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Abstract

An overview of my research contributions in optimization is provided, passing through

mixed-integer nonlinear optimization, nonlinear continuous local optimization and net-

work (graph) clustering.

The first chapter deals with mixed-integer nonlinear programming and determinis-

tic global optimization, and presents contributions concerning theoretical investigations

as well as applications to real-world problems. We mainly discuss about convex re-

laxations and automatic reformulations of mathematical programming problems, aim-

ing at enhancing the efficiency of Branch-and-Bound algorithms. Focusing on polyno-

mial programming, we investigate tight convex relaxations for multilinear monomials

and the generation of compact relaxations of polynomial problems based on a special

reformulation-linearization technique. Among applications, a special attention is de-

voted to real-life problems arising in Air Traffic Management. We propose new math-

ematical models and solution approaches from mixed-integer optimization on the one

hand, and optimal control on the other hand.

A few topics in nonlinear continuous optimization are described in the second chap-

ter. Interior point methods for quadratic programming and their linear algebra kernels

(KKT systems) are first discussed. The focus is on iterative methods for the KKT systems

and related issues, such as preconditioning techniques and convergence properties. The

other discussed topic relates, again, to air traffic problems. This concerns the mentioned

optimal control-based approaches that lead to nonlinear problems.

The third chapter presents my main results in the area of network clustering. The

problem of identifying clusters in networks can be formulated using mathematical pro-

gramming and usually leads to a combinatorial optimization problem. My contributions

concern clustering criteria and corresponding clustering methods. A special attention

is devoted to exact methods, used either to solve the whole optimization problem or,

locally, subproblems arising in hierarchical heuristics, or to refine solutions previously

obtained by other methods.



Résumé

Ce document propose un parcours de mes travaux de recherche en optimisation,

en passant par l’optimisation mixte en variables entières, l’optimisation non-linéaire

continue locale et le clustering dans les réseaux (graphes).

Le premier chapitre traite de la programmation non linéaire mixte en variables

entières et de l’optimisation globale déterministe. Il présente des contributions relatives

à des investigations théoriques ainsi que des applications à des problèmes concrets. Nous

discutons principalement de relaxations convexes et de reformulations automatiques de

problèmes de programmation mathématique, dans le but d’améliorer l’efficacité des al-

gorithmes de Branch-and-Bound. Dans le cadre de la programmation polynomiale, nous

avons étudié des relaxations convexes pour les monômes multilinéaires et la génération

de relaxations compactes de problèmes polynomiaux basés sur une technique spécifique

de reformulation-linearisation (RLT). Parmi les applications, une attention particulière

est portée à des problèmes qui se posent dans la gestion du trafic aérien. Nous avons pro-

posé de nouveaux modèles mathématiques et des approches de résolution basées d’une

part sur l’optimisation mixte en variables entières et d’autre part sur le contrôle optimal.

Deux thèmes de l’optimisation continue non-linéaire sont décrits au deuxième chapitre.

Des méthodes de point intérieur pour la programmation quadratique et leurs noyaux

d’algèbre linéaire (systèmes KKT) sont d’abord discutées. L’accent est mis sur les

méthodes itératives pour les systèmes KKT et sur des questions connexes, telles que

les techniques de préconditionnement et les propriétés de convergence. L’autre sujet dis-

cuté concerne, encore une fois, des problémes de trafic aérien. Il porte sur les approches

déjà mentionnées de contrôle optimal qui conduisent à des problèmes non-linéaires.

Le troisième chapitre présente mes principaux résultats dans le domaine du clus-

tering dans les réseaux. Le problème de l’identification de clusters dans les réseaux

peut être formulé en utilisant la programmation mathématique et conduit généralement

à un problème d’optimisation combinatoire. Mes contributions concernent les critères

de classification et les méthodes de clustering correspondantes. Une attention partic-

ulière est portée aux méthodes exactes utilisés pour résoudre l’ensemble du problème

d’optimisation ou, localement, les sous-problèmes survenant dans des heuristiques hié-

rarchiques, ou enfin dans le raffinement des solutions obtenues précédemment par d’autres

méthodes.
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Preface

This document is a synthesis of my research activity about a few themes in optimization,

which I became interested in since my Ph.D.

Treated topics go from nonlinear continuous (local) optimization to mixed-integer

nonlinear programming and global optimization, passing through combinatorial opti-

mization for network (graph) clustering. This corresponds to the evolution of my re-

search interests and the progression of my career, which led me to work within different

research groups in various countries.

The presentation is organized according to my recent scientific interests and to the

relevance between the topics rather than following a chronological order. The three

main research themes are presented in three distinct chapters, followed by appendices

corresponding to a selection of my publications integrally reported.

This report is not intended to be technical, so theorem proofs, mathematical for-

mulation details, as well as detailed numerical results, are only reported in the papers

presented in the appendices.

Perspectives for future research are drawn at the end of the document, and an

overview of my other academic activities is also reported.
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Introduction and Main Research

Contributions

Optimality has been often observed in nature, has inspired artists and has assumed

over the centuries aesthetical and also metaphysical valences. In nature, it has been

associated to balance and harmony, which seem to obey minimality principles. Dante

Alighieri summed up a common sentiment in Middle-Age, saying “Omne superfluum Deo

et Naturae displiceat.” (D. Alighieri, De Monarchia I. xiv. 1 2-3), meaning “All that is

superfluous is displeasing to God and Nature.” More recently, our world dominated by

the market seeks strategies to achieve optimal results, maximizing profits and minimizing

costs. This search for optimality, i.e., minimizing or maximizing some function under

given constraints, is in fact attracting a growing interest in more and more application

domains, motivating the research in the fascinating field of Mathematical Optimization,

at the interface with Computer Science and Operations Research.

The need for mathematically modelling complex real systems as optimization prob-

lems unsurprisingly led to the development of a variety of subfields in Optimization,

as well as a variety of solution approaches. While providing a complete taxonomy of

optimization problems is out of the scope of this report, we recall the two main classes of

Continuous Optimization and Discrete and Integer Optimization, the first dealing with

continuous (real) variables and the second dealing with discrete structures or variables

restricted to take only integer values. A number of significant subclasses can be iden-

tified. Nonlinear Programming (Nonlinearly Constrained Optimization) (NLP), aiming

to minimize a nonlinear function subject to nonlinear constraints, represents the more

general continuous optimization problems class, with significant sub-categories like Lin-

ear Programming (LP) and Quadratic Programming (QP). Combinatorial Optimization

deals with problems on discrete structures (e.g. graphs).

Mixed-Integer Nonlinear Programming (MINLP) deals with the most general optimiza-

tion problems encompassing the above-mentioned two classes, involving both continuous

and discrete variables and nonlinear constraint functions. These are among the most

challenging computational optimization problems, arising in countless applications from

3



Introduction and Main Research Contributions

various areas. While research on mixed-integer linear optimization is quite advanced,

MINLP is still considered an emerging area that is likely to grow in the coming years.

Numerical methods for optimization problems can be classified with respect to the

properties of their target problem and on the type of guarantees that they provide for

the final solution. They broadly fall into two classes. Deterministic methods terminate,

under suitable assumptions, with a solution which is guaranteed to be optimal (or ǫ-

optimal) or with an indication that there is no feasible solution. Typical descent-type

methods for continuous optimization (gradient methods, Newton’s method, etc.) fall

in this category. They are also classified as local optimization methods to emphasize

that the solution found is optimal only with respect to its neighborhood. Deterministic

methods to find global optima of nonlinear and more generally MINLP problems per-

form (implicitly) exhaustive searches generally based on the exploration of a search tree,

implementing strategies to speed up the search avoiding to check every possible configu-

ration. Heuristic methods, which represent the second relevant class of methods, on the

contrary, do not provide a guarantee of optimality for the computed solution. The most

popular heuristic methods are based on local searches and evolutionary algorithms. This

report will mainly refer to deterministic methods.

In my career I had the chance to work on various topics from different areas of

optimization. During my Ph.D. (University of Naples) my research interests mainly

involved continuous QP with a focus on linear algebra issues arising in Interior Point

methods for QP. My post-doctorate at École Polytechnique (Paris) was in the context

of a project on reformulations in Mathematical Programming mainly addressing mixed-

integer nonlinear problems, that led me to develop interest in MINLP. In that period

I also became interested in combinatorial optimization, mainly in the context of graph

clustering, thanks to my collaboration with Pierre Hansen (GERAD & HEC Montréal).

Since my recruitment at École Nationale de l’Aviation Civile (Toulouse), aeronautical

applications have been among my research topics and represent an interesting domain of

application of the expertise I acquired previously. In the context of aeronautical appli-

cations, I am applying mixed-integer optimization as well as optimal control techniques.

Hence, optimal control brought me back to nonlinear programming, closing the path

form local to global and back.

I discovered various aspects of several optimization sub-domains along this closed

walk, also moving a step forward from a purely academic research towards a growing

interest for real-life applications. Along this amazing path, a few elements constitute a

common thread: Mathematical Programming based modeling for the addressed prob-

lems, a special attention for deterministic (exact) methods, and the development of

software tools to test the investigated approaches.

In the reminder of this section I briefly present the main research topics I have dealt

with and my main contributions. They will be described in more details in the following
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chapters. Each chapter focuses on one theme, presenting the main contributions. The

expertise in these different themes, crossed with upcoming projects, help developing

perspectives for the next years. Perspectives, highlighting tracks for future research, are

drawn at the end of this report.

MINLP and Global Optimization

Mixed-integer optimization and (deterministic) global optimization constitute one of

my main research topics since a few years. In this context, my contributions concern

theoretical investigations, specially in the framework of reformulations in mathematical

programming and convex relaxations to enhance the efficiency of Branch-and-Bound

based algorithms, as well as applications to concrete problems.

The best known method to find exact or at least ǫ-approximate global solutions

to mixed-integer nonlinear problems is the spatial Branch-and-Bound algorithm, which

rests on computing lower bounds to the value of the objective function to be minimized

on each region that it explores. These lower bounds are often computed by solving convex

relaxations of the original problem. Within this framework, [Cafieri et al., 2010c, Belotti

et al., 2012b, Cafieri et al., 2012c] present contributions in polynomial programming.

In [Cafieri et al., 2010c], we study convex relaxations of quadrilinear monomials. Differ-

ent convex relaxations can be obtained for multilinear terms by applying associativity in

different ways. We rewrite quadrilinear terms as products of bilinear and trilinear terms

(for which convex envelopes are known) and derive corresponding convex relaxations.

Using a general technique, we formally establish the intuitive fact that any relaxation for

k-linear terms that employs a successive use of relaxing bilinear terms (via the bilinear

convex envelope) can be improved by employing instead relaxations of trilinear terms

(via the trilinear convex envelope). We present a thorough computational analysis which

helps establishing which relaxations are strictly tighter, also confirming the results of

our investigation by testing on real-life problems.

In [Belotti et al., 2012b], we give an alternative proof of the same fact and perform a

computational study to assess the impact of the tightened convex relaxation in a spatial

Branch-and-Bound setting.

Reduced RLT constraints (rRLT) are a special class of Reformulation-Linearization

Technique constraints. They apply to nonconvex (both continuous and mixed-integer)

quadratic programming problems subject to systems of linear equality constraints. In

[Cafieri et al., 2012c], we present an extension to the general case of polynomial pro-

gramming problems and discuss the derived convex relaxation. We also show how to

perform rRLT constraint generation so as to reduce the number of inequality constraints

in the relaxation, thereby making it more compact and faster to solve.

Relaxations of nonconvex problems fall more generally in the area of reformulations.

Reformulation techniques are often used to re-cast a particular type of problem into a
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formulation which is amenable to be solved by a given algorithm. In [Liberti et al., 2009],

we present a survey of existing reformulations, some example applications, and describe

the implementation of a software framework for reformulation and optimization.

This software, the Reformulation-Optimization Software Engine (ROSE), is described

in more details in [Liberti et al., 2010]. In Mathematical Programming a considerable

amount of symbolic transformations is essential to solve difficult optimization problems.

We describe how ROSE performs (automatic) symbolic computation on mathematical

programming formulations.

The algorithmic efficiency of a Branch-and-Bound algorithm depends on many fac-

tors, among which the width of the bounding box for the problem variables at each

Branch-and-Bound node naturally plays a critical role. The practically fastest box-

tightening algorithm is known as FBBT (Feasibility-Based Bounds Tightening). In

[Belotti et al., 2012a], we model FBBT by using fixed-point equations in terms of the

variable bounding box, and we treat these equations as constraints of an auxiliary math-

ematical program. We demonstrate that the auxiliary mathematical problem is a linear

program, which can of course be solved in polynomial time.

Contributions in [Cafieri and Durand, 2012] and [Cafieri et al., 2012e] focus on real-

life applications.

An interesting application arising in Air Traffic Management is the resolution of air-

craft conflicts, that occur when aircraft get “too close” to each other according to their

predicted trajectories. The problem can be modeled as a global optimization problem.

In [Cafieri and Durand, 2012], we propose modeling and resolution techniques based on

mixed-integer nonlinear optimization.

The optimal design of electrical machines can also be mathematically modeled as a

mixed-integer nonlinear optimization problem. In [Cafieri et al., 2012e], we investigate

the impact of different mathematical formulations on the results obtained using an op-

timization solver widely used in the engineering community.

Nonlinear Continuous Optimization

A few topics in Nonlinear Programming (NLP) constituted my first research interests,

and I recently had the occasion to work again in the context of NLP, thanks to an

optimal control approach I got interested in. Thus, my contributions in this area focus

on two specific topics, the one related to Interior Point methods and their linear algebra

kernels, and the other arising in Optimal Control for a real-world application.

Interior Point algorithms for nonlinear programming and related linear algebra issues

represented the main research topic of my Ph.D. and the first stage of my post-doctoral

activity. Interior Point methods are effective and widely-employed methods for nonlinear

programming problems. When using these methods, a crucial issue is the availability of

efficient and robust computational linear algebra kernels, especially for the solution of



Introduction and Main Research Contributions 7

the linear system (the KKT system) that arises at each iteration. We focused on the

development, the analysis and the implementation of iterative methods for the KKT sys-

tems, addressing quadratic programming. Contributions are reported in [Cafieri et al.,

2006, Cafieri et al., 2007a, Cafieri et al., 2007c, Cafieri et al., 2007b, Cafieri et al.,

2007d]. A few key ingredients for the success of an iterative approach are specially in-

vestigated, such as the use of suitable preconditioners, adaptive stopping criteria, and

the reassessment of the convergence theory of the Interior Point method subsequent to

the computation of inexact solutions of the linear systems.

The case of quadratic programming subject to variables bound constraints only is an-

alyzed in [Cafieri et al., 2006], where theoretical and computational issues are dealt with

and an effective solution strategy for the KKT systems is proposed, based on a Conju-

gate Gradient method with an Incomplete Cholesky factorization-based preconditioner

with limited and predictable memory requirements.

In [Cafieri et al., 2007a], we analyze the behavior of a Constraint Preconditioner with

the Conjugate Gradient algorithm. The main contribution is the proof, for KKT sys-

tems in the augmented form deriving from linear inequality constraints and nonnegative

variable bounds, of the equivalence with a suitable preconditioned Conjugate Gradi-

ent applied to the positive-definite normal equations. As a consequence, no breakdown

occurs and the algorithm converges even if the augmented system matrix is indefinite.

Iterative solvers allow us to use adaptive accuracy requirements in the solution of the

KKT systems to avoid unnecessary iterations when the current Interior Point iterate is

far from the solution. Adaptive stopping criteria deriving from the convergence theory

of the considered Interior Point method are devised in [Cafieri et al., 2007c].

In [Cafieri et al., 2007b], we propose an approximation strategy for the constraint

preconditioner, with the aim of reducing the cost of the preconditioner application.

The Interior Point framework of choice is the Potential Reduction method. In this

context, the main contribution, described in [Cafieri et al., 2007d], is the extension of

the global convergence properties of the method in order to take into account an inexact

solution of the inner linear KKT systems.

A contribution concerning a real-life application appears in [Cellier et al., 2012].

Specifically, the same application in Air Traffic Management considered in [Cafieri and

Durand, 2012] is dealt with, this time applying an optimal control approach. A di-

rect method, typically used in optimal control, leads to the solution of a NLP problem.

Specific strategies tailored on the target application are proposed to reduce the computa-

tional complexity of the standard approach. We propose a decomposition of the problem

at hand and the combination of a direct and an indirect optimal control method.
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Network Clustering

Networks, or graphs, are a basic and versatile tool for the study of complex systems in

a variety of domains. Typically, the vertices of a graph are associated with the entities

of the system under study, and edges express whether a relation defined on all pairs

of vertices holds or not for each such pair. A topic of particular interest in the study

of complex networks is the identification of clusters. Broadly speaking, a cluster of a

graph is a subset of vertices such that there are more edges within the cluster than edges

joining it to the outside. Clustering on networks, also known as community detection,

refers to this interesting topic in the study of complex networks and has become in few

years one of my main research interests.

The problem of identifying clusters can be formulated using mathematical program-

ming and usually leads to a combinatorial optimization problem. Several models were

proposed. One of the most studied and exploited is the maximization of the so-called

modularity. A specific behavior of the modularity function is analyzed in [Cafieri et al.,

2010b]. Using the definition of modularity, graphs are compared to a null model where

the degree distribution is maintained while edges are placed at random, where there will

be loops and possibly multiple edges. We derive sharp bounds on the expected num-

ber of loops, and their impact on the modularity of simple graphs. Then, we propose

modified null models associated with graphs without loops and without multiple edges.

Contributions in [Aloise et al., 2010, Cafieri et al., 2011, Cafieri et al., 2012b, Cafieri

et al., 2012d] concern solution methods for the maximizing modularity optimization

problem, with a focus on exact methods.

In [Aloise et al., 2010], we assess and advance the state of the art of exact algorithms for

modularity maximization. We extend the two exact algorithms in the literature, namely

the one by Xu et al.(2004) based on a mixed-integer quadratic formulation and the row

generation for clique partitioning of Grötschel and Wakabayashi (1989), using column

generation methods. We raise the size of instances solved exactly.

In [Cafieri et al., 2011], we propose a hierarchical divisive heuristic which is locally

optimal in the sense that each of the successive bipartitions is performed in a provably

optimal way, solving the bipartition problem by an exact method. Reformulations of

the proposed mathematical programming model for bipartitions, to enhance efficiency

of the divisive heuristic, are then explored in [Cafieri et al., 2012b].

The exact algorithm for graph bipartition, which is the basis of the proposed divi-

sive heuristic, is also exploited in an approach applied as a post-processing to heuristic

methods in order to improve their performances, in [Cafieri et al., 2012d]. Starting from

a given partition, we test with the exact algorithm for bipartitioning if it is worthwhile

to split some communities, or to merge two of them, or to combine the two actions.

Contributions in [Cafieri et al., 2010a] and [Cafieri et al., 2012a] concern other net-

work clustering criteria and corresponding optimization algorithms. In [Cafieri et al.,
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2010a], we extend the definition of community in the weak sense of Radicchi et al. (2004)

into a criterion for a bipartition to be optimal: one seeks to maximize the minimum,

for both classes of the bipartition, of the ratio of inner edges to cut edges. We de-

fine this way the edge-ratio criterion. A hierarchical divisive algorithm is proposed for

identifying communities, where bipartitions are made in an optimal way according to

the introduced criterion. This includes an exact solution of the problem of detecting

indivisible communities.

In [Cafieri et al., 2012a], we first define an enumerative algorithm to list all partitions

in the strong sense (i.e., with only strong communities, according to the definition of

Radicchi et al. (2004)) of a network of moderate size. We then extend the concept of

strong communities to almost-strong communities and adapt the algorithm, obtaining

more informative partitions.

Applications to real-life problems: the ATM context

When I started working at ENAC - École Nationale de l’Aviation Civile - I also began

to be interested in real-life applications arising in Air Traffic Management (ATM). A

number of challenging problems arising in ATM constitute in fact interesting research

topics, particularly in Operations Research and Optimization. ATM applications, spe-

cially air traffic conflict detection and resolution, take therefore a prominent place in my

research activity among other real-life applications. They are also the main topic of a

Ph.D. thesis that I am currently supervising and of a research project recently funded

by the ANR (French National Agency of Research) of which I am responsible and that

will be developed during the next three years. The contributions in this area will be

described in Chapters 1 and 2. Here we draw the main lines of the ATM context and

the impact of optimization therein.

The air-traffic level currently attained in Europe is around tens of thousands of

flights per day and it is expected to be multiplied by a factor of two during the next

20 years [151]. Air traffic is at the core of the social and economic dynamism of our

society, and an efficient air-traffic management has evidently a deep impact on the social,

economic, environmental and industrial context. Air traffic safety is provided by a series

of filters, each filter ensuring a level of traffic that can be handled by the next filter. For

example, the CFMU (Central Flow Management Unit) provides aircraft take-off slots

that guarantee that the density of aircraft does not exceed the control capabilities of air

traffic controllers. Increasing levels of traffic, however, raise the problem of managing

traffic in such a way as to increase the capacity of control in the air sectors. These issues

lead naturally to optimization problems. Many questions such as “can we automatically

solve all potential aircraft conflicts before take-off and en-route, and how can we make

this optimization robust to uncertainty?” have so far not been satisfactorily answered

and need to be addressed. Furthermore, the introduction of MTCD (Medium Term
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Conflict Detection) in the context of recent European studies focuses the attention on

medium-term en-route aircraft conflicts as a privileged area of investigation, that needs

the development of suitable models and solution algorithms able to manage large-scale

problems.

Some problems in ATM, like aircraft conflict avoidance, which is of particular in-

terest in my research activity, naturally lead to MINLP models. MINLP allows one

to simultaneously consider discrete (combinatorial) decisions and modeling the complex

nonlinear processes characterizing ATM systems. A potential aircraft conflict occurs

when aircraft are too close to each other according to their predicted trajectories. De-

tection and resolution of air traffic conflicts in tactical phases (i.e., en-route flights) are

specially interesting and impact the workload of air traffic controllers. Air traffic con-

trol on the ground is still widely performed manually by air traffic controllers watching

the traffic movements on a radar screen and giving instructions to pilots. The need for

automatic tools to integrate human work, shifting responsibilities from the ground to

the air, is evident.

It is worth remarking that in the ATM framework, the European project SESAR

(Single European Sky ATM Research) [137] gives the guidelines to go towards the in-

crease of the airspace capacity while significantly reducing its environmental impact, in

order to evolve towards the future sky. It is in this context that most of the research on

aeronautics and air traffic management is currently being performed. In France, this is

the case for most of the research conducted in Toulouse (as one of the bases of the Eu-

ropean aerospace industry and research, it is a well-established center of academic and

industrial research focusing on aeronautics and air traffic management), and specially

at ENAC (The French University of Civil Aviation), where I am currently working.



Chapter 1

Mixed-Integer Nonlinear

Optimization and its Applications

In this chapter we present our contributions in the area of Mixed-Integer Nonlinear

Optimization. We first briefly present mixed-integer non-linear problems and the main

concepts at the basis of the (spatial) Branch-and-Bound algorithmic framework, which is

the best know method to solve these problems to global optimality. It rests on some key

ingredients, such as convex relaxations of the original problem. It is in this context that

the contributions discussed in Sect. 1.2.1 and 1.2.2, concerning convex relaxations for

polynomial problems, are proposed. More generally, they fall in the category of reformu-

lations in mathematical programming. Reformulation techniques and contributions on

automatic reformulation software are discussed in Sect. 1.3. These contributions, in the

framework of deterministic global optimization, are not intended for a specific applica-

tion, though they may constitute fundamental ingredients of efficient numerical methods

for the solution of real-life problems. Sect. 1.4 and 1.5 are devoted to applications. The

contribution discussed in Sect. 1.4, in particular, concerns Air Traffic Management, that

has become a privileged domain of application in my research activity. Sect. 1.5 dis-

cusses a contribution in another domain of applications, namely the optimal design of

electrical machines.

1.1 MINLP and global optimization

1.1.1 Mixed-integer non-linear optimization

Mixed-Integer Nonlinear Programming (MINLP) deals with the most general optimiza-

tion problems, involving both continuous and discrete variables and nonlinear (in gen-

eral, non-convex) objective and/or constraint functions. This kind of problems arises in

countless applications from a wide range of domains, where simultaneously considering

11
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discrete (combinatorial) decisions and nonlinear processes is crucial for modeling. Im-

portant sources of nonlinearity arise for example in chemical engineering [43, 3, 107],

which is the source of the probably most influential research on MINLP, production

planning [71], transportation [49], energy production [111], bioinformatics [89], electri-

cal machines design [103, 102], and many other fields of real-life applications. A special

attention is devoted in this report to MINLP problems arising in Air Traffic Management

(see Sect. 1.4).

The general MINLP problem is written in the following form:

(P)



























min
x∈Rn

f(x)

s.t. g(x) ≤ 0

xLi ≤ xi ≤ xUi

∀j ∈ Y xj ∈ Z

(1.1)

where f : Rn → R, g : Rm → R
n, xL, xU ∈ R

n, Y ⊆ {1, · · · , n}. In general, functions f

and g are assumed to be continuously differentiable, but not convex. Non-convexity is

an additional source of difficulty: for non-convex problems, the continuous relaxation of

(P) might have local optima which do not coincide with global ones. Convex MINLPs

represent a special case of MINLP problems, to which a lot of attention has been devoted

by the mathematical programming community with significant results. Special sub-

classes of MINLP are given by Mixed-Integer Linear Programs (MILP), where functions

f and g are linear, and Non-Linear Programs (NLP), where there are no integrality

constraints on the variables.

(Non-convex) MINLP problems, being a generalization of MILP problems, are NP-hard

(see [51, 113]). Beside their theoretical complexity, these problems are computationally

challenging.

While research on mixed-integer linear optimization is quite advanced, MINLP is

considered an emerging area that is likely to grow in the coming years, with an expected

scientific impact on every domain where quantitative decision making based on discrete

and nonlinear mathematical optimization arises. The attention for this emerging re-

search area is shown not only by the increasing number of scientific publications, but also

by dedicated cyber-infrastructures (http://minlp.org/) and conferences: IMA Hot Top-

ics Workshop in 2008, European Workshop on MINLP in 2010, Exploratory Workshop

on Mixed Integer Non-Linear Programming in 2010, and streams in Operations Research

conferences (http://www.euro-2012.lt/streams#Mixed-IntegerNon-LinearProgramming)

are just a few examples.

The focus of the research on MINLP is actually twofold. A significant part of this

research mainly focuses on solution methods and algorithms with the aim of raising their

efficiency (possibly to the level of algorithms for MILP) and providing highly viable
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practical tools. Another part is more oriented towards real-life applications, aiming to

propose MINLP-based models able to describe realistically even complex systems [125].

These two aspects are of course complementary and mutually reinforcing: theoretical

advances are often validated by computational tests on real-life problems, while MINLP

models benefit from advances on algorithm developments, this having an impact on their

practical solution. The contributions presented in this chapter belong to both categories.

The reciprocal impact may not be evident because the modeling proposed for the main

application, arising in Air Traffic Management (see Sect. 1.4), does not contain elements

allowing to employ results described e.g. in Sect. 1.2.1 and 1.2.2, though they may likely

be exploited in different modelings of the same problem.

1.1.2 Deterministic global optimization of MINLP

Deterministic Global Optimization of MINLPs is primarily performed by means of

Branch-and-Bound (BB)-type algorithms. BB algorithms perform a recursive search

for the global optimum on a search tree, the nodes of which represent subproblems of

the original problem, obtained by partitioning the original solution space. Several basic

concepts are adapted from BB algorithms developed for the subclass of MILP problems.

For a MILP, a continuous (linear) relaxation is first obtained by ignoring the integrality

constraints on the variables. The solution of this relaxation gives a lower bound on the

objective function optimal value of the original problem. Let xr be the solution of the

relaxation. One can then select an integer-constrained variable xi which has a fractional

value xri in the relaxation solution and generate two subproblems, adjoining to the prob-

lem respectively the constraints xi ≤ ⌊xri ⌋ and xi ≥ ⌊xri ⌋ + 1. The procedure to obtain

a lower bound is referred to as bounding, while branching refers to the partitioning step

which generates the two new nodes of the search tree. The algorithm is applied recur-

sively to the subproblems, thus generating the tree. Under given conditions, a node can

be removed from consideration (pruning). The algorithm termination occurs when all

nodes have been solved or pruned, or some threshold is met for the difference between

the best solution value found and the lower bounds on the still unsolved subproblems.

In the most general case, when some of the functions f and g are non-linear and non-

convex, the bounding step becomes much harder. In this case, the continuous relaxation

is a non-convex non-linear (NLP) problem which may have many local minima. Thus,

to compute a global solution of the relaxed problem, a further relaxation step is usually

performed, computing a convex relaxation of the original MINLP. Hence, at each step a

lower bound for the objective function value is computed by solving globally a convex

relaxation, and an upper bound is computed by solving locally the NLP problem. Addi-

tionally, branching is usually allowed on continuous as well as on discrete variables. This

is done by taking a continuous variable xi with current domain box [x̄Li , x̄
U
i ], choosing a
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branching point xb ∈ [x̄Li , x̄
U
i ], and generating the two new subproblems by considering

[x̄Li , xb] and [xb, x̄
U
i ].

This algorithm framework is also referred to as spatial Branch-and-Bound, where the

term “spatial” refers to the recursive partition of the Euclidean space where the problem

is defined into smaller and smaller regions. Summarizing, its basic steps are as follows

(the reader is referred to [149, 150, 126, 42, 82]):

Bounding. Compute a lower bound by constructing and solving a convex relaxation of

(P). Compute an upper bound by solving the NLP locally.

Pruning. Discard a subproblem when:

(a) a global optimum for the node was found (pruning by optimality);

(b) the node was proved to be infeasible;

(c) a lower bound for the problem at the node has higher value than the incumbent,

i.e., the value of the objective function evaluated at the current best optimum

(pruning by bound).

Otherwise, do a branching step.

Branching. Generate two new subproblems of the original one whose feasible region

is a subset of the feasible region of the original problem, by branching on continuous as

well as on discrete variables.

Bounds tightening. Optionally, try to reduce the variables bounds.

The selection of branching variables and points, as well as that of the node of the search

tree to be considered as the current subproblem to process, is usually made by means

of heuristic procedures.

The spatial Branch-and-Bound (sBB) is an ǫ-approximation algorithm, meaning that

the computed solution x∗ is such that f(x∗) differs at most by ǫ from the global optimal

value of the objective function f [160].

It has to be considered as an algorithmic framework. Several interesting variants have

been developed. In the Branch-and-Reduce variant [134, 135, 156] one attempts to

reduce the domains of the variables, to improve the computation of lower bounds. The

α-BB method [11, 5, 4] is based on a specialized technique for constructing under-

estimators in the generation of the convex relaxations.

It is worth mentioning that an alternative successful approach for global optimization

of MINLP is again in the Branch-and-Bound framework, but instead of relying on the

spatial concept and on convex relaxations, it is based on interval arithmetic techniques.

In the interval Branch-and-Bound [99, 100, 69], interval arithmetic rules are used to

compute bounds. Recent versions also incorporate strategies based on the use of affine

arithmetics [119]. The contributions described in the rest of this chapter are mainly in

the context of spatial Branch-and-Bound. Therefore, a few aspects relevant to sBB are

further discussed. Interval Branch-and-Bound is however to be considered as a promising
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research direction for global optimization of the real-life applications on which I am

currently focusing.

From the basic concepts of the sBB algorithm recalled above, it is evident that there

are a few key ingredients that may have a significant impact on the algorithm efficiency.

They have become crucial points of investigations themselves, generating an extensive

literature. Convex relaxations of different kinds of functions or specialized problems,

bound tightening techniques, branching rules, etc. are a few examples of topics in this

literature.

1.1.3 The role of reformulations and convex relaxations

To solve a mathematical programming problem, it is often useful to re-cast it into a

different formulation, in such a way that, for example, it is amenable to be solved

by a given algorithm acting on a given formulation, or so that it exhibits interesting

properties to be exploited in a given algorithmic framework. This is the case for a

MINLP problem that one aims to solve via a spatial BB algorithm. Spatial BB-based

solvers for MINLPs generally take their input problem in standard form, and are based on

convex relaxations for the computations of bounds. In this context, our research focused,

on the one hand, on the investigation of reformulations in mathematical programming

and the development of software tools to carry out reformulations automatically, and on

the other hand, on the study of convex relaxations for problems arising in polynomial

programming. Our contributions are detailed in the next sections of this chapter.

We recall here a few basic concepts.

Basic definitions

A reformulation of a mathematical program P is a mathematical program Q which

shares some properties with P (e.g., the set of optima) but is better than P in some

sense. A more thorough discussion is presented in Sect. 1.3.

Convex relaxations are special cases of reformulations. A reformulation is a relaxation

if one or more constraints are eliminated. Convex relaxations, in particular, are convex

problems whose solution provides a (lower, for a minimization problem) bound on the

objective function value at the optimum.

To define convex relaxations for nonconvex problems, and thus computing bounds

for such problems, the concept of convex under-estimator is essential.

Definition 1.1. Let f be a function on a domain X. A convex under-estimator of f

over X is a convex function c such that

∀x ∈ X c(x) ≤ f(x).

The largest possible convex under-estimator is called convex envelope:
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Definition 1.2. Let f be a function on a domain X. The convex envelope of f over X

is
∀x ∈ X convf,X(x) = sup

{

c(x) : c(x′) ≤ f(x′) ∀x′ ∈ X and c is convex
}

Definition 1.3. The convex envelope of an n-dimensional function f(x) is said to be

vertex polyhedral if its domain X is a polyhedron, and if every extreme point of the

convex hull of {(x, f(x) : x ∈ X} is defined by an extreme point of X itself.

MINLP standard-form reformulation

A way to construct a convex relaxation automatically by means of a particular refor-

mulation (called MINLP standard-form [150],[Liberti et al., 2009]) was first proposed in

[97] and is currently exploited in most existing sBB algorithms [135, 5, 150, 84, 156, 15].

It consists in generating a linearization of all nonlinear nonconvex terms arising in the

objective and in the constraints, by using the following procedure:

- replace each nonconvex term by a linearizing variable w;

- adjoin to the formulation the variable w and its corresponding defining constraint,

which has the form: w = nonconvex term;

- replace each defining constraint by a convex under-estimator and a concave over-

estimator (or convex/concave envelopes when they are available).

This iterative procedure for constructing a convex relaxation is symbolic rather than

numeric, in the sense that it performs structural changes to the formulation of (1.1),

adjoining variables and constraints, and replacing terms with variables and constraints

with other constraints.

Factorable problems

Factorable problems are problems involving functional forms that can be written re-

cursively, relative to basic operations like sums and products, using a finite number of

elementary functions.

For example, a function f of three continuous variables x1, x2, x3 with x3 ≥ 0, defined

by f = x1 × (x2 +
√
x3) can be rewritten recursively introducing the new variables

w1 =
√
x3, w2 = x2 + w1 and w3 = x1 × w2.

For this kind of problems, it is possible to construct easily a convex relaxation by means

of the MINLP standard-form reformulation.

These concepts will be used in Sect. 1.2.1 and 1.2.2.
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1.2 Contributions in polynomial programming

This section discusses the ideas that we (together with some co-authors) developed

concerning the generation of tight convex relaxations for the special class of polynomial

problems.

A polynomial programming problem is a (possibly Mixed-Integer) Nonlinear Program

in the following general form:



























min
x

f(x)

g(x) ≤ 0

xL ≤ x ≤ xU

∀ i ∈ Z xi ∈ Z,

(1.2)

where x, xL, xU ∈ R
n, Z ⊆ N = {1, . . . , n}, f : Rn → R and g : Rn → R

m are polynomial

functions of x. In general, the feasible region of (1.2) can be a nonconvex set, or the

objective function may be nonconvex on the feasible region. It is this most general case

that has been primarily of interest in our research.

Often, problem (1.2) only includes continuous variables. However, because the re-

laxation procedures described in the rest of this section also holds in the presence of

integrality constraints on the variables, and even when f, g include transcendental terms

such as logarithm, exponentials and trigonometric functions, our results also apply to

rather general MINLP polynomial problems.

1.2.1 Convex relaxations of quadrilinear monomials

In [Cafieri et al., 2010c], with J. Lee and L. Liberti, we undertook a computational as well

as a theoretical investigation of the relative tightness of four relaxations of quadrilinear

monomials (monomials of order 4), then also investigated in [Belotti et al., 2012b].

A multilinear function (on a vector space) is a function that is linear in each of its

coordinates, i.e., fixing all but one of its arguments, the result is a linear function of the

unfixed argument. Deriving convex relaxations that are as strong as possible (i.e., that

approximate the convex hull as closely as possible) for multilinear monomials can be crit-

ically important for the performance of a spatial Branch-and-Bound algorithm designed

to globally solve nonconvex polynomial optimization problems, where multilinear mono-

mials often arise. All polynomial functions are factorable (relative to multiplication),

thus the symbolic reformulation described above (Sect. 1.1.3) for factorable problems

applies to (1.2): high-order monomials are recursively rewritten as products of mono-

mials of sufficiently low order for which a tight convex relaxation (possibly the convex

envelope) is known. Each low-order monomial is replaced by an additional variable,

and an equality constraint defining the additional variable in terms of the monomial it
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replaces, is adjoined to (1.2). This operation is carried out recursively, until the func-

tions f, g are linear forms. At this stage, each defining constraint is replaced by a set

of constraints defining the convex relaxation of its feasible set, thus yielding a convex

relaxation for the whole problem. The tightness of the resulting relaxation rests on the

availability of tight convex relaxations of monomials of low degree.

Because of this, numerous efforts have studied convex relaxations of lower order

product terms more generally in recursively factorable formulations. Convex envelopes in

explicit form are currently known for concave/convex univariate functions [2, 148], bilin-

ear terms [7, 97], trilinear terms [104, 105], univariate monomials of odd degree [92] and

fractional terms [155]. More advanced practical techniques for generating tight convex

envelopes computationally are given in [57, 58]. A natural generalization of bi- and tri-

linear functions are functions that are known to have vertex polyhedral convex envelopes.

In [106], Meyer and Floudas generalized the approach developed for trilinear functions to

functions with vertex polyhedral convex envelopes. Essentially, their approaches can be

thought of as enumerative methods that consider all possible combinations of n+ 1 ex-

treme points of X (equivalently, extreme points of conv({(x, f(x)) : x ∈ X})), and then

establish conditions under which the hyperplane defined by such a set of points defines

a linear inequality satisfied by all the other extreme points of conv({(x, f(x)) : x ∈ X}).
Such an inequality is then valid for {(x, f(x)) : x ∈ X} and facet-defining for the convex

hull of this set. General multilinear functions (i.e., any function composed of a sum of

products of variables) were shown to have vertex polyhedral convex envelopes by [132].

An implication of this result is that many of the concepts mentioned in the preceding

paragraph can be used for general mutilinear functions. The extension of such results

to define convex envelopes for multilinear functions (and generalizations of them) has

been discussed in [141, 153, 154, 155], among other references.

In [Cafieri et al., 2010c] and [Belotti et al., 2012b] we focused on quadrilinear mono-

mials, i.e., functions in the form x1x2x3x4, with the aim to investigate tight convex

relaxations, starting from the observation that this kind of monomials arises often in

polynomial programs (in the mathematical formulation of several real-life problems, see

[89, 79]) and it is the multivariate monomial of smallest degree for which the convex

envelope is not explicitly known (via linear inequalities) in general. For bilinear mono-

mials xixj , for example, the known convex envelopes described by the McCormick’s

inequalities exist [7, 97]:

wij ≥ xLi xj + xLj xi − xLi x
L
j

wij ≥ xUi xj + xUj xi − xUi x
U
j

wij ≤ xLi xj + xUj xi − xLi x
U
j

wij ≤ xUi xj + xLj xi − xUi x
L
j .
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(where wij is the linearizing variable for xixj), and for trilinear monomials a (signifi-

cantly larger) number of inequalities defining the convex envelope have been described

too [105, 104]. It is worth noticing that, very recently, 44 inequalities describing the

convex envelope of quadrilinear monomials have been described in an M.Sc. thesis [13]

for the simplest of the quadrilinear cases, the one having all bounds in the nonnegative

orthant. It is not known how many cases there will be in total, but it is evident that the

large number of inequalities and possible cases makes the task of implementing these

envelopes in a computer program very hard and even impracticable. Also, very recently,

an approach based on the duality theory to generate envelopes has been proposed in

[31], with interesting computational results.

In [Cafieri et al., 2010c] and [Belotti et al., 2012b] we addressed the general question

of when, and how, one approach to defining convex relaxations of factorable functions

can be shown to yield relaxations that are stronger than those generated by another

approach. We specially addressed quadrilinear monomials, but our results apply more

generally to factorable functions. Our contribution is twofold:

- We formally established, using a general method that is not limited to monomials,

that any relaxation for k-linear terms that employs a successive use of relaxing

bilinear terms (via the bilinear convex envelope) can be improved by employing

instead a relaxation of a trilinear term (via the trilinear convex envelope).

- We established by means of a computational assessment, based on the comparison

of enclosing polytopes, which relaxation is strictly tighter.

Let us consider a quadrilinear term x1x2x3x4 and let B = [xL, xU ]. Exploiting

associativity of the product, the quadrilinear term can be rewritten in different ways, as

products of monomials of degree two and three:

((x1x2)x3)x4, (x1x2)(x3x4), (x1x2x3)x4, (x1x2)x3x4

(this, up to renaming the variables, exhausts the possibilities). The quadrilinear feasible

set S4 = {(w1, x1, x2, x3, x4) | w1 = x1x2x3x4} ∩B over a box can be lifted, introducing

linearizing variables, in many different ways according to the way associativity is applied.

Specifically, relative to the considered term groupings, the following sets are obtained:

S222 = {(x,w) ∈ R
4 × R

3 |xi ∈ [xLi , x
U
i ] ∧ w1 = x1x2, w2 = w1x3, w3 = w2x4},

S̃222 = {(x,w) ∈ R
4 × R

3 |xi ∈ [xLi , x
U
i ] ∧ w1 = x1x2, w2 = x3x4, w3 = w1w2},

S32 = {(x,w) ∈ R
4 × R

2 |xi ∈ [xLi , x
U
i ] ∧ w1 = x1x2x3, w2 = w1x4},

S23 = {(x,w) ∈ R
4 × R

2 |xi ∈ [xLi , x
U
i ] ∧ w1 = x1x2, w2 = w1x3x4}.
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The known convex/concave envelopes for both bilinear [7, 97] and trilinear terms [105,

104] are then used to derive four convex relaxations of S4: a bilinear envelope is exploited

recursively thrice for the first two cases; a trilinear envelope followed by a bilinear

envelope and a bilinear envelope followed by a trilinear envelope are exploited in the

other two cases. A question then arises naturally: which corresponding relaxation is

tighter? To answer this question, we investigated the problem from a theoretical as well

as a computational point of view. The theoretical framework we provide is, in fact,

more general to investigate relaxation strengths and can be applied to any factorable

mathematical program in order to compare pairs of relaxations. However, it does not

give an indication on the relative tightness of the considered relaxations, thus motivating

a through computational assessment.

The theoretical result that we provided in [Cafieri et al., 2010c] can be summarized in

the following way: a stronger relaxation is obtained when one replaces “large terms” with

tight convex relaxations instead of breaking up such terms in sums/products of smaller

terms before replacing each small term with its respective convex relaxation. Although

this may appear a quite intuitive result, because of the inherently recursive nature of

factorable functions and of the fact that we deal with a recursive symbolic procedure for

constructive the convex relaxation, we did not find it easy to prove this result formally.

For this purpose, we used theoretical tools from the formal languages community. More

precisely, we used a formal language to express the functions used in the objective

and constraints of a mathematical program, and we defined a semantic of strings of

this language to establish a formal comparison. The strings of this language are built

recursively from operators and constant and variable symbols. These strings are in

bijection with the “expression trees” mentioned in much of the sBB literature [84, 15],

although we chose a presentation style following the formal-languages community [110].

Our theorem establishes that

Theorem 1.4. For any relaxation of x1x2 · · ·xk (k ≥ 3) using any bilinear envelopes

recursively, there is a relaxation employing also trilinear envelopes that is at least as

tight.

In particular, if applied to the convex relaxations of x1x2x3x4, the theorem establishes

that S23 is at least as tight as S222 and S̃222, and that S32 is at least as tight as

S222. Practical implications of Theorem 1.4 are important insofar as most sBB software

employs the grouping leading to the slackest relaxation.

To evaluate the relative tightness of the four considered relaxation, we carried out

extensive numerical experiments [Cafieri et al., 2010c]. The idea was to compare the

four underestimation schemes mainly in terms of volume of the corresponding polytopes

enveloping the nonconvex quadrilinear surface. This method of comparison, introduced

in [81], is interesting because it is independent of any objective function. The polytopes
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were projected on (x, f(x) := x1x2x3x4) ∈ R
5 in order to compare the results, given

that exploiting envelopes for bilinear and trilinear terms leads to an increased number

of variables, and thus to polytopes belonging to R7 (S222 and S̃222) and R
6 (S23 and S32).

Then, their volumes were computed and extensive numerical tests were carried out. By

this comparison of enclosing polytopes, which may be employed for the comparison of

relaxations of other factorable functions, we got a significant indication of the strength

of the considered relaxations. The results showed that the smallest values of volumes

correspond to relaxations involving the composition of trilinear and bilinar envelopes

(confirming Theorem 1.4), and in particular the best results for more than 80% of the

considered instances were obtained using relaxation S23. This is interesting because

neither Theorem 1.4 nor basic intuition can help in establishing which relaxation is the

tightest in practice. An example of the overall pattern in terms of variations of volumes

of the enveloping polytopes for a selection of instances is shown in Figure 1.1, where the

four lines correspond to the four linearizations and the points to the instances obtained

by progressively tightening the bounds to simulate a BB. After tightening the bounds

on a variable, there are no examples where one curve goes from far below to far above

another: this suggests that tightening the bounds has a comparable effect on the different

relaxations.

1 21 41 61
0

50

100

150

200

instances

v
o

lu
m

e
s

((x
1
x

2
)x

3
)x

4

(x
1
x

2
)(x

3
x

4
)

(x
1
x

2
x

3
)x

4

(x
1
x

2
)x

3
x

4

2 22 42 62
0

50

100

150

200

250

instances

v
o

lu
m

e
s

((x
1
x

2
)x

3
)x

4

(x
1
x

2
)(x

3
x

4
)

(x
1
x

2
x

3
)x

4

(x
1
x

2
)x

3
x

4

Figure 1.1: Volumes of enveloping polytopes corresponding to S222, S̃222, S32, S23.

These results were confirmed by numerical tests carried out on problems in the

literature. The strength of the proposed relaxations were further investigated in a sBB

algorithm in [Belotti et al., 2012b]. To that effect, we implemented the computation

of the four relaxations for quadrilinear monomials in the general purpose solver for

MINLP COUENNE [15], which is based on a sBB algorithm in the framework described

in Sect. 1.1.2. Computational experiments were carried out running COUENNE on some

instances of the Molecular Distance Geometry Problem (MDGP) [90] and confirmed the

different impact of the considered relaxations on the performance of a spatial Branch-

and-Bound. From the theoretical point of view, we were able to prove again Theorem 1.4
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by means of a different development. In [Belotti et al., 2012b] we provided in fact an

alternative proof of the same result, using concepts and methods from the community

of formal languages in theoretical Computer Science, thus providing a result that is

therefore also readable by a community other than that of Optimization.

1.2.2 Compact RLT-based relaxations

In [Cafieri et al., 2012c], with several co-authors, we have dealt again with reformulation

techniques in MP and convex relaxations with the aim of improving the performance of

sBB algorithms for global optimization of polynomial NLPs and MINLPs, tightening the

bound computed by solving a convex relaxation at each sBB node. The target problem

is a polynomial program subject to linear constraints, i.e., problem (1.2) subject to the

constraint Ax = b, where A is a full rank m× n matrix and b ∈ R
m.

The proposed reformulation belongs to the class of the well-known Reformulation-

Linearization Technique (RLT) and extends to polynomial programs a special sub-class

of RLT originally introduced by Liberti [91, 83] for quadratic problems. The RLT

technique was introduced by H. Sherali and developed by Sherali and co-authors in a

sequence of papers published from the 1980s onwards [145, 142, 1, 144, 143] with ex-

tensions to various type of nonconvex discrete and continuous problems. An extension

of the RLT to polynomial programming is described in [139], and to more general fac-

torable programming problems in [146]. The basic idea is to form new constraints by

considering multiplications of bound factors (i.e., terms like (xi − xLi ) and (xUi − xi))

by linear constraint factors (i.e., the left-hand side of a constraint such as gi(x) − bi,

where g(x) = b or g(x) ≤ b are linear problem constraints). Since bound and constraint

factors are always non-negative, so are their products: this way one can generate sets

of valid problem constraints. The technique is then characterized by two steps: a re-

formulation step in which certain additional (nonlinear) valid inequality constraints are

automatically generated, and a linearization step in which each product term is replaced

by a single continuous (linearizing) variable w, called RLT variable. The corresponding

RLT-based linear relaxation is obtained via this substitution upon dropping the defining

constraints (w equal to the product term) from the formulation. This technique finds its

practical limitation in the extremely large number of adjoined constraints. Usually the

set of adjoined constraints is redundant (i.e., some of the constraints are linear combi-

nation of other ones), whereas other constraints are inactive. Some heuristic techniques

[145, 140] were proposed to help filter out RLT constraints that are redundant. The

special class of reduced RLT was introduced by L. Liberti [91] to address this drawback

in the case of quadratic problems subject to linear constraints (and possibly nonlinear

constraints), based on the observation that the presence of linear equality constraints in
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the original problem allows the generation of only those linear RLT constraints that are

guaranteed to replace a set of quadratic terms.

In [Cafieri et al., 2012c], we made two original contributions.

- We extended rRLT theory from quadratic to polynomial problems.

- We proposed a method to obtain a more compact (i.e.,with fewer constraints)

convex relaxation. The compact version may be weaker than the rRLT one, but

experiments show that the loss in tightness is greatly offset by the gain in CPU

time required to solve it.

Extension of rRLT to polynomial problems

We recall here the basic steps of the reduced RLT extended to polynomial problems

(more technical details are in [Cafieri et al., 2012c]). Let Q = {2, . . . , q}, xj1 · · ·xjp a

monomial appearing in the original problem, where p ∈ Q, and let J = (j1, . . . , jp) be

the corresponding finite index sequence. An equivalence relation is defined to take into

account symmetries arising in the monomials by commutativity, such that the set of

equivalence classes N̄ p is used to quantify over, when indexing added variables wJ , for

all p ∈ Q.

The reduced RLT is extended to polynomial programming through the following steps:

Reformulation: multiply the original linear constraintsAx = b by all monomials
∏

ℓ≤p−1

xjℓ ;

Linearization: replace each monomial by the corresponding added variable w(J ′,j), where

J ′ ∈ N̄ p−1, obtaining the reduced RLT system (rRLTS), withwJ ′ = (w(J ′,1), . . . , w(J ′,n)):

∀p ∈ Q, J ′ ∈ N̄ p−1 A wJ ′ = bwJ ′ , (1.3)

and adjoin the corresponding defining constraints wJ =
∏

ℓ≤|J | xjℓ .

By simple substitutions, rRLTS is proved to be equivalent to the companion system:

∀p ∈ Q, J ′ ∈ N̄ p−1 A zJ ′ = 0. (1.4)

We were then able, in [Cafieri et al., 2012c], to extend to polynomial programs the

main results holding for quadratic problems [91]: the companion system, with rank ρ,

implies ρ of the rRLT defining constraints, which therefore can be dropped from the

formulation without weakening it. More precisely, first let us note that, since (1.4) is

a linear homogeneous system, there is a matrix M such that the companion system is

equivalent to Mz = 0, the columns of which are indexed by sequences J . The columns of

M can be partitioned in basic and nonbasic columns, say B and N the sets of associated

indices. Two sets can then be defined: the set C containing the original linear constraints

and all the defining constraints, and the set RN containing the original linear constraints,

the rRLT constraints and the defining constraints corresponding to J ∈ N .
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The theorem we introduced states that the two sets are equivalent, or in other words,

that rRLT constraints allow to obtain an exact reformulation.

Theorem 1.5. For each partition B,N into basic and nonbasic column indices for the

companion system Mz = 0, we have C = RN .

A convex relaxation for the reformulated problem is readily obtained by applying mono-

mial convexification methods in the literature, such as the one presented in Sect. 1.2.1.

Compact rRLT

For any given linear system there is in general more than one way to partition the

variables in basics and nonbasics. The idea was to choose the set N in such a way as

to yield a more compact relaxation, i.e., with fewer constraints, without worsening the

bound excessively. More precisely, the basic question is: how to choose N such that the

monomial relaxations that are dropped define “large volumes”, and are therefore more

likely to be dominated by the relaxations of monomials in N? This question led (in [91]

for quadratic problems) to the concept of convexity gap and to a method to determine

which terms to retain in the formulation.

Given a function f : X ⊆ R
n → R, the convexity gap is the volume of the convex

relaxation of the set S = {(x,w) | w = f(x)}. For example, for a bilinear term xixj ,

the convex relaxation of S is a tetrahedron easily obtained by exploiting the McCormick

inequalities, and its volume is obtained by using the Cayley-Menger formula in 3 di-

mensions [70]. For a general monomial, one can observe that, by associativity and upon

replacement by appropriate variables, for any monomial µ(x) of degree p ∈ Q it is al-

ways possible to express the monomial as a product of multilinear factors and compute

the convexity gap using the results holding for multilinear monomials. This approach is

similar to the standard reformulation exploited by sBB implementations in view to ob-

tain the convex relaxation of general monomials, and more specifically to the approach

followed for quadrilinear monomials and described in Sect. 1.2.1.

If J is the (ordered) sequence of p variable indices appearing in a monomial µ(x),

let VJ denote the convexity gap for µ(x) and let V S,p =
∑

J∈S
|J|=p

VJ for any set S, and

V S =
∑

p∈Q

V S,p. The idea is to select the basic/nonbasic sets of column indices of the

companion system (1.4) in such a way that V N,p is minimized (equivalently, V B,p is max-

imized) for all p. There is however an added complication compared to the quadratic

case: the volumes corresponding to monomial terms of different degree (e.g., Vij and

Vijk for xij and xijk respectively) are expressed in different units of measure, so sum-

ming up VJ for Js of different sizes may not make much sense. This led us to define a
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multi-objective problem:

∀p ∈ Q maxV B,p

MB is a basis of (1.4)

}

(1.5)

We then showed that (1.5) is equivalent to a single-objective problem:

Theorem 1.6. Any solution B of (1.5) maximizing V B also maximizes V B,p ∀p ∈ Q.

The single-objective problem max{vB | MB a basis of (1.4)} has a matroidal structure

and can therefore be solved using a greedy algorithm.

It is worth noticing that a different treatment of the essentially the same concepts was

recently presented in [138], with the notable difference that in [138] only a bases of A

is employed instead of the (larger) companion system, and semidefinite cuts are also

adjoined to the considered formulation.

Numerical results [Cafieri et al., 2012c] show that the compact rRLT linear relax-

ation (rRLT-C), obtained without considering the constraints relaxing monomial terms

corresponding to basic columns of the companion system, generally requires less time to

solve, and yields bounds that are not much worse than those given by the rRLT formu-

lation: the cumulative bound worsening is 0.07% against a time improvement of nearly

40%. This is very encouraging with respect to enhancing spatial Branch-and-Bound

algorithms implementing RLT-based relaxations.

1.3 Automatic reformulations

The contributions described in the previous sections were mainly around the concept of

convex relaxations, which play an important role in deterministic Branch-and-Bound-

based algorithms for global optimization. Such a work is however in the framework of

the wider research topic of reformulations. Reformulations in Mathematical Program-

ming (MP) have been recently systematically studied and classified, also appearing as

an autonomous domain in MP. Definitions and systematics of reformulations have been

proposed by L. Liberti in [86, 85], motivated by the observation that there was not a

common framework to study reformulations, though they are widely used in mathemat-

ical programming. My activity as post-doctoral researcher at École Polytechnique in

Paris was in the context of an ANR-funded project on reformulations in MP, leading

me to get interested in this topic. With Leo Liberti, we specially worked attempting to

move some steps in the direction of automatic reformulations. Our book chapter [Liberti

et al., 2009], like [86], aims to provide a common framework, though being much more

computationally oriented, providing symbolic algorithms and a first description of the

implementation of a software framework for automatic reformulations.

Several different definitions of reformulation have been proposed. The one we gave

in Sect. 1.1.2 is a basic informal definition. Basically, one expects that reformulations
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keep properties like the set of optima, and exhibit better properties for example from

the point of view of algorithms application. Reformulations are indeed important with

respect to the choice and efficiency of the solution algorithms, not only because typically

solvers require their input problems to be cast in a standard form, but also because

solver performances can be different depending on the formulation used. An interesting

example is provided by the reduced RLT reformulation described in Sect. 1.2.2: given,

for example, a quadratic problem with linear equality constraints, it is reformulated into

a different quadratic problem with more linear equality constraints (rRLTS) and fewer

quadratic terms. The original and the reformulated problems both belong to the same

class of optimization problems, but a spatial Branch-and-Bound performs better on the

reformulation, the convex relaxation of the reformulated problem being tighter.

The idea of L. Liberti was to propose an unified data structure for mathematical

programming formulations, categorizing reformulations in essentially four types: opt-

reformulations, which preserve all optimality properties; narrowings, which preserve at

least one global optimum; relaxations, which are based on dropping constraints, variable

bounds or types; and approximations, which are one of the above types “in the limit”.

Building on these basic elements, in [Liberti et al., 2009] we mainly focused on the

computational aspects, aiming to provide tools to carry out a number of reformula-

tions automatically. Automatically in this context means that, given a formulation P ,

a reformulation solver has to provide (performing symbolic computations) a new for-

mulation Q of the same problem in a more convenient form, in such a way that the

user that aims for example to use an optimization algorithm do no need to manipulate

formulations nor to be aware of solution algorithm details (a few capabilities of this

type are available in mathematical programming language environments like AMPL[48]

and GAMS[26]). This effort to provide automatic reformulation tools led us to the de-

velopment of a software framework for reformulations in MP: ROSE - Reformulation

Optimization Software Engine. This software is also described in [Liberti et al., 2010].

ROSE provides symbolic (as opposed to numerical) methods for manipulating MPs. It

can perform basic and complex symbolic analyses and manipulation tasks on all for-

mulation elements, including all expressions appearing in objective(s) and constraints

in a MINLP problem. ROSE consists of around 50Klines of GNU C++ code and is

currently distributed through COIN-OR [93]. ROSE’s structure is based on the struc-

ture of a software previously developed by L. Liberti and of which ROSE is the direct

descendant. ROSE consists of a simple modular architecture based on two main classes

(Problem and Solver) and a separate library (Ev3) for storing and manipulating ex-

pressions. The overall architecture is depicted graphically in Fig. 1.2. The client (either

the user or AMPL) constructs and configures a problem, selects and configures a solver,

then solves a problem using the selected solver, and finally collects the output from

the problem. In our research, we currently use ROSE’s reformulation capabilities with
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Figure 1.2: ROSE architecture. Rectangles indicate classes (with dashed mean-
ing virtual), rounded boxes indicates structs, relation links conform to UML: void
diamonds indicate aggregation (to maintain a reference of), filled diamonds indicate

composition (to maintain a copy of), triangles indicate inheritance.

AMPL’s considerable set of numerical solvers in order to obtain solutions of complex

MINLPs. Examples of reformulators implemented in ROSE include a Smith reformula-

tion (Rsmith) [150] (MINLP standard-form reformulation, see Sect. 1.1.3), which isolates

all the nonlinearities of the problem in constraints with a simple structure (these are

then replaced by appropriate convex relaxations), and several relaxation reformulators

(chained to the Rsmith), such as Rconvexifier, which produces a convex relaxation

of several nonlinear functions, and RQuarticConvex, which produces convex relaxations

of quadrilinear monomials. In particular, for the investigation of convex relaxations of

quadrilinear terms [Cafieri et al., 2010c, Belotti et al., 2012b] (see Sect. 1.2.1), ROSE

was used both to produce convex relaxations and to automatically write input data to

other software packages (e.g. cdd [50]).

An example of automatic reformulations carried out by ROSE may probably help to

understand better its capabilities. Let us consider the following optimization problem

whose objective function contains four nonlinear terms. In order to ease the reading, we

use an intuitive description format for MINLPs (note that the symbol ’<’ stands here

for ’≤’ and that we use an explicit boundary (1e30) for dealing with infinity). ROSE

is able to find a convex relaxation for the problem using the convexifier reformulator

(Rconvexifier).
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Original Problem

# ROSE problem: convexifier

# Problem has 3 variables and 1 constraints

# Variables:

variables = -1 < x1 < 1 / Continuous,

-2 < y2 < 3 / Continuous,

1 < t3 < 2 / Continuous;

# Objective Function:

objfun = min [ (2*x1^2)+(y2^3)

+((x1)*(y2))+((x1)/(t3)) ];

ROSE Reformulation

# ROSE problem: convexifier

# Problem has 9 variables and 18 constraints

# Variables:

variables = -1 < x1 < 1 / Continuous,

-2 < y2 < 3 / Continuous,

1 < t3 < 2 / Continuous,

0 < w4 < 2 / Continuous,

-8 < w5 < 27 / Continuous,

-3 < w6 < 3 / Continuous,

-1 < w7 < 1 / Continuous,

-12 < w8 < 33 / Continuous,

0.5 < z9 < 1 / Continuous;

# Objective Function:

objfun = min [ w8 ];

# Constraints:

constraints = [ 2 < (x1)+(y2) < 1e+30 ];

# Constraints:

constraints = [ 2 < (x1)+(y2) < 1e+30 ],

[ 0 < (w4)+(w5)+(w6)+(w7)+(-1*w8) < 0 ],

[ -2 < (4*x1)+(w4) < 1e+30 ],

[ -2 < (-4*x1)+(w4) < 1e+30 ],

[ -0.5 < (2*x1)+(w4) < 1e+30 ],

[ -0.5 < (-2*x1)+(w4) < 1e+30 ],

[ -2 < (-3*y2)+(w5) < 1e+30 ],

[ -54 < (-27*y2)+(w5) < 1e+30 ],

[ -1e+30 < (-6.75*y2)+(w5) < 6.75 ],

[ -1e+30 < (-12*y2)+(w5) < 16 ],

[ -2 < (2*x1)+(y2)+(w6) < 1e+30 ],

[ -3 < (-3*x1)+(-1*y2)+(w6) < 1e+30 ],

[ -1e+30 < (-3*x1)+(y2)+(w6) < 3 ],

[ -1e+30 < (2*x1)+(-1*y2)+(w6) < 2 ],

[ 0.5 < (-0.5*x1)+(w7)+(z9) < 1e+30 ],

[ -1 < (-1*x1)+(w7)+(-1*z9) < 1e+30 ],

[ -1e+30 < (-1*x1)+(w7)+(z9) < 1 ],

[ -1e+30 < (-0.5*x1)+(w7)+(-1*z9) < -0.5 ];

The reformulation process is performed in various steps. The first step consists in

reformulating the problem to the Smith standard form: each nonconvex term in the

objective function is replaced by an added variable w and defining constraints of the

form w = nonconvex term are added to the problem. The objective function of the

reformulated problem is one linearizing variable only, that is the sum of all the added

variables, and a constraint for this equation is also added to the problem. Then, each

defining constraint is replaced by a convex under-estimator and concave over-estimator

of the corresponding nonlinear term. In particular, the term 2*x1^2 is treated as a
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convex univariate function f(x) and a linear under-estimator is obtained by considering

five tangents to f at various given points, an over-estimator is obtained by consider-

ing the secant through the points (x1^L,f(x1^L)),(x1^U,f(x1^U)), where x1^L,and

x1^U are the bounds on x1.For the term y2^3, where the range of y2 includes zero,

the linear relaxation given in [92] is used. McCormick’s envelopes are considered for

the bilinear term x1*y2.The fractional term is reformulated as bilinear by considering

z=1/t3 and McCormick’s envelopes are exploited again. Finally, the defining constraints

are removed, obtaining the final reformulation (of the relaxation type).

1.4 ATM application: mixed-integer optimization for

aircraft conflict avoidance

Problems arising in Air Traffic Management (ATM) are a privileged area of investigation

at École Nationale de l’Aviation Civile, and became my favorite field of application since

the beginning of my work in this University. The ATM context has been drawn in the

Introduction. We particularly focus on the problem of aircraft conflict avoidance, where

mixed-integer optimization naturally arises. A different approach, based on optimal

control techniques, is presented in Chapter 2.

Aircraft sharing the same airspace are said to be potentially in conflict when they are

too close to each other according to their predicted trajectories, i.e., their relative hor-

izontal and vertical distances do not both satisfy two given safety-distance constraints.

Detection and resolution of aircraft conflicts, also referred to as aircraft deconfliction, is

one of the most crucial issues in Air Traffic Management to guarantee air traffic safety. As

mentioned in the Introduction, deconfliction is in fact one of the problems that urgently

need to be addressed to ensure a higher level of automation in ATM and consequently

more efficiency and safety, as the traffic is rapidly growing. Also, these problems still

deserve investigation from both the identification of suitable mathematical models and

the development of efficient and reliable algorithms and solution methods. The main

challenge is to propose mathematical formulations that are able to model the complex

choices characterizing the target problems without assuming any unrealistic simplifying

hypoteses, and that are amenable to be solved by efficient algorithms. My work in this

context is primarly focused on devising mathematical programming formulations from

mixed-integer optimization and on designing deterministic-based solution approaches.

Modeling aircraft conflict avoidance is strictly dependent on the strategy chosen to

solve conflicts, i.e., to keep a separation between aircraft. The most commonly exploited

way is based on the idea of achieving separation through changing either the trajectory

(heading) or the flight level of the aircraft involved in a conflict. This kind of separation

maneuvers is the one usually exploited by air traffic controllers. Another way is based
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on the idea of separating aircraft by slightly changing their speeds but keeping the

predicted trajectories. More precisely, according to the European ERASMUS project

[24], the speed regulation must occur in a reasonable small range (namely, from -6% to

+3% of the original speed), to perform a subliminal control, which is not even perceived

by air traffic controllers. It is on this last strategy that our work is based.

An optimization problem arises from the need to perform conflict avoidance while

deviating as little as possible from the original aircraft flight plan, i.e., minimizing the

impact of the separation maneuvers on the flight efficiency. To this aim, various solution

strategies have been proposed for the corresponding optimization problem (see e.g.[77]).

In [Cafieri and Durand, 2012] (see also [29, 28]), the aim was to use mathematical pro-

gramming and specifically mixed-integer optimization, proposing a new MINLP model

and deterministic global solution approaches as opposed to the widely used evolutionary

computation [39, 36, 38, 37]. Recent advances in mixed-integer linear and nonlinear

programming are, in fact, opening new perspectives for aircraft deconfliction, as showed

by the literature in this area, started with contributions like [124] and very recently

enriched by interesting publications [8, 9, 130, 131, 164], furtherly motivating our work.

MINLP formulations appear in fact to be the natural candidates for the addressed

ATM problems, where the need for modeling logical choices suggests the simultaneous

presence of mixed (continuous-integer) variables, and nonlinear constraints arise from

separation condition modeling. In [Cafieri and Durand, 2012], we propose a very general

modeling for aircraft deconfliction, whose main ideas are the following.

First, the aircraft separation condition, which represents the main constraint in a

mathematical programming model for deconfliction, is reformulated in such a way to

eliminate the time t from the equation. Starting from its basic expression (vectorial

form) for aircraft i and j flying at the same flight level ||xr
ij(t)|| ≥ d, where d is the

minimum required separation distance (usually, 5 NM, with 1 NM (Nautical Mile) =

1852 m) and xr
ij(t) is the relative distance between aircraft i and j at the instant time

t, it is reformulated to:

(xrdij )
2 −

(vr
ijx

rd
ij )

2

(vrij)
2

− d2 ≥ 0. (1.6)

This expression is obtained, under the hypothesis that aircraft speed changes occur

instantaneously at a given instant time and hence uniform motion laws can be applied,

by rewriting xr
ij(t) in terms of the relative initial position of the aircraft xrdij and the

product of their relative speed vr
ij by the time, and by substituting the expression of the

minimum instant time tm for which the separation is attained:

tm = −
vr
ijx

rd
ij

(vrij)
2
. (1.7)
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In this way, with (1.6) not depending on the time variable t anymore, the number of

constraints is reduced with respect to more classical approaches based on time discretiza-

tion. Nevertheless, in our model (1.6) is imposed in several time windows, as detailed

in the following.

Second, to obtain a very general model, where no conditions are imposed on the

order and on the instant time of execution of the separation maneuvers, the main idea

is to deal with the different time windows where aircraft fly with their original (known)

speed v or with a changed speed v+ q, where q represents a possible positive or negative

speed change. Each aircraft k can modify its speed at any instant time t1k during its

trajectory and go back to its original speed at any instant time t2k. Instant times t1k

and t2k are therefore unknown for each aircraft, and for each pair of conflicting aircraft

the order of the respective instant times of speed change is not known. For each pair of

aircraft, by considering all possible permutations of these instant times, 6 different time

configurations are obtained, each one characterized by 5 time intervals. An illustrative

picture for a pair of aircraft is given in Fig. 1.3, where T represents the time horizon

(usually around 20-30 minutes) during which the air traffic on an air sector is observed

and potential conflicts are to be solved.
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Figure 1.3: Time configurations in the proposed mathematical programming model
for conflict avoidance of a pair of aircraft i (in red) and j (in blue)

The decision variables in the proposed model are: variables qk, expressing the speed

change for each aircraft k, instant times t1k and t2k, and variables used to handle time

configurations and time windows. Binary variables are used to state the order of instant

times for each time configuration, and additional continuous variables are used to ex-

press, in each time window, the initial position for each aircraft and relative distances

and relative speeds for each pair of aircraft. Several objective functions are possible,

depending on the optimization that one aims to perform. With the aim of deviating

as less as possible from the original flight plan, we minimize the sum, over the set of

aircraft, of speed changes together with the length of the time interval during which the
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speed changes occur. The constraints are used to handle time configurations and time

windows as well as to express aircraft separation conditions in each time window. In

particular, the condition (1.6) has to be imposed for each pair of aircraft, in each of the

5 time intervals, and for each time configuration:

∀i, j, ∀h ∈ {1, . . . , 5}, ∀ℓ ∈ {1, . . . , 6}
(

ylhyrh

(

(xrdijh)
2 −

(vrijhx
rd
ijh)

2

(vrijh)
2

− d2

))

≥ 0(1.8)

where y are binary variables used to check if tm ∈ [ts, ts′ ] for each time interval [ts, ts′ ].

The proposed model is therefore a MINLP problem which is computationally challenging,

due to the large number of (binary and continuous) variables and of constraints used

to handle time configurations and time intervals, in particular the nonlinear nonconvex

constraints used to impose aircraft separation.

We attempted to solve the deconfliction problem to global optimality by means of a

deterministic solver for global optimization. Using a general-purpose solver for MINLPs,

namely COUENNE [15], which implements a spatial Branch-and-Bound based on convex

relaxations (see Sect. 1.1.2), we were able to solve problems involving up to n = 6 aircraft.

Specifically, we considered as a testbed a set of n aircraft in 2-dimensional space, placed

on a circle of a given radius and pointing toward the center of the circle. This kind of

test problem, although it does not correspond to a realistic situation, represents a good

trade-off between simplicity of illustration and difficulty of resolution (all aircraft are in

conflict with each other). See Figure 1.4.

  

n aircraft

conflict zone

Figure 1.4: n conflicting aircraft flying towards the center of a circle.

Increasing the number of aircraft n, the number of variables (in particular binary) and

of constraints largely increase. Thus, high memory and time requirements do not allow

us to obtain optimal solutions for larger dimensions of the problem by a standard sBB

algorithm. This in fact leaves room for further investigation of deterministic global

methods which possibly take advantage from the characteristics of the target problem.

This is in our perspectives of research in this domain.
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The difficulty of obtaining global exact solution by standard sBB led us to investigate

alternative approaches, where eventually the global optimality is forsaken in exchange

for the computational efficiency. We have chosen to keep a deterministic approach at

least locally, proposing a solution strategy where exact solutions are computed locally

on subproblems of the original problem. The idea is to decompose the overall problem

into subproblems involving only a small number of aircraft and to perform deconfliction

exactly on these subproblems, then combining all local solutions. The overall procedure

is thus a heuristic, based on Mathematical Programming and local exact solutions, in

a framework sometimes defined as matheuristic. The algorithm is therefore very differ-

ent from heuristic algorithms usually proposed to solve the considered ATM problem,

mainly belonging to the area of evolutionary computation. The proposed algorithm is

exact on the subproblems (locally optimal) and is globally optimal if all conflicts are

solved when combining local solutions. Moreover, it is based on a few basic steps which

can be eventually developed in different ways, such as local-solution computations and

local searches. In this sense, the algorithm may be intended as a general algorithmic

framework tailored on the problem. The problem decomposition is based on the con-

cept of cluster, defined as the transitive closing on conflicting pairs of aircraft [59]. An

illustrative example is given in Figure 1.5.

A

B C

D

Figure 1.5: Example of aircraft cluster A,B,C,D
(A in conflict with B and C, and B with D).

A sketch of the proposed algorithm is given in Alg. 1. Its main ingredients are the

following:

- At each step, a solution of ncl deconfliction problems (aircraft clusters) is per-

formed by using an exact solver. Then, the obtained results are combined and the

procedure is iterated until all conflicts are solved;

- Each iteration is performed while preserving as much as possible the information

outcoming from the previous local solutions (this is specially taken into account

in the update of aircraft speeds);
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- A simple local search is performed to update the aircraft speeds, testing a number

of candidates in the neighborhoods of the initial speed values and choosing the one

that minimizes a measure of the conflict severity;

- When speeds are modified, the sharp bounds imposed by the ERASMUS directives

are checked and speeds are adjusted accordingly.

Algorithm 1 Aircraft deconfliction
/* n = number of aircraft; ncl = number of aircraft clusters; vi = speed of aircraft i */
/* maxit = number of allowed iterations; nconfl = number of aircraft conflicts */
Require: n, ncl, vi ∀i = {1, . . . , n}
compute nconfl, it← 0
while (nconfl > 0 and it < maxit) do

it← it+ 1
for all k ≤ ncldo solve the deconfliction problem k (→ compute new speeds v̄i)
compute nconfl
if nconfl > 0 then

for all conflicting aircraft j do

if v̄j > vj then randomly increase v̄j
else randomly decrease v̄j
choose v̄j to have min f =

∑

j
(max violation of separation constraints)/nconfl

end for

end if

check if ∀i ≤ n v̄i ∈ [−6%vi,+3%vi]
for all i ≤ n do

if v̄i /∈ [−6%vi,+3%vi] then randomly change v̄i to have v̄i ∈ [−6%vi,+3%vi]
end for

end while

Return: final speeds, objective function value

Numerical results obtained again considering the problem of n aircraft on the circle are

very promising: problems with up to n = 10 aircraft (45 conflicts at the same time) are

solved in reasonable time, efficiently performing a subliminal control on aircraft speeds.

1.5 Application to the optimal design of electrical

machines

Optimal design problems aim to find structures, or shapes, optimizing some given crite-

ria, for example minimizing a certain cost functional, while satisfying given constraints.

They are typical of engineering applications where one has to design complex structures,

e.g. airplane wings, automobile bodies, electronic circuits, etc. In the last decades, the

progresses made in mechanical modeling, numerical analysis and optimization, and the

increased power of computers, led to a wide use of simulation and computer calculation

in optimal design. Interdisciplinary teams often obtain very good achievements by mak-

ing it profitable to bring their different expertise. This is the case in Toulouse for the

work made on the optimal design of electrical machines by the group of the LAPLACE
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laboratory for the physical and engineering part, and F. Messine and co-workers for the

mathematical optimization part, as the product of a longstanding collaboration. In fact,

it is thanks to F. Messine that I got interested in this kind of applications.

A large literature exists about the design of electromagnetical actuators based on

optimization algorithms and analytical models [101, 99, 66, 122, 129, 147, 171]. These

problems can be formulated as mixed-integer constrained optimization problems, where

integer variables represent quantities that can assume only discrete values and nonlin-

earity often arises in constraints coming from mechanical considerations. Thus, the MP

formulation is usually a MINLP program. In [Cafieri et al., 2012e], we chose to analyze

the problem from the point of view of a designer who wants to use an optimization

solver to find the optimal configuration in the design of an electrical machine without

taking care of the details of the implemented optimization algorithm. Deterministic

global optimization methods have been proposed for such design problem, based on

interval analysis [99, 101] and other global solvers can be applied as well. However,

similarly to the ATM problem described in Sect. 1.4, the MINLP problem may be very

difficult to solve to global optimality by standard solvers. Furthermore, powerful solvers

are not always publically available (this is the case for interval analysis based solvers)

or are not easy to use for non-specialists. Based on the observation that in practice,

in the context of engineering applications, one usually prefers to resort to well-known

and easy-to-use local optimization solvers like the MatLab’s fmincon function (Math-

works) [112, 122, 129, 171], we tried to analyze the problems that a designer may have

to face when using this kind of solvers. Thus, rather than considering a classical MINLP

approach, we investigated, based on the theory of reformulations in mathematical pro-

gramming (see Sect. 1.3), the efficiency and reliability of the widely used solver fmincon

when handling different mathematical formulations (in a multistart setting, for a wider

exploration of the feasible domain), with the aim of providing guidelines for designers

in practical engineering applications.

We focused on the design of a simple slotless electrical rotating permanent magnet

machine, presented in Fig. 1.6, whose descriptive equations comes from approximations

of Maxwell’s equations (taken in the quasi-static mode) and mechanical considerations.
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(
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)

where Γem is the electromagnetic torque, D(m) is the bore diameter, λ the diameter over length ratio,

E(m) the winding thickness, β the polar arc factor, kr a coefficient of occupation; the global heating

up of the winding is rather roughly modeled by Ech, Jcu(A/m2) is the current areal density, p is the

number of pole pairs, ∆p the polar step, Kf is a semi-empiric magnetic leakage coefficient, e(m) is

the thickness of the mechanical air-gap, C(m) is the thickness of yoke, Biron is the magnetic field in

the iron, Be(T ) is the no-load magnetic radial flux density, la(m) is the thickness of the permanent

magnets and P the magnetic polarization.

A few entities appearing in the equations, Γem, P , kr, Biron, Ech and ∆p, have fixed values as in [122],

while other parameters, like D, λ, la(m), E, C, β, Be, Jcu, Kf , e and p can vary inside given intervals.

Figure 1.6: The considered permanent magnet machine

Starting from a general mathematical programming formulation like:

P :































































min
x∈Rn

y∈Rm

f(x, y)

s.t.

gi(x, y) ≤ 0, ∀i ∈ {1, · · · , p},
hi(x, y) = 0, ∀i ∈ {1, · · · , q},
yi = Ai(x, yJi), ∀i ∈ {1, · · · ,m},
xi ≤ xi ≤ xi, ∀i ∈ {1, · · · , n},
yi ≤ yi ≤ yi, ∀i ∈ {1, · · · ,m}.

where Ji ⊆ {1, · · · ,m} \ {i} (yi depends explicitly or implicitly on x by recursive calls

to Aj functions and there is no cycle in the definition of yi, hence yi = Ai(x, yJi) =

AR
i (x); as a vectorial notation, y = AR(x)), we investigated the impact of reformulations
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obtained by replacing the occurrences of yi in (P) by AR
i (x):

R :















































min
x∈Rn

f(x,AR(x))

s.t.

gi(x,A
R(x)) ≤ 0, ∀i ∈ {1, · · · , p},

hi(x,A
R(x)) = 0, ∀i ∈ {1, · · · , q},

xi ≤ xi ≤ xi, ∀i ∈ {1, · · · , n},
yi ≤ AR

i (x) ≤ yi, ∀i ∈ {1, · · · ,m}.

Problem (R), reformulation of (P), is obtained by removingm variables (all the variables

y) and changing m equality constraints (yi = Ai(x, yJi)) to 2m inequality constraints

(yi − AR
i (x) ≤ 0 and AR

i (x) − yi ≤ 0). Formulations (P) and (R) are mathematically

equivalent: all feasible solutions of (P) are solutions of (R) and reciprocally, and a global

optimal solution for one problem is a global solution for the other.

In practice, we obtained 6 distinct but equivalent formulations of the considered

design problem, varying in size from 7 to 11 continuous variables, from 3 to 7 equality

constraints and from 0 to 6 inequality constraints. In these formulations, when the num-

ber of variables increases, the nonlinearities of the equations decrease yielding simpler

optimization problems but with more variables. Since the solver performance is roughly

directly proportional to both the number of variables and the number of nonlinearities

in the objective and constraints, a natural trade-off situation arises.

We computationally investigated the impact of the 6 different formulations on the

performance of fmincon. This solver being a local solver, also dependent on the choice of

the starting point, we considered a standard multistart approach. Numerical results gave

interesting indications to the designer. Comparing results in terms of percentage of local

minima and percentage of best local minima found, best and worst values of the local

minimum found, best and average CPU time, the impact of the different formulations is

evident. We recall that the problem is mixed-integer, with an integer variable given by

the number p of pole pairs, in {1, . . . , 10}. The problem was first treated as a continuous

problem, fixing the value of p, to obtain continuous formulations that can be solved by

the considered optimization solver. Then the case where p is free was handled adjoining

polynomial constraints. Again, the formulations performed differently. We found these

remarks interesting from the point of view of a designer, who may be unaware of the

impact of formulation differences on the optimization solver of choice.





Chapter 2

Nonlinear Continuous

Optimization and its Applications

Nonlinear Programming (NLP) is the subclass of MINLP that includes problems where

nonlinearities arise in the objective and/or the constraints and all variables are contin-

uous. NLP problems are fundamental problems in optimization and specific numerical

methods have been developed for their solution, usually local optimization methods,

opposed to global methods discussed in Chap. 1 (of which they often constitute an im-

portant part). NLP techniques are also particularly efficient in solving optimal control

problems.

In this chapter, we present contributions on two specific topics falling in the area of

NLP. The first stage of my research activity (corresponding to my Ph.D. and subsequent

work) focused on Interior Point methods for Quadratic Programming and specially on

their linear algebra kernels. The presented contributions concern the convergence prop-

erties of an Interior Point algorithm (Sect. 2.1) and the main issues arising in the iterative

solution of the linear system arising at each iteration of such an algorithm (Sect. 2.2).

Recently, I got interested again in NLP methods in the context of an optimal control

approach for a problem arising in Air Traffic Management, which is the topic of a Ph.D.

thesis that I am supervising. The related contribution concludes the chapter (Sect. 2.3).

An exhaustive discussion of both theoretical and practical aspects of nonlinear pro-

gramming can be found in some reference books, e.g. [121, 20].

2.1 Interior Point methods

Interior Point methods (IPs) represent one of the main classes of numerical methods

for NLP. A recent interesting survey by J. Gondzio [55] traces the main characteristics

of Interior Point methods and the developments of the research on these methods after

about 25 years from their first description [72]. The focus is specially on polynomial

39
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complexity, which make them particularly attractive, and on linear algebra kernels, on

which the efficiency of IPs strongly depends. Interior Point methods and related linear

algebra issues were my main research topic since my Ph.D. The focus was on convex

Quadratic Programming (QP), which arises as a mathematical model of several real-

world applications and as a fundamental problem in the class of NLP.

The basic idea of Interior Point methods is to compute a sequence of approximations

of an optimal solution belonging to the interior of the feasible set. They are in fact widely

interpreted as algorithms which follow a path of centers (the central path) on their way

towards an optimal solution. Actually, most of the current algorithms generate iterates

which stay in the interior of the positive orthant, but are infeasible for linear constraints

(infeasible IP algorithms), with the significant advantage that they do not require a

usually difficult-to-compute initial feasible point.

Primal-dual IP methods, which use explicitly both primal and dual variables, are the

most successful and powerful class of IP methods.

We recall here the main characteristics of these methods, focusing on their application

to quadratic programming problems.

Let us consider a convex QP problem in the following form:

minimize q(x) =
1

2
xTQx+ cTx

subject to Ax ≥ b, x ≥ 0
(2.1)

where Q ∈ ℜn×n is symmetric positive semidefinite, A ∈ ℜm×n, with m ≤ n, c, x ∈ ℜn,

b ∈ ℜm and the inequalities are interpreted component-wise. We assume that A has

full rank m (if this is not the case, the problem has redundant constraints that can be

removed). From (2.1) we can easily obtain the pair of primal and dual problems:

P ≡







minimize p(x) =
1

2
xTQx+ cTx

subject to Ax− b = z, x ≥ 0, z ≥ 0
(2.2)

and

D ≡







maximize d(x, y) = bT y − 1

2
xTQx

subject to Qx+ c−AT y = s, s ≥ 0, y ≥ 0
(2.3)

where z ∈ ℜm, s ∈ ℜn, y ∈ ℜm, and z and s are primal and dual slack vectors,

respectively. Since there is no gap in the optimal solution between the primal and the

dual objective values, a way to check optimality is to compute the difference between

the two objective function values (duality gap ∆).
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The optimality conditions (Karush-Kuhn-Tucker (KKT) conditions) are given by the

following nonlinear system (matricial form):















Qx+ c−AT y − s

Ax− z − b

XSe

Y Ze















= 0, w ≥ 0 (2.4)

where w = (x, y, s, z) ∈ ℜ(2×n+2×m), X, Y , S, Z are the diagonal matrices of the vectors

x, y, s, z, respectively and e is a vector of all ones of appropriate dimension.

The last two equations are the complementarity conditions, since they imply that the

nonzero elements of the vectors x and s, y and z, must be in complementary locations.

Note that, since the objective function is convex and the feasible set is convex, the KKT

conditions (2.4) are not only necessary, but also sufficient.

The way the complementarity conditions are dealt with makes the difference between

IPs and the other well-known class of methods for NLP, the Active Set methods (among

which we remember the simplex method for linear programming), see e.g. [55]. Given

a complementarity condition XSe = 0 (respectively Y Ze = 0), also written as xisi =

0 ∀i ∈ {1, . . . , n}, Active Set methods at each step make a prediction of the set of indices

for which xi is not equal to zero and force the corresponding si to be zero, then solving

a quadratic subproblem reduced to the variables whose indices belong to the selected

working set, thereby moving along the boundary of the feasible set. Interior Points

methods perturb the complementarity conditions by replacing xisi = 0 with xisi = µ

and driving the perturbation parameter µ to zero, forcing the convergence to optimality.

Basically, IP methods minimize a barrier function, adding a logarithmic barrier term

in the objective to replace inequality constraints, and they compute at each step a new

approximation of the solution moving along a direction, which is computed by solving

the perturbed system of optimality conditions (KKT) by applying the Newton method.

A general (feasible) primal-dual IP framework for solving (2.1) is described in Fig-

ure 2.1, where w = (x, y, s, z) is an approximation of the solution, δw = (δx, δy, δs, δz)

is a search direction and θ is the step length on such a direction.

In this report, we specially refer to Potential Reduction algorithms, which represent

the IP framework considered in [27] and related contributions. IP Potential Reduction

algorithms are based on the idea of minimizing a logarithmic barrier function called

potential function. The aim to decrease the potential function as much as possible at

each iteration of the algorithm can always be achieved under suitable assumptions, and

a corresponding bound on the number of iterations necessary to obtain a desired accu-

racy in the solution can be computed. For a survey on Potential Reduction methods for
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! initialization
choose w0 strictly feasible, µ > 0
k = 0

! iterations
while (convergence criterion not satisfied) do
compute a search direction δwk by solving the system:








Q −AT −I 0
A 0 0 −I
Sk 0 Xk 0
0 Zk 0 Y k

















δxk

δyk

δsk

δzk









=









0
0

−XkSken + µen
−Y kZkem + µem









,

compute θk such that wk > 0
update the approximation of the solution as wk+1 = wk + θkδwk

update µ
k = k + 1

endwhile

Figure 2.1: A general feasible primal-dual IP framework.

Linear Programming and its extensions the reader is referred to Todd [157].

Complexity result in the case of inexact solution of KKT systems

The focus is on the Potential Reduction (PR) algorithm where the perturbed KKT

system, which represents the main computational kernel (see Sect. 2.2), is solved at each

PR iteration by an iterative method. When inexact directions are computed, the theory

of the IP method has to be reanalyzed, to find suitable conditions that such directions

must satisfy in order to guarantee convergence. In [Cafieri et al., 2007d], we proved that

the convergence is guaranteed if the residual of the KKT system at each PR iteration

satisfies a suitable condition which relates the size of the residual to the duality gap,

i.e. to a measure of the progress of the PR method towards the optimal solution.

We consider the infeasible constrained PR method by Mizuno et al. [108] based on the

Tanabe-Todd-Ye symmetric primal-dual potential function [152, 158]:

Φ(w) = ρ log
(

xT s+ zT y
)

−
n
∑

i=1

log (xisi)−
m
∑

i=1

log (ziyi) ,

where w = (x, y, s, z) > 0 and ρ > n + m. The following relation holds between the

potential function and the duality gap ∆ = xT s+ zT y:

∆ ≤ exp ((Φ(w)− (n+m) log(n+m)) / (ρ− (n+m))) ; (2.5)

therefore, in order to decrease ∆ to 0, the method generates a sequence {wk} that drives

Φ toward −∞. The main result, which extends the convergence theory of [108] to the

inexact computation of the directions, is the following [Cafieri et al., 2007d]. It shows
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that convergence is achieved if the norm of the residual of the KKT system at each PR

iteration is bounded by a fraction of the ratio between the duality gap and the parameter

ρ in the potential function.

Theorem 2.1. Let ρ ≥ n +m +
√
n+m. Suppose that the direction δwk satisfies the

KKT system with a residual r̃k such that

‖r̃k‖ <

√
3

4

∆k

ρ
. (2.6)

Then, in the feasible case, a step length θk > 0 exists such that

Φ(wk + θkδwk)− Φ(wk) < −δ, δ > 0. (2.7)

In the infeasible case, let α > 0 such that an optimal solution w∗ = (x∗, y∗, s∗, z∗) exists

with ‖w∗‖∞ ≤ α. If w0 = γα(e, e, e, e), with γ ∈ (0, 1], then a step length θ̄k ∈ (0, 1]

exists, depending on γ, such that

Φ(wk + θ̄kδwk)− Φ(wk) < −δ̄, δ̄ > 0, (2.8)

∆k+1 ≥ (1− θ̄k)∆k. (2.9)

Condition (2.7) and conditions (2.8) and (2.9) not only ensure the convergence of the

feasible and the infeasible PR method, respectively, but also lead to standard polynomial

complexity results.

2.2 Linear algebra issues in IP methods

Primal-dual IP algorithms compute at each iteration a search direction by applying a

Newton step to the nonlinear system of the KKT conditions for the primal-dual problem

perturbed with a suitable parameter µ. The linear system deriving by the application of

a Newton step has the following form (see Fig. 2.1) and is also referred to as the KKT

system:














Q −AT −I 0
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S 0 X 0
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−Y Zem + µem















. (2.10)

This is a system of 2n+2m equations in 2n+2m unknowns, which is nonsingular under

the assumption that the matrix A has full row rank. IP algorithms differ in the choice

of the parameter µ when solving system (2.10).

The solution of the system (2.10) is one of the most critical issues in IP methods.

The efficiency and effectiveness of IP algorithms is therefore strongly related to Linear
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Algebra algorithms that they use. This symbiotic relationship [123] has also motivated

recent advances in numerical Linear Algebra and motivated my Ph.D. thesis [27].

A solution could be obtained by factorizing the whole large system and by solving the

factorized system, but usually reduced forms to smaller systems are preferred. There

are two main stages of reduction and different solution strategies can be developed for

the reduced systems:

- the augmented system (by eliminating δs and δz):

(

Q+ E −AT

−A −F

)(

δx

δy

)

=

(

−Se+X−1µe

Ze− Y −1µe

)

, (2.11)

where E = X−1S and F = Y −1Z (with diagonal positive elements, since IP

methods generate iterates w = (x, y, s, z) > 0).

- the normal equations - dual ordering form (by furtherly eliminating δy):

(Q+ E +ATF−1A)δx = −Se+X−1µe−ATY e+ATZ−1µe. (2.12)

The normal equations have a smaller size than the augmented system and their matrix

is symmetric positive definite (spd), while the augmented system matrix is symmetric

indefinite, with n positive and m negative eigenvalues (more precisely, it is quasi-definite

[162]). On the other hand, the matrix of the augmented system is sparse if Q and A are

sparse, while that of the normal equations can result dense even if Q and A are sparse,

e.g. when A has a dense column, and it is usually denser anyway. Finally, at each IP

iteration, the matrix of the normal equations must be entirely recomputed, while only

the diagonal coefficients of the augmented system must be updated. In both augmented

system and normal equations, the sparsity pattern of the matrix is unchanged during

the whole IP algorithm.

A natural question arises: is it more convenient to solve (2.11) and (2.12) by a direct

or by an iterative method?

Direct methods are widely used to solve the systems (2.11) and (2.12) in well-

established IP software (e.g., LOQO [163], MOSEK [12], OOQP [52]). The Cholesky factoriza-

tion is usually applied to the normal equations, and variants of the LDLT factorization,

differing essentially for the pivot selection rule, are applied to the augmented system.

Sparse matrix reordering strategies and further “ad hoc” strategies are exploited to deal

with the fill-in problem (for a discussion on the direct approach see, e.g., [10, 169]). Note

that with direct methods the increasing ill-conditioning of the system matrix is not a

severe problem. Indeed, under quite general assumptions, the computed Newton direc-

tions are accurate enough to ensure progress toward the optimal solution [45, 168, 170].

When dealing with large-scale problems, the cost of using direct solvers may become
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prohibitive in terms of both memory and time requirements. In this case, iterative

solvers offer a viable alternative. The contributions presented in the next sections are

about the use of iterative methods for solving the KKT system.

Contributions related to the iterative solution of KKT systems

When an iterative method is used to solve the KKT system at each iteration of an IP

method, the following issues arise:

• The use of effective preconditioners is mandatory to obtain useful Newton direc-

tions, because of the unavoidable ill-conditioning of the linear systems.

• Suitable strategies can be devised to use adaptive accuracy requirements in the

solution of the system, in order to avoid unnecessary iterations when the current

IP iteration is far from the solution of the problem.

• The convergence theory of the IP method has to be reassessed to take into account

the inexact computation of the search directions (see Sect. 2.1).

These items were addressed by contributions [Cafieri et al., 2006],[Cafieri et al., 2007a],

[Cafieri et al., 2007c] and [Cafieri et al., 2007d].

Preconditioning

As the solution at each IP iteration approaches the boundary of the feasible set of the

primal-dual problem (P,D), some entries of E and F can become very large (because the

primal and the dual variables approach the boundary of the positive orthant), leading

to an increasing ill-conditioning. Ill-conditioning deteriorates the rate of convergence

of most iterative methods, like Krylov subspace methods, that have to be used with

suitable preconditioners: this is one of the most critical difference with direct methods.

A successful class of preconditioners for the augmented system is that of Constraint

Preconditioners (CPs), which in recent years have attracted the interest of many IP

researchers and, more generally, of people working on saddle-point problems (see e.g.

[19, 33, 40, 54, 73, 80, 94, 127, 133, 44]; for an overview of CPs see [16]). They are

symmetric indefinite preconditioners having the same block structure as the augmented

system matrix, with the upper-right and lower-left blocks unchanged.

In [Cafieri et al., 2007a] we presented a suitable Constraint Preconditioner for the aug-

mented system matrix arising from convex QP problems with inequality constraints

(2.1):

P =

(

diag(Q) + E −AT

−A −F

)

(applied through a sparse direct factorization) and we analyzed the behavior of this

preconditioner with the Conjugate Gradient (CG) algorithm. In particular, we showed
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that with a suitable choice of the starting point the Conjugate Gradient algorithm

applied to the preconditioned (indefinite) augmented system behaves as if it were applied

to suitably preconditioned spd normal equations. More precisely, since the matrices of

the augmented system and P are not spd, a breakdown could occur in the CG algorithm;

furthermore, the CG convergence properties are not guaranteed. However, we showed

that this is not the case when the starting guess is chosen in such a way that the initial

residual has the last m components equal to 0. Indeed, by using such a starting guess,

the Conjugate Gradient with Constraint Preconditioner (CPCG) behaves as if it were

applied to a spd system, as stated by the following theorem.

Theorem 2.2. In the CPCG algorithm, if

δx0 = 0, δy0 = −F−1b2, (2.13)

then the vectors δxi, ri1, z
i
1 and pi1, i.e., the approximate solution, the residual, the pre-

conditioned residual and the search direction, are equal respectively to the correspond-

ing vectors at the i-th iteration of the CG algorithm applied to the normal equations

(C + ATF−1A)δx = b1 − ATF−1b2, (with C = Q + E, b1 = −Se + X−1µe and

b2 = Ze− Y −1µe) with preconditioner P̃ = diag(Q) +ATF−1A and null starting guess.

Starting from this equivalence, we proved the convergence results for the Conjugate

Gradient method with constraint preconditioner P :

Corollary 2.3. If the starting guess (2.13) is chosen, then

i) CPCG does not break down;

ii) it converges in at most n iterations;

iii) the norm of the error on the computed solution at each step is bounded by a quantity

depending on the initial error and on the spectral properties of the sdp precondi-

tioned matrix.

Adaptive stopping criteria of inner iterations

When using iterative methods for the (inner) KKT systems in IP methods, one can re-

late at each step the accuracy of the solution of the system to the quality of the current

IP iterate, to reduce the computational cost. The idea is to use adaptive inner iterations

stopping criteria that require low accuracy when the outer IP iterate is far from the

optimal solution and require higher accuracy as soon as the IP iterate approaches the

solution. This is deeply analyzed in [Cafieri et al., 2007c] in the framework of a Po-

tential Reduction algorithm (feasible and infeasible versions), although we believe that

other IP algorithms can benefit from the proposed criteria. The basic idea is to relate

the accuracy in the solution of the KKT system to the convergence properties of the
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Potential Reduction (PR) algorithm (see Sect. 2.1). In particular, a stopping criterion

directly deriving from the Potential Reduction convergence results relates the accuracy

in the solution of the KKT system to the current duality gap value ∆. Basically, one

requires that the residual norm is less than some factor of the initial residual norm:
||ri||
||r0||

≤ tolkCG and tolkCG is chosen depending on ∆ (the value of ∆ decreases when the

PR iterates approach the solution, thereby requiring a higher accuracy in computing

the Newton direction). Other stopping criteria are derived from modifications of this

criterion, aimed at reducing the number of inner iterations, also combined with compu-

tational strategies devised to deal with a possible slowdown of convergence. Extensive

numerical experiments helped identifying the criterion that achieves the best trade-off

between the computational cost and the ability to reduce the infeasibility at each itera-

tion of the infeasible Potential Reduction algorithm.

Approximating the preconditioner

A Constraint Preconditioner (CP) is often applied through its sparse direct factoriza-

tion. Although this factorization is generally less expensive than the factorization of

the (unpreconditioned) system matrix, in large-scale problems it may still account for

most of the execution time of a single IP iteration. For this reason, a few strategies have

been proposed in the literature to approximate the preconditioner, to reduce the com-

putational cost of its application (CP using a sparse approximation of A instead of the

original matrix [18]; CP based on an incomplete factorization of the Schur complement

[17]; CP approximated using incomplete Schilders’ factorizations [34]).

In [Cafieri et al., 2007b], we proposed an alternative approach which consists in using

for multiple IP iterations the CP that has been computed at a certain iteration. We then

devised different strategies for selecting the PR iterations in which the preconditioner

has to be recomputed. The number of iterations for which the preconditioner is kept

fixed should be chosen taking into account that the use of an approximate preconditioner

is expected to increase the number of inner iterations. Therefore, an effective strategy

should be such that the time saved in the factorization of the CP pays off the time

increase due to the larger iteration count. In particular, an adaptive approach, in which

the same CP factorization is reused until its effectiveness deteriorates in terms of number

of iterations required to solve the system, appeared very promising. This dynamic choice

of the iteration when the CP has to be recomputed achieves the best trade-off between

the reduction of the time for the factorization of the preconditioner and the increase of

the time for solving the augmented system.
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2.3 ATM application: optimal control for aircraft conflict

avoidance

Conflict avoidance problems arising in Air Traffic Management (ATM), already intro-

duced in Chapter 1, Sect. 1.4, represent the main application domain of the Ph.D. thesis

of Löıc Cellier, who I am currently supervising. The focus is again on modeling and

deterministic solution methods, but this time an optimal control approach is developed.

Optimal Control gives rise to NLP problems when a certain type of solution methods,

called direct methods, is applied.

Aircraft conflict avoidance (see Chap. 1, Sect. 1.4) can be naturally interpreted as

a dynamic system on which one can act by means of a command (control) to move

the system from an initial state to a final state while satisfying an optimality criterion,

hence it can be formulated as an optimal control problem. To achieve aircraft separation

by speed adjustments, the control can be naturally chosen as the aircraft acceleration

and the optimality criterion as the minimization of a cost function depending on aircraft

speed modifications. In [Cellier et al., 2012], with L. Cellier and F. Messine, we proposed

the following model (P) for an n-aircraft problem in a planar configuration (common

flight level), where xi, vi and ui are respectively the position, the velocity and the accel-

eration (control) of aircraft i, and I = {1, ...,n}. The trajectories are kept unchanged,

while optimal control models for aircraft conflict avoidance in the literature usually put

the trajectory as a command on the system, see e.g. [21, 159].

(P)



























































































min
u

n
∑

i=1

∫ tf

t0

u2i (t)dt

v̇i(t) = ui(t) ∀t ∈ [t0, tf ], ∀i ∈ I

ẋi(t) = vi(t)di ∀t ∈ [t0, tf ], ∀i ∈ I

ui ≤ ui(t) ≤ ui ∀t ∈ [t0, tf ], ∀i ∈ I

vi ≤ vi(t) ≤ vi ∀t ∈ [t0, tf ], ∀i ∈ I

xi(t0) = x0i vi(t0) = v0i ∀i ∈ I

xi(tf ) = xfi vi(tf ) = vfi ∀i ∈ I

D2− ‖ xi(t)− xj(t) ‖2≤ 0 ∀t ∈ [t0, tf ], ∀i < j

In (P), t, t0 and tf are the time, the initial time and final time respectively, D is the

minimum required horizontal separation distance between two aircraft and di is the

direction (heading) of the ith aircraft. The final time tf of maneuvers is fixed and

identical for all aircraft (time horizon). For each aircraft i, velocity vi and acceleration

ui are bounded, in particular vi may be required to satisfy the bounds imposed by the

ERASMUS project (see Sect. 1.4).
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A direct method for an optimal control problem like (P) is a typical solution approach

based on a time discretization. It leads to a nonlinear continuous optimization problem,

which can be solved by applying numerical methods for NLP, such as Interior Point

methods described in Sect. 2.1 for quadratic programming. The complexity of the NLP

corresponding to the direct method is O(np) for the number of variables and O(n2p) for

the number of constraints, where n and p are the number of aircraft and the number of

time subdivisions respectively. For example, even on a simple conflict problem with only

2 aircraft and 15 seconds of time discretization step in a time window of 30 minutes, the

corresponding nonlinear problem has 240 variables and more than 1000 constraints. As

a consequence, the NLP problem arising from the application of a direct method may

be very difficult to solve. In [Cellier et al., 2012], we presented strategies tailored on the

problem at hand, aimed to handle medium and large-scale problems.

First, we propose to distinguish two discretization steps, for the detection of potential

conflicts and for the resolution of conflicts respectively (detection and resolution can be

performed at the same time by applying a direct method). We propose to use a step for

detection tight enough to check if all constraints are respected, and a step for resolution,

used to decide the time frequency at which the values of the controls are computed,

larger than the previous one. For example, we used 15 seconds for the detection and

1 or 5 minutes for the resolution. Using two different time discretization steps, the

number of variables and constraints of the nonlinear optimization problem to be solved

are reduced.

Second, we propose a strategy of decomposition of the conflict avoidance problem

in such a way to obtain subproblems which can be solved by different optimal control

approaches, namely a direct and an indirect method, drastically reducing the computa-

tional complexity of the whole problem. The idea is to consider different regions of the

considered air-space, depending on the aircraft separation constraints. We define zone

the region where, for an aircraft pair, separation constraints have to be verified because

potential conflicts occur, and postzone the following region where all the conflicts have

been solved and therefore the aircraft are already separated. Analogously, prezone is

the region crossed before entering the zone. In this case, a pre-processing step has to

be performed to detect potential conflicts: given aircraft predicted trajectories, one can

check intersections of the trajectories and localize spatial regions where the separation

constraints must be checked. More precisely, for each aircraft i, one can identify a point

xenteri of its trajectory which corresponds to entering the zone of potential conflict with

another aircraft, and consequently identify the time t1i to reach xenteri using the highest

speed vi. Dually, one can identify the point to leave the zone and the corresponding time

t2i to reach the exit point xexiti using the lower speed vi. For n aircraft, setting the entry

zone time equals to t1 := mini∈{1,...,n} t1i and the exit zone time t2 := maxi∈{1,...,n} t2i ,

we define conflict time phases for the whole problem. The prezone, the zone and the
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postzone correspond respectively to the time periods [t0, t1], [t1, t2] and [t2, tf ], tf being

the time horizon. Figures 2.2 and 2.3 illustrate the proposed decomposition, from the

spatial and temporal point of view.

Figure 2.2: Decomposition of the aircraft deconfliction problem: spatial interpretation

Figure 2.3: Decomposition of the aircraft deconfliction problem: temporal interpre-
tation

As a first step of investigation, we focused on the decomposition of the problem into

zone and postzone (the prezone will be the subject of further research).

With this decomposition, the direct method is applied only before the postzone, instead

of on the whole time horizon. Numerical integrators of Euler-type are used to approx-

imate the ordinary differential equations describing the system dynamics and different

time discretization steps mentioned above are exploited. The postzone (time window

[t2, tf ]) is characterized by the absence of separation constraints, which are difficult

state constraints (involving state variables). Thus, it represents a subproblem easier to

solve than the initial problem, on which we can apply an indirect method. An indirect
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method is based on the known Pontryagin’s maximum principle (PMP), which gives a

necessary condition for optimality and allows to obtain an analytical solution. For each

aircraft i, the following optimal control subproblem (Pi) can be solved independently

(the velocity and acceleration constraints are checked a posteriori).

(Pi)































































min
ui

∫ tf

t2

u2i (t)dt

v̇i(t) = ui(t) ∀t ∈ [t2, tf ]

ẋXi (t) = vi(t)d
X
i ∀t ∈ [t2, tf ]

ẋYi (t) = vi(t)d
Y
i ∀t ∈ [t2, tf ]

xXi (t2) = x
Xt2
i xYi (t2) = x

Yt2
i vi(t2) = vt2i

xXi (tf ) free xYi (tf ) free vi(tf ) = v
tf
i

Following the classical indirect approach, writing the Hamiltonian H, deriving H to

obtain the co-state equations and applying the PMP, we finally obtain the following

solution system:







































































































ui(t) =
v
tf
i − vt2i
tf − t2

,

vi(t) =
v
tf
i − vt2i
tf − t2

(t− tf ) + v
tf
i ,

xXi (t) =
v
tf
i − vt2i
tf − t2

dXi
t2

2
+ (v

tf
i − v

tf
i − vt2i
tf − t2

tf )d
X
i t

− (
v
tf
i − vt2i
tf − t2

(t2 − tf ) + v
tf
i )dXi t2 + x

Xt2
i ,

xYi (t) =
v
tf
i − vt2i
tf − t2

dYi
t2

2
+ (v

tf
i − v

tf
i − vt2i
tf − t2

tf )d
Y
i t

− (
v
tf
i − vt2i
tf − t2

(t2 − tf ) + v
tf
i )dYi t2 + x

Yt2
i .

Hence, starting from t2, the problem can be solved analytically. Numerical results show

that the proposed strategy of decomposition and hybridization of optimal control meth-

ods significantly reduces the computational time of resolution of the conflict avoidance

problem, thus allowing to raise the size of the problems that can be solved using optimal

control.





Chapter 3

Network Clustering

Network clustering problems can be formulated using mathematical programming and

usually lead to combinatorial optimization problems. After a brief introduction to clus-

tering on networks, this chapter presents my main contributions in this area, issue of

a fruitful collaboration with Pierre Hansen and co-workers from GERAD in Montréal

(Sylvain Perron, Gilles Caporossi and Daniel Aloise) and from École Polytechnique in

Paris (Leo Liberti and Alberto Costa). These contributions concern clustering criteria

and corresponding clustering methods and are mainly around exact methods, used either

to solve the whole optimization problem or, locally, subproblems arising in hierarchical

heuristics, or to refine solutions previously obtained by other methods.

3.1 Clustering on networks

Networks have been identified as an extremely useful representation of complex systems

in a wide variety of domains. The most prominent examples include social networks,

describing individuals and their interactions and relationships, telecommunication net-

works, such as the World Wide Web, transportation networks, biological networks, and

many more. A detailed introduction to networks has recently been given by Newman

[117]. Complex networks, mathematically represented by graphs, have thus been ex-

tensively studied in the last decade, specially by the physicists and computer scientists

communities. This also led to several important discoveries, such as the power law

distribution of degrees [14] and the small world property [167].

Some topological features of networks are studied to better understand the under-

lying complex systems. Such systems usually consist of many interacting components.

Thus, their structure can be understood by identifying the way the nodes of the cor-

responding networks are connected to each other. A modular structure characterizes

many complex systems, meaning that they contain subgroups of entities sharing some

common properties. A topic of particular interest in the study of complex networks is

therefore the identification of modules, also called clusters or communities, the last term

53
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being widely used in the physicists’ literature (originally referred to social networks).

Speaking informally, a community is a subset of nodes which are more densely linked

compared to the rest of the network. For example, a community in a social network

can be constituted by individuals sharing a common interest or location, in a biological

network by entities with a common function, in the World Wide Web by web-pages

having a common topic or language, etc. Community detection is therefore very useful

to identify some properties of the system described by the studied network starting from

its structural features. It also allows us to study modules individually based on their

properties, or to visualize and analyze to a higher level very large and complex networks

by compressing its modules in single nodes [116]. The reader is referred to Fortunato [46]

for a recent extensive and thorough survey of that very active research domain.

A network, or graph, G = (V,E) is composed of a set V of n vertices and a set E

of m edges which join pairs of vertices. Vertices are associated with the entities of the

system under study and edges express that a relation defined on all pairs of vertices holds

or not for each such pair. A subgraph GS = (S,ES) of a graph G induced by a set of

vertices S ⊆ V is a graph with vertex set S and edge set ES equal to all edges with both

vertices in S. Such a subgraph corresponds to a cluster (or module or community) and

clustering on networks aims at finding a partition of V into pairwise disjoint nonempty

subsets V1, V2, . . . , VN inducing subgraphs of G. Roughly speaking, one seeks clusters

which contain more inner edges (with both vertices in the same cluster) than cut edges

(with vertices in different clusters). It is worth noticing that the terms community

identification, graph clustering and graph partitioning are often used interchangeably in

this context.

The problem can be formulated using mathematical programming. Several formula-

tions can be considered, depending on the definition of community as well as the criterion

chosen to evaluate the quality of the partition. The research in this context is in fact

generally essentially addressed, on the one hand, to proposing and evaluating clustering

criteria, and on the other hand to devising efficient solution methods for the corre-

sponding optimization problems. My research activity in this area follows both these

directions, with a special focus on exact methods. The following sections present my

contributions, first in the framework of the well known criterion of modularity (Sect. 3.2),

then focusing on other criteria (Sect. 3.3).

Unweighted undirected graphs are considered.

3.2 Modularity maximization

Basics

A precise definition of the quality of a partition into communities has been given in a

seminal paper by Newman and Girvan [115]. They proposed to compare the fraction
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of edges falling within communities to the expected fraction of such edges, giving the

following definition, for a partition in communities, of modularity function:

Q =
∑

s

(as − es) , (3.1)

where as is the fraction of edges in community s and es is the expected value of the same

quantity in a graph in which the vertices have the same degrees but edges are placed

at random. A maximum value of Q near to 0 indicates that the network considered is

close to a random one (barring fluctuations), while a maximum value of Q near to 1

indicates strong community structure. Thus, modularity on the one hand can be viewed

as a measure of the extent to which the classes of a partition can be considered to be

communities (it expresses not only that a community contains a large fraction of the

edges, but also that it contains a larger fraction of the edges than would be expected), on

the other hand can be maximized to find an optimal partition of a network. Modularity

is by far the most popular criterion for community detection, and has spawned in recent

years numerous methods to identify communities (see Sect. 3.2.1). It exhibits, in fact,

some clear advantages: the modularity function has a clear and simple mathematical

description and does not depend on parameters being decided arbitrarily; furthermore,

modularity maximization gives an optimal partition together with the number of clus-

ters that is automatically detected, and thus has not to be specified in advance. Finally,

one can use mathematical programming to model the community detection problem.

Modularity without loops and multiple edges

Most of the contributions described in this chapter are around the concept of modular-

ity. First, in [Cafieri et al., 2010b] we analyzed a behavior of the modularity function

and proposed suitable modifications. Indeed, one has to note that, despite its popular-

ity, some behaviors of modularity are still under investigation and some criticism has

been raised in recent literature, see, e.g., [56, 47, 96, 78], the most important being

the existence of a resolution limit [47] (in the presence of large clusters, some clusters

smaller than a certain size which depends on the number of edges of the network can

be undetectable) and the degeneracy of the modularity function [56] (there can be in

some cases a large number of partitions, different from each other, all having high mod-

ularity values). To address these criticisms a few approaches have been proposed in the

literature.

The work in [Cafieri et al., 2010b] was motivated by the observation that, using the

standard definition of modularity, graphs are compared to a null model containing loops

and possibly multiple edges, while usually the graph under study has neither (simple

graph). We then derived sharp bounds on the expected number of loops, and their

impact on the modularity of simple graphs. The contribution to Q of the loops is equal
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in absolute value to C =
∑

u∈V k2u
4m2 , where ku is the degree of vertex u, and we found

C ≥ 1

n
and C ≤ n

4n− 4
.

When the order n of the graph increases, the bounds tend to different limits:

lim
n→∞

1

n
= 0 and lim

n→∞

n

4n− 4
=

1

4
.

So, due to loops, at least a small constant will be subtracted from the community

dependent part of Q when n increases, but quite a large one must be subtracted in

the worst case, even for large n. Furthermore, the lower bound is attained for regular

graphs, and tends to be small, while the upper bound is attained for stars, and is large;

so, the effect of loops in the null model can be considerable in the worst case.

Then, we proposed modified null models associated with graphs without loops but with

multiple edges, graphs with loops but without multiple edges and graphs without loops

nor multiple edges. Using conditional probabilities, we provided a modified formula

for modularity in the case where loops are excluded from the null model. The original

formula (equivalent to (3.1))

Q =
1

2m

∑

u,v∈V

(Auv −
kukv
2m

)δ(cu, cv), (3.2)

where A is the adjacency matrix, ku, kv the degrees of vertices u, v and δ(cu, cv) is equal

to 1 if u and v belong to the same community cu = cv and to 0 otherwise, is modified

to:

Q′ =
∑

u,v∈V :v>u

(

Auv

m
− kukv

2m

(

1

2m− ku
+

1

2m− kv

))

δ(cu, cv), (3.3)

where the expected number of edges is computed, using conditional probabilities, to

exclude loops.

To address the problem of avoiding multiple edges in the null model, we proposed an

algorithm for redistribution of the excess over 1 of the expected number of edges between

two vertices to the other edges for which it is not the case. This redistribution is

proportional to the edge probabilities. The algorithm can be applied either to the

initial null model or to the modified null model in which loops have been eliminated.

Experimental results show that the partitions obtained with the standard modularity

and with the proposed modifications are often the same, however modularity values in

the latter case increase.
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3.2.1 Exact methods

Modularity maximization has been proved to be NP-hard [25]. Numerous heuristics

have been proposed to maximize modularity, which are based on hierarchical clustering

or partitioning algorithms and rely upon several different approaches ([115, 30, 32, 165,

23, 62, 6] are a few examples). In contrast, papers proposing exact algorithms or using

mathematical programming are rare for modularity maximization. The main reason is

that they can only solve small instances (with about a hundred entities) in reasonable

time, while heuristics can solve (approximately) very large instances with up to hundred

or thousand entities. However, heuristics do not have either an a priori performance

guarantee (finding always a solution with a value which is at least a given percentage of

the optimal one), nor an a posteriori performance guarantee (that the obtained solution

is at least a computable percentage of the optimal one), opposite to exact algorithms that

provide an optimal solution together with the proof of its optimality. We have chosen to

advance on the almost-unexplored way of exact algorithms for modularity maximization.

There are in fact in our opinion many reasons to focus on exact algorithms, among

which: having an exact solution solves the problem of separating possible inadequacies

of the model from eventual errors resulting from the use of heuristics, thus communities

may be interpreted with more confidence; an exact algorithm may be stopped and the

best solution found considered as a heuristic one (it is not uncommon that the optimal

solution is found at an early stage of the resolution); an exact algorithm can provide a

benchmark of exactly solved instances which can be used to compare heuristics and fine

tune them.

In [Aloise et al., 2010], the purpose was to assess and advance the state of the art of

algorithms for exact modularity maximization. Only two exact algorithms were known

in the literature, one working on a reduction of modularity maximization to clique

partitioning and the other working on the direct formulation. We started from these

two approaches and proposed two new algorithms. We thus discussed and compared

the following four algorithms: (i) the row generation algorithm of [60], which subsumes

the algorithm of [25]; (ii) a new column generation algorithm for clique partitioning

which enhances the efficiency of that approach; (iii) the mixed integer convex quadratic

programming approach of [172]; (iv) another new column generation algorithm which

enhances the efficiency of the second approach.

• Modularity maximization as clique partitioning

Observe that writing modularity as in (3.2) as a sum of values over all edges of the

complete graph Kn, introducing binary variables xij equal to 1 if vertices i and j belong

to the same module and 0 otherwise, and setting wij = 1
m

(

aij − kikj
2m

)

as the weight

on edge (i, j), modularity maximization can be reformulated as a clique partitioning

problem. The resulting partition is an equivalence relation, so one can write a model
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as in [60, 61] where the objective is max
∑

i<j∈V wijxij − C and constraints express

reflexivity, symmetry and transitivity. The resulting model is a linear program in 0-1

variables, which has n(n−1)
2 variables and 3

(

n
3

)

= O(n3) constraints. It can be solved by

a classical row generation approach, however memory size is a limiting factor.

We proposed a column generation algorithm which implicitly takes into account all

possible communities (or in other words all subsets of the set of entities under study).

The problem of finding simultaneously all communities in an optimal partition is replaced

by a sequence of optimization problems for finding one community at a time (more

precisely a community which improves the modularity of the current solution). So, the

columns correspond to all subsets of V , i.e., to all nonempty communities.

To express this problem, we define ait = 1 if vertex i belongs to module t and ait = 0

otherwise and then write the model as

max
∑

t∈T

ctzt − C (3.4)

s.t.
∑

t∈T

aitzt = 1 ∀i = 1, . . . , n (3.5)

zt ∈ {0, 1} ∀t ∈ T, (3.6)

where ct =
∑

i

∑

j>iwijaitajt, i.e., the value of the module indexed by t with t =

1 . . . 2n − 1. The objective function (3.4) expresses that modularity is equal to the sum

of modularities of all selected modules minus a constant corresponding to the diagonal

terms. The first set of constraints (3.5) expresses that each entity must belong to one

and only one module and the second set of constraints that modules must be selected

entirely or not at all. If the integrality constraints (3.6) are replaced by

zt ≥ 0, ∀t ∈ T, (3.7)

the upper bound zt ≤ 1 being implied by constraint (3.5), one obtains a relaxation of (3.4)

- (3.6) which is a linear program. Problem (3.4)-(3.5),(3.7) is called the master problem.

To apply column generation, a reduced master problem with considerably fewer columns

is solved instead, where the reduced cost associated with column t is equal to ct−
∑

i λiait

(λi being the current values of the dual variables of the continuous relaxation of (3.4)-

(3.5),(3.7)). To add columns progressively, an auxiliary problem is solved, which finds

a column with positive (negative) reduced cost in case of maximization (minimization).

Replacing the coefficients ait by binary variables yi leads to the auxiliary problem:

max
y∈Bn

∑

i

∑

j>i

wijyiyj −
∑

i

λiyi

This is a quadratic program in 0-1 variables with a 100% dense matrix of coefficients.
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In our experiments, we used a Variable Neighborhood Search (vns) heuristic [109, 65]

as long as it can find a column with positive reduced cost. When vns fails to find an

improving column, we used as exact method a simple branch and bound algorithm [64].

It is well known that column generation algorithms suffer from slow convergence par-

ticularly when the optimal solution is degenerate, i.e., when such a solution has many

variables equal to 0, which is the case for clustering problems. Column generation algo-

rithms also suffer from the plateau effect, i.e., the optimal solution keeps the same value

for several or many iterations [161]. To alleviate these defects, we used a variant of the

stabilization methods for column generation due to du Merle et al. [35].

• Modularity maximization using a direct formulation

Maximizing modularity by the clique partitioning approach has a drawback: it replaces

a usually sparse matrix of coefficients by a 100% dense one. An alternative approach is

to work directly with the graph G = (V,E) instead of the complete graph Kn. This was

done by Xu, Tsoka and Papageorgiou [172] and leads to a 0-1 mixed integer quadratic

problem whose continuous relaxation is convex, and which can therefore be solved by

CPLEX. Xu et al.’s model provides the necessary background for another new column

generation algorithm that we proposed. Considering again the definition of Q as a sum

over modules of their modularities, Q can be rewritten as

Q =
∑

s

[as − es] =
∑

s

[

ms

m
−
(

Ds

2m

)2
]

(3.8)

where ms denotes the number of edges in module s and Ds denotes the sum of degrees

ki of the vertices of module s. Binary variables are then used by Xu et al. to identify

the modules to which each vertex and each edge belongs, and a number of constraints

are introduced to express that each vertex belongs to exactly one module, that any edge

can only belong to module s if both of its end vertices belong to that module, to impose

lower and upper bounds on the cardinality of the modules and to break symmetries.

We proposed a column generation algorithm where the master problem is the same

as in the previous column generation algorithm, i.e., its equations are given in (3.4)-

(3.5),(3.7), and the auxiliary problem is close to the formulation of Xu et al. [172] but

much simpler. As a single community is to be determined at a time, it can be written

as follows:

max
x∈Bn,D∈R

∑

r

xr
m

−
(

D

2m

)2

−
∑

i

λiyi

s.t. D =
∑

i

kiyi

xr ≤ yi ∀r = {i, j} ∈ E

xr ≤ yj ∀r = {i, j} ∈ E.
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Variable xr is equal to 1 if edge r belongs to the community which maximizes the

objective function and to 0 otherwise. Similarly, yi is equal to 1 if the ith vertex belongs

to the community and 0 otherwise. The objective function is equal to the modularity of

the community to be determined minus the scalar product of the current value λi of the

dual variables times the indicator variable yi. This is a mixed integer quadratic problem

with n+m binary variables and 1 continuous variable, in the objective function, subject

to 2m+1 linear constraints. In the objective function there is a single concave nonlinear

term. Clearly, the size of this auxiliary problem is much smaller than that of the direct

formulation, particularly for large number of communities. This auxiliary problem is

first solved with a vns heuristic as long as a column with a positive reduced cost can be

found. When this is no more the case, CPLEX is called to find such a column or prove

that there are no more.

A computational comparison on a set of instances from the literature showed that

both row-generation and column-generation algorithms based on reformulation of mod-

ularity maximization as a clique partitioning are competitive for small instances, but

become too time or memory consuming for larger ones due to the rapid increase in

the number of variables and constraints; the column generation algorithm reformulated

from [172] direct formulation appears to be the best choice since its computing time is

comparable for small instances and is the only algorithm able to solve large instances

to optimality. Problems are in fact solved much faster than with previous algorithms

and larger instances can be tackled, raising the size of exactly solved instances from 105

entities (known in the literature) to 512.

Figure 3.1 shows partitions obtained by exactly maximizing modularity for datasets

corresponding to various real world problems, also illustrating the variety of applications

studied by network clustering. Zachary’s karate club dataset is probably the best known.

It describes friendship relations between 34 members of a karate club observed over two

years by Zachary [173]. In that period the club split into two groups after a dispute

between the club owner and the karate instructor. Hugo’s Les Misérables network [75]

describes the relationships between characters in Victor Hugo’s masterpiece [67], with

vertices associated to these characters and edges associated with pairs of characters

appearing jointly in at least one of the many chapters of the novel. Political book

network [76] deals with co-purchasing of political books on Amazon.com and the last

network [53] represents the schedule of games between American college football teams

in the Fall 2000.
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Figure 3.1: Network partitions obtained by modularity maximization on a set of
known social networks from the literature.
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3.2.2 Hierarchical divisive heuristic based on local exact solutions

New locally optimal divisive heuristic

A heuristic finds a near optimal partition (or sometimes an optimal partition but with-

out proof of its optimality) in moderate time compared to exact algorithms. In [Cafieri

et al., 2011] we considered a heuristic solution of the network clustering problem, but

using exact solutions locally. Specifically, we devised a locally optimal hierarchical divi-

sive heuristic. Hierarchical heuristics are in principle devised for finding a hierarchy of

partitions implicit in the given network when it corresponds to some situation where hi-

erarchy is observed or postulated. Heuristics of this kind are divided into agglomerative

and divisive ones. Hierarchical agglomerative heuristics [118, 30, 32, 165, 23] proceed

from an initial partition with n communities each containing a single entity and itera-

tively merge the pair of entities for which this operation increases most the objective

function, until all entities belong to the same community. Hierarchical divisive heuris-

tics [114] proceed from an initial partition containing all entities and iteratively divide a

community into two in such a way that the increase in the objective function value (e.g.

modularity) is the largest possible, or the decrease in the objective value is the smallest

possible. Bipartitions are iterated until a partition into n communities having each a

single entity is obtained. In practice, for some objectives including modularity merg-

ings or bipartitions can be ended once they do not improve the objective function value

anymore. In a divisive hierarchical heuristic, the subproblem of finding a bipartition is

difficult, even more considering that modularity maximization is NP-hard even in the

case of two clusters [25]. In fact, the only previous divisive heuristic was that proposed

by Newman [114], based on spectral graph theory and refinement by the Kernighan-Lin

heuristic [74]. We proposed a new divisive heuristic that is locally optimal, in the sense

that each of the successive bipartitions (splitting step) is done in a provably optimal

way, using an exact algorithm. To solve exactly the maximizing modularity bipartition

problem, we proposed a mathematical programming model which uses binary variables

to identify to which community each vertex and each edge belongs (in this respect, our

model is similar to that of Xu et al. [172], see Sect. 3.2.1). More precisely, variables

Xi,j,s for each edge (vi, vj) and s = 1, 2, and variables Yi,1 for i = 1, 2, . . . n are defined

in such a way that Xi,j,s is equal to 1 if the edge (vi, vj) is inside the cluster s and Yi,1 is

equal to 1 if the vertex vi is inside the cluster 1, and 0 otherwise. We used the fact that,

since a bipartition has to be found, only two sub-modules of the original community

have to be considered. Thus, we can express the sum of degrees of vertices belonging to

the second community as a function of the sum of degrees of vertices belonging to the

first one, and consequently rewrite the expression of the modularity function (3.8). The

constraints in the model are used to impose that any edge with end vertices indiced by

i and j can only belong to community s if both of its end vertices belong also to that
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community, and to express the number of edges of each of the two communities and the

sum of vertex degrees of the first one as a function of the variables X and Y . The model

contains a single nonlinear but concave term, in the objective function, which is to be

maximized. We thus obtained a quadratic convex mixed-integer program that can be

solved exactly by CPLEX [68].

From a computational comparison with the most known hierarchical agglomerative

heuristic [30] and with the divisive heuristic of [114], the proposed heuristic appears

to exhibit better performance. Furthermore, the partitions obtained tend to have a

modularity value close to that of optimal partitions (with an average error equal to

0.82540%). So, the partitions found can be considered as a fairly good approximation

of the optimal ones.

Reformulations-based improvement of the divisive heuristic

In [Cafieri et al., 2012b] we explored reformulations (see Chap. 1, Sect. 1.3) of the

mathematical programming model for bipartitions, to enhance efficiency of the pro-

posed divisive heuristic. We presented several reformulations of the original model.

They include reformulations aiming to reduce the dimension of the problem (number

of variables and constraints), reformulations aiming to linearize nonlinear terms by bi-

nary decompositions and a reformulation based on symmetry breaking constraints. The

path of reformulations leading to the best formulation for the bipartition problem (in

this context, the one that provides the optimal solution in less time) appears to be the

one passing through a few steps whose effect is to reduce the number of variables and

constraints and to adjoin symmetry breaking constraints to the obtained compact for-

mulation.

The proposed reformulations are based on a few considerations on the problem mod-

eling and on known reformulation techniques. For example, we do not actually need

to know if an edge is in the cluster 1 or 2, but only if it is within a cluster or not;

hence, we can drop the index s of variables X and consider Xi,j = 1 if Yi = Yj and 0

otherwise (where the meaningless index 1 from the Y variables is also dropped). Due

to the elimination of the index s from the variables X, their number is halved. Some

constraints can be adjoined observing that Xi,j can be seen as the negation of the XOR

operation between Yi and Yj variables, and these constraints can be in turn reduced

in number observing that the coefficient of the variables X is positive in the objective

function, and we are considering a maximization problem. A further reformulation step

is based on the expression of variables X by employing the product of the variables Yi

and Yj , as Xi,j = 2YiYj − Yi − Yj + 1. Variables X can then replaced using a new set of

variables representing the product of Y variables: ∀(vi, vj) ∈ Ec Si,j = YiYj (Ec being

the set of edges of cluster c to be bipartitioned), and inequalities are used to describe

the relationship between S and Y , which correspond to the classical Fortet’s inequalities
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for the exact linearization of a product of binary variables. Computational experiments

show that the formulation using the S variables outperforms the one with X variables.

The final new model is given by:

max
1

m





∑

(vi,vj)∈Ec

(2Si,j − Yi − Yj) + |Ec| −
1

2m

(

D1
2 +

Dc
2

2
−D1Dc

)



 (3.9)

s.t. ∀(vi, vj) ∈ Ec Si,j ≤ Yi (3.10)

∀(vi, vj) ∈ Ec Si,j ≤ Yj (3.11)

D1 =
∑

vi∈Vc

kiYi (3.12)

∀(vi, vj) ∈ Ec Si,j ∈ R (3.13)

D1 ∈ R (3.14)

∀vi ∈ Vc Yi ∈ {0, 1}, (3.15)

where in the objective function we use the fact that
∑

(vi,vj)∈EC
1 = |Ec|.

Another reformulation of the original model is based on the binary decomposition

technique recently employed for mixed-integer quadratic programming in [22]. The term

D1 appearing squared in the objective function can be rewritten as D1 =
∑t

l=0 2
lal,

where al are binary variables, and t is a parameter which can be estimated. Using this

definition, D1
2 can be expressed as

D1
2 =

t
∑

l=0

2lal·
t
∑

h=0

2hah =

t
∑

l=0

t
∑

h=0

2l+halah =

t
∑

l=0

t
∑

h=0

2l+hRlh =

t
∑

l=0

22lal+

t
∑

l=0

∑

h<l

2l+h+1Rlh,

where R are the variables used to replace the products between the variables a. The

Fortet inequalities can be used to express this relationship. The resulting formulation is

a linear program in 0-1 variables, which can be written in a more compact form again on

the basis of simple considerations on the form of the involved mathematical expressions.

Finally, a symmetry breaking constraint, which is beneficial for the Branch-and-

Bound algorithm applied to solve the bipartition problem (for example, the one imple-

mented in CPLEX), is easily obtained by fixing the vertex with highest degree to belong

to one of the two clusters.

Numerical results show that the proposed reformulations of the quadratic model sig-

nificantly reduce the computational time to solve the bipartition problem in our divisive

heuristic.

3.2.3 Improving clustering solutions by exact splitting

The exact algorithm for graph bipartition which is the basis of our proposed hierarchical

divisive heuristic is also exploited in [Cafieri et al., 2012d] to devise an approach to be
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applied as a post-processing to heuristic clustering methods in order to improve their

performances. Given a partition found by a heuristic, one can apply another heuristic

or an exact algorithm to the subnetworks induced by the communities found. This will

eventually lead to a new, better, partition. Moreover, this refinement can be based on

splitting a community or merging a pair of communities. In our approach, in the spirit

of matheuristics, an exact algorithm for bipartition (see Sect. 3.2.2) is applied first to the

communities considered one at a time, then merging pairs of communities and applying

again the bipartition algorithm.

- First, we split each community of the original partition into two sub-communities

by applying the exact algorithm for bipartition. If the modularity value corresponding

to the obtained bipartition is higher than the one of the original community, then the

original community is replaced by the two new communities. Otherwise the two obtained

communities are discarded and the original one is kept.

- Second, we merge provisionally pairs of communities and check if this induces an

increased value for modularity. For each pair of communities, if the new community

containing all vertices of this pair has a modularity value higher than the sum of the

modularities of the two original communities, then the new large community is kept

in place of the other two. Otherwise, if merge is not beneficial, we try to split the

merged community using again the exact algorithm for bipartitioning. Obviously, pairs

of clusters to be merged can be selected according to different criteria. We compute

the number of edges joining pairs of clusters and sort the pairs by decreasing number of

joining links. In this way, we first attempt to improve the current partition by merging

clusters which are more strongly connected than others.

Results of computational experiments carried out applying the proposed approach

as post-processing to well known available heuristics (the agglomerative hierarchical

heuristic of Clauset et al. [30], the partitioning heuristic of Noack and Rotta [120],

the multistep greedy with vertex move heuristic of Schuetz and Caflisch [136] and the

locally optimal divisive hierarchical heuristic of Sect. 3.2.2) showed the efficiency of the

proposed approach, that improved all the results given by the heuristics and in several

cases transformed the original partitions into optimal ones.

3.3 Other clustering criteria

Modularity, despite being by far the most employed criterion for network clustering, it

is not the only one. As mentioned in Sect. 3.1, interesting research directions concern

clustering criteria, the main reason being that currently there is not a criterion that is

fully satisfactory in all applications. This in turn motivates future research directions

(see Conclusions and Perspectives of this document). In this context, we contributed

in [Cafieri et al., 2010a] with a new criterion (edge-ratio) and an algorithm for the
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corresponding optimization problem, and in [Cafieri et al., 2012a] with an extension of

the concept of communities in the strong sense and with (exact) algorithms for detecting

such communities.

Both contributions build upon the observation that an alternative approach to the

maximization of a criterion function, like modularity, for finding communities is based

on the satisfaction of reasonable a priori conditions to have a community. Radicchi

et al. [128] proposed two such conditions defining communities in a strong and a weak

sense, respectively. Recall that the degree ki of a vertex i belonging to V is the number

of its neighbors (or adjacent vertices). Let S ⊆ V be a subset of vertices. Then the

degree ki can be separated into two components kini (S) and kouti (S), i.e., the number of

neighbors of i inside S and the number of neighbors of i outside S.

A set of vertices S forms a community in the strong sense if and only if every one of its

vertices has more neighbors within the community than outside:

kini (S) > kouti (S), ∀i ∈ S.

A set of vertices S forms a community in the weak sense if and only if the sum of all

degrees within S is larger than the sum of all degrees joining S to the rest of the network:

∑

i∈S

kini (S) >
∑

i∈S

kouti (S).

This is equivalent to the condition that the number of edges within S is at least half the

number of edges in the cut of S.

The weak condition was used [128] as a local stopping criterion in hierarchical clus-

tering; also, it led Wang et al. [166] to define a community S indivisible if there is no

bipartition, (S1, S2) of S, such that both S1 and S2 satisfy the weak condition.

Edge-ratio criterion

In [Cafieri et al., 2010a] we extend the definition of community in the weak sense into a

criterion for a bipartition to be optimal: one seeks to maximize the minimum for both

classes of the bipartition of the ratio of inner edges to cut edges. More precisely, we

consider the ratio of the number of edges within a community to the number of cut

edges which have one end point only within that community, i.e., denoting this ratio by

r(S), we have:

r(S) =
∑

i∈S

kini (S)/
∑

i∈S

kouti (S).
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When dividing S we consider this ratio for both communities S1 and S2 and maximize the

smallest value, i.e., we address the problem (with S1 ∪ S2 = S, S1 ∩ S2 = ∅, S1, S2 6= ∅):

max
S1,S2⊂V

min (r(S1), r(S2)) .

Solving sequentially this problem yields a hierarchical divisive clustering algorithm, with

a clear and well defined criterion, and that is locally optimal in the sense that each

division is done in an optimal way. To build the divisive algorithm, we first strenghten

the weak definition by quantifying how much the number of inner edges is larger than

the number of cut edges. This is easily done by introducing a parameter α in the weak

condition which then becomes equal to

∑

i∈S

kini (S) ≥ α
∑

i∈S

kouti (S). (3.16)

So, in case of equality, the coefficient α is equal to the ratio of twice the number of

edges within the community S divided by the number of edges within the cut of that

community. We call it edge ratio for short. One can then seek, to perform a bipartition,

the maximum value of α for which the network will be divisible: α will be equal to twice

the ratio of the number of edges within S divided by the number of edges within the

cut of S. The algorithm so includes the problem of detecting indivisible communities.

The mathematical programming formulation for identification of optimal communities

according to the edge ratio criterion has a linear objective (i.e., maximization of α), but

non linear and non convex constraints (products between α and binary variables arise).

However, if α is fixed, a linear program in 0-1 variables is obtained. This suggests to

solve the optimal bipartition problem with a dichotomous search on the values of α. An

initial value α equal to 1 can first be chosen. If there is no feasible solution for that

value, the network is indivisible. Otherwise, the value of αmay be doubled and feasibility

checked until a value is attained for which the weak condition cannot be satisfied. This

gives an upper bound ᾱ and the previous value of α gives a lower bound α. Then the

dichotomous search proceeds by considering the mid value of the interval [α, ᾱ]. The

procedure stops when the length ᾱ−α of the current interval is smaller than some given

tolerance ǫ. This basic procedure can be accelerated in several ways, including using an

initial value of α corresponding to a solution obtained by some heuristic and removing

symmetries by fixing a variable.

Comparing the proposed algorithm with modularity maximization, it appears not

to suffer from the resolution limit problem (see Sect. 3.2) and usually identifies more

communities, often with more precision. An example is presented in Figure 3.2. It

consists of two large cliques joined by a single edge and two small cliques joined by an

edge and also each joined by an edge to the same large clique. Maximizing modularity
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Figure 3.2: Partition obtained by the edge ratio algorithm on a dataset consisting of
4 cliques.

gives three communities corresponding to the two large cliques separately and to the

union of the small ones, while the edge ratio algorithm gives four communities which

correspond to each of the cliques.

Strong and almost-strong communities

In [Cafieri et al., 2012a] we define an enumerative algorithm, called SC (Strong Com-

munities), to list all partitions in the strong sense (with only strong communities) of a

network of moderate size. The algorithm makes use of two types of labels associated with

the vertices and the edges respectively: label li associated with vertex vi, i = 1, . . . , n

(initially li = i for all vertices, and at the current iteration the label of the vertex vi is

equal to the smallest label of a vertex of the community to which vi belongs); the label

ti,j associated with edge (vi, vj) can take three values (−1, 0, 1). It is equal to -1 if it

has already been decided that the vertices vi and vj belong to different communities; it

is equal to 1 if it has already been decided that vertices vi and vj belong to the same

community; if no decision has been taken, ti,j = 0. The algorithm follows a number of

rules, the most important of which concerns vertices with degree 2 and directly follows

from the strong condition: if a vertex vi has degree 2 and neighbors vj and vk, then

all three vertices vi, vj , vk must belong to the same community. All possible choices

for labelling edges according to the strong community definition are considered (with

branching rules), and consequently all the partitions corresponding to that definition

are generated.

Computational experiments show that the strong condition is not easily satisfied: com-

munities are often too large and correspond in fact to the union of several distinct com-

munities; in the limit one finds a single community regrouping all vertices. The main

reason for having large heterogeneous communities appears to be again due to the degree
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2 vertices, since the strong condition imposes that them and both of their two neighbors

belong to the same community, while these neighbors can be very different in terms of

their own neighbors. This suggests to weaken the strong condition for the degree two

vertices. We call a community almost-strong if it satisfies the condition kini ≥ kouti (i.e.,

the strong condition weakened with a nonstrict inequality) for all vertices of degree two,

and the strong condition kini > kouti for the remaining vertices. Minimum modifications

brought to the SC algorithm lead to a modified algorithm called ASC (Almost-Strong

Communities) to find partitions in the almost-strong sense. The algorithm ASC usually

gives partitions into more communities than algorithm SC. Moreover, they are usually

more intuitively appealing.

3.4 ATM application: airline networks

The algorithms presented in previous sections of this chapter have been always tested on

a set of graph instances from the literature describing real-life applications. Examples

are given in Fig. 3.1. However, none of these applications was specifically addressed,

and the algorithms were developed in full generality for a wide range of applications. In

the context of Air Traffic Management (ATM), which is becoming a privileged domain

of application for my research activity, a few real-life problems arise (though different

from ATM applications addressed in Chap. 1 and 2) that can be investigated by network

clustering techniques. Airline networks can be naturally represented by graphs and their

structural properties studied to analyze, for example, a geographical (and political) dis-

tribution of flights, airline companies strategies, or even identify the most suitable places

to build hubs or where the flight density may be increased (for a study of a few aspects

of the worldwide air transportation network, see [63]).

These applications have not been yet the topic of a specific contribution and will repre-

sent the subject of future research (see also Conclusions and Perspectives of this docu-

ment). However, network clustering to analyze the distribution of flights has been the

topic of a didactic project carried out by students at ENAC, that I proposed and super-

vised [41]. A graph was built having vertices and edges corresponding respectively to

airports and flights between airports realized by airline companies. Network clustering

performed by a simple maximizing modularity agglomerative heuristic and by spectral

clustering [114] revealed that the most of the flights is in the upper hemisphere, that the

most of transatlantic flights from Europe come from airports in the same cluster, and

more generally showed, as expected, a geographical distribution of flights broadly corre-

sponding to the different political states (whose airports are more interconnected than

airports outside). See Fig. 3.3 for a graphical representation. This kind of applications

will be furtherly investigated.
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Conclusions and Perspectives

We presented the main research topics and contributions in the framework of three main

themes in optimization, from local to global mixed-integer and continuous nonlinear op-

timization, passing through combinatorial optimization with a focus on graph clustering.

A common thread can be identified in the interest for mathematical programming-based

modeling, in a special attention for deterministic methods and in the constant numerical

validation by development of suitable software tools. ATM applications also constitute

a common point towards which different research themes are converging. This path is

the result of a personal interest for various topics in optimization, but also of interesting

and fructuous collaborations and exchanges with colleagues and research groups from

different countries. The next sections highlight tracks for future research.

Perspectives in (mixed-integer and continuous) nonlinear

optimization

The perspectives of the research topics described in Chapters 1 and 2 relate specially

to the development expected in the context of a 3-years research project of which I

am responsible and that has just been selected to be funded by the French National

Agency of Research (ANR - Agence Nationale de Recherche). This project, ATOMIC:

Air Traffic Optimization via Mixed-Integer Computation, summarizes already in its ti-

tle its vocation to propose advancements in a precise applicative context, that of ATM

and specifically of aircraft conflict avoidance and conflict-free trajectory planning, by

means of Mixed-Integer Optimization tools. One of the aims of the project is to put

together a small team of specialists, the most of which are young researchers, who

work on complementary sub-domains of optimization and operations research and can

convey their expertise around the project theme. The effort will concern, on the one

hand, devising suitable modeling and, on the other hand, conceiving appropriate solu-

tion methods and algorithms. As discussed in Chap. 1 Sect. 1.4, the main difficulties

for mathematical optimization in the considered context are related to the size of the

addressed problems, and, even more challengingly, to the need of simultaneously consid-

ering combinatorial decisions and modeling nonlinear processes (e.g., aircraft separation
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conditions). The focus will be on the deterministic solution of the proposed mathemat-

ical programming models, a guaranteed global optimal solution being interesting in an

ATM operational context. The complexity of the addressed problems leading to very

difficult, large-scale MINLPs, the idea is to explore suitable reformulation techniques

to obtain formulations that are more convenient from the point of view of the appli-

cation of algorithms, and a special attention will be devoted to devising MINLP cuts

and symmetry-breaking reformulation constraints [88, 87]. Cuts are constraints valid

for the feasible region of the original problem that are designed to cut off a part of the

relaxed feasible region, thereby improving MINLP relaxations and hence speeding up

Branch-and-Bound algorithms. Aircraft conflict resolution usually yields mathematical

programming formulations with a high degree of symmetry, which greatly slows down

the solution process by a BB-based algorithm. Symmetry-breaking narrowing refor-

mulations will be investigated to cope with this issue. The interval-Branch-and-Bound

variant, based on interval-arithmetic techniques, which has been already successfully

employed for the solution of several nonlinear nonconvex continuous and mixed-integer

problems arising from real-life applications, will also constitute a point of investigation.

The two BB variants, spatial and interval-based, have to be applied to the conceived

models including suitable strategies tailored on the problem at hand to enhance effi-

ciency. It is however very hard to solve real-life large-scale problems by means of these

approaches. Other strategies will be implemented to deal with the computational dif-

ficulty of the problem. Devising optimization algorithms based on the hybridization of

mathematical programming techniques and (meta)heuristics [95] seems to offer a viable

alternative, although it does not guarantee the global optimality of the solution. In this

“matheuristic” framework (an example of which has been already presented in Sect. 1.4),

an essential feature is the exploitation of the characteristics of the conceived mathemati-

cal programming models of the addressed problem. The aim will be to obtain efficiently,

in reasonable computational time, “good” bounds on the optimal solution value.

Perspectives in network clustering

The research activity on network clustering will be pursued addressing methodological

aspects as well as applications to real-life problems.

An application to air transportation networks has already been mentioned in Chap. 3,

Sect. 3.4. The idea is to apply the developed approaches to networks built on real air

traffic data to fully analyze the structural properties of the networks, and thereby to

identify properties of the underlying complex air transportation system. This may be a

good complement to the studies that will be undertaken on ATM problems in the con-

text of nonlinear optimization (continuous and mixed-integer). Real data corresponding
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to large-scale problems, exact methods (see Chap. 3, Sect. 3.2.1) are unlikely to be

successful. Suitable heuristics, or hybrid methods, will be specially devised.

Concerning clustering criteria and clustering methods, the research will be carried

out trying, on the one hand, to propose efficient solution approaches, specially driven by

applications, and, on the other hand, to provide advancements on the open question of

finding the “best” clustering criterion. More precisely, it will be further pursued along

the following directions.

First, we intend to develop specialized algorithms for some classes of graphs. This is

currently being undertaken for graph trees, based on a dynamical programming approach

for modularity maximization (joint work with P. Hansen).

Second, we shall devise efficient methods for large-scale problems. For these prob-

lems, one has in general to resort to heuristics or hybrid methods. The acquired ex-

pertise, specially on exact algorithms, can be of help. Comparing the exact solution

with those obtained by some heuristic can allow to identify parts of the problem that

are badly solved and can suggest how to improve the heuristic. Conversely, heuristics

can be used in order to accelerate one or several steps of the exact algorithm, e.g., by

providing a hot start.

Third, we plan to analyze thoroughly different conditions for a community to be

considered as such. To that effect, mathematical programming formulations and suitable

solution approaches for the corresponding optimization problem will be developed (this

has been already started out concerning the strong condition, see Chap. 3, Sect. 3.3).

Fourth, we shall combine a criterion for evaluating community partitions, like modu-

larity, with conditions on each community, like the strong and weak conditions. This has

been pioneered by Medus and Dorso [98] and can be pursued in two ways: (i) modifying

the models and the corresponding algorithms or heuristics to incorporate the constraints

on the communities from the outset, or (ii) using a standard algorithm or heuristic and

then checking if the obtained communities satisfy the given constraints; if not, applying

some specific heuristic to restore feasibility.

Finally, we will try to deduce from the results of investigation planned in previous

points, a set of conditions, or axioms, for clustering on networks, to identify a “good”

clustering criterion.
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timal design of electrical machines: Mathematical programming formulations. COM-

PEL: The International Journal for Computation and Mathematics in Electrical and

Electronic Engineering. (in press).

105



Selected Publications

[Cellier et al., 2012] Cellier, L., Cafieri, S., and Messine, F. (2012). Hybridizing direct

and indirect optimal control approaches for aircraft conflict avoidance. In ADVCOMP

2012: The Sixth International Conference on Advanced Engineering Computing and

Applications in Sciences, pages 42–45, Barcelone. ISBN: 978-1-61208-237-0.

[Cafieri et al., 2011] Cafieri, S., Hansen, P., and Liberti, L. (2011). Locally optimal

heuristic for modularity maximization of networks. Physical Review E, 83(5):056105.

[Aloise et al., 2010] Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Liberti, L., and

Perron, S. (2010). Column generation algorithms for exact modularity maximization

in networks. Physical Review E, 82(4):046112.

[Cafieri et al., 2010a] Cafieri, S., Hansen, P., and Liberti, L. (2010a). Edge ratio and

community structure in networks. Physical Review E, 81(2):026105.

[Cafieri et al., 2010b] Cafieri, S., Hansen, P., and Liberti, L. (2010b). Loops and multi-

ple edges in modularity maximization of networks. Physical Review E, 81(4):046102.

[Cafieri et al., 2010c] Cafieri, S., Lee, J., and Liberti, L. (2010c). On convex relaxations

of quadrilinear terms. Journal of Global Optimization, 47:661–685.

[Liberti et al., 2010] Liberti, L., Cafieri, S., and Savourey, D. (2010). The reformulation-

optimization software engine. In Fukuda, K., editor, Proceedings of ICMS10, volume

6327 of Lecture Notes in Computer Science, pages 303–314. Springer.

[Liberti et al., 2009] Liberti, L., Cafieri, S., and Tarissan, F. (2009). Reformulations in

mathematical programming: a computational approach. In Abraham, A., Hassanien,

A.-E., Siarry, P., and Engelbrecht, A., editors, Foundations of Computational Intelli-

gence (Global Optimization: Theoretical Foundations and Applications), volume 203

of Studies in Computational Intelligence, pages 153–234. Springer.

[Cafieri et al., 2007a] Cafieri, S., D’Apuzzo, M., De-Simone, V., and di Serafino, D.

(2007a). On the iterative solution of KKT systems in potential reduction software

for large-scale quadratic problems. Computational Optimization and Applications,

38(1):27–45.

[Cafieri et al., 2007b] Cafieri, S., D’Apuzzo, M., De-Simone, V., and di Serafino, D.

(2007b). On the use of an approximate constraint preconditioner in a potential re-

duction algorithm for quadratic programming. In Cutello, V., Fotia, G., and Puccio,

L., editors, Applied and Industrial Mathematics in Italy II, Series on Advances in

Mathematics for Applied Sciences Vol. 75.

[Cafieri et al., 2007c] Cafieri, S., D’Apuzzo, M., De-Simone, V., and di Serafino, D.

(2007c). Stopping criteria for inner iterations in inexact potential reduction methods:

a computational study. Computational Optimization and Applications, 36(2):165–193.



Selected Publications 107

[Cafieri et al., 2007d] Cafieri, S., D’Apuzzo, M., De-Simone, V., di Serafino, D., and

Toraldo, G. (2007d). Convergence analysis of an inexact potential reduction method

for convex quadratic programming. Journal of Optimization Theory and Applications,

135(1):355–366.

[Cafieri et al., 2006] Cafieri, S., D’Apuzzo, M., Marino, M., Mucherino, A., and Toraldo,

G. (2006). Interior-point solver for large-scale quadratic programming problems with

bound constraints. Journal of Optimization Theory and Applications, 129(1):55–75.





Appendix A

S. Cafieri, J. Lee, L. Liberti,

On convex relaxations of quadrilinear terms,

Journal of Global Optimization,

47:661–685, 2010.

109





Appendix B

S. Cafieri, P. Hansen, L. Létocart, L. Liberti, F. Messine,

Compact relaxations for polynomial programming problems,

in R. Klasing (eds.), Experimental Algorithms

(Proceedings of SEA 2012),

Lecture Notes in Computer Science 7276:75-86,

Springer, Berlin, 2012.

111





Appendix C

L. Liberti, S. Cafieri, F. Tarissan,

Reformulations in Mathematical Programming: a Compu-

tational Approach,

in A. Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht (eds.),

Foundations of Computational Intelligence Vol. 3 (Global Optimiza-

tion: Theoretical Foundations and Applications),

Series: Studies in Computational Intelligence, 203:153-234,

Springer, Berlin, 2009.

113





Appendix D

S. Cafieri, N. Durand,

Aircraft deconfliction with speed regulation: new models

from mixed-integer optimization,

Optimization Online preprint n.3496,

Jun 2012, submitted.

115





Appendix E

S. Cafieri, L. Liberti, F. Messine, B. Nogarede,

Optimal Design of Electrical Machines: Mathematical Pro-

gramming Formulations,

COMPEL: The International Journal for Computation and Mathe-

matics in Electrical and Electronic Engineering,

in press, 2012.

117





Appendix F

S. Cafieri, M. D’Apuzzo, V. De Simone, D. di Serafino, G. Toraldo,

Convergence Analysis of an Inexact Potential Reduction

Method for Convex Quadratic Programming,

Journal of Optimization Theory and Applications,

135: 355–366, 2007.

119





Appendix G

S. Cafieri, M. D’Apuzzo, V. De Simone, D. di Serafino,

On the Iterative Solution of KKT Systems in Potential Re-

duction Software for Large Scale Quadratic Problems,

Computational Optimization and Applications,

special issue on High Performance Algorithms and Software for Non-

linear Optimization, A. Murli and G. Toraldo (eds.),

38: 27–45, 2007.

121





Appendix H

S. Cafieri, M. D’Apuzzo, V. De Simone, D. di Serafino,

Stopping criteria for inner iterations in inexact Potential

Reduction methods: a computational study,

Computational Optimization and Applications,

special issue on Linear Algebra issues arising in Interior Point meth-

ods, J. Gondzio and G. Toraldo (eds.),

36 (2): 165-193, 2007.

123





Appendix I

S. Cafieri, M. D’Apuzzo, V. De Simone, D. di Serafino,

On the Use of an Approximate Constraint Preconditioner

in a Potential Reduction Algorithm for Quadratic Program-

ming,

in V. Cutello, G. Fotia and L. Puccio (eds.),

Applied and Industrial Mathematics in Italy II,

Series on Advances in Mathematics for Applied Sciences

Vol. 75, World Scientific, 2007.

125





Appendix J

L. Cellier, S. Cafieri, F. Messine,

Hybridizing Direct and Indirect Optimal Control Approaches

for Aircraft Conflict Avoidance,

in Proceedings of ADVCOMP 2012: The Sixth International Confer-

ence on Advanced Engineering Computing and Applications in Sci-

ences, pp. 42-45, Barcelone, 2012.

127





Appendix K

S. Cafieri, P. Hansen, L. Liberti,

Loops and multiple edges in modularity maximization of

networks,

Physical Review E,

81(4):046102, 2010.

129





Appendix L

D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, L. Liberti, S. Perron,

Column generation algorithms for exact modularity maxi-

mization in networks,

Physical Review E,

82(4):046112, 2010.

131





Appendix M

S. Cafieri, P. Hansen, L. Liberti,

Locally optimal heuristic for modularity maximization of

networks,

Physical Review E,

83(5):056105, 2011.

133





Appendix N

S. Cafieri, P. Hansen, L. Liberti,

Improving heuristics for network modularity maximization

using an exact algorithm,

Discrete Applied Mathematics,

DOI 10.1016/j.dam.2012.03.030,

in press, 2012.

135





Appendix O

S. Cafieri, P. Hansen, L. Liberti,

Edge ratio and community structure in networks,

Physical Review E,

81(2):026105, 2010.

137





Appendix P

S. Cafieri, G. Caporossi, P. Hansen, S. Perron, A. Costa,

Finding communities in networks in the strong and almost-

strong sense,

Physical Review E,

85(4):046113, 2012.

139





Appendix Q

S. Cafieri, A. Costa, P. Hansen,

Reformulation of a model for hierarchical divisive graph

modularity maximization,

Optimization Online preprint n.3334,

Dec. 2011 (in revision).

141


	Abstract
	Acknowledgements
	Preface
	Introduction and Main Research Contributions
	1 Mixed-Integer Nonlinear Optimization and its Applications
	1.1 MINLP and global optimization
	1.1.1 Mixed-integer non-linear optimization
	1.1.2 Deterministic global optimization of MINLP
	1.1.3 The role of reformulations and convex relaxations

	1.2 Contributions in polynomial programming
	1.2.1 Convex relaxations of quadrilinear monomials
	1.2.2 Compact RLT-based relaxations

	1.3 Automatic reformulations
	1.4 ATM application: mixed-integer optimization for  aircraft conflict avoidance
	1.5 Application to the optimal design of electrical  machines

	2 Nonlinear Continuous Optimization and its Applications
	2.1 Interior Point methods
	2.2 Linear algebra issues in IP methods
	2.3 ATM application: optimal control for aircraft conflict avoidance

	3 Network Clustering
	3.1 Clustering on networks
	3.2 Modularity maximization
	3.2.1 Exact methods
	3.2.2 Hierarchical divisive heuristic based on local exact solutions
	3.2.3 Improving clustering solutions by exact splitting

	3.3 Other clustering criteria
	3.4 ATM application: airline networks

	Conclusions and Perspectives
	General Bibliography
	Other academic activities
	Cursus
	Editorial and organizational work
	List of publications and presentations
	Teaching activity and student supervision
	Other scientific activities

	Selected Publications
	A Cafieri, Lee, Liberti, On convex relaxations of quadrilinear terms,  Journal of Global Optimization, 2010
	B Cafieri, Hansen, Létocart, Liberti, Messine,  Compact relaxations for polynomial programming problems,  Lecture Notes in Computer Science 7276, 2012
	C Liberti, Cafieri, Tarissan,   Reformulations in Mathematical Programming: a Computational  Approach,  Foundations of Computational Intelligence Vol.3, 2009
	D Cafieri, Durand,   Aircraft deconfliction with speed regulation: new models from mixed-integer optimization,  Opt.Online n.3496, submitted
	E Cafieri, Liberti, Messine, Nogarede,  Optimal Design of Electrical Machines: Mathematical Programming Formulations,  COMPEL, 2012
	F Cafieri, D'Apuzzo, De Simone, di Serafino, Toraldo,  Convergence Analysis of an Inexact Potential Reduction Method for Convex Quadratic Programming,  Journal of Optimization Theory and Applications, 2007
	G Cafieri, D'Apuzzo, De Simone, di Serafino,   On the Iterative Solution of KKT Systems in Potential Reduction  Software for Large Scale Quadratic Problems,  Computational Optimization and Applications, vol.38, 2007
	H Cafieri, D'Apuzzo, De Simone, di Serafino,   Stopping criteria for inner iterations in inexact Potential Reduction methods: a computational study,  Computational Optimization and Applications, vol.36, 2007
	I Cafieri, D'Apuzzo, De Simone, di Serafino,   On the Use of an Approximate Constraint Preconditioner in a  Potential Reduction Algorithm for Quadratic Programming,  Applied and Industrial Mathematics in Italy II, 2007
	J Cellier, Cafieri, Messine,   Hybridizing direct and indirect optimal control approaches for aircraft conflict avoidance,  ADVCOMP, 2012
	K Cafieri, Hansen, Liberti,   Loops and multiple edges in modularity maximization of networks,  Physical Review E, 2010
	L Aloise, Cafieri, Caporossi, Hansen, Liberti, Perron,  Column generation algorithms for exact modularity maximization in networks,   Physical Review E, 2010
	M Cafieri, Hansen, Liberti,   Locally optimal heuristic for modularity maximization of networks,   Physical Review E, 2011
	N Cafieri, Hansen, Liberti,   Improving heuristics for network modularity maximization using an exact algorithm,   Discrete Applied Mathematics, 2012
	O Cafieri, Hansen, Liberti,  Edge ratio and community structure in networks,   Physical Review E, 2010
	P Cafieri, Caporossi, Hansen, Perron, Costa,   Finding communities in networks in the strong and almost-strong sense,   Physical Review E, 2012
	Q Cafieri, Costa, Hansen,   Reformulation of a model for hierarchical divisive graph modularity maximization,   Opt.Online n.3334, submitted

