applications, explainability can promote accountability and anti-discrimination policies [34].

Improving human/AI collaboration is critical for applications where explaining machine
learning model predictions can enhance human performance. Such applications include
predictive medicine, customer retention, and financial model supervision. Local explanations
enable support agents to predict why the customer they are calling is likely to leave. They
enable doctors to make more informed decisions rather than blindly trust an algorithm’s
output. With financial model supervision, local explanations help human experts understand
why the model made a specific recommendation for high-risk decisions.

Improving model development, debugging, and monitoring leads to more accurate and
reliable deployments of machine learning systems. Local explanations aid model
development by revealing which features are most informative for specific subsets of
samples. They aid debugging by revealing the global patterns of how a model depends on its
input features, and so enable developers to determine when patterns are unlikely to
generalize well. Finally, they aid model monitoring by enabling the allocation of global
accuracy measures among each model input, significantly increasing the signal-to-noise
ratio for detecting problematic data distribution shifts.

In this paper, we identified ways to significantly enhance the interpretability of tree-based
models and to broaden the application of local explanation methods. We develop the first
polynomial-time algorithm to compute Shapley values for trees. This algorithm solves what
is in general an NP-hard problem in polynomial time for an important class of value
functions. We present a richer type of local explanation that directly captures interaction
effects. We demonstrate how using local explanation methods to explain model loss enables
a more sensitive and informative method of model monitoring. We offer many tools for

Lundberg et al. Page 9

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

model interpretation that combine local explanations, such as dependence plots, summary
plots, supervised clusterings, and explanation embeddings. We demonstrate that Shapley-
based local explanations can improve upon state-of-the-art feature selection for trees. We
identify under-appreciated interpretability problems with simple linear models. And we
compile many varied explainability metrics into a unified open source benchmark, on which
TreeExplainer consistently outperforms other alternatives. Local explanations have a distinct
advantage over global ones. By focusing only on a single sample, they remain more faithful
to the original model. By designing efficient and trustworthy ways to obtain local
explanations for modern tree-based models, we take an important step toward enabling local
explanations to become foundational building blocks for an ever growing number of
downstream machine learning tasks.

Code availability

Code supporting this paper is published online at https://github.com/suinleelab/treexplainer-
study. A widely used Python implementation of TreeExplainer is available at https://
github.com/slundberg/shap, and portions of it are included in the standard release of
XGBoost (https://xgboost.ai), LightGBM (https://github.com/Microsoft/LightGBM), and
CatBoost (https://catboost.ai).

Data availability

The pre-processed mortality data is available in the repository http://github.com/suinleelab/
treexplainer-study. Privacy restrictions prevent the release of the hospital procedure related
data, and the kidney disease data is only available directly from the National Institute of
Diabetes, Digestive, and Kidney Diseases (NIDDK).

Methods

Institutional review board statement

The chronic kidney disease data was obtained from the Chronic Renal Insufficiency Cohort
study. University Washington Human Subjects Division determined that our study does not
involve human subjects because we do not have access to identifiable information (IRB ID:
STUDY00006766).

The anonymous hospital procedure data used for this study was retrieved from three
institutional electronic medical record and data warehouse systems after receiving approval
from the Institutional Review Board (UW Approval no. 46889).

Shapley values

Here we review the uniqueness guarantees of Shapley values from game theory as they
apply to local explanations of predictions from machine learning models [9]. As applied
here, Shapley values are computed by introducing each feature, one at a time, into a
conditional expectation function of the model’s output, fx(S) = E[f(X) | do(XS = xS)], and
attributing the change produced at each step to the feature that was introduced; then
averaging this process over all possible feature orderings (Supplementary Figure 15). Note

Lundberg et al. Page 10

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/suinleelab/treexplainer-study
https://github.com/suinleelab/treexplainer-study
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://xgboost.ai/
https://github.com/Microsoft/LightGBM
https://catboost.ai/
http://github.com/suinleelab/treexplainer-study
http://github.com/suinleelab/treexplainer-study

that S is the set of features we are conditioning on, and we follow the causal do-notation
formulation suggested in [11], which improves on the motivation of the original SHAP
feature perturbation formulation [3]. An equivalent formulation is the randomized baseline
method discussed in [10]. Shapley values represent the only possible method in the broad
class of additive feature attribution methods [3] that will simultaneously satisfy three
important properties: local accuracy, consistency, and missingness.

Local accuracy (known as additivity in game theory) states that when approximating the
original model f for a specific input x, the explanation’s attribution values should sum up to
the output f(x): Property 1 (Local accuracy / Additivity).

f(x) = ϕ0(f) + ∑
i = 1

M

ϕi(f, x) (1)

The sum of feature attributions ϕi(f, x) matches the original model output f(x), where ϕ0(f) =
E[f(z)] = fx(∅).

Consistency (known as monotonicity in game theory) states that if a model changes so that
some feature’s contribution increases or stays the same regardless of the other inputs, that
input’s attribution should not decrease: Property 2 (Consistency / Monotonicity). For any
two models f and f′, if

fx′ (S) − fx′ (S\i) ≥ fx(S) − fx(S\i) (2)

for all subsets of features S ∈ ℱ, then ϕi(f′, x) ≥ ϕi(f, x).

Missingness (similar to null effects in game theory) requires features with no effect on the
set function fx to have no assigned impact. All local previous methods we are aware of
satisfy missingness. Property 3 (Missingness). If

fx(S ∪ i) = fx(S) (3)

for all subsets of features S ∈ ℱ, then ϕi(f, x) = 0.

The only way to simultaneously satisfy these properties is to use the classic Shapley values:
Theorem 1. Only one possible feature attribution method based on fx satisfies Properties 1,
2 and 3:

ϕi(f, x) = ∑
R ∈ ℛ

1
M!

fx Pi
R ∪ i − fx Pi

R
(4)

where ℛ is the set of all feature orderings, Pi
R is the set of all features that come before

feature i in ordering R, and M is the number of input features for the model.

The equivalent of Theorem 1 has been previously presented in [3] and follows from
cooperative game theory results [36], where the values ϕi are known as the Shapley values
[9]. Shapley values are defined independent of the set function used to measure the

Lundberg et al. Page 11

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

importance of a set of features. Since here we are using fx, a conditional expectation
function of the model’s output, we are computing the more specific SHapley Additive
exPlanation (SHAP) values [3, 11]. For more properties of these values see Supplementary
Methods 5

TreeExplainer with path dependent feature perturbation

We describe the algorithms behind TreeExplainer in three stages. First, we describe an easy
to understand (but slow) version of the Tree SHAP algorithm using path dependent feature
perturbation (Algorithm 1), then we present the complex polynomial time version of Tree
SHAP using path dependence, and finally we describe the Tree SHAP algorithm using
interventional (marginal) feature perturbation (where fx(S) exactly equals E[f(X) | do(XS =
xS)]). While solving for the Shapley values is in general NP-hard [12], these algorithms
show that by restricting our attention to trees we can find exact solutions in low-order
polynomial runtime.

The Tree SHAP algorithm using path feature dependence does not exactly compute E[f(X) |
do(XS = xS)], but instead approximates it using Algorithm 1, which uses the coverage
information from the model about which training samples went down which paths in a tree.
This is convenient since it means we don’t need to supply a background dataset in order to
explain the model (Algorithm 1 also directly parallels the traversal used by the classic “gain”
style of feature importance).

Given that fx is defined using Algorithm 1, Tree SHAP path dependent then exactly
computes Equation 4. Letting T be the number of trees, D the maximum depth of any tree,
and L the number of leaves, Tree SHAP path dependent has worst case complexity of
O(TLD2). This represents an exponential complexity improvement over previous exact
Shapley methods, which would have a complexity of O(TLM2M), where M is the number of
input features.

If we ignore computational complexity then we can compute the SHAP values for a tree by
computing fx(S) and then directly using Equation 4. Algorithm 1 computes fx(S) where tree
contains the information of the tree. v is a vector of node values; for internal nodes, we
assign the value internal. The vectors a and b represent the left and right node indexes for
each internal node. The vector t contains the thresholds for each internal node, and d is a
vector of indexes of the features used for splitting in internal nodes. The vector r represents
the cover of each node (i.e., how many data samples fall in that sub-tree).

Algorithm 1 estimates E[f(X) | do(XS = xS)] by recursively following the decision path for x
if the split feature is in S, and taking the weighted average of both branches if the split
feature is not in S. The computational complexity of Algorithm 1 is proportional to the
number of leaves in the tree, which when used on all T trees in an ensemble and plugged
into Equation 4 leads to a complexity of O(TLM2M) for computing the SHAP values of all
M features.

Lundberg et al. Page 12

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Now we calculate the same values as above, but in polynomial time instead of exponential
time. Specifically, we propose an algorithm that runs in O(TLD2) time and O(D2 + M)
memory, where for balanced trees the depth becomes D = log L. Recall T is the number of
trees, L is the maximum number of leaves in any tree, and M is the number of features.

The intuition of the polynomial time algorithm is to recursively keep track of what
proportion of all possible subsets flow down into each of the leaves of the tree. This is
similar to running Algorithm 1 simultaneously for all 2M subsets S in Equation 4. Note that
a single subset S can land in multiple leaves. It may seem reasonable to simply keep track of
how many subsets (weighted by the cover splitting of Algorithm 1 on line 9) pass down each
branch of the tree. However, this combines subsets of different sizes and so prevents the
proper weighting of these subsets, since the weights in Equation 4 depend on |S|. To address
this we keep track of each possible subset size during the recursion, not just single a count of
all subsets. The EXTEND method in Algorithm 2 grows all these subset sizes according to a
given fraction of ones and zeros, while the UNWIND method reverses this process and is
commutative with EXTEND. The EXTEND method is used as we descend the tree. The
UNWIND method is used to undo previous extensions when we split on the same feature
twice, and to undo each extension of the path inside a leaf to compute weights for each
feature in the path. Note that EXTEND keeps track of not just the proportion of subsets
during the recursion, but also the weight applied to those subsets by Equation 4. Since the
weight applied to a subset in Equation 4 is different when it includes the feature i, we need
to UNWIND each feature separately once we land in a leaf, so as to compute the correct
weight of that leaf for the SHAP values of each feature. The ability to UNWIND only in the
leaves depends on the commutative nature of UNWIND and EXTEND.

Lundberg et al. Page 13

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In Algorithm 2, m is the path of unique features we have split on so far, and contains four
attributes: i) d, the feature index, ii) z, the fraction of “zero” paths (where this feature is not
in the set S) that flow through this branch, iii) o, the fraction of “one” paths (where this
feature is in the set S) that flow through this branch, and iv) w, which is used to hold the
proportion of sets of a given cardinality that are present weighted by their Shapley weight
(Equation 4). Note that the weighting captured by w does not need to account for features
not yet seen on the decision path so the effective size of M in Equation 4 is growing as we
descend the tree. We use the dot notation to access member values, and for the whole vector
m.d represents a vector of all the feature indexes. The values pz, po, and pi represent the
fraction of zeros and ones that are going to extend the subsets, and the index of the feature
used to make the last split. We use the same notation as in Algorithm 1 for the tree and input
vector x. The child followed by the tree when given the input x is called the “hot” child.
Note that the correctness of Algorithm 2 (as implemented in the open source code) has been
validated by comparing its results to the brute force approach based on Algorithm 1 for
thousands of random models and datasets where M < 15.

Complexity analysis: Algorithm 2 reduces the computational complexity of exact SHAP
value computation from exponential to low order polynomial for trees and sums of trees
(since the SHAP values of a sum of two functions is the sum of the original functions’
SHAP values). The loops on lines 6, 12, 21, 27, and 34 are all bounded by the length of the
subset path m, which is bounded by D, the maximum depth of a tree. This means the
complexity of UNWIND and EXTEND is bounded by O(D). Each call to RECURSE incurs
either O(D) complexity for internal nodes, or O(D2) for leaf nodes, since UNWIND is
nested inside a loop bounded by D. This leads to a complexity of O(LD2) for the whole tree
because the work done at the leaves dominates the complexity of the internal nodes. For an
entire ensemble of T trees this bound becomes O(TLD2). If we assume the trees are
balanced then D = log L and the bound becomes O(TL log2 L). □

Lundberg et al. Page 14

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

TreeExplainer with interventional feature perturbation

TreeExplainer with interventional feature perturbation (exactly Equation 4) can be computed
with worst case complexity of O(TLDN), where N is the number of background samples
used for the conditional expectations.

The Tree SHAP algorithms provide fast exact solutions for trees and sums of trees (because
of the linearity of Shapley values [9]), but there are times when it is helpful to explain not
the direct output of the trees, but also a non-linear transform of the tree’s output. A
compelling example of this is explaining a model’s loss function, which is very useful for
model monitoring and debugging. Unfortunately, there is no simple way to adjust the
Shapley values of a function to exactly account for a non-linear transformation of the model
output. Instead, we combine a previously proposed compositional approximation (Deep
SHAP) [3] with ideas from Tree SHAP to create a fast method specific to trees. The
compositional approach requires iterating over each background sample from the dataset
used to compute the expectation, and hence we design Algorithm 3 to loop over background
samples individually.

Interventional Tree SHAP (by the laws of causality) enforces an independence between the
conditional set S and the set of remaining features xS ⊥ xS . Utilizing this independence,

Shapley values with respect to R individual background samples can be averaged together to
get the attributions for the full distribution. Accordingly, Algorithm 3 is performed by
traversing hybrid paths made up of a single foreground and background sample in a tree. At
each internal node, RECURSE traverses down the tree, maintaining local state to keep track
of the set of upstream features and whether the feature split on was from the foreground or
background sample. Then, at each leaf, two contributions are computed - one positive and
one negative. Each leaf’s positive and negative contribution depends on the feature being
explained. However, calculating the Shapley values by iterating over all features at each leaf
would result in a quadratic time algorithm. Instead, RECURSE passes these contributions up
to the parent node and determines whether to assign the positive or negative contribution to
the feature that was split upon based on the directions the foreground and background
samples traversed. Then the internal node aggregates the two positive contributions into a
single positive contribution and two negative contributions into a single negative
contribution and passes it up to its parent node.

Note that both the positive and negative contribution at each leaf is a function of two
variables: 1) U: the number of features that matched the foreground sample along the path
and 2) V: the total number of unique features encountered along the path. This means that
for different leaves, a different total number of features V will be considered. This allows the
algorithm to consider only O(L) terms, rather than an exponential number of terms. Despite
having different U’s at each leaf, interventional Tree SHAP exactly computes the traditional
Shapley value formula (which considers a fixed total number of features ≥ V for any given
path) because the terms in the summation group together nicely.

Complexity Analysis: If we assume CALCWEIGHT takes constant time (which it will if
the factorial function is implemented based on lookup tables), then Algorithm 3 performs a

Lundberg et al. Page 15

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

constant amount of computation at each node. This implies the complexity for a single
foreground and background sample is O(L), since the number of nodes in a tree is of the
same order as the number of leaves. Repeating this algorithm for each tree and for each
background sample gives us O(TRL). □

Note that for the experiments in this paper we used R = 200 background samples to produce
low variance estimates.

Benchmark evaluation metrics

We used 15 evaluation metrics to measure the performance of different explanation methods.
These metrics were chosen to capture practical runtime considerations, desirable properties
such as local accuracy and consistency, and a range of different ways to measure feature
importance. We considered multiple previous approaches and based these metrics off what
we considered the best aspects of prior evaluations [3, 37–39]. Importantly, we have
included two different ways to hide features from the model. One based on mean masking,
and one based on random interventional feature sampling. After extensive consideration, we
did not include metrics based on retraining the original model since, while informative, these
can produce misleading results in certain situations where retrained models can swap
dependence among correlated input features.

All metrics used to compute comprehensive evaluations of the Shapley value estimation
methods we consider are described in Supplementary Methods 6. Results are shown in
Figure 3, Supplementary Figures 6 and 7. Python implementations of these metrics are
available online https://github.com/suinleelab/treeexplainer-study. Performance plots for all
benchmark results are also available in Supplementary Data 1.

Lundberg et al. Page 16

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/suinleelab/treeexplainer-study

SHAP interaction values

Here we describe the richer explanation model we proposed to capture local interaction
effects; it is based on the Shapley interaction index from game theory. The Shapley
interaction index is a more recent concept than the classic Shapley values, and follows from
generalizations of the original Shapley value properties [13]. It can allocate credit not just
among each player of a game, but among all pairs of players. While standard feature
attribution results in a vector of values, one for each feature, attributions based on the
Shapley interaction index result in a matrix of feature attributions. The interaction effects on
the off-diagonal and the remaining effects are on the diagonal. If we use the same definition
of fx that we used to get SHAP values, but with the Shapley interaction index, we get SHAP
interaction values [13], defined as:

Φi, j(f, x) = ∑
S ⊆ ℳ\ i, j

|S | !(M − |S | − 2)!
2(M − 1)!

∇ij(f, x, S), (5)

when i ≠ j, and

∇ij(f, x, S) = fx(S ∪ i, j) − fx(S ∪ i) − fx(S ∪ j) + fx(S) (6)

= fx(S ∪ i, j) − fx(S ∪ j) − fx(S ∪ i) − fx(S) . (7)

where ℳ is the set of all M input features. In Equation 5 the SHAP interaction value

between feature i and feature j is split equally between each feature so Φi,j (f, x) = Φj,i (f, x)
and the total interaction effect is Φi,j (f, x) + Φj,i (f, x). The remaining effects for a prediction
can then be defined as the difference between the SHAP value and the off-diagonal SHAP
interaction values for a feature:

Φi, i(f, x) = ϕi(f, x) − ∑
j ≠ i

Φi, j(f, x) (8)

We then set Φ0,0 (f, x) = fx(∅) so Φ(f, x) sums to the output of the model:

∑
i = 0

M

∑
j = 0

M

Φi, j(f, x) = f(x) (9)

While SHAP interaction values could be computed directly from Equation 5, we can
leverage Algorithms 2 or 3 to drastically reduce their computational cost for tree models. As
highlighted in Equation 7, SHAP interaction values can be interpreted as the difference
between the SHAP values for feature i when feature j is present and the SHAP values for
feature i when feature j is absent. This allows us to use Algorithm 2 twice, once while
ignoring feature j as fixed to present, and once with feature j absent. This leads to a run time
of O(TMLD2) when using Algorithms 2 and O(TMLDN) for Algorithm 3, since we repeat
the process for each feature.

Lundberg et al. Page 17

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SHAP interaction values have properties similar to SHAP values [13], and allow the separate
consideration of interaction effects for individual model predictions. This separation can
uncover important interactions captured by tree ensembles. While previous work has used
global measures of feature interactions [40, 41], to the best of our knowledge SHAP
interaction values represent the first local approach to feature interactions beyond simply
listing decision paths.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We are grateful to Ruqian Chen, Alex Okeson, Cassianne Robinson, Vadim Khotilovich, Nao Hiranuma, Joseph
Janizek, Marco Tulio Ribeiro, Jacob Schreiber, Patrick Hall, and members of Professor Su-In Lee’s group for the
feedback and assistance they provided during the development and preparation of this research. This work was
funded by National Science Foundation [DBI-1759487, DBI-1552309, DBI-1355899, DGE-1762114, and
DGE-1256082]; American Cancer Society [127332-RSG-15-097-01-TBG]; and National Institutes of Health [R35
GM 128638, and R01 NIA AG 061132].

The Chronic Renal Insufficiency Cohort (CRIC) study was conducted by the CRIC Investigators and supported by
the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The data from the CRIC study
reported here were supplied by the NIDDK Central Repositories. This manuscript was not prepared in collaboration
with Investigators of the CRIC study and does not necessarily reflect the opinions or views of the CRIC study, the
NIDDK Central Repositories, or the NIDDK.

References

1. Kaggle. The State of ML and Data Science 2017 2017 https://www.kaggle.com/surveys/2017.

2. Friedman J, Hastie T & Tibshirani R The elements of statistical learning (Springer series in statistics
Springer, Berlin, 2001).

3. Lundberg SM & Lee S-I in Advances in Neural Information Processing Systems 30 4768–4777
(2017). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.

4. Saabas, A; treeinterpreter Python package. https://github.com/andosa/treeinterpreter.

5. Ribeiro MT, Singh S & Guestrin C Why should i trust you?: Explaining the predictions of any
classifier in Proceedings of the 22nd ACM SIGKDD (2016), 1135–1144.

6. Datta A, Sen S & Zick Y Algorithmic transparency via quantitative input influence: Theory and
experiments with learning systems in Security and Privacy (SP), 2016 IEEE Symposium on (2016),
598–617.

7. Štrumbelj E & Kononenko I Explaining prediction models and individual predictions with feature
contributions. Knowledge and information systems 41, 647–665 (2014).

8. Baehrens D et al. How to explain individual classification decisions. Journal of Machine Learning
Research 11, 1803–1831 (2010).

9. Shapley LS A value for n-person games. Contributions to the Theory of Games 2, 307–317 (1953).

10. Sundararajan M & Najmi A The many Shapley values for model explanation. arXiv preprint
arXiv:1908.08474 (2019).

11. Janzing D, Minorics L & Blöbaum P Feature relevance quantification in explainable AI: A
causality problem. arXiv preprint arXiv:1910.13413 (2019).

12. Matsui Y & Matsui T NP-completeness for calculating power indices of weighted majority games.
Theoretical Computer Science 263, 305–310 (2001).

13. Fujimoto K, Kojadinovic I & Marichal J-L Axiomatic characterizations of probabilistic and
cardinal-probabilistic interaction indices. Games and Economic Behavior 55, 72–99 (2006).

14. Ribeiro MT, Singh S & Guestrin C Anchors: High-precision model-agnostic explanations in AAAI
Conference on Artificial Intelligence (2018).

Lundberg et al. Page 18

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.kaggle.com/surveys/2017
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://github.com/andosa/treeinterpreter

15. Shortliffe EH & Sepúlveda MJ Clinical Decision Support in the Era of Artificial Intelligence. Jama
320, 2199–2200 (2018). [PubMed: 30398550]

16. Lundberg SM et al. Explainable machine learning predictions to help anesthesiologists prevent
hypoxemia during surgery. Nature Biomedical Engineering 2, 749–760 (2018).

17. Cox CS et al. Plan and operation of the NHANES I Epidemiologic Followup Study, 1992 (1997).

18. Chen T & Guestrin C XGBoost: A scalable tree boosting system in Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), 785–794.

19. Haufe S et al. On the interpretation of weight vectors of linear models in multivariate
neuroimaging. Neuroimage 87, 96–110 (2014). [PubMed: 24239590]

20. Kim B et al. Interpretability beyond feature attribution: Quantitative testing with concept activation
vectors (tcav). arXiv preprint arXiv:1711.11279 (2017).

21. Yosinski J, Clune J, Nguyen A, Fuchs T & Lipson H Understanding neural networks through deep
visualization. arXiv preprint arXiv:1506.06579 (2015).

22. Bau D, Zhou B, Khosla A, Oliva A & Torralba A Network dissection: Quantifying interpretability
of deep visual representations in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2017), 6541–6549.

23. Leino K, Sen S, Datta A, Fredrikson M & Li L Influence-directed explanations for deep
convolutional networks in 2018 IEEE International Test Conference (ITC) (2018), 1–8.

24. Group SR A randomized trial of intensive versus standard blood-pressure control. New England
Journal of Medicine 373, 2103–2116 (2015). [PubMed: 26551272]

25. Mozaffarian D et al. Heart disease and stroke statistics—2016 update: a report from the American
Heart Association. Circulation, CIR–0000000000000350 (2015).

26. Bowe B, Xie Y, Xian H, Li T & Al-Aly Z Association between monocyte count and risk of
incident CKD and progression to ESRD. Clinical Journal of the American Society of Nephrology
12, 603–613 (2017). [PubMed: 28348030]

27. Fan F, Jia J, Li J, Huo Y & Zhang Y White blood cell count predicts the odds of kidney function
decline in a Chinese community-based population. BMC nephrology 18, 190(2017). [PubMed:
28592280]

28. Zinkevich M Rules of Machine Learning: Best Practices for ML Engineering 2017.

29. Van Rooden SM et al. The identification of Parkinson’s disease subtypes using cluster analysis: a
systematic review. Movement disorders 25, 969–978 (2010). [PubMed: 20535823]

30. Sørlie T et al. Repeated observation of breast tumor subtypes in independent gene expression data
sets. Proceedings of the national academy of sciences 100, 8418–8423 (2003).

31. Lapuschkin S et al. Unmasking Clever Hans predictors and assessing what machines really learn.
Nature communications 10, 1096(2019).

32. Pfungst O Clever Hans:(the horse of Mr. Von Osten.) a contribution to experimental animal and
human psychology (Holt, Rinehart and Winston, 1911).

33. IIF. IIF Machine Learning Recommendations for Policymakers https://www.iif.com/
Publications/ID/3574/Machine-Learning-Recommendations-for-Policymakers. 2019.

34. Deeks A The Judicial Demand for Explainable Artificial Intelligence (2019).

35. Plumb G, Molitor D & Talwalkar AS Model agnostic supervised local explanations in Advances in
Neural Information Processing Systems (2018), 2515–2524.

36. Young HP Monotonic solutions of cooperative games. International Journal of Game Theory 14,
65–72 (1985).

37. Ancona M, Ceolini E, Oztireli C & Gross M Towards better understanding of gradient-based
attribution methods for Deep Neural Networks in 6th International Conference on Learning
Representations (ICLR 2018) (2018).

38. Hooker S, Erhan D, Kindermans P-J & Kim B Evaluating feature importance estimates. arXiv
preprint arXiv:1806.10758 (2018).

39. Shrikumar A, Greenside P, Shcherbina A & Kundaje A Not Just a Black Box: Learning Important
Features Through Propagating Activation Differences. arXiv preprint arXiv:1605.01713 (2016).

Lundberg et al. Page 19

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.iif.com/Publications/ID/3574/Machine-Learning-Recommendations-for-Policymakers
https://www.iif.com/Publications/ID/3574/Machine-Learning-Recommendations-for-Policymakers

40. Lunetta KL, Hayward LB, Segal J & Van Eerdewegh P Screening large-scale association study
data: exploiting interactions using random forests. BMC genetics 5, 32(2004). [PubMed:
15588316]

41. Jiang R, Tang W, Wu X & Fu W A random forest approach to the detection of epistatic interactions
in case-control studies. BMC bioinformatics 10, S65(2009). [PubMed: 19208169]

Lundberg et al. Page 20

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1: Local explanations based on TreeExplainer enable a wide variety of new ways to
understand global model structure.

(a) A local explanation based on assigning a numeric measure of credit to each input feature.
(b) By combining many local explanations, we can represent global structure while retaining
local faithfulness to the original model. We demonstrate this by using three medical datasets
to train gradient boosted decision trees and then compute local explanations based on
SHapley Additive exPlanation (SHAP) values [3]. Computing local explanations across all
samples in a dataset enables development of many tools for understanding global model
structure.

Lundberg et al. Page 21

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2: Gradient boosted tree models can be more accurate than neural networks and more
interpretable than linear models.

(a) Gradient boosted tree models outperform both linear models and neural networks on all
our medical datasets, where (**) represents a bootstrap retrain P-value < 0.01, and (*)
represents a P-value of 0.03. (b–d) Linear models exhibit explanation and accuracy error in
the presence of non-linearity. (b) The data generating models we used for the simulation
ranged from linear to quadratic along the body mass index (BMI) dimension. (c) Linear
logistic regression (red) outperformed gradient boosting (blue) up to a specific amount of
non-linearity. Not surprisingly, the linear model’s bias is higher than the gradient boosting
model’s, as shown by the steeper slope as we increase non-linearity. (d) As the true function
becomes more non-linear, the linear model assigns more credit (coefficient weight) to
features that were not used by the data generating model. The weight placed on these
irrelevant features is driven by complex cancellation effects and so is not readily
interpretable (Supplementary Figure 1). Furthermore, adding L1 regularization to the linear
model does not solve the problem (Supplementary Figures 2 and 3).

Lundberg et al. Page 22

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3: Explanation method performance across 15 different evaluation metrics and three
classification models in the chronic kidney disease dataset.

Each column represents an evaluation metric, and each row represents an explanation
method. The scores for each metric are scaled between the minimum and maximum value,
and methods are sorted by their average score. TreeExplainer outperforms previous
approaches not only by having theoretical guarantees about consistency, but also by
exhibiting improved performance across a large set of quantitative metrics that measure
explanation quality (Methods). When these experiments were repeated for two synthetic
datasets, TreeExplainer remained the top-performing method (Supplementary Figures 6 and
7). Note that, as predicted, Saabas better approximates the Shapley values (and so becomes a
better attribution method) as the number of trees increases (Methods). *Since MAPLE
models the local gradient of a function, and not the impact of hiding a feature, it tends to
perform poorly on these feature importance metrics [35].

Lundberg et al. Page 23

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4: By combining many local explanations, we can provide rich summaries of both an
entire model and individual features.

Explanations are based on a gradient boosted decision tree model trained on the mortality
dataset. (a) (left) bar-chart of the average SHAP value magnitude, and (right) a set of
beeswarm plots, where each dot corresponds to an individual person in the study. The dot’s
position on the x-axis shows the impact that feature has on the model’s prediction for that
person. When multiple dots land at the same x position, they pile up to show density. (b)
SHAP dependence plot of systolic blood pressure vs. its SHAP value in the mortality model.
A clear interaction effect with age is visible, which increases the impact of early onset high
blood pressure. (c) Using SHAP interaction values to remove the interaction effect of age
from the model. (d) Plot of just the interaction effect of systolic blood pressure with age;
shows how the effect of systolic blood pressure on mortality risk varies with age. Adding the
y-values of C and D produces B. (e) A dependence plot of systolic blood pressure vs. its
SHAP value in the kidney model; shows an increase in kidney disease risk at a systolic
blood pressure of 125 (which parallels the increase in mortality risk). (f) Plot of the SHAP
interaction value of ‘white blood cells’ with ‘blood urea nitrogen’; shows that high white
blood cell counts increase the negative risk conferred by high blood urea nitrogen. (g) Plot

Lundberg et al. Page 24

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of the SHAP interaction value of sex vs. age in the mortality model; shows how the
differential risk for men and women changes over a lifetime.

Lundberg et al. Page 25

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5: Monitoring plots reveal problems that would otherwise be invisible in a retrospective
hospital machine learning model deployment.

(a) The squared error of a hospital duration model averaged over the nearest 1,000 samples.
The increase in error after training occurs because the test error is (as expected) higher than
the training error. (b) The SHAP value of the model loss for the feature that indicates
whether the procedure happens in room 6. A significant change occurs when we
intentionally swap the labels of rooms 6 and 13, which is invisible in the overall model loss.
(c) The SHAP value of the model loss for the general anesthesia feature; the spike one-third
of the way into the data results from previously unrecognized transient data corruption at a
hospital. (d) The SHAP value of the model loss for the atrial fibrillation feature. The plot’s
upward trend shows feature drift over time (P-value 5.4 × 10−19).

Lundberg et al. Page 26

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6: Local explanation embeddings support both supervised clustering and interpretable
dimensionality reduction.

(A) A clustering of mortality study individuals by their local explanation embedding.
Columns are patients, and rows are features’ normalized SHAP values. Sorting by a
hierarchical clustering reveals population subgroups that have distinct mortality risk factors.
(B–D) A local explanation embedding of kidney study visits projected onto two principal
components. Local feature attribution values can be viewed as an embedding of the samples
into a space where each dimension corresponds to a feature and all axes have the units of the
model’s output. The embedding colored by: (B) the predicted log odds of a participant
developing end-stage renal disease within 4 years of that visit, (C) the SHAP value of blood
creatinine, and (D) the SHAP value of the urine protein/creatinine ratio. Many other features
also align with these top two principal components (Supplementary Figure 13), and an
equivalent unsupervised PCA embedding is far less interpretable (Supplementary Figure 14)

Lundberg et al. Page 27

Nat Mach Intell. Author manuscript; available in PMC 2020 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	One sentence summary:
	Exact computation of Shapley value explanations for tree-based models.
	Extending local explanations to directly capture feature interactions.
	Tools for interpreting global model structure based on many local explanations.
	Advantages of tree-based models
	Local explanations for trees
	Local explanations as building blocks for global insights
	Discussion
	Code availability
	Data availability
	Methods
	Institutional review board statement
	Shapley values
	TreeExplainer with path dependent feature perturbation
	Complexity analysis:

	TreeExplainer with interventional feature perturbation
	Complexity Analysis:

	Benchmark evaluation metrics
	SHAP interaction values

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:

