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Abstract We review the evolution of the nonpara-
metric regression modeling in imaging from the local
Nadaraya-Watson kernel estimate to the nonlocal means
and further to transform-domain Þltering based on non-
local block-matching. The considered methods are classi-
Þed mainly according to two main features: local/nonlocal
and pointwise/multipoint. Here nonlocal is an alterna-
tive to local, and multipoint is an alternative to point-
wise. These alternatives, though obvious simpliÞcations,
allow to impose a fruitful and transparent classiÞcation
of the basic ideas in the advanced techniques. Within this
framework, we introduce a novel single- and multiple-
model transform domain nonlocal approach. The Block
Matching and 3-D Filtering (BM3D) algorithm, which
is currently one of the best performing denoising algo-
rithms, is treated as a special case of the latter approach.

1 Introduction

Suppose we have independent random observation pairs
{zi, xi}

n
i=1 given in the form

zi = yi + εi, (1)

where yi = y(xi) is a signal of interest, xi ∈ R
d de-

notes a vector of �features� or explanatory variables
which determines the signal observation yi, and εi =
ε(xi) is an additive noise, which we assume normally
distributed with standard-deviation σ and mean zero.
The problem is to reconstruct y(x) from {zi}ni=1. In sta-
tistics, the function y is treated as a regression of z on x,
y(x) = E{z|x}. In this way, the reconstruction at hand
is from the Þeld of the regression techniques. If a para-
metric model cannot be proposed for y, then, strictly
speaking, the problem is from a class of the nonpara-
metric ones. Paradoxically, one of the most constructive
ideas in nonparametric regression is a parametric local
modeling. This localization is developed in a variety of

modiÞcations and can be exploited for the argument fea-
ture variables x, in the signal space y, or in the trans-
form/spectrum domains. This parametric modeling �in
small� makes a big deal of difference versus the para-
metric modeling �in large�.
The idea of local smoothing and local approximation

is so natural that it is not surprising it has appeared in
many branches of science. Citing [72], we can mention
early works in statistics using local polynomials by the
Italian astronomer and meteorologist Schiaparelli (1866)
and the Danish actuary Gram (1879) (famous for devel-
oping the Gram-Schmidt procedure for orthogonaliza-
tion of vectors). In the sixties-seventies of the twentieth
century the idea became subject of an intensive theoreti-
cal study and applications: in statistics due to Nadaraya
(1964, [79]), Watson (1964, [112]), Cleveland and Devlin
(1979, [17]) and in engineering due to Brown (1963, [9]),
Savitzky and Golay (1964, [93]), Katkovnik (1976, [52],
1985, [53]).
Being initially developed as local in x, the technique

obtained recently a further signiÞcant development with
localization in the signal y domain as the nonlocal means
algorithm due to Buades et al [10]. For imaging, the non-
local modeling appeared to be extremely successful when
exploited in transform domain. This is a promising direc-
tion where the intensive current development is focused.
The scope of this paper is twofold. First, we outline

the evolution of the nonparametric regression modeling
from the local Nadaraya-Watson estimates to nonlocal
means and further to the nonlocal block-matching tech-
niques. Second, we present a constructive contribution
concerning a novel multiple-model modeling for the non-
local block-matching techniques. A particular instance of
this idea has been implemented in the block-matching
3-D (BM3D) image denoising algorithm (Dabov et al.
[19]), which demonstrates a performance beyond the abil-
ity of most modern alternative techniques (see, e.g., [66]
or [108]). On one hand, the multiple-model interpreta-
tion of the BM3D algorithm highlights a source of this
outstanding performance; on the other hand, this very
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Local Nonlocal

Pointwise

Section 2 (Local pointwise modeling) Section 4 (Nonlocal pointwise modeling)

Signal-independent weights (Sections 2.1-2.4):
Nadaraya-Watson [17],[9],[93],[79],[112],
LPA [30],[52],[72],
Lepski�s approach [69],[101],[85], LPA-ICI [41],[54],[57],[31],
sliding window transform [117],[116];

Signal-dependent weights (Section 2.5):
Yaroslavsky Þlter [118], SUSAN Þlter [100],
Sigma-Þlter [67], Bilateral Þlter [105],[24],
kernel regression [103];

Variational formulations (Section 2.6):
ROF [91],[90], Anisotropic diffusion [83],[114],[115].

Weighted means (Section 4.1):
neighborhood Þlter [10],
NL-means algorithm [10], Lebesgue denoising [113],
Adaptive Weights Smoothing (AWS) [84],[86],[102],
Exemplar-based [61],[62],[63],
scale and rotation invariant [73],[120];

Higher-order models (Section 4.2):
NL-means with regression correction [11],
kernel regression [16];

Variational formulations (Section 4.3):
[64],[40],[39],[73],[74],[28],[106],[107].

Multipoint

Section 3 (Local multipoint modeling) Section 5 (Nonlocal multipoint modeling)

Overcomplete transform [80],[81],[23],[119],[43],[46];
shape-adaptive transform [37],[32];
learned bases: adaptive PCA [78], FoE [89],
K-SVD [3],[27], MS-K-SVD [75];
TLS [47], BLS-GSM [87], OAGSM-NC [44].

Single-model approach (Section 5.1):
Vectorial NL-means [10];

Multiple-model approach (Section 5.2):
BM3D [19], Shape-Adaptive BM3D [20],
BM3D with Shape-Adaptive PCA [21].

Table 1 Organization of the paper and classiÞcation of the algorithms.

performance suggests the potential of the modeling herein
proposed.

In what follows, the considered techniques are classi-
Þed mainly according to two main features: local/nonlocal
and pointwise/multipoint. Here nonlocal is an alternative
to local, and multipoint is an alternative to pointwise.

We call an algorithm local if the weights used in the
design of the algorithm depend on the distances between
the estimation point x0 and observation points xs in
such a way that distant points are given small weights,
so that the size of the estimation support is practically
restricted by these distances. An algorithm is nonlocal if
these weights and the estimation support are functions of
the differences of the corresponding signal (image inten-
sity) values at the estimation point y0 and observations
ys. In this way, even distant points can be awarded large
weights and the support is often composed of discon-
nected parts of the image domain. Note that the weights
used in local algorithms can be dependent also on ys,

but, nevertheless, the weights are overall dominated by
the distance

°°x0 − xs
°°. An important example of this

speciÞc type of local Þlters is the Yaroslavsky Þlter [118],
referred in Buades et al. [10,13] as a precursor of the
nonlocal means.

Let us make clear the pointwise/multipoint alterna-
tive. We call an estimator multipoint if the estimate is
calculated for all observation points used by the estima-
tor. These points can constitute an image block or an
arbitrarily-shaped region adaptively or non-adaptively
selected. In contrast to a multipoint estimator, a point-
wise estimator gives the estimate for a single point only,
namely x0. To be more ßexible, we can say that the mul-
tipoint estimator gives the estimates for a set of points
while the pointwise one is restricted to estimation for a
single point only. The multipoint estimates are typically
not the Þnal ones. The Þnal estimates are calculated by
aggregating (fusing) a number of multipoint estimates,
since typically many such estimates are available for each
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point (a common of many overlapping neighborhoods).
In the pointwise approach the estimates are calculated
directly as the Þnal ones.
We found that the classiÞcation of the algorithms ac-

cording to these two features: local/nonlocal and point-
wise/multipoint is fruitful for giving an overview of this
quickly developing Þeld. It is emphasized that this clas-
siÞcation relies only on the basic ideas of the algorithms
and on the principles that determine the algorithms� de-
sign. Indeed, most of these algorithms are eventually im-
plemented combining different ideas and features, which
makes often impossible to impose a clear-cut and un-
ambiguous taxonomy. Table 1 illustrates the proposed
classiÞcation as well as the organization of this paper.
The local approximations are well developed in terms

of various approaches, theories and implementations, and
are well documented in numerous papers and books (e.g.,
Yaroslavsky [118], Loader [72], Katkovnik et al. [57]).
The nonlocal approximations being very successful are
a comparatively novel direction where many aspects are
only sketched and waiting for accurate formulation and
study. In this paper we are focused on this emerging area
of nonlocal modeling and estimation.
We consider image denoising as a basic problem con-

venient for overview also of various approaches used for
a plethora of other image processing problems including
restoration/deblurring, interpolation, reconstruction, en-
hancement, compression, demosaicing, etc. In our review
and classiÞcation, we have no pretension of complete-
ness. The methods and algorithms that appear in Table
1, as well as others to which we refer throughout the text,
are cited mainly to give few concrete examples of possi-
ble implementations of the general schemes discussed in
the next four sections.
This paper is a development and extension of the

authors� work presented in [59].

2 Local pointwise modeling

2.1 Pointwise weighted means

The weighted local mean as a nonparametric regression
estimator of the form

�yh(x
0) =

X

s

gh(x
0 − xs)zs, (2)

gh(x− xs) =
wh(x− xs)P
s wh(x− xs)

,

has been independently introduced by Nadaraya [79],
as a heuristic idea, and by Watson [112], who derived it
from the deÞnition of regression as the conditional expec-
tation and using the Parzen estimate of the conditional
probability density.
It is convenient to treat this estimator as a zero-order

local-polynomial approximation and obtain it as a min-

imizer for the windowed (weighted) mean-squares crite-
rion:

�yh(x
0) = �C, �C = argminC Ih,x0(C), (3)

Ih,x0(C) =
X

s

wh(x
0 − xs)[zs − C]2. (4)

The window wh(x) = w(x/h) deÞnes the neighborhood
Xh of x0 used in the estimator. A scalar (for simplicity)
parameter h > 0 gives the size of this neighborhood as
well as the weights for the observations. In particular,
for the Gaussian window we have w(x) = exp(−||x||2).

2.2 Pointwise polynomial modeling

In the local polynomial approximation (LPA), the ob-
servations zs in the quadratic criterion (4) are Þtted by
polynomials. The coefficients of these polynomials found
by minimization of Ih,x0 serve as the pointwise estimates
of y and its derivatives at the point x0 (e.g. Fan [30],
Loader [72], Cleveland and Devlin [17], Katkovnik et al
[57], Foi [31]). This sort of estimate is a typical exam-
ple of what we call pointwise local estimate. Of course,
for the zero-order polynomial we obtain the Nadaraya-
Watson estimates (2).
The polynomial order m and the window function

w characterize the LPA. SpeciÞcally, for a point x0, the
LPA estimate �yh

¡
x0
¢
of y

¡
x0
¢
given the noisy signal z

is deÞned as

�yh
¡
x0
¢
= �ph

¡
x0
¢
, �ph = argmin p∈PmIh,x0(p) (5)

Ih,x0(p) =
X

s

wh(x
0 − xs) (z (xs)− p (xs))2 ,

where Pm are the 2-D polynomials of order m. In other
words, at every point x, the LPA provides the value
�ph (x) of the best Þtting polynomial �ph of order m, with
the window wh determining the localization of this Þt.
For the regular grid of xs the LPA estimates are shift

invariant and can be calculated by convolution against
a kernel deÞned by the window wh and the polynomials
Pm.
Starting from a basic window function w, one can

obtain LPA�s of different bandwidths/scales using scaled
windows wh, where positive h can be treated as a scale
parameter. The corresponding kernels, denoted as gh,
give the estimate (5) in the convolutional form

�yh
¡
x0
¢
=(z ~ gh)

¡
x0
¢
. (6)

The support of the window wh or equivalently of the
kernel gh, is the estimator�s support. It is common prac-
tice to use compactly supported window functions. In
this case, by using a basic window w of the unit length,
we obtain that h coincides with the length of the win-
dow wh. Hence, window length (size), scale, and band-
width become interchangeable concepts. Using symmet-
ric, non-symmetric and directional windows we obtain



4 Vladimir Katkovnik et al.

respectively the Þlter banks with the symmetric, non-
symmetric and directional supports scaled by the para-
meter h.
A quite similar approach is used to obtain the differ-

entiation kernels giving the derivatives based on scaled
symmetric, non-symmetric, and directional neighborhoods.
Details of this sort of ßexible Þltering techniques and
their theoretical background can be seen, in particular,
in Katkovnik et al. [57] and Foi [31].
The initial idea of the LPA is so simple and so appeal-

ing that it is not surprising that it is appeared in different
modiÞcations and under different names, such as moving
(sliding, windowed) least-squares, Savitzky-Golay Þlter,
reproducing Þlters. Recently the LPA has been reintro-
duced as moment Þlters by Seuhling et al. [96] and as
kernel regression by Takeda et al. [104].
The local approximation is not restricted to the poly-

nomial functions. Any reasonable set of basis functions
can be used, such as trigonometric functions, wavelets,
splines, etc. Thus, the LPA framework can be used also
for more general (non-polynomial) parametric approxi-
mations.
A adaptive data-driven selection of h is a special

topic, in particular, in the books by Fan [30] and Loader
[72]. In what follows we consider some recent develop-
ments in this area.

2.3 Adaptive scale selection

The choice of the scale parameter is crucial when deal-
ing with noisy data, because it controls the amount of
smoothing introduced by the local approximation. A large
h corresponds to a larger window and therefore to smoo-
ther estimates, with lower variance and typically increased
estimation bias. A small h corresponds to noisier esti-
mates, less biased, and with higher variance. Thus, the
scale parameter h controls the trade-off between bias and
variance in the LPA estimates. An optimal selection of
the invariant and varying h is a subject of many pub-
lications starting from the very early days of the LPA.
Various fundamental approaches and formulations can
be seen in the books by Fan [30], Loader [72] and [110]
devoted to statistical nonparametric estimation.
Two main groups of techniques are exploited in the

nonparametric regression approach. The Þrst one is based
on estimation of the bias and the variance with scale
calculation using the theoretical formulas for the mean
squared error of estimation. These sort of methods are
known as �plug-in� methods. The second group of meth-
ods disregards the bias or formulas for the ideal scale
selection and is instead based on quality-of-Þt statistics
such as cross-validation, generalized cross-validation, Cp,
Akaike criteria, etc., which are applied for model selec-
tion or direct optimization of the estimation accuracy.
A successful implementation of the plug-in approach

has been reported by several authors. Overall, these meth-
ods give smooth curves with good Þltering of random

errors. However, the estimate bias depends on unknown
high-order derivatives of the signal. As a result the al-
gorithms are quite complex and have a number of para-
meters to be tuned, in particular for the estimation of
these derivatives. Automatic window-size selectors with
estimation of the higher-order derivatives of y have been
developed and studied in [30]. The estimates at several
window sizes are used in [92] in order to approximate
the bias for estimation of the signal and the derivative.
Similar ideas have been exploited in adaptive smoothers
described in [94].
Most of publications concerning the quality-of-Þt ap-

proach are related to a data-driven global (constant)
scale selection (e.g., [45], [49], [53], [99]). In this discus-
sion and in what follows, the scale selection is deÞned by
the accuracy criteria, with the main goal to achieve the
optimal accuracy balancing the bias and the variance of
estimation. These methods can be applied for scale se-
lection for both estimation of image intensities as well
as their derivatives. In this paper we are restricted to
this accuracy-based scale selection only. Even more, we
are focused on the automatic varying scale selection with
the adaptive scales possibly taking different values from
pixel to pixel.
We note that there are very different scale-selection

problems for the analysis of 2-D and 3-D surfaces, where
the main goal is to Þnd and recognize singularities such
as edges, ridges, discontinuities, etc. This sort of prob-
lems is particularly relevant in computer vision (e.g.,
[70], [71]).

2.4 Adaptivity of pointwise polynomial estimates

The accuracy of the local estimates is quite dependent
on the size and shape of the neighborhood used for esti-
mation. Adaptivity of these estimates is a special subject
that recently obtained a wide development concerning,
in particular, the adaptive selection of the neighborhood
size/shape or of the estimation weights. The main idea of
the recent methods is to describe a greatest possible local
neighborhood of every pixel in which the local paramet-
ric assumption is justiÞed by the data. These methods
are mainly linked with the so-called Lepski�s approach
(see, e.g., Lepski [68], Lepski et al. [69], Spokoiny [101],
and Polzehl and Spokoiny [85]).
One of the efficient versions of this approach is known

as the LPA-ICI algorithm (Goldenshluger and Nemirovski
[41], Katkovnik [54]). Here ICI stands for the intersection
of conÞdence intervals (ICI) rule. A development of this
technique for the adaptive image processing is presented
in [57] and [31].
In [60], the approach is applied to the exponential

class of distributions and in particular to the denoising
of Poissonian images.
A general theory of the adaptive image/signal process-

ing developed for quite general statistical models can be
seen in the book by Spokoiny [102].
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Fig. 1 The Intersection of ConÞdence Intervals (ICI) rule.

2.4.1 Intersection of conÞdence intervals (ICI) rule The
ICI rule is a multiple hypothesis testing criterion used
for the adaptive selection of the size (length/scale) of the
LPA window. The aim is to achieve a balance between
the bias and the variance such that the pointwise mean
square error (MSE) is minimized.
Let x0 be a Þxed estimation point/pixel. The LPA

estimates �yhj (x
0) =

¡
z ~ ghj

¢ ¡
x0
¢
(6) are calculated for

a set H = {hj}Jj=1 of increasing scales h1 < · · · < hJ .
The goal of the ICI is to select among these given es-

timates
©
�yhj (x

0)
ªJ
j=1

an adaptive estimate �yh+(x0)
¡
x0
¢
,

h+
¡
x0
¢
∈ H, such that �yh+(x0)

¡
x0
¢
is close to an �ideal�

estimate �yh∗(x0)
¡
x0
¢
which minimizes the MSE with re-

spect to the variation of the scale h (note that h∗
¡
x0
¢

does not necessarily belong to H). Roughly speaking,
the estimate �yh+(x0)

¡
x0
¢
is the �best� among the given

ones.
The ICI rule is as follows:
Consider the intersection of conÞdence intervals Ij =Tj

i=1Di, where

Di =
h
�yhi
¡
x0
¢
− Γσ�yhi (x0), �yhi

¡
x0
¢
+ Γσ�yhi (x0)

i
,

σ�yhi (x0) = std
©
�yhi(x

0)
ª
is the standard deviation of

�yhi
¡
x0
¢
, and Γ > 0 is a threshold parameter. Let j+ be

the largest of the indexes j for which Ij is non-empty,
Ij+ 6= ∅ and Ij++1 = ∅. The adaptive scale h

+
¡
x0
¢
is

deÞned as h+
¡
x0
¢
= hj+ and the adaptive estimate is

thus �yh+(x0)
¡
x0
¢
.

An illustration of the ICI is given in Figure 1. The
standard-deviations of the LPA estimates can be easily
calculated from the 62-norm of the corresponding kernel
as σ�yhj (x0) = std

©
�yhj (x

0)
ª
= σ

°°ghj
°°
2
, where σ is the

standard deviation of the noise in z. Since the scales are
increasing, the standard-deviations are decreasing and
the conÞdence intervals shrink as j increases. Therefore,
in the intersections we are testing estimates with pro-
gressively lower variance. The rationale behind the ICI
is that the estimation bias is not too large as long as the
intersections are non-empty. In practice this means that
the ICI adaptively allows the maximum level of smooth-
ing, stopping before oversmoothing begins. Asymptot-
ically, the LPA-ICI adaptive estimator allows to get a
near-optimal quality of signal recovery [41].

Fig. 2 Approximation of an ideal starshaped anisotropic
neighborhood using adaptive sectors.

Fig. 3 Anisotropic local approximations achieved by com-
bining a number of adaptive-scale directional windows. The
examples show some of these windows selected by the direc-
tional LPA-ICI for the noisy Lena and Cameraman images.

Overall this pointwise-adaptive algorithm searches
for a largest local vicinity of the point of estimation
where the estimate Þts well to the data. The estimates
�yhj (x

0) are calculated for a set of window sizes (scales)
and compared. The adaptive scale is deÞned as the largest
of those for which estimate does not differ signiÞcantly
from the estimators corresponding to the smaller win-
dow sizes. Several algorithms are developed, based on
this sort of adaptive estimators: denoising is the main,
and most natural application, but also deconvolution
and derivative estimation are problems where the adap-
tation can play a signiÞcant role in order to achieve an
improved restoration performance [57].

2.4.2 LPA with anisotropic supports A main assump-
tion for the design of the anisotropic estimator [33,55,
57] is that the optimal vicinity of the estimation point in
which the model Þts the data is a starshaped neighbor-
hood which can be approximated by some sectorial de-
composition with, say, K non-overlapping sectors. Such
a sectorial approximation is shown in Figures 2 and 3.
This irregular shape of these neighborhoods and their
sectorial approximation is a direct manifestation of the
anisotropy of the underlying signal or, roughly speaking,
that the signal smoothness is different at different points
and along different directions. To replicate this behav-
ior in our estimator, we use special directional kernels
deÞned on a sectorial support. Anisotropy is enabled by
allowing different adaptive scales for different directions.
Thus, the ICI rule is exploited K times, once for each
sector. In this way, we reduce a complex multidimen-
sional shape adaptation problem to a number of scalar
optimizations.
The directional estimates corresponding to the ada-

ptive-scale sectors are then combined into the Þnal aniso-
tropic estimate. The resulting estimator is truly anisotropic,
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and its support can have quite an exotic shape. It is
highly sensitive with respect to change-points, and al-
low to reveal Þne elements of images from noisy observa-
tions, thus showing a remarkable advantage in the pro-
posed strategy. Results and modiÞcations of this algo-
rithm for different applications (including gradient esti-
mation, deconvolution, inverse-halftoning, video denois-
ing, and signal-dependent noise removal) can be seen in
[55,33,34,56,36,35,29,36] and, in particular, in [31] and
[57].

2.5 Signal-dependent windows/weights

There are a variety of works where the local weights
wh(x

0− xs) depend also on the observations zs. A prin-
cipal difference of these algorithms versus the nonlocal
ones is that all the signiÞcant weights are localized in
the neighborhood of x0.
In particular, Smith and Brady [100] presented the

SUSAN algorithm where the localization is enabled by
the weights depending on the distances from x0 to the
observation points xs and on the corresponding values
of y:

wh(x
0 − xs, y0 − ys) = e−

||x0−xs||
2

h2
− |y0−ys|

2

γ , γ, h > 0.

Similar ideas are exploited in the Sigma-Þlter by Lee [67]
and in the Bilateral Þlter by Tomasi and Manduchi [105]
and by Elad [24]. These algorithms are local, mainly mo-
tivated by the edge detection problem where the localiza-
tion is a natural assumption. Further development and
interpretation of this sort of local estimator can be seen
in Elad [24] and Barash [6]. In the works by Yaroslavsky
[118] the localization of the weights is enabled by taking
observations from a ball centered at x0. The accuracy
analysis of these algorithms can be seen in Buades et al.
[10].
It this context, it is worth mentioning also the kernel

estimator by Takeda et al. [103], which is a particular
higher-order LPA estimator where the weights are de-
Þned as in the bilateral Þlter.

2.6 Variational formulations and diffusion Þltering

A variety of methods for image denoising are derived by
considering image processing as a variational problem
where the restored image is computed by minimization
of an energy functional. Typically, such functionals con-
sist of a Þdelity term such as the norm of the difference
between the true image and the observed noisy image
and a regularization penalty term:

J = λ||y − z||22 + pen(y). (7)

One of the successful Þlters in this class is the Rudin-
Osher-Fatemi (ROF) method [91], [90], which uses the

total variation as penalty. The success of this penalty
stems from the fact that it allows discontinuous solutions
and hence preserves edges while Þltering high-frequency
oscillations due to noise. Several other methods are de-
rived from the original ROF model by Meyer [77], Osher
[82], Vese and Osher [109].
Nonlinear anisotropic diffusion Þlters have been in-

troduced by Perona andMalik [83] and signiÞcantly stud-
ied and developed by many authors, particularly by We-
ickert [114], [115]. Various versions of these Þlters exist.
The Þltered signal is deÞned as a solution of a partial
differentiation equation of the form

∂u(x, t)/∂t = div (g(∂u/∂x) · ∂u/∂x) , (8)

u(x, 0) = z(x), �yT (x) = u(x, T ),

where div is the divergence operator and g is a scalar-
valued nonnegative diffusivity function, such that g(0) =
1 and lim

|x|→∞
g(x) = 0. The initial condition u (x, 0) is

deÞned by the given noisy signal and the estimate �yT (x)
is a solution u (x, t) at the stopping time T . The time t
plays a role of a smoothing (scale) parameter for the esti-
mate, where larger t corresponds to stronger smoothing.
The equation (8) is ill-posed and some regularization is
required for the solution.
There are natural relations between the nonlinear

anisotropic diffusion and the variational approach, be-
cause the diffusion may be interpreted as a gradient de-
scent for a suitable functional minimization. Links be-
tween the diffusion Þlters and variational settings with
the penalty regularizations terms like (7) are subject
of many mathematical publications. In connection with
these works, we wish to mention the paper by Steidl et al.
[97], where it is shown that for the one-dimensional case
there is an equivalence between the total-variational dif-
fusion, total-variational regularization, and soft wavelet
shrinkage. The total-variation diffusion is of special in-
terest, in particular because the corresponding equation
is well posed [97]. A broad overview of these connections
can be seen in the book by Chan and Shen [15].
All these algorithms belong to the class of local point-

wise ones because the solution is achieved by means of
diffusion equations typically based on local differential
estimates.

3 Local multipoint modeling

It is assumed in the above local modeling that for each
pixel exists a neighborhood where the low-order polyno-
mial model Þt the data. The order of this polynomial
parametric model is Þxed and the parameters as well as
the size/shape of this neighborhood are the main tool of
estimation. Another principal point is that in the point-
wise estimation the model parameters and the neigh-
borhood are used in the pointwise manner in order to
estimate the function for a single point only.
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In what we call the local multipoint estimation the
modeling and estimation are very different. First of all,
for each neighborhood or image patch we use full-rank
high-order approximations with a maximum number of
basis functions (typically non-polynomials). For the or-
thogonal basis functions, this modeling is treated as the
corresponding transform-domain representation, with Þl-
tering produced by shrinkage in the spectrum (trans-
form) domain. Second, the estimates are calculated for
all points in the neighborhood/patch, as opposed to the
pointwise estimation which estimates a single point at a
time. This makes the estimation to be multipoint. Third,
the data are typically processed by overlapping subsets,
i.e. windows, blocks or generic neighborhoods, and mul-
tiple estimates are obtained for each individual point.
Overall, the estimation is composed of three successive
steps: 1) data windowing (blocking, patching); 2) multi-
point processing; 3) calculation of the Þnal estimate by
aggregating (fusing) the multiple multipoint estimates.
It is found that this sort of redundant approximations
with multiple estimates for each pixel dramatically im-
proves the accuracy of estimation.

3.1 Overcomplete transform domain modeling

Let the signal be deÞned on a regular 2-D grid X. Con-
sider a windowing C = {Xr, r = 1, . . . ,Ns} ofX withNs
blocks (uniform windows) Xr ⊂ X of size nr × nr such
that ∪Ns

r=1Xr = X. Mathematically speaking, this win-
dowing is a covering of X. Thus, each x ∈ X belongs to
at least one subset Xr. The noise-free data y (x) and the
noisy data z(x) windowed on Xr are arranged in nr×nr
blocks denoted as Yr and Zr, respectively. We will use
Y and Z as notation for matrices of the true and noisy
signals over X. Typically, the blocks are overlapping and
therefore some of the elements may belong to more than
one block.
In what follows, we use transforms (orthonormal se-

ries) in conjunction with the concept of the redundancy
of natural signals. Mainly these are the 2-D discrete
Fourier and cosine transforms (DFT and DCT), orthogo-
nal polynomials, and wavelet transforms. The transform,
denoted as T 2D

r , is applied for each window Xr indepen-
dently as

θr = T
2D

r (Yr) ,
£
= DrYrD

T
r

¤
r = 1, . . . ,Ns,

(9)
where θr is the spectrum of Yr. The equality enclosed
in square brackets holds when the transform T 2D

r is real-
ized as a separable composition of 1-D transforms, each
computed by matrix multiplication against an nr × nr
orthogonal matrix Dr. The inverse T

2D−1
r of T 2D

r deÞnes
the signal from the spectrum as

Yr = T
2D−1
r (θr) ,

£
= DT

r θrDr
¤

r = 1, . . . , Ns.

The noisy spectrum of the noisy signal is deÞned as

�θr = T
2D

r (Zr) ,
£
= DrZrD

T
r

¤
r = 1, . . . , Ns.

(10)
The signal y is sparse if it can be well approximated by
a small number of non-zero elements of the spectrum
θr. The number of non-zero elements of θr, denoted us-
ing the standard notation as ||θr||0, is interpreted as the
complexity of the model in the block.
If the blocks are overlapping the total number of the

spectrum elements θr, r = 1, . . . , Ns, is larger (much
larger) than the image size and we arrive to the over-
complete or redundant data approximation. This redun-
dancy is an important element of the efficiency of this
modeling overall.
The blockwise estimates are simpler for calculation

than the estimates produced for the whole image because
the blocks are much smaller than the whole image. This
is a computational motivation for the blocking. Another
even more important point is that the blocking imposes
a localization of the image on small pieces where simpler
models may Þt the observations. These shorter models
are easy to be compared and selected. Here we can recog-
nize the basic motivation for the zero-order or low-order
LPA, which is simple and for small neighborhoods can
well Þt the data which globally can instead be complex
and not allow a simple parametric modeling. By win-
dowing we introduce a small segments exactly with the
same reasons in order to use simple parametric mod-
els (expansions in the series deÞning the corresponding
transforms) for overall complex data. A principal differ-
ence versus the pointwise estimation is that with blocks
the concept of the center actually do not have a proper
sense and the estimates are thus calculated for all points
in the block. Thus, instead of the pointwise estimation
we arrive to the blockwise (multipoint) estimation. For
the overlapping blocks this leads to the next problem:
the multiple estimates for the points and the necessity
to aggregate (fuse) these multiple estimates in the Þnal
ones.
The data windowing can be produced in many differ-

ent ways. In deterministic non-adaptive design, Þxed-size
square windows cover the image entirely. One example
of this sort of windowing is the sliding windowing where
to each pixel in the image a window is assigned having
this pixel as, say, its upper-left corner (e.g., [5], Ch. 5).
The adaptive windowing can be produced as a result of
image or spectrum analysis, resulting in windows hav-
ing irregular location and shape, such as the anisotropic
windows used by the Shape-Adaptive DCT estimator
[37] described in Section 3.4.

3.2 Multipoint estimation

For the white Gaussian noise in the observation model
(1), the penalized minus log-likelihood maximization gives
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the estimates as

�θr =argmin
ϑ

||Zr − T 2D−1
r (ϑ) ||22/σ

2 + λpen(ϑ), (11)

�Yr =T
2D−1
r

³
�θr

´
,

where pen(ϑ) is a penalty term and λ > 0 is a parameter
that controls the trade-off between the penalty and the
Þdelity term. The penalty pen(ϑ) is used for characteriz-
ing the model complexity and appears naturally in this
modeling, provided that the spectrum θr is random with
a prior density p(θr) ∝ e−λ pen(θr). The estimator (11)
can be presented in the following equivalent form

�θr = argmin
ϑ

||�θr − ϑ||22/σ2 + λpen(ϑ), (12)

where the noisy spectrum is calculated as (10).
If the penalty is additive for the items of the spec-

trum ϑ, pen(ϑ) =
P
i,j pen(ϑ(i,j)), where ϑ(i,j) is an ele-

ment of ϑ, then the problem can be solved independently
for each element of the matrix �θr as a scalar optimization
problem:

�θr,(i,j) = argmin
x

³
�θr,(i,j) − x

´2
/σ2 + λpen(x). (13)

This solution depends on �θr,(i,j) and λ, and it can be
presented in the form

�θr,(i,j) = ρ
³
�θr,(i,j), λσ

´
, (14)

where ρ is deÞned by the penalty function in (13).
Hard and soft thresholding are particular cases of this

sort of estimates (Donoho and Johnstone [22]):
(1)Hard thresholding. The penalty is ||x||0, i.e. ||x||0 = 1
if x 6= 0 and ||x||0 = 0 if x = 0. It can be shown that

�θr,(i,j) = �θr,(i,j) · 1
³
|�θr,(i,j)| ≥ σ

√
λ
´
. (15)

In thresholding for the block of the size nr × nr the so-
called universal threshold λ is deÞned depending on nr
as λ = 2 logn2r.
(2) Soft thresholding. The penalty function is pen(x) =
||x||1 = |x|. The function ρ in (14) is deÞned as

ρ
³
�θr,(i,j), σ

´
= �θr,(i,j) ·

Ã

1− λσ2

2|�θr,(i,j)|

!

+

. (16)

The signal estimates in the windows are calculated

from the spectrum estimates as �Yr = T
2D−1
r

³
�θr

´
. These

are multipoint (not pointwise) estimates as they are cal-
culated for all pixels in the windows.
There is a number of various threshold rules devel-

oped in mathematical statistics and derived from differ-
ent speculations. Here we wish to mention also the con-
trol of error rate thresholding developed by Abramovich
and Benjamini [1], Benjamini and Liu [7], and Abramovich
et al. [2].

A number of threshold operators ρ derived from (13)
for different penalty functions are studied by Elad [25].
In this optimization approach the threshold function is
deÞned by the assumed penalty function.

3.3 Aggregation

At the points where the windows overlap, multiple es-
timates appear. Then, the Þnal estimate for each x is
calculated as the average or a weighted average of these
multiple estimates:

�y(x) =

P
r µr�yr(x)P
r µrχXr (x)

, x ∈ X, (17)

where �yr is obtained by returning the window-wise (mul-

tipoint) estimates �Yr = T 2D−1
r

³
�θr

´
to the respective

place Xr (and extending it as zero outside Xr), µr are
the weights used for these estimates, and χ

Xr
is the in-

dicator function (characteristic function) of the set Xr.
Although in many works equal weights µr = 1 ∀r are

traditionally used (e.g., Coifman and Donoho [18], Hua
and Orchard [48], Öktem et al. [80], [81]), it is a well es-
tablished fact that the efficiency of the aggregated esti-
mates (17) sensibly depends on the choice of the weights.
In particular, using weights µr inversely proportional

to the variances of the corresponding estimates �yr is
found to be a very effective choice, leading to a dramatic
improvement of the accuracy of estimation (Egiazarian
et al. [23], Yaroslavsky et al. [119]). The variances of
�yr are practically approximated as σ2 multiplied by the
sum of the squared shrinkage coefficients. In the case of
thresholding, these coefficients are the rightmost factors
in (15), (16). Thus, for hard thresholding, one may deÞne
µr are the reciprocal of the number of non-zero elements
of �θr,(i,j).
Guleryuz [43] studied the effects of different weights

for aggregating blockwise estimates from sliding window
DCT and demonstrated essential improvements of the
algorithms.
We wish to mention few related works. In [27], Elad

and Aharon consider shrinkage in redundant represen-
tations and derive an optimal estimator minimizing a
global energy criterion. This criterion can be written as

E=
1

σ2
||Z−Y ||22+

X

r

³
||Yr − T 2D−1

r (ϑr) ||
2
2 + λpen(ϑr)

´
,

(18)
where pen(ϑr) = kϑrk0. The algorithm proposed in [27]
uses the alternative minimization with respect to both
ϑr and Y with the initialization Yr = Zr and deÞning
the spectrum estimates at the Þrst step as

�θr = argmin
ϑr
||Zr − T 2D−1

r (ϑr) ||
2
2 + λpen(ϑr). (19)
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Given �θr the signal estimate is calculated as

�Y = argmin
Y

1

σ2
||Z − Y ||22 +

X

r

||Yr − �Yr||
2
2, (20)

�Yr = T
2D−1
r

³
�θr

´
.

Repeating this procedure we arrive to the recursive al-
gorithm

�Y (k) = argmin
Y

1

σ2
||Z − Y (k−1)||22 +

X

r

||Yr − �Y (k−1)r ||22,

(21)

�Y (k−1)r = T 2D−1
r

³
�θ
(k−1)
r

´
, k = 1, . . .

�θ
(k−1)
r = argmin

ϑr
||Y (k−1)r − T 2D−1

r (ϑr) ||
2
2 + λpen(ϑr),

(22)

The Þrst equation in (21) deÞnes the aggregation in this
algorithm and can be rewritten as the sample mean of
the windowed estimates �y(k−1)r (x) [27]:

�y(k)(x) =
zr(x)/σ

2 +
P
r �y

(k−1)
r (x)

1/σ2 +
P
r χXr (x)

, x ∈ X. (23)

The optimal estimator minimizing a global energy cri-
terion can be achieved as a limit of this recursive pro-
cedure. However, as it is discussed above, the sample
mean is not a good aggregation formula. It means that
the recursive energy minimization used for the windowed
estimates results in a procedure which can be improved.
Indeed, the good denoising results shown in [27] are

obtained mainly due to combining the recursive proce-
dure (23) with a �dictionary update� stage, leading to
the K-SVD algorithm [3]. The dictionary (i.e., the trans-
form) is deÞned as a result of minimization of the energy
E (18) with respect to Y , ϑr, complemented by opti-
mization with respect to the parameters of the trans-
form T 2D

r . This approach gives the optimal single scale
transform. A generalization of this idea for design of the
multiscale transforms is produced in [75], yielding a fur-
ther improvement in restoration quality. We wish to note
that, when the dictionary is learned from the given noisy
image, this stage may be treated as nonlocal, because
blocks at other locations can inßuence the dictionary
used at a particular location.
The Adaptive Principal Components algorithm by

Muresan and Parks [78] and Fields of Experts (FoE) al-
gorithm by Roth and Black [88], [89] are other successful
examples of this sort of methods using bases optimized
with respect to the given image or set of images at hand.
Hel-Or and Shaked [46] consider instead the opti-

mization of the shrinkage function for a given Þxed sim-
ple averaging of the windowed estimates.
The total least square (TLS) algorithm by Hirakawa

and Parks [47] also takes advantage of multiple multi-
point estimates. However, while in the above algorithms

Þltering is achieved by shrinkage in spectrum domain,
in TLS the image block is modeled as a linear combi-
nation of the neighboring overlapping blocks where per-
turbations are allowed in the blocks in order to make
the Þt possible. The window-wise estimates are then ob-
tained from the linear combination which allow a Þt with
minimal perturbations. Computationally the algorithm
is very demanding but it demonstrates a good perfor-
mance. This algorithm, though strictly a local one, has a
few features which might resemble a nonlocal multipoint
algorithm and we shall discuss some of these similarities
in Section 5.2.2.
As overcomplete estimation with multiple estimates

for each pixel demonstrates high efficiency, the aggrega-
tion of these estimates becomes a hot topic because of
two different reasons. The Þrst one is pragmatic, what is
the best way to aggregate, and the second one is princi-
pal, why the aggregation can be so efficient.
A ßow of publications on aggregation can be seen

in mathematical statistics (e.g., Birge [8], Bunea et al.
[14], Goldenshluger [42]). The problems studied in these
works are mainly concentrated on comparison and selec-
tion of the best estimator from a given set of estimators.
This setting is close to the classical model-selection prob-
lem. The principal difference of the effects we observe is
that the aggregation of the windowed estimates results
in an estimate which can be drastically better than any
of the windowed estimates.
In our opinion, this improvement follows from the

fact that the windowed estimates have different supports
and are adaptive with different estimation models. This
variety of the estimates is a main base of the potential
improvement for the aggregated estimate.
Recently, Elad and Yavneh [26] proposed to generate

a collection of multiple estimates by randomizing the Or-
thogonal Matching Pursuit (OMP) algorithm. Aggrega-
tion of these estimates demonstrates quite essential im-
provement of estimation. This is one of the mechanisms
how the estimates suitable for fusing can be generated.

3.4 Shape-adaptive transform domain Þltering

Here we highlight the overcomplete transform domain
Þltering developed by Foi et al. [37], [32] where the win-
dowing is adaptive. For each pixel in the image, we ob-
tain the adaptive neighborhood where the LPA model
Þts well to the data. These neighborhoods are similar to
the ones illustrated in Fig. 3. Using in this neighborhood
a shape-adaptive orthonormal transform and threshold-
ing we obtain the estimation which is both order and
neighborhood adaptive. What makes a difference versus
the pointwise estimation in Section 2.4.2 is that these es-
timates are calculated for all pixel included in the adap-
tive neighborhood. Thus, we arrive to the multiple esti-
mates where each of the estimates to be aggregated are
shape and order adaptive. Overall, the algorithm has a
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clear intention to obtain the best possible estimates us-
ing all tools discussed above.
The approach to estimation for a point x0 can be

roughly described as the following four stage procedure:
Stage I (spatial adaptation): For every x ∈ X, deÞne a
neighborhood �U+x of x where a simple low-order polyno-
mial model Þts the data;
Stage II (order selection): apply some localized trans-
form (parametric series model) to the data on the set
�U+x , use thresholding operator (model-selection proce-
dure) in order to identify the signiÞcant (i.e. nonzero)
elements of the transform (and thus the order of the
parametric model).
Stage III (multipoint estimation): Calculate, by inverse-
transformation of the signiÞcant elements only, the cor-
responding estimates �y �U+

x
(v) of the signal for all v ∈ �U+x .

These �y �Ux are calculated for all x ∈ X.
Stage IV (aggregation): Let x0 ∈ X and Ix0 = {x ∈ X :
x0 ∈ �U+x } be the set of the centers of the neighborhoods
which have x0 as a common point. The Þnal estimate

�y(x0) is calculated as an aggregate of
n
�y �U+

x

¡
x0
¢o

x∈Ix0
.

The details of this algorithm as well as its study can
be found in Foi et al. [37], [32]. ModiÞcations of this al-
gorithm have been produced for different imaging prob-
lems including deblurring, deringing and deblocking. All
these algorithm show a very good performance among
the best within the class of local estimators [66], [108],
[37]. Illustrations of these results can be seen in Section
6.

3.5 Local estimation in spectral domain

The shrinkage operators from Section 3.2 treat the spec-
tral coefficients as independent elements, essentially act-
ing as diagonal operators. However, many transforms en-
joy particular structures and correlations in their spec-
tra, which can be exploited to improve the effective-
ness of shrinkage. This is especially the case of wavelets,
for which the amplitude responses of neighboring coeffi-
cients are strongly correlated. In case of redundant ori-
ented multiscale transforms, such as the steerable pyra-
mid by Freeman and Adelson [38], [98] or the complex
wavelets by Kingsbury [65],[95], the spectral neighbor-
hood can be seen in space for the same orientation and
scale (i.e. for the same subband), or in orientation,for
the same scale and spatial position, or in scale, for the
same orientation and spatial position. For instance, let
{θs} be a set of multiscale spectra of the image Y . Then,
the local Þltering techniques could be applied to {θs}
and the image estimate is obtained after inverse of the
Þltered spectra {�θs}. This sort of methods are local de-
spite the fact that the Þltering algorithms are applied in
the spectrum domain.
One of the most successful developments in this area

is the Gaussian scale mixture (GSM) algorithm due Por-
tilla et al. [87]. The algorithm is based on the steerable

pyramid multiscale image representation. The key idea
of the approach is statistical modeling of the coefficients
within multiscale and oriented spectra. The localization
concerns the spectrum coefficients both at adjacent po-
sitions and at adjacent scales. The spectrum coefficients
included in the local neighborhood are considered as the
product of a Gaussian vector and a positive scalar mul-
tiplier. The latter deÞnes the local variance of the co-
efficients in the neighborhood, and thus models corre-
lations between the coefficient amplitude. The Gaussian
scale mixture is used as a distribution of the product of a
Gaussian vector and a random scalar multiplier. The de-
veloped estimator is obtained by the Bayesian technique
as a posterior mean where the Gaussian scale mixture
deÞnes a prior for the random scalar multiplier.
Hammond and Simoncelli [44] generalize this tech-

nique to the rotated neighborhoods. Then, the prior used
in the Bayesian estimator concerns both the random
scale and the direction, which is also assumed to be ran-
dom. In implementation of this technique the spectra
{θs} are windowed and the GSM processing is applied
for each patch (window). The highpass and lowpass spec-
trum components are treated differently.
What is important for our classiÞcation of the algo-

rithms is that the Þltered spectrum components are cal-
culated for entire patches. It means that the algorithm is
multipoint (not pointwise). It is noted in [44] that "one
could partition the transform domain into nonoverlap-
ping square patches, denoise them separately, then in-
vert the transform. However, doing this would introduce
block boundary artifacts in each subband. An alternative
approach, used is to apply the estimator to overlapping
patches and use only the center coefficient of each es-
timate. In this way each coefficient is estimated using
a generalized neighborhood centered on it." It is a way
how the aggregation of the multipoint estimates in the
Þnal one is solved (or avoided) in the GSM algorithms.

4 Nonlocal pointwise modeling

4.1 Nonlocal pointwise weighted means

Similar to (3), a nonlocal estimator can be derived as a
minimizer for

Ih,x0(C) =
X

s

wh(y
0− ys)[zs−C]2, y0 = y(x0), (24)

where the weights wh depend on the distance between
the signal values at the observation points ys and the
desirable point y0 = y(x0). Minimization of (24) gives
the weighted mean estimate in the form (neighborhood
Þlter [10]):

�yh(x
0) =

X

s

gh,s(y
0)zs, gh,s(x) =

wh(y
0 − ys)P

s wh(y
0 − ys)

.

(25)
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This estimator is local in the signal space y similar to
(2) while it can be nonlocal in x depending on the type
of the function y.
The ideal set of observations for the noiseless data is

the set
X∗ =

©
x : y(x) = y0 = y(x0)

ª
, (26)

where y(x) takes the value y0.
The estimate (25) is the weighted mean of the ob-

served zs and the only link with x0 goes through y0 =
y(x0). It is a principal difficulty of this estimate, as it
requires to know the accurate y0 and ys used in (25). In
other words, to calculate the estimate we need to know
the estimated signal.
There are a number of ways to deal with this prob-

lem. Some of them are discussed in what follows.

4.1.1 Weights deÞned by pointwise differences The sim-
plest and straightforward idea is replace ys be zs, then,

�yh(x
0) =

X

s

gh,s(z
0)zs, (27)

gh,s(z
0) =

wh(z
0 − zs)P

swh(z
0 − zs)

, z0 = z(x0).

As the observed zs are used instead of the true values ys
it results in a principal modiÞcation of the very mean-
ing of the estimate (25). Indeed, provided a given weight
gh,s, this estimate is linear with respect to the observa-
tions zs, while when we use ys = zs the estimate (27)
becomes nonlinear with respect to the observations and
the noise in these observations.

4.1.2 Weights deÞned by neighborhoodwise differences:
NL-means algorithm The weights in the formula (27)
are calculated as differences of individual noisy samples
z0 and zs. In practice, this can yield a quite different out-
come from the difference between the true signal samples
y0 and ys, assumed in (24).
The nonlocal means (NL-means) as they are intro-

duced by Buades et al. [10] are given in a different form
where these weights calculated over spatial neighbor-
hoods of the points x0 and xs. This neighborhoodwise
differences can be interpreted as a more reliable way to
estimate y0 − ys from the noisy samples alone. Then,
the nonlocal mean estimate is calculated in a pointwise
manner as the weighted mean with the weights deÞned
by the proximity measure between the image patches
used in the estimate. This estimation can be formalized
as minimization of the local criterion similar to (24)

Ih,x0(C) =
X

s

wh,s(x
0, xs)[zs − C]2, (28)

with, say, Gaussian weights (as in [10])

wh,s(x
0, xs) = e

−
!
v∈V (z(x0+v)−z(xs+v))

2

h2 (29)

deÞned by the Euclidean distance between the observa-
tions z in V -neighborhoods of the points x0 and xs, V
being a Þxed neighborhood of 0.
The nonlocal means estimate is calculated as

�yh(x
0) =

X

s

gh,s(x
0)zs, gh,s(x

0) =
wh,s(x

0, xs)P
swh,s(x

0, xs)
.

(30)
The detailed review of the nonlocal means estimates

with a number of generalizations and developments are
presented by Buades et al. [10],[13]. From the results
in [10], we wish to note the accuracy analysis of the
estimator (27) with respect to both signal y and the
noise. These asymptotic accuracy results are given for
h → 0 and exploited to prove that the nonlocal mean
estimates can be asymptotically optimal under a generic
statistical image modeling.
This sort of nonlocal estimates has been developed,

more or less in parallel, in a number of publications
with different motivation varying from computer vision
ideas to statistical nonparametric regression (see also,
e.g., Wei [113], Kervrann and Boulanger [61], [62], [63],
Buades et al. [13] and references therein). Extension of
the original approach including scale and rotation invari-
ance for the data patches used to deÞne the weights are
proposed in Lou et al. [73] and Zimmer et al. [120].

4.1.3 Recursive reweighting The next natural idea is to
use for the weights gh,s preprocessed observations �zs, say,
preÞltered by a procedure independent of (27):

�yh(x
0) =

X

s

gh,s(�z
0)zs, (31)

gh,s(�z
0) =

wh(�z
0 − �zs)P

swh(�z
0 − �zs)

.

For the preÞltering we can exploit the same nonlocal av-
erage (27) �zs = �yh(xs). Then the algorithm becomes re-
cursive with successive use of the estimates for the weight
recalculation:

�y
(k+1)
h (x0) =

X

s

gh,s(�y
(k)
h (x0))zs, x0 ∈ X, (32)

gh,s(y
(k)
h (x0)) =

wh(�y
(k)
h (x0)− �y(k)h (xs))

P
swh(�y

(k)
h (x0)− �y(k)h (xs))

.

If the algorithm converges, the limit recursive estimate
�yh is a solution of the set of the nonlinear equations

�yh(x
0) =

X

s

gh,s(�yh(x
0))zs, x0 ∈ X, (33)

gh,s(�yh(x
0)) =

wh(�yh(x
0)− �yh(xs))P

s wh(�yh(x
0)− �yh(xs))

.

These estimates can be very different from (31), which
can be treated as a Þrst step of the recursive procedure
(32). We do not know results concerning the study of
these estimates for the Þltering of z which are recursive
on �y(k)h . However, recursive equations of a similar style
are considered by the methods referred in Section 4.3.
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4.1.4 Adaptive weights A different type of the algorithms
called Adaptive Weights Smoothing (AWS) is developed
by Polzehl and Spokoiny [84], [86]. The main idea of
AWS is to describe in a data-driven way a maximal lo-
cal neighborhood of every point in which the local para-
metric assumption is justiÞed by the data. The method
is based on a successive increase of local neighborhoods
around every point and a description of the local model
within such neighborhoods by assigning weights that de-
pend on the result of the previous step of the procedure.
By expanding the local neighborhoods up to covering the
whole image domain, we arrive to an adaptive nonlocal
means Þlter.
The numerical results [86] demonstrate that the AWS

method is very efficient in situations where the under-
lying regression function allows a piecewise constant or
piecewise smooth approximation with large homogeneous
regions. The procedure is particularly successful in pre-
serving contrast and edges, achieving optimal noise re-
duction inside large homogeneous regions.

4.1.5 Weights averaging: Bayesian approach There is
an alternative idea how to deal with the dependence of
the weights wh on the unknown signal y. Let us use the
Bayesian rationale and replace the local criterion (24)
by an a-posteriori conditional mean calculated provided
that the given observations are Þxed:

�Ih,x0(C) = Ey{Ih,x0(C)|zs, s = 1, . . . , N}. (34)

Assume for simplicity that we consider the scalar
case, d = 1, then ys are random and independent with
the prior pdf p0(ys), then the conditional pdf of ys pro-
vided a given zs is calculated according to the Bayes
formula:

p(ys|zs) =
p(zs|ys)p0(ys)R
p(zs|ys)p0(ys)dys

.

For the Gaussian observations model zs = N (ys, σ2) and
p0(ys) = const., it gives

p(ys|zs) ∝ p(zs|ys) =
1√
2πσ

e−
(zs−ys)

2

2σ2 .

Thus, (34) is easily calculated as

�Ih,x0(C) =
X

s

Z Z
p(y0|z0)p(ys|zs)wh(y

0 − ys)[zs − C]2dysdy0 =

=
X

s

�wh(z
0 − zs)[zs − C]2

In particular, for the Gaussian windowwh(y) =
1√
2πh
e−

y2

2h2 ,
tedious calculations show that

�wh(z) ∝ e
− z2

2(h2+2σ2) ,

where the proportionality factor depends on h and σ but
not on z.
Provided a change of the parameter h in the weight

function wh for
√
h2 + 2σ2, we have �wh(z) ∝ wh(z),

which makes this weight function legitimate for the use
with noisy data zs instead of unknown ys. The larger
value of h, coming from the change of parameter, means
a larger window size and stronger smoothing, in some
sense equivalent to data preÞltering.

4.2 Nonlocal pointwise higher-order models

Use of the higher-order LPA in the local estimates is well
known and well studied area (e.g., [57]). In particular,
for the Þrst-order estimate we have the criterion and the
estimate in the form

Ih,x0(C0, C1) =
X

s

wh(x
0 − xs)[zs − C0 − C1(x0 − xs)]2,

(35)

�yh(x
0) = �C0, ( �C0, �C1) = argmin

C0,C1

Ih,x0(C0, C1),

where the weights are deÞned as in (2). Recall that �C1
in (35) is an estimate of the derivative ∂y(x0)/∂x.
Let us try to use this Þrst-order LPA model in the

context of the nonlocal means (24) and combine the
weights depending on the distance between the signal
values from (24) with the linear on x Þt for the observed
zs from (35). Then the nonlocal criterion is of the form

Ih,x0(C0, C1) =
X

s

wh(y
0 − ys)[zs − C0 − C1(x− xs)]2,

(36)

y0 = y(x0).

Again �C1 is an estimate of the derivative ∂y(x0)/∂x.
Accordingly to the used windowing the ideal neighbor-
hood X∗ is deÞned as in (26), i.e. it is a set of x where
y(x) = y0. However, the derivative ∂y/∂x can be differ-
ent for the points in this X∗ and then the linear model
C0 + C1(x − xs) does not Þt y(x) for all x ∈ X∗. Fig-
ure 4 illustrates a possible situation, where the set X∗

includes all y(x) = y but the derivatives in this points
have different signs.
The ideal neighborhood should be different from (26)

and include both the signal and derivative values

X∗ =

½
x : y(x) = y(x0),

∂y(x)

∂x
=
∂y(x0)

∂x

¾
. (37)

It follows from this consideration that, for the class
of the nonlocal estimators, the windowing function wh
should correspond to the model used in estimation and
actually incorporate this model. For the linear model it
can be done selecting the window function deÞning the
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Fig. 4 Local versus nonlocal supports for zero- and Þrst-order polynomial Þtting: local (2) III; nonlocal zero-order model
(36) I∪II; nonlocal Þrst-order model (37)-(38) I.

distance in both the signal and signal derivative values.
In particular as follows

Ih,x0(C0, C1) =
X

s

wh1(y
0 − ys)wh2

³
∂y(x0)
∂x

− ∂y(xs)
∂x

´
×

(38)

× [zs − C0 − C1(x− xs)]2.

In implementation of this estimation, the unknown
ys and ∂y(xs)/∂x could be replaced by the correspond-
ing estimates obtained from LPA or by independent es-
timates as it is discussed in the previous section.
Figure 4 illustrates the differences between the neigh-

borhoods used for estimation in the case of the local
pointwise model (2) and the nonlocal zero and Þrst or-
der models. The area III shows the local neighborhood
for the local pointwise estimate deÞned by the window
width parameter h. For the nonlocal zero-order model-
ing (36), the neighborhood is deÞned as a set of x values
where |y − y0| ≤ ∆. In the Þgure this area is a deÞned
as the union of all the subareas I and II. However, if
the Þrst order model is used for the nonlocal modeling
according to (37)-(38) at least the sign of the derivative
∂y/∂x should also be taken in consideration. Thus, if we
say that for the desired neighborhoods ∂y

¡
x0
¢
/∂x > 0,

the estimation neighborhood is the union of the subareas
I. In this sense, the nonlocal zero-order model does not
distinguish between the subareas I and II.
It has been observed that the nonlocal pointwise means,

in particular of the form (24)-(25) can create large ßat
zones and spurious contours inside smooth regions, i.e.
the so-called �staircasing� or �shock� effects. In order
to repair and avoid these undesirable effects, the nonlo-
cal polynomial models of the Þrst and higher orders have
been proposed by Buades, Coll, and Morel [11], [12]. Sim-
ilar higher-order nonlocal algorithm has been reported in
Chatterjee and Milanfar [16], where the polynomial ap-
proximations up to second order are used. The nonlocal
polynomials models used in these papers are similar to
(36), where standard weights depending only on the sig-
nal values (and not on the derivatives) are used. Thus,
the polynomial modeling is not included in the window
function as it is in (38).

Here we wish to note the work by Alexander et al.
[4], where different models of self-similarity in images
are studied, with particular emphasis on affine (i.e. Þrst
order) similarity between blocks.
It is interesting that, under some assumptions, the

nonlocal estimates can behave similar to the Perona-
Malik diffusion. It is proved by Buades, Coll, and Morel
[11], [12] for the estimate (25) where the window wh is
truncated Gaussian. This equivalence has a place pro-
vided that the width of the truncated Gaussian window
and its standard deviation h are small and have the same
order of magnitude.
While in the above text we considered only polyno-

mial expansions, of course, the higher-order modeling is
not restricted to polynomials. The more general case us-
ing transforms is illustrated directly in the forthcoming
Section 5 for nonlocal multipoint modeling.

4.3 Variational formulations

The variational methods can be treated as local or non-
local depending on whether a local or nonlocal penalty
pen(y) is used in (7). The regularization involving only
the signal and its derivatives evaluated at the same point
results in Euler-Lagrange differential equations and def-
initely means the local type estimator.
Recently, a novel class of the variational methods in-

volving nonlocal penalty terms has been proposed (see
Kindermann et al. [64], Gilboa and Osher [40], [39], Lou
et al. [73], [74], Elmoataz et al. [28] and references therein).
If the Euler-Lagrange equations are used for these meth-
ods they have a form of difference-integral equations.
These new nonlocal methods are essentially motivated
by the concept of the nonlocal means, used to deÞne
nonlocal differential operators.
One of the interesting results obtained in Kinder-

mann et al. [64] is a derivation of the nonlocal means al-
gorithms from a variational formulation. Let the penalty
in (7) be of the form

pen(y) =

Z
g

Ã
|y (x)− y (v)|2

h2

!

w(|x− v|)dxdv, (39)
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w > 0 is a window function, and g is a differentiable
function. Minimization of (39) on y gives the equation

y(x) =
1

C(x)

Z
g0
³
|y(x)−y(v)|2

h2

´
y(v)w(|x− v|)dv, (40)

C(x) =

Z
g0
³
|y(x)−y(v)|2

h2

´
w(|x− v|)dv.

In particular, for g = 1− exp(−x), it gives

g0
µ
|y(x)− y(v)|2

h2

¶
= exp

µ
− |y(x)− y(v)|

2

h2

¶
.

Equation (40) can be solved using the iterations

�y(k+1)(x) =

=
1

C(x)

Z
g0
³
|�y(k)(x)−�y(k)(v)|2

h2

´
�y(k)(v)w(|x− v|)du.

(41)

The Þrst iteration of this algorithm with �y(0) = z
can be interpreted as an integral version of the nonlocal
means estimate (27) provided that the factor w(|x− v|)
is constant. In this case, the corresponding estimator is
nonlocal according to the deÞnition given in this paper.
It is interesting to note also that these iterations look

similar to the recursive procedure (32). Actually, the it-
erations (41) deal with the same problem of how to cal-
culate weights depending on the unknown signal y.
Let us go back to the formulation (7). Using (39)-

(40), we arrive to the equation derived in [64] and in-
cluding the observations z

y(x) =

=
1

C(x)

µ
λz +

Z
g0
³
|y(x)−y(v)|2

h2

´
y(v)w(|x− v|)dv

¶
.

(42)

On a similar line, we wish to mention the works by
Tschumperlé and Brun [106,107], where a mapping of
the image into a high-dimensional space of patches is
used in order to apply conventional regularization oper-
ators (e.g., Tikhonov regularization) in a nonlocal way.

5 Nonlocal multipoint modeling

In this section we consider nonlocal estimates different
from the ones discussed in Section 4.1 Þrst of all by use
of the transforms enabling the adaptive high-order ap-
proximations of the windowed data. As in Section 3.1,
we consider the signal Yj and observation Zj blocks cor-
responding to a given windowing. The transforms are
deÞned and calculated for these blocks. Furthermore, it
is assumed that there is a similarity between some of
these blocks. As a measure of this similarity we use the
Euclidean norm ||Yj − Yr||22. The distance between the
blocks is deÞned by the window functions wh depending

Fig. 5 A simple example of grouping in an artiÞcial image,
where for each reference block (with thick borders) there exist
perfectly similar ones.

on the norms ||Yj −Yr||22. For instance, for the Gaussian
window the distance between the blocks j and r is cal-
culated similar to (29) as

wh(j, r) = exp(−||Yj − Yr||22/h2). (43)

Another principal difference versus Section 4.1 is that
the estimates are not pointwise but multipoint, calcu-
lated for all points in the block. In this way we arrive
to a set of estimates for each pixel and necessity to fuse
them into the Þnal estimate by a special aggregation
procedure.

5.1 Single-model approach

Motivated by the pointwise nonlocal mean (24), we in-
troduce a nonlocal multipoint estimator by the criterion

IYr(ϑ)=
X

j

wh(j, r)
°°Zj − T 2D−1(ϑ)

°°2
2
+ (44)

+ λpen(ϑ),

wh(j, r)=wh

³
kYj − Yrk22

´
.

Here, instead of y0, used in (24), we use the so-called
reference-block Yr. The estimation is intended to be for
the pixels of this reference block only. The wh is a weight
function deÞning the correspondence of the block Yj
to the reference-block Yr, ||Zj − T 2D−1 (ϑ) ||22 measures
the discrepancy between the observed Zj and the model
of the reference block T 2D−1 (ϑ), expressed through the
spectrum parameters ϑ. The penalty term λpen(ϑ) con-
trols the complexity of the reference block model (e.g.,
the smoothness of the estimate).
The term single-model means that in (44) the same

model T 2D−1 (ϑ) is exploited to Þt all blocks Zj .
For an orthonormal transform, (44) can be presented

in spectral variables only as

IYr(ϑ) =
X

j

wh(j, r)||�θj − ϑ||22 + λpen(ϑ), (45)

wh(j, r) = wh(||θj − θr||22).
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Fig. 6 Illustration of grouping blocks from noisy natural images corrupted by white Gaussian noise with standard deviation
15 and zero mean. Each fragment shows a reference block marked with �R�and a few of the blocks grouped with it.

Here and in what follows, it is essential that a common
transform operator is applied to all blocks in the group,
i.e. the same transform T 2D is used for r and for all j. We
resort to orthonormal transforms mainly to simplify the
formulation. However, the approach can be easily gener-
alized to non-orthogonal transforms, either biorthogonal
or redundant ones.
In practice, for calculation of the weights wh(||Yj −

Yr||22)|| we replace the unknown ||Yj − Yr||22 by the ob-
served ||Zj − Zr||22. Then wh(j, r) = wh(||�θj − �θr||22),
where �θj = T 2D (Zj), �θr = T 2D (Zr) are noisy spectra,
or use instead of Yj and Yr a preÞltered version of the
observed Zj and Zr. Let us assume that the weights
wh(j, r) are given.
It can be veriÞed that (45) can be rewritten as

IYr(ϑ) =
X

j

wh(j, r)||θ̄r−ϑ||22+λpen(ϑ)+const, (46)

where
θ̄r =

X

j

wh(j, r)�θj/
X

j

wh(j, r), (47)

is the weighted mean of the blocks� spectra and const is
independent of ϑ. Then the minimization of IYr(ϑ) and
estimation for the reference block becomes

�ϑ = argmin
ϑ
||θ̄r − ϑ||22 + λr pen(ϑ), (48)

�Yr = T 2D−1
³
�ϑ
´
. (49)

where λr = λ/
P
j wh(j, r).

If the penalty is additive with respect to the compo-
nents of ϑ, minimization in (48) is reduced to the scalar
one and using (14) the results can be given in the form

�ϑ = argmin
ϑ
||θ̄r − ϑ||22 + λr pen(ϑ) = ρ(θ̄r, λr). (50)

Thus, the estimation of �ϑ is a two-step procedure.
First, calculation of the weighted mean (47) and, sec-
ond, thresholding (50). After that, the estimate �Yr is
calculated according to formula (49).
In practice, only the blocks with larger weights wh(j, r)

are included in calculations of the weighted mean (47).
A set of blocks selected for estimation is called a group
corresponding to the reference block Yr. Usually this se-
lection is deÞned by

K∆
r = {j : ||Yj − Yr||22 ≤ ∆}, (51)

where K∆
r is the set of indexes of the blocks in the group

and ∆ > 0 is a threshold parameter. Figures 5 and 6
illustrate the concept of grouping.
The mean (47) can be given in the form

θ̄r =
X

j∈K∆
r

wh(j, r)�θj/
X

j∈K∆
r

wh(j, r). (52)

The aim of this grouping is a joint processing of the win-
dowed data in the group. Once θ̄r is found, the thresh-
olding is performed according to (50) with

λr = λ/
X

j∈K∆
r

wh(j, r).

In principle, one can incorporate the grouping (51)
in the deÞnition of the window function wh (replacing
wh with its product against the indicator window func-
tion χ

[0,∆]

¡
||Yj − Yr||22

¢
). However, in practice, a binary

indicator is often used instead of the window function,
deÞned as follows:

wh(||Yj − Yr||22) = χ[0,∆]

¡
||Yj − Yr||22

¢
. (53)

In this case, (52) simpliÞes to

θ̄r =
1

#(K∆
r )

X

j∈K∆
r

�θj , λr = λ/#(K
∆
r ), (54)
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where #(K∆
r ) is the cardinality of the set K

∆
r for the

reference block Yr.
The Þnal estimate of the signal is obtained from the

reference estimates θ̄r according to the aggregation for-
mula (17).
Different versions of the considered approach can be

developed. First, various estimates of unknown Yj and
Yr can be used in the block�s weighting/grouping rule;
second, different metrics for comparison of this estimates
and the weights wh(||Yj−Yr||22) in the estimates. Finally,
various forms of shrinkage can be applied to the block-
wise estimates �θr before and after averaging in (54).
We wish to note that already in [10], a blockwise

version of nonlocal means (vectorial NL-means) are sug-
gested. However, it is done only for original spatial do-
main data without Þltering in the spectrum domain en-
abled in the above estimation using penalization.
In general, the described approach corresponds to

what we may call a single (parametric) model approach,
because for each group of blocks a unique parametric
model (in the form T 2D−1 (ϑ) in (44)) is used, where the
parameter ϑ is taking values that will Þt for all grouped
blocks. It results in a speciÞc use of this blockwise esti-
mates in the group where they are combined as a sample
mean or as a weighted mean estimates similar to (54).
As it is already mentioned in the previous subsection,

the weighted means in the form (17) allows signiÞcantly
improve the multipoint estimate, in particular using the
inverse variances of the estimates as the weights.

5.2 Multiple-model approach: collaborative Þltering

In this section we introduce the nonlocal multiple-model
estimation where individual (parametric) models are used
for each block in the group. We use the same T 2D -basis
functions for all blocks, which makes reasonable a com-
parison of the corresponding block-spectra.
In the single-model approach (44), for each block,

the observed Zj are Þtted by T 2D−1 (ϑ), where ϑ is the
same for all j. Let us now assume that, in this Þtting, ϑ
can take different values ϑj for different Zj selected for
a given reference block Zr. Then, the criterion (45) is
changed and we arrive to the following multiple-model
one:

IYr({ϑj}j) = (55)

=




X

j

wh(j, r)||Zj − T 2D−1 (ϑj) ||
2
2



+ λpen
³
{ϑj}j

´
.

Here pen
¡
{ϑj}r

¢
means that the penalty is imposed on

all spectra ϑj used for the reference block r. In the trans-
form domain it gives

IYr({ϑj}j) =




X

j

wh(j, r)||�θj − ϑj ||22



+λpen
³
{ϑj}j

´
.

(56)

where �θj = T 2D (Zj).
Only the blocks with the largest weights wh(j, r) are

included in calculations of the criterion (56). Again, we
use the term group to indicate this set of blocks. As in
(51), K∆

r denotes the set of indexes of the blocks in the
group corresponding to the rth reference block.
We have

IYr({ϑj}j) =

=




X

j∈K∆
r

wh(j, r)||�θj − ϑj ||22



+ λpen
³
{ϑj}j∈K∆

r

´
.

(57)

Here, if the penalty term is additive with respect to j, the
minimization of IYr is trivialized and the very meaning
of the group is lost, because the solution is obtained
by minimizing independently for each j. As a matter
of fact, once a multiple-model group is assembled, it is
the penalty term that should establish the interaction
between different members of the group. We propose a
special ßexible way in order to install this interaction
and call it collaborative Þltering.

5.2.1 Collaborative Þltering For transparency, let us sim-
plify again the weights w to an indicator of the form (53).
In this way, the criterion (57) takes the form

IYr({ϑj}j) =




X

j∈K∆
r

||�θj − ϑj ||22



+λpen
³
{ϑj}j∈K∆

r

´
.

(58)
Let us consider �Θr = {�θj}j∈K∆

r
be the set of T 2D -

spectra in the group, which is treated as 3-D array, where
j is the index used for the third dimension. Apply a 1-
D orthonormal transform T 1D with respect to j. In this
way we arrive to a groupwise 3-D spectrum of the group
as

�Ωr = T 1D ( �Θr). (59)

Consistent with this representation, we replace the penalty

pen
³
{ϑj}j∈K∆

r

´
with an equivalent penalty pen(Ω), where

Ω = T 1D ({ϑj}j∈K∆
r
) is the corresponding 3-D spectrum

obtained by applying the 1-D transform T 1D on the col-
lection of 2-D spectra {ϑj}j∈K∆

r
. We denote the 3-D

transform obtained by the composition of T 1D and T 2D

as T 3D .
We use this 3-D spectrum representation as a special

model of data collected in this group, with the penalty
pen(Ω) deÞning the complexity of the data in the group:

IYr (Ω) = || �Ωr −Ω||22 + λpen(Ω).
Then, the estimation of the true Ωr is deÞned as

�Ωr = argmin
Ω

³
|| �Ωr −Ω||22 + λpen(Ω)

´
, (60)

�Θr = {�θr,j}j∈K∆
r
= T 1D−1

³
�Ωr

´
,

�Yr,j = T 2D−1
³
�θr,j

´
. (61)
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Again, if the penalty pen(Ω) is additive with respect
to the components of Ω, the minimization in (60) is
scalar and independent for each element of Ω; thus, it
can be solved by thresholding of �Ωr. The consecutive
T 1D−1 and T 2D−1 inverse transforms return Þrst the es-
timates �Θr = {�θr,j}j∈K∆

r
of T 2D -spectra of the blocks

in the group, and hence the multipoint estimates �Yr,j of
these blocks. Because these estimates can be different in
different groups, we use the double indexes for the signal
estimates �Yr,j , where j stays for the index of the block
and r for the group where these estimates are obtained.
Let us summarize speciÞc features of the multiple

modeling used in this section versus the single-model
approach.
First, the Þltering (thresholding) in the spectrum do-

main gives individual estimates for each block in the
group. Note that in the single-model group of the previ-
ous section a unique estimate is calculated and used for
the reference-block only.
Second, an essential difference exists in how the data

in the group are processed. The sample mean or weighted
mean estimate (54) treats the data in the group as rel-
evant (reliable) to the signal estimated for the reference
block only. Contrary to it, the multiple-model approach
produces individual estimates for all participants of the
group (collaborative Þltering), where the joint spectrum
in �Ωr is exploited in order to improve the estimates for
each of the blocks in the group. Thus, we obtain a more
ßexible technique where, say, an erroneously included
block is not able to damage seriously the estimates of
other blocks and itself could not be damaged by data
from other blocks.
As a result of the groupwise estimation, we obtain

multiple estimates for each x in X and the Þnal sig-
nal estimate is calculated by fusing these blockwise es-
timates in a single Þnal one. The main formula used for
this aggregation is the weighted mean (17).

5.2.2 Implementation: BM3D algorithm Assuming the
indicator window function (53), the multiple model ap-
proach is implemented as the Block-Matching and 3-D
Filtering (BM3D) algorithm by Dabov et al. [19]. In this
case, the weights wh(j, r) are the same for the all blocks
in the group.
The algorithm has the following main steps:

� Grouping : for a given reference blockXr similar blocks
Xj are selected and arranged in 3-D arrays. The idea
of the grouping is illustrated in Figure 5 where the
perfectly identical blocks are collected in the cor-
responding 3-D arrays/groups. For noisy data this
grouping makes the element-wise averaging (i.e. av-
eraging between pixels at the same relative positions)
an optimal estimator. In this way, we achieve an ac-
curacy that cannot be obtained by processing the
separate blocks independently. If non-identical frag-
ments are collected within the same group, averaging

is no longer optimal. Therefore, a Þltering strategy
more effective than averaging should be employed.
The grouping for real data is demonstrated in Fig 6.

� 3-D collaborative Þltering in the spectrum domain: 3-
D spectrum (59) is calculated for the grouped data;
this spectrum is thresholded (Þltered) according to
(60); the Þltered 3-D spectrum is inverted to the 3-D
signal estimate (61) and the 2-D block-wise estimates
�Yr,j are returned to the original places of these blocks;

� Aggregation: the Þnal estimates are calculated as the
weighted means over all block-wise estimates over-
lapping at the point x

�y(x) =

P
r

P
j µr,j

�Yr,j(x)χXjP
r

P
j µr,jχXj

, x ∈ X, (62)

where the weights µr,j are calculated as the inverse

variances of the estimates �Yr,j(x).

Also this algorithm exploits two similar stages for
3-D spectrum Þltering, one based on hard-thresholding,
as it is deÞned by (60), and another using the empiri-
cal Wiener Þltering instead of hard-thresholding. Dur-
ing the second stage, the estimate �y from the Þrst stage
is exploited also to improve the accuracy of the block-
matching. Details of the algorithm is documented in
Dabov et al. [19] and Matlab codes of the algorithm
are available online1 . In particular, in [19] we discuss
and analyze the impact of the choice of the T 2D and
T 1D transforms to the effectiveness of the algorithm. It
turns out that the algorithm is rather insensitive to this
choice, as long as T 1D includes a constant basis function
(i.e. it provides what is called a DC term). The strength
of BM3D is largely conÞrmed by numerous experiments
[19], [108], [66].

The collaborative Þltering is a key element of the
multiple-model approach overall. In the group similar
blocks are collected. This similarity means that the group-
array allows a quite sparse representation in the spec-
trum domain and this high-sparsity means that only few
spectrum elements can be taken as active non-zero. The
sparsity in 3-D spectrum domain is much higher than it
can be achieved for 2-D block-wise spectra. It enables
a much stronger noise attenuation using group spectra
compared with what could be achieved using 2-D block-
wise spectra.
Figure 7 illustrates distributions of the active ele-

ments in 3-D and 2-D spectra after the hard-thresholding
of the 3-D spectrum: after shrinkage there remain only
few nonzero coefficients in the 3-D spectrum. This spar-
sity is due both to decorrelation within each grouped
block operated by the T 2D (intra-block decorrelation)
and to decorrelation across the corresponding spectral
components of the block operated by the T 1D (inter-
block decorrelation). After applying the T 2D−1 inverse

1 http://www.cs.tut.Þ/~foi/GCF-BM3D/



18 Vladimir Katkovnik et al.

Fig. 7 Illustration of the sparsity in collaborative hard-
thresholding. After shrinkage, the remaining coefficients are
mostly concentrated around the DC term of the T 3D -
spectrum, which is located at the upper-left corner in the
top layer of the T 3D -spectrum. However, few other coeffi-
cients representing the inter-block differences are also present
in the lower layers of this spectrum. The inversion of T 3D can
be computed either by inverting Þrst T 2D and then T 1D , or
vice versa. If we consider the stack with the T 1D -spectra, we
notice that these are all typically nonzero (since they can
be identically zero only when the corresponding layer in the
T 3D -spectrum has no nonzero coefficients after shrinkage) but
they are nevertheless T 2D -sparse (since they are produced by
the few coefficients found in the corresponding layer in the
T 3D -spectrum). Each block estimate in the image domain is
obtained as a linear combination of the layers in the stack
of the T 1D -spectra. These block estimates are typically not
T 2D -sparse (since they can be T 2D -sparse only when the cor-
responding layer in the stack of the T 2D -spectra has very few
nonzero coefficients).

transform, we obtain a number of intermediate block
estimates (the red stack at the top-right of the Þgure).
Each of these is obviously T 2D -sparse. The blockwise esti-
mates (the purple stack at the bottom-right of the Þgure)
are obtained by applying the T 1D−1 inverse transform on
the intermediate block estimates. As a matter of fact,
each one of the blockwise estimates is calculated as a
linear combination of the intermediate estimates, where
the coefficients of the linear combination are simply the
coefficients of one of the T 1D basis elements. Note that
the blockwise estimates are not necessarily T 2D -sparse,
as it is illustrated in the Þgure. In a very broad sense,
the success of BM3D algorithm supports the idea that
in multipoint image estimation a weighted average of a
few sparse estimates is better than single sparse estimate
alone. This issue, but for different type of the algorithm,
is discussed by Elad and Yavneh [26].

In the single-model algorithm we have a penalty that
enforces sparsity on a single estimate, whereas in the
multiple-model the sparsity is enforced for the group as
a whole but not on the individual blockwise estimates,
which are instead a linear combination of intermediate
blockwise estimates that are sparse.
On this point, it is also interesting to return to the

TLS algorithm by Hirakawa and Parks [47]. This algo-
rithm builds a group by taking neighboring overlapping
blocks to a given reference one. The idea is that the
reference block can be seen as a linear combination of
the grouped blocks. This Þtting is formalized using TLS,
which is based on the assumption that all blocks in the
group can be treated as perturbed by some noise. It is
known that TLS allows to minimize the norm of this
perturbation and this yields an estimate for the refer-
ence block. The authors generalize this approach to the
case when the grouped blocks are used for Þtting a few
of them treated as a set of reference blocks. It might
seem that in this way a joint groupwise processing is
achieved, similar to some extent to the presented collab-
orative Þltering. However, this similarity is quite super-
Þcial and even misleading. Firstly, while TLS produces
these estimates for only a few blocks in the group, the
collaborative Þltering gives the estimates for all blocks.
In particular, collaborative Þltering works in a symmet-
rical fashion, i.e. all blocks are treated as equal part-
ners in the collaborative Þltering, whereas in TLS there
a big deal of difference between the Þtted blocks and
observation blocks. In TLS the Þltering follows by Þt-
ting each reference block using a single coefficient for
each of the observation blocks. Contrary to it, the col-
laborative Þltering is enabled by the spectral represen-
tation of the group in 3-D space. TLS cannot exploit the
sparsity of the transform domain representation and its
noise suppression ability is thus very limited. In the col-
laborative Þltering framework, this would correspond to
naively shrinking all 2-D spectrum coefficients on a layer
of the 3-D spectrum using exactly the same constant.

In the light of what discussed in the preceding sec-
tions, the estimation quality of BM3D can be improved
by introducing additional adaptivity in the algorithm.

5.2.3 BM3D algorithm with adaptive-shape neighborhoods
The existence of mutually-similar patches is, as illus-
trated in Figure 6, a characteristic feature of natural
images. Due to this, the above BM3D algorithm can
generally achieve an excellent denoising accuracy. How-
ever, the assumption that the block should be square is
very artiÞcial. By replacing Þxed-size block transforms
with adaptive-shape transforms, we can obtain a more
ßexible tool with a potential for better denoising per-
formance. This is done by Dabov et al. [20]. The algo-
rithms uses grouping of adaptive-shape neighborhoods
whose surrounding square supersets have been found
similar by a block-matching procedure. The data deÞned
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on these grouped neighborhoods is stacked together, re-
sulting in 3-D structures which are generalized cylinders
with adaptive-shape cross sections. Because of the simi-
larity, which follows from the matching, and because of
the adaptive selection of the shape of the neighborhoods,
these 3-D groups are characterized by a high correla-
tion along all the three dimensions. A 3-D decorrelating
transform is computed as a separable composition of the
Shape-Adaptive DCT (SA-DCT) and a 1-D orthonor-
mal transform, and subsequently attenuate the noise by
spectrum shrinkage with hard-thresholding orWiener Þl-
tering. Inversion of the 3-D transform produces individ-
ual estimates for all grouped neighborhoods. These esti-
mates are returned to their original locations according
to the very idea of the collaborative Þltering, and aggre-
gated with other estimates coming from different groups.
Overall, this method generalizes two existing tools: the
BM3D Þlter, which uses grouping of Þxed-size square
blocks, and the pointwise SA-DCT Þlter (Section 3.4),
which exploits shrinkage on the adaptive-shape supports.
It is shown in [20] that the developed method inherits
the strengths of both Þlters, resulting in a very effective
and ßexible tool for image denoising.

5.2.4 BM3D algorithm with shape-adaptive PCA A pro-
per selection of the transform is crucial element for en-
suring the success of the transform-based methods. This
problem, known under different names as best basis, dic-
tionary, or prior selection, has been a subject of inten-
sive study from the very beginning of the development
and application of estimation/approximation methods.
In particular, the use of bases adaptive to the data at
hand is of special interest. As a general reference to the
problem, we wish to mention such popular techniques
as Basis Pursuit [76], Matching Pursuit and Orthogo-
nal Matching Pursuit [76], Principal Component Analy-
sis (PCA) [51], and Independent Component Analysis
(ICA) [50]. From recent developments we wish to note
the techniques close to the problems discussed in this
paper such as Fields of Experts [88], [89] and K-SVD
algorithms for single [3] and multiscale [75] sparse repre-
sentations, where special sets of image or images patches
are used for the basis selection.

Curiously, it is shown in [19] that BM3D is compara-
tively insensitive to the basis (transform) selection. How-
ever, this conclusion concerns the selection of a priori
Þxed bases.

The latest version of BM3D algorithm incorporat-
ing a shape-adaptive PCA as part of the 3-D transform
is proposed by Dabov et al. [21]. For a 3-D group of
adaptive-shape image patches, a shape-adaptive PCA
basis is obtained by eigenvalue decomposition of an em-
pirical second-moment matrix computed from these patches.
Hence, the overall 3-D transform is a separable compo-
sition of the PCA (applied on each image patch) and a
Þxed orthogonal 1-D transform in the third dimension.

The use of a data-driven adaptive transform for the
collaborative Þltering results in a further improvement of
the denoising performance, especially in preserving im-
age details and introducing very few artifacts [21]. To the
best of our knowledge, this new algorithm is currently
achieving the highest denoising quality to date.

6 Experimental comparison

To complement the mostly theoretical discussions of the
previous sections, we provide here an experimental com-
parison of some of the cited techniques. In particular,
we consider the BM3D Þlter by Dabov et al. [19] and
its modiÞcations with shape-adaptive DCT (SA-BM3D)
[20] and shape-adaptive PCA (BM3D-SAPCA) [21], the
SA-DCT Þlter by Foi et al. [37], the K-SVD algorithm by
Aharon and Elad [3] and its multiscale extension (MS-
K-SVD) by Mairal et al. [75] , the TLS algorithm by
Hirakawa and Parks [47], the BLS-GSM algorithm by
Portilla et al. [87] and its orientation-adaptive exten-
sion (OAGSM-NC) by Hammond and Simoncelli [44],
the NL-means by Buades et al. [10], the Fields of Experts
(FoE) Þlter by Roth and Black [88], [89], the Structure
Adaptive Filter (SAFIR) by Kervrann and Boulanger
[61], and the Anisotropic LPA-ICI by Katkovnik et al.
[55] and its recursive implementation by Foi et al. [33].
The algorithms2 are applied on a set of 10 different

test images corrupted by additive white Gaussian noise3

with standard deviations σ = 5, 15, 20, 25, 35 (thus a
total of 50 noisy images). The comparison is made in
terms of both PSNR and mean structural similarity in-
dex map (MSSIM) [111] and is presented in Figures 8
and 9 and in Tables 2 and 3. We can see that the BM3D-
SAPCA overcomes the other methods, typically achiev-
ing a PSNR about 0.2 dB higher than that of BM3D, SA-
BM3D, or MS-K-SVD. The latter three achieve roughly
the same results and are followed by the SA-DCT Þlter
and K-SVD, which are performing slightly better than
the GSM, SAFIR, and TLS methods. Neither the FoE
nor relatively simple algorithms such as the LPA-ICI
and NL-means appear to be competitive. Overall, the
MSSIM results are roughly consistent with the PSNR
ones with the only exception of TLS, which shows a rela-
tive performance in terms of MSSIM slightly higher than
in terms of PSNR. Let us note that the three algorithms
based on the collaborative Þltering paradigm occupy the
top-three places also in this comparison.
The difference in visual quality between the various

methods can be inspected in the examples shown in Fig-

2 The implementations by the respective authors are used
for all experiments.
3 The noisy observations are generated with a Þxed initial-
ization for the pseudo-random noise generator, according to
the following Matlab code:
randn(�seed�,0);
z=y+sigma*randn(size(y));
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ures 10 and 11. Relatively high noise standard devia-
tions (σ = 35 and σ = 25) are used in order to em-
phasize the differences in the estimates by each method.
From the Þgures, we observe that the BM3D-SAPCA
method effectively reconstructs Þner details and at the
same time introduces less artifacts than the other meth-
ods. The importance of using shape-adaptive transforms
can be particularly appreciated for the Cameraman im-
age, for which one can notice that only the methods
based on such transforms are able to reconstruct sharp
edges without introducing spurious oscillations or ghost-
ing artifacts.

7 Conclusion

In this paper we reviewed recent developments in the
Þeld of nonparametric regression modeling and image
processing.
In these conclusive comments, we would like to dis-

cuss some theoretical aspects of these developments and,
in particular, what problems, of principal importance in
our opinion, are not solved.
The considered methods were classiÞed mainly ac-

cording to two leading features: local/nonlocal and point-
wise/multipoint. This discussion is organized according
to this classiÞcation.
(1) Local pointwise estimators.
These estimators are supported by strong theoretical

results covering nearly all aspects of estimation: estima-
tion accuracy, adaptation with varying spatially adap-
tive neighborhoods, etc.
Unsolved problem: simultaneous selection of adaptive

neighborhood and order of the local parametric model.
It is a generalized model-selection problem where the

model support is treated as an element of the model
selection. Note that this setting is very different from
the classical model-selection problem where the model
support is assumed to be Þxed.
(2) Local multipoint estimators.
These estimators deal with multiple preliminary es-

timators and the Þnal estimate is calculated by aggrega-
tion (fusing) of the preliminary estimates. The existing
aggregation methods assume that the models of the pre-
liminary estimates are given. These two-step procedures
are actually heuristic or semiheuristic as the aggregation
turns out as the only method to exploit the produced re-
dundant estimates.
Unsolved problem: simultaneous optimization of ag-

gregation and models for the preliminary estimates. In
particular, development of the statistical observation model
leading to the two-step procedure with the preliminary
and aggregation step as a result of some standard sta-
tistical estimation technique (ML, EM, etc.).
(3)Nonlocal pointwise and multipoint estimators.
(3a) The signal dependent weights deÞne the support

of the estimator, i.e. the points included in estimate, and

the weights of the included observations. In many devel-
opments, in particular in our BM3D algorithm, the use of
the indicator window deÞnes the nonlocal support while
the details of the comparative weighting of this windows
is ignored. Under this simpliÞcation, all basic aspects
of the algorithms are similar to the ones of standard
transform-domain Þltering.
The situation becomes much different when we take

into consideration the window weights varying accord-
ing to unknown signal values. Using estimates for these
unknown values results in the estimates which are prin-
cipally different from the usual local ones. The limit es-
timate is a solution of the nonlinear equation (33):

�yh(x
0) =

X

s

gh,s(�yh(x
0))zs.

It is difficult to say what sort of estimate we obtain even
for the noiseless signal. For the local estimates with the
signal-independent kernel gh,s we know eigenfunctions of
this kernel (polynomial for the LPA) and we know the
smoothing properties of this Þlter. For the case of signal-
dependent kernel the smoothing properties of this Þlter
are actually unknown. The works by Buades et al. [10]
and Kindermann et al. [64] are only very Þrst steps in
the direction of studying this sort of nonlinear operators.
Unsolved problem: smoothing properties of the non-

local pointwise and multipoint estimator with respect to
noiseless and noisy signals.
(3b) This point similar to (2) but for the nonlocal

estimators.
Unsolved problem: development of the statistical ob-

servation model leading to the windowing, grouping, block-
wise estimation and aggregation as a result of some stan-
dard statistical estimation technique (ML, EM, etc.).
The model [criteria (55)-(60)] proposed in this paper

gives only the blockwise/groupwise estimates while the
windowing and the aggregation are treated as separate
steps. Use of the mix-distribution for observation mod-
eling in the work [58] was one of the Þrst attempts to
combine the grouping with estimation.
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Fig. 8 PSNR comparison of various denoising algorithms. Right: PSNR results obtained for 10 different images with 5 different
levels of noise. The numbers are the results obtained by the BM3D-SAPCA algorithm. Left: difference in PSNR with respect to
the BM3D-SAPCA algorithm. The data is sorted from top to bottom following the PSNR results obtained by BM3D-SAPCA.
The Þgure is appreciated best when rotated counterclockwise 90 degrees.
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[21] [20] [19] [75] [37] [3] [44] [63] [87] [47] [89] [33] [55] [10]

Montage σ=5 41.47 41.33 41.14 40.96 40.97 40.09 39.14 39.40 39.09 36.18 40.30 38.96 39.34 35.26
Montage σ=15 35.75 35.47 35.15 34.77 34.91 33.86 33.03 33.27 32.93 32.16 33.68 33.35 32.86 32.19
Montage σ=20 34.17 33.93 33.61 33.29 33.36 32.34 31.43 31.75 31.32 30.50 31.88 31.85 31.20 30.84
Montage σ=25 32.97 32.74 32.37 32.02 32.11 31.13 30.17 30.55 30.07 29.66 30.45 30.66 29.93 29.57
Montage σ=35 30.88 30.80 30.46 30.12 30.12 29.30 28.27 28.73 28.21 28.00 28.22 28.74 27.87 27.16
Cameraman σ=5 38.57 38.41 38.29 38.36 38.15 37.87 37.40 37.31 37.47 37.54 37.99 37.80 37.69 31.83
Cameraman σ=15 32.37 32.09 31.91 31.79 31.69 31.47 30.93 30.46 30.91 30.96 30.94 31.19 30.87 29.80
Cameraman σ=20 30.88 30.62 30.48 30.43 30.18 30.00 29.45 29.29 29.43 29.47 29.30 29.77 29.33 29.01
Cameraman σ=25 29.81 29.58 29.45 29.39 29.11 28.89 28.37 28.47 28.34 28.39 28.19 28.68 28.16 28.20
Cameraman σ=35 28.17 28.02 27.93 27.84 27.51 27.32 26.84 27.24 26.78 26.85 26.59 26.94 26.34 26.40
Boats σ=5 37.50 37.30 37.28 37.36 37.14 37.24 37.03 36.25 36.99 37.09 36.27 36.48 36.27 33.68
Boats σ=15 32.30 32.07 32.14 32.14 31.79 31.77 31.72 31.52 31.72 31.59 31.27 30.93 30.46 30.39
Boats σ=20 31.02 30.81 30.88 30.86 30.49 30.39 30.41 30.32 30.40 30.25 29.86 29.61 29.03 29.32
Boats σ=25 30.03 29.84 29.91 29.85 29.48 29.32 29.40 29.36 29.39 29.21 28.57 28.60 27.93 28.38
Boats σ=35 28.52 28.37 28.43 28.37 27.93 27.71 27.91 27.91 27.92 27.69 26.55 27.08 26.30 26.53
Lena σ=5 38.86 38.75 38.72 38.81 38.54 38.62 38.52 38.00 38.53 38.64 38.19 37.88 37.70 36.10
Lena σ=15 34.43 34.28 34.27 34.14 33.87 33.71 34.04 33.81 33.93 33.97 33.29 32.72 32.18 32.72
Lena σ=20 33.20 33.05 33.05 32.87 32.63 32.39 32.81 32.71 32.69 32.69 31.89 31.43 30.74 31.51
Lena σ=25 32.23 32.07 32.08 31.96 31.66 31.36 31.83 31.82 31.71 31.69 30.57 30.43 29.66 30.36
Lena σ=35 30.72 30.57 30.56 30.40 30.18 29.71 30.35 30.42 30.22 30.18 28.52 28.90 28.06 28.05
House σ=5 40.05 39.90 39.83 39.91 39.38 39.34 38.93 38.14 38.67 39.15 38.21 38.08 37.87 36.51
House σ=15 35.17 35.06 34.94 34.96 34.14 34.25 33.73 33.90 33.60 33.82 33.55 33.18 32.62 33.82
House σ=20 33.90 33.85 33.77 33.67 32.92 33.10 32.52 32.94 32.35 32.58 32.29 31.84 31.24 32.51
House σ=25 32.96 32.91 32.86 32.71 31.93 32.07 31.54 32.14 31.35 31.60 31.05 30.75 30.12 31.16
House σ=35 31.38 31.43 31.38 31.10 30.39 30.29 29.98 30.75 29.81 30.07 29.02 28.93 28.28 28.46
Barbara σ=5 38.38 38.14 38.31 38.34 37.49 38.11 37.97 37.02 37.81 38.19 37.25 36.58 36.47 35.30
Barbara σ=15 33.32 32.96 33.11 33.00 31.39 32.41 32.25 32.00 31.90 32.55 30.16 29.61 29.20 31.67
Barbara σ=20 32.01 31.67 31.78 31.59 30.00 30.84 30.76 30.60 30.35 31.06 28.28 27.90 27.38 30.38
Barbara σ=25 31.00 30.65 30.72 30.34 28.95 29.58 29.58 29.39 29.15 29.89 26.84 26.62 26.05 29.19
Barbara σ=35 29.35 28.95 28.98 28.63 27.35 27.70 27.81 27.45 27.35 28.12 24.97 24.94 24.39 26.93
Peppers σ=5 38.34 38.21 38.12 38.22 37.99 37.79 37.31 37.22 37.33 37.35 37.68 37.49 37.37 34.48
Peppers σ=15 32.95 32.68 32.70 32.45 32.45 32.20 31.82 32.09 31.76 31.61 32.06 31.78 31.15 30.97
Peppers σ=20 31.55 31.22 31.29 31.07 31.04 30.80 30.40 30.81 30.32 30.21 30.47 30.30 29.58 29.73
Peppers σ=25 30.43 30.08 30.16 30.05 29.92 29.67 29.29 29.79 29.21 29.06 29.17 29.16 28.33 28.60
Peppers σ=35 28.74 28.35 28.52 28.37 28.27 28.04 27.64 28.24 27.56 27.42 26.94 27.37 26.45 26.40
Couple σ=5 37.63 37.56 37.52 37.57 37.36 37.33 37.13 36.79 37.12 37.12 37.00 36.75 36.57 33.74
Couple σ=15 32.24 32.14 32.11 31.99 31.78 31.47 31.50 31.50 31.50 31.36 31.23 30.66 30.16 30.20
Couple σ=20 30.88 30.79 30.76 30.61 30.39 30.02 30.14 30.19 30.12 29.94 29.61 29.15 28.59 29.01
Couple σ=25 29.82 29.73 29.72 29.55 29.32 28.88 29.11 29.15 29.09 28.86 28.17 28.03 27.43 27.99
Couple σ=35 28.23 28.14 28.15 28.00 27.71 27.09 27.61 27.55 27.58 27.28 25.92 26.48 25.81 26.12
Hill σ=5 37.30 37.16 37.14 37.18 37.03 37.03 36.99 36.54 36.93 36.95 36.58 36.51 36.24 33.41
Hill σ=15 32.05 31.86 31.86 31.90 31.60 31.47 31.48 31.34 31.47 31.46 30.86 30.92 30.42 30.26
Hill σ=20 30.85 30.69 30.72 30.70 30.40 30.19 30.28 30.20 30.26 30.24 29.60 29.71 29.13 29.33
Hill σ=25 29.96 29.82 29.85 29.80 29.50 29.23 29.39 29.35 29.38 29.33 28.57 28.80 28.17 28.47
Hill σ=35 28.62 28.53 28.56 28.45 28.22 27.79 28.13 28.11 28.12 28.03 26.94 27.49 26.77 26.73
Man σ=5 38.03 37.84 37.82 37.88 37.63 37.53 37.53 37.03 37.56 37.40 37.42 37.11 36.90 33.67
Man σ=15 32.20 31.94 31.93 31.86 31.70 31.52 31.66 31.53 31.66 31.50 31.04 31.11 30.59 30.22
Man σ=20 30.83 30.59 30.59 30.52 30.32 30.16 30.29 30.25 30.30 30.16 29.53 29.79 29.18 29.25
Man σ=25 29.81 29.61 29.62 29.59 29.32 29.08 29.29 29.30 29.29 29.17 28.31 28.81 28.14 28.38
Man σ=35 28.39 28.23 28.22 28.17 27.91 27.62 27.83 27.97 27.86 27.78 26.52 27.39 26.64 26.64

Average 32.80 32.62 32.58 32.48 32.11 31.94 31.78 31.76 31.70 31.64 31.16 31.10 30.58 30.34

Table 2 PSNR comparison of various denoising algorithms: BM3D [19], SA-BM3D [20], BM3D-SAPCA [21], SA-DCT [37],
K-SVD [3], MS-K-SVD [75], TLS [47], BLS-GSM [87], OAGSM-NC [44], NL-means [10], FoE [89], SAFIR [63], LPA-ICI [55],
Rec. LPA-ICI [33]. Best results are boldfaced.
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Fig. 9 MSSIM comparison of various denoising algorithms. Right: MSSIM results obtained for 10 different images with 5
different levels of noise. The numbers are the results obtained by the BM3D-SAPCA algorithm. Left: difference in MSSIM
with respect to the BM3D-SAPCA algorithm. The data is sorted from top to bottom following the MSSIM results obtained
by BM3D-SAPCA. The Þgure is appreciated best when rotated counterclockwise 90 degrees.
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[21] [20] [19] [75] [37] [47] [3] [44] [63] [87] [89] [33] [55] [10]

Montage σ=5 0.982 0.983 0.982 0.980 0.981 0.971 0.977 0.967 0.974 0.967 0.979 0.968 0.971 0.969
Montage σ=15 0.956 0.955 0.954 0.950 0.951 0.927 0.939 0.922 0.932 0.917 0.943 0.928 0.905 0.925
Montage σ=20 0.943 0.941 0.940 0.938 0.936 0.910 0.923 0.903 0.916 0.894 0.928 0.905 0.873 0.888
Montage σ=25 0.930 0.927 0.926 0.924 0.922 0.895 0.907 0.886 0.901 0.873 0.910 0.882 0.842 0.833
Montage σ=35 0.904 0.899 0.896 0.892 0.893 0.869 0.875 0.853 0.872 0.834 0.878 0.834 0.780 0.682
Cameraman σ=5 0.963 0.962 0.962 0.962 0.961 0.953 0.959 0.951 0.955 0.953 0.961 0.957 0.957 0.905
Cameraman σ=15 0.910 0.903 0.901 0.900 0.902 0.882 0.894 0.875 0.863 0.872 0.885 0.881 0.870 0.855
Cameraman σ=20 0.886 0.877 0.875 0.878 0.875 0.853 0.864 0.842 0.837 0.838 0.848 0.849 0.832 0.825
Cameraman σ=25 0.864 0.856 0.854 0.857 0.852 0.830 0.837 0.816 0.818 0.809 0.823 0.822 0.797 0.779
Cameraman σ=35 0.828 0.823 0.822 0.819 0.815 0.796 0.796 0.777 0.790 0.762 0.792 0.772 0.733 0.648
Boats σ=5 0.944 0.940 0.939 0.941 0.940 0.937 0.941 0.935 0.921 0.934 0.914 0.932 0.925 0.873
Boats σ=15 0.857 0.853 0.854 0.856 0.848 0.841 0.842 0.845 0.835 0.846 0.823 0.822 0.807 0.807
Boats σ=20 0.829 0.824 0.826 0.825 0.816 0.809 0.804 0.813 0.803 0.814 0.785 0.786 0.763 0.776
Boats σ=25 0.804 0.799 0.801 0.798 0.789 0.780 0.772 0.786 0.775 0.786 0.745 0.756 0.723 0.737
Boats σ=35 0.762 0.757 0.759 0.753 0.740 0.732 0.720 0.740 0.728 0.738 0.677 0.703 0.656 0.628
Lena σ=5 0.946 0.945 0.944 0.947 0.944 0.944 0.946 0.942 0.938 0.942 0.937 0.940 0.935 0.914
Lena σ=15 0.898 0.896 0.896 0.895 0.891 0.891 0.885 0.891 0.887 0.889 0.876 0.869 0.850 0.870
Lena σ=20 0.881 0.878 0.877 0.876 0.872 0.872 0.863 0.873 0.870 0.869 0.853 0.843 0.815 0.837
Lena σ=25 0.865 0.861 0.861 0.861 0.855 0.855 0.843 0.857 0.854 0.851 0.828 0.819 0.782 0.790
Lena σ=35 0.837 0.831 0.831 0.830 0.825 0.826 0.808 0.829 0.828 0.821 0.784 0.774 0.722 0.651
House σ=5 0.960 0.958 0.957 0.958 0.955 0.950 0.954 0.947 0.932 0.942 0.929 0.936 0.931 0.904
House σ=15 0.899 0.897 0.891 0.897 0.882 0.872 0.877 0.869 0.866 0.866 0.865 0.865 0.852 0.871
House σ=20 0.876 0.876 0.873 0.871 0.862 0.853 0.860 0.851 0.854 0.846 0.850 0.843 0.823 0.841
House σ=25 0.861 0.861 0.859 0.856 0.847 0.838 0.845 0.837 0.844 0.829 0.834 0.820 0.794 0.793
House σ=35 0.838 0.838 0.837 0.832 0.822 0.814 0.814 0.811 0.825 0.798 0.805 0.774 0.735 0.651
Barbara σ=5 0.966 0.965 0.965 0.965 0.963 0.963 0.964 0.962 0.957 0.961 0.958 0.955 0.952 0.944
Barbara σ=15 0.926 0.923 0.923 0.921 0.910 0.912 0.910 0.909 0.904 0.901 0.874 0.862 0.844 0.899
Barbara σ=20 0.909 0.906 0.905 0.901 0.886 0.889 0.881 0.883 0.876 0.871 0.829 0.816 0.792 0.867
Barbara σ=25 0.894 0.888 0.887 0.879 0.862 0.866 0.850 0.856 0.844 0.842 0.783 0.774 0.742 0.825
Barbara σ=35 0.861 0.850 0.848 0.836 0.811 0.820 0.795 0.807 0.785 0.787 0.713 0.702 0.659 0.709
Peppers σ=5 0.957 0.956 0.956 0.957 0.955 0.948 0.954 0.948 0.949 0.948 0.951 0.952 0.950 0.928
Peppers σ=15 0.907 0.907 0.907 0.900 0.902 0.883 0.898 0.888 0.893 0.884 0.900 0.891 0.868 0.877
Peppers σ=20 0.887 0.887 0.887 0.882 0.881 0.860 0.876 0.865 0.873 0.858 0.877 0.864 0.833 0.845
Peppers σ=25 0.869 0.868 0.868 0.863 0.862 0.839 0.855 0.843 0.854 0.834 0.853 0.839 0.798 0.801
Peppers σ=35 0.836 0.835 0.834 0.826 0.827 0.804 0.819 0.804 0.822 0.792 0.804 0.792 0.735 0.677
Couple σ=5 0.953 0.952 0.951 0.952 0.950 0.947 0.950 0.947 0.945 0.947 0.942 0.944 0.939 0.895
Couple σ=15 0.878 0.877 0.877 0.875 0.868 0.855 0.855 0.861 0.856 0.861 0.842 0.834 0.816 0.822
Couple σ=20 0.849 0.848 0.848 0.843 0.835 0.819 0.815 0.828 0.822 0.827 0.797 0.792 0.765 0.787
Couple σ=25 0.821 0.820 0.820 0.812 0.805 0.787 0.779 0.798 0.791 0.796 0.746 0.754 0.719 0.745
Couple σ=35 0.773 0.770 0.771 0.762 0.750 0.731 0.712 0.748 0.735 0.744 0.652 0.691 0.643 0.634
Hill σ=5 0.945 0.943 0.943 0.944 0.943 0.941 0.943 0.941 0.937 0.940 0.932 0.936 0.929 0.866
Hill σ=15 0.846 0.839 0.839 0.844 0.832 0.829 0.823 0.827 0.814 0.827 0.792 0.805 0.786 0.787
Hill σ=20 0.809 0.803 0.804 0.804 0.792 0.788 0.777 0.788 0.775 0.788 0.749 0.765 0.737 0.755
Hill σ=25 0.779 0.774 0.775 0.773 0.759 0.755 0.740 0.755 0.744 0.756 0.709 0.731 0.696 0.717
Hill σ=35 0.730 0.726 0.728 0.721 0.709 0.704 0.683 0.706 0.697 0.706 0.644 0.678 0.628 0.610
Man σ=5 0.957 0.954 0.954 0.955 0.952 0.949 0.951 0.951 0.948 0.951 0.948 0.947 0.943 0.895
Man σ=15 0.874 0.867 0.867 0.867 0.861 0.855 0.855 0.859 0.853 0.859 0.833 0.842 0.821 0.817
Man σ=20 0.841 0.832 0.833 0.832 0.823 0.819 0.815 0.823 0.816 0.822 0.787 0.803 0.773 0.784
Man σ=25 0.811 0.803 0.805 0.804 0.791 0.789 0.779 0.792 0.785 0.790 0.745 0.770 0.732 0.742
Man σ=35 0.763 0.756 0.758 0.754 0.741 0.740 0.725 0.740 0.739 0.737 0.681 0.716 0.663 0.626

Average 0.877 0.874 0.873 0.871 0.865 0.856 0.855 0.855 0.853 0.850 0.836 0.835 0.809 0.802

Table 3 MSSIM comparison of various denoising algorithms: BM3D [19], SA-BM3D [20], BM3D-SAPCA [21], SA-DCT [37],
K-SVD [3], MS-K-SVD [75], TLS [47], BLS-GSM [87], OAGSM-NC [44], NL-means [10], FoE [89], SAFIR [63], LPA-ICI [55],
Rec. LPA-ICI [33]. Best results are boldfaced.
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original Lena 512×512 ∞ / 1 noisy 20.18 / 0.271 BM3D-SAPCA [21] 32.23 / 0.865

SA-DCT [37] 31.66 / 0.855 SA-BM3D [20] 32.07 / 0.860 BM3D [19] 32.08 / 0.861

OAGSM-NC [44] 31.83 / 0.857 K-SVD [3] 31.36 / 0.843 MS-K-SVD [75] 31.96 / 0.861

BLS-GSM [87] 31.71 / 0.851 TLS [47] 31.69 / 0.855 SAFIR [63] 31.82 / 0.854

Fig. 10 Denoising of Lena corrupted by noise with σ = 25. The two numbers reported under each image are the corresponding
PSNR and MSSIM values.
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original Cameraman 256×256 ∞ / 1 noisy 17.22 / 0.252 BM3D-SAPCA [21] 28.17 / 0.828

SA-DCT [37] 27.51 / 0.815 SA-BM3D [20] 28.02 / 0.823 BM3D [19] 27.93 / 0.822

OAGSM-NC [44] 26.84 / 0.777 K-SVD [3] 27.32 / 0.796 MS-K-SVD [75] 27.84 / 0.819

BLS-GSM [87] 26.78 / 0.762 TLS [47] 26.85 / 0.796 SAFIR [63] 27.24 / 0.790

Fig. 11 Denoising of Cameraman corrupted by noise with σ = 35. The two numbers reported under each image are the
corresponding PSNR and MSSIM values.
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