
 Open access  Journal Article  DOI:10.1215/S0012-7094-02-11524-5

From local to global deformation quantization of Poisson manifolds
— Source link 

Alberto S. Cattaneo, Giovanni Felder, Lorenzo Tomassini

Institutions: University of Zurich, ETH Zurich

Published on: 01 Nov 2002 - Duke Mathematical Journal (Duke University Press)

Topics: Poisson algebra, Filtered algebra, Poisson bracket, Clifford bundle and Algebra representation

Related papers:

 Deformation Quantization of Poisson Manifolds

 A simple geometrical construction of deformation quantization

 Deformation quantization of Poisson manifolds, I

 Covariant and equivariant formality theorems

 Deformation Quantization and Index Theory

Share this paper:    

View more about this paper here: https://typeset.io/papers/from-local-to-global-deformation-quantization-of-poisson-
2sa14s88e1

https://typeset.io/
https://www.doi.org/10.1215/S0012-7094-02-11524-5
https://typeset.io/papers/from-local-to-global-deformation-quantization-of-poisson-2sa14s88e1
https://typeset.io/authors/alberto-s-cattaneo-52mrzbqi57
https://typeset.io/authors/giovanni-felder-320ttzybva
https://typeset.io/authors/lorenzo-tomassini-3zn6grgh14
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/institutions/eth-zurich-2cbshymp
https://typeset.io/journals/duke-mathematical-journal-3hpqjgwd
https://typeset.io/topics/poisson-algebra-15u1uwrs
https://typeset.io/topics/filtered-algebra-1qwvips3
https://typeset.io/topics/poisson-bracket-3iraehhf
https://typeset.io/topics/clifford-bundle-lapal40e
https://typeset.io/topics/algebra-representation-10gkthu3
https://typeset.io/papers/deformation-quantization-of-poisson-manifolds-4tp4kn8ari
https://typeset.io/papers/a-simple-geometrical-construction-of-deformation-ehbmp81pp7
https://typeset.io/papers/deformation-quantization-of-poisson-manifolds-i-2xtl1kcxhi
https://typeset.io/papers/covariant-and-equivariant-formality-theorems-2ge7c4gf4s
https://typeset.io/papers/deformation-quantization-and-index-theory-1nynsaz02q
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/from-local-to-global-deformation-quantization-of-poisson-2sa14s88e1
https://twitter.com/intent/tweet?text=From%20local%20to%20global%20deformation%20quantization%20of%20Poisson%20manifolds&url=https://typeset.io/papers/from-local-to-global-deformation-quantization-of-poisson-2sa14s88e1
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/from-local-to-global-deformation-quantization-of-poisson-2sa14s88e1
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/from-local-to-global-deformation-quantization-of-poisson-2sa14s88e1
https://typeset.io/papers/from-local-to-global-deformation-quantization-of-poisson-2sa14s88e1


University of Zurich
Zurich Open Repository and Archive

Winterthurerstr. 190

CH-8057 Zurich

http://www.zora.uzh.ch

Year: 2002

From local to global deformation quantization of Poisson
manifolds

Cattaneo, A S; Felder, G; Tomassini, L

Cattaneo, A S; Felder, G; Tomassini, L (2002). From local to global deformation quantization of Poisson manifolds.
Duke Mathematical Journal, 115(2):329-352.
Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
Duke Mathematical Journal 2002, 115(2):329-352.

Cattaneo, A S; Felder, G; Tomassini, L (2002). From local to global deformation quantization of Poisson manifolds.
Duke Mathematical Journal, 115(2):329-352.
Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
Duke Mathematical Journal 2002, 115(2):329-352.



From local to global deformation quantization of Poisson
manifolds

Abstract

We give an explicit construction of a deformation quantization of the algebra of functions on a Poisson
manifold, based on M. Kontsevich's local formula. The deformed algebra of functions is realized as the
algebra of horizontal sections of a vector bundle with flat connection.
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FROM LOCAL TO GLOBAL DEFORMATION

QUANTIZATION OF POISSON MANIFOLDS

ALBERTO S. CATTANEO, GIOVANNI FELDER, and LORENZO TOMASSINI

To James Stasheff on the occasion of his 65th birthday

Abstract

We give an explicit construction of a deformation quantization of the algebra of func-

tions on a Poisson manifold, based on M. Kontsevich’s local formula. The deformed

algebra of functions is realized as the algebra of horizontal sections of a vector bundle

with flat connection.

1. Introduction

Let M be a paracompact smooth d-dimensional manifold. The Lie bracket of vector

fields extends to a bracket, the Schouten-Nijenhuis bracket, on the graded commuta-

tive algebra Ŵ(M,
∧·

T M) of multivector fields so that

[α1 ∧ α2, α3] = α1 ∧ [α2, α3] + (−1)m2(m3−1)[α1, α3] ∧ α2,

[α1, α2] = −(−1)(m1−1)(m2−1)[α2, α1],

if αi ∈ Ŵ(M,
∧mi T M). This bracket defines a graded super Lie algebra structure on

Ŵ(M,
∧·

T M) with the shifted grading deg′(α) = m − 1, α ∈ Ŵ(M,
∧m

T M).

A Poisson structure on M is a bivector field α ∈ Ŵ(M,
∧2

T M) obeying [α, α] =

0. This identity for α, which we can regard as a bilinear form on the cotangent bundle,

implies that { f, g} = α(d f, dg) is a Poisson bracket on the algebra C∞(M) of smooth

real-valued functions. If such a bivector field is given, we say that M is a Poisson

manifold.

Following [1], we introduce the notion of (deformation) quantization of the alge-

bra of functions on a Poisson manifold.

Definition 1

A quantization of the algebra of smooth functions C∞(M) on the Poisson manifold M
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330 CATTANEO, FELDER, and TOMASSINI

is a topological algebra A over the ring of formal power series R[[ǫ]] in a formal vari-

able ǫ with product ⋆, together with an R-algebra isomorphism A/ǫA → C∞(M), so

that

(i) A is isomorphic to C∞(M)[[ǫ]] as a topological R[[ǫ]]-module;

(ii) there is an R-linear section a 7→ ã of the projection A → C∞(M) so that f̃ ⋆

g̃ = f̃ g+
∑∞

j=1 ǫ
j P̃j ( f, g) for some bidifferential operators Pj : C∞(M)2 →

C∞(M)with Pj ( f, 1) = Pj (1, g) = 0 and P1( f, g)−P1(g, f )= 2α(d f, dg).

If we fix a section as in (ii), we obtain a star product on C∞(M), that is, a formal

series Pǫ = ǫP1 + ǫ2 P2 + · · · whose coefficients Pj are bidifferential operators

C∞(M)2 → C∞(M) such that f ⋆M g := f g + Pǫ( f, g) extends to an associative

R[[ǫ]]-bilinear product on C∞(M)[[ǫ]] with unit 1 ∈ C∞(M) and such that f ⋆M g −

g ⋆M f = 2ǫα(d f, dg) mod ǫ2.

Remark. One can replace (i) by the equivalent condition that A be a Hausdorff, com-

plete, ǫ-torsion free R[[ǫ]]-module (see [4], [8], App. A).

Kontsevich gave in [9] a quantization in the case of M = Rd , in the form of an

explicit formula for a star product, as a special case of his formality theorem for the

Hochschild complex of multidifferential operators. This theorem is extended in [9]

to general manifolds by abstract arguments, yielding in principle a star product for

general Poisson manifolds.

In this paper we give a more direct construction of a quantization, based on the

realization of the deformed algebra of functions as the algebra of horizontal sections

of a bundle of algebras. It is similar in spirit to B. Fedosov’s deformation quantization

of symplectic manifolds in [5]. It has the advantage of giving in principle an explicit

construction of a star product on any Poisson manifold.

We turn to the description of our results.

We construct two vector bundles with flat connection on the Poisson manifold

M . The second bundle should be thought of as a quantum version of the first.

The first bundle E0 is a bundle of Poisson algebras. It is the vector bundle of

infinite jets of functions with its canonical flat connection D0. The fiber over x ∈ M is

the commutative algebra of infinite jets of functions at x . The Poisson structure on M

induces a Poisson algebra structure on each fiber, and the canonical map C∞(M) →

E0 is a Poisson algebra isomorphism onto the Poisson algebra H0(E0, D0) of D0-

horizontal sections of E0.

The second bundle E is a bundle of associative algebras over R[[ǫ]] and is ob-

tained by quantization of the fibers of E0. Its construction depends on the choice

x 7→ ϕx of an equivalence class of formal coordinate systems ϕx : (Rd , 0) → (M, x),
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defined up to the action of GL(d,R), at each point x of M and depending smoothly

on x . As a bundle of R[[ǫ]]-modules, E ≃ E0[[ǫ]] is isomorphic to the bundle of for-

mal power series in ǫ whose coefficients are infinite jets of functions. The associative

product on the fiber of E over x ∈ M is defined by applying the Kontsevich star

product formula for Rd with respect to the coordinate system ϕx . Thus the sections

of E form an algebra. We say that a connection on a bundle of algebras is compatible

if the covariant derivatives are derivations of the algebra of sections. If a connection

is compatible, then horizontal sections form an algebra. Our first main result is the

following theorem.

THEOREM 1.1

There exists a flat compatible connection D̄ = D0 + ǫD1 + ǫ2 D2 + · · · on E so that

the algebra of horizontal sections H0(E, D̄) is a quantization of C∞(M).

The construction of the connection is done in two steps. First, one constructs a defor-

mation D of the connection D0 in terms of integrals over configuration spaces of the

upper half-plane. This connection is compatible with the product as a consequence

of the Kontsevich formality theorem on Rd . Moreover, the same theorem gives a for-

mula for its curvature, which is the commutator [F M , ·]⋆ with some E-valued two-

form F M , and also implies the Bianchi identity DF M = 0. In the second step, we

use these facts to show, following Fedosov’s method in [5], that there is an E-valued

one-form γ so that D̄ = D + [γ, ·]⋆ is flat. This means that γ is a solution of the

equation

F M + ǫω + Dγ + γ ⋆ γ = 0. (1)

Here ω is any E-valued two-form such that Dω = 0 and [ω, ·]⋆ = 0.

To prove that the algebra of horizontal sections is a quantization of C∞(M), one

constructs a quantization map

ρ : C∞(M) ≃ H0(E0, D0) → H0(E, D̄),

extending to an isomorphism of topological R[[ǫ]]-modules C∞(M)[[ǫ]] →

H0(E, D̄). We give two constructions of such a map. In the first construction, ρ is

induced by a chain map (�·(E0), D0) → (�·(E), D̄) between the complexes of dif-

ferential forms with values in E0 and E , respectively. In the second construction, ρ is

defined only at the level of cohomology but behaves well with respect to the center.

THEOREM 1.2

Let Z0 = { f ∈ C∞(M) | { f, ·} = 0} be the algebra of Casimir functions, and let

Z = { f ∈ H0(E, D̄) | [ f, ·]⋆ = 0} be the center of the algebra H0(E, D̄). Then there

exists a quantization map ρ that restricts to an algebra isomorphism Z0[[ǫ]] → Z.
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The local version of Theorem 1.2 is a special case of the theorem on compatibility of

the cup product on the tangent cohomology (see [9]). This global version is based on

two further special cases of the formality theorem for Rd .

By using the second quantization map ρ, we may represent the central two-form

ω as ρ(ω0), where ω0 is a D0-closed E0-valued two-form that is Poisson central in the

sense that {ω0, ·} = 0. A further advantage of this quantization map is that it allows

us to define a map from Hamiltonian vector fields to inner derivations of the global

star product.

Our construction depends on the choice of a class of local coordinate systems

ϕaff = ([ϕx ])x∈M , a Poisson central D0-closed two-form ω0, and a solution γ of (1).

It turns out that different choices (at least within a homotopy class) lead to isomor-

phic algebra bundles with flat connection (and in particular to isomorphic algebras

of horizontal sections) if the central two-forms are in the same cohomology class in

the subcomplex of (�·(E0), D0) formed by Poisson central differential forms. Thus,

up to isomorphism, our construction depends only on the cohomology class of the

Poisson central two-form. This will be the subject of a separate publication.

Also, the action of an extension of the Lie algebra of Poisson vector fields on the

deformed algebra and a discussion of special cases, such as the case of a divergence-

free Poisson bivector field in [6] and the symplectic case, will be presented elsewhere.

Our construction is also inspired by the quantum field theoretical description in

[3] of deformation quantization. In that approach, the quantization is defined by a path

integral of a topological sigma model which should be well defined for any Poisson

manifold. The star product is obtained by a perturbation expansion in Planck’s con-

stant which requires one to consider Taylor expansions at points of M . This suggests

that a global version of the star product should be constructed in terms of a defor-

mation of the bundle of infinite jets of functions. The deformation of the transition

functions can be expressed in terms of Ward identities for the currents associated to

infinitesimal diffeomorphisms (see [10]). As shown in [3], Ward identities correspond

to identities of the Kontsevich formality theorem.

The organization of this paper is as follows. In Section 2 we recall the main

notions of formal geometry, which we use to patch together objects defined locally.

Section 3 is a short description of the Kontsevich formality theorem on Rd . We for-

mulate four special cases of this theorem, which are the ingredients of our construc-

tion. We then describe the quantization using the theory of compatible connections

on bundles of algebras in Section 4, by adapting a construction of Fedosov [5] to

our situation. In particular, we give a proof of Theorem 1.1. We study the relation

between Casimir sections of E0 and central sections of E , and we give a proof of

Theorem 1.2 in Section 5. The notion of a topological R[[ǫ]]-module, appearing in

the definition of quantization, is reviewed in Appendix A. In Appendix B we prove
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some (well-known) cohomology vanishing results, by giving a canonical homotopy,

similar to Fedosov’s in the symplectic case. In particular, we give a representation of

cocycles as coboundaries, giving in principle an algorithm to compute star products

of functions.

2. Formal geometry

Formal geometry (see [7], [2]) provides a convenient language to describe the global

behavior of objects defined locally in terms of coordinates. The idea is to consider

the “space of all local coordinate systems” on M with its transitive action of the Lie

algebra of formal vector fields. More precisely, let Mcoor be the manifold of jets of

coordinates systems on M . A point in Mcoor is an infinite jet at zero of local diffeo-

morphisms [ϕ] : U ⊂ Rd → M defined on some open neighborhood U of 0 ∈ Rd .

Two such maps define the same infinite jet if and only if their Taylor expansions

at zero (for any choice of local coordinates on M) coincide. We have a projection

π : Mcoor → M sending [ϕ] to ϕ(0). The group G0 of formal coordinate transforma-

tions of Rd preserving the origin acts freely and transitively on the fibers. The tangent

space to Mcoor at a point [ϕ] may be identified with the Lie algebra

W =
{ d∑

j=1

v j

∂

∂y j

∣∣∣ v j ∈ R[[y1, . . . , yd ]]
}

of vector fields on the formal neighborhood of the origin in Rd : if ξ ∈ T[ϕ]M
coor and

if [ϕt ] is a path in Mcoor with tangent vector ξ at t = 0, then

ξ̂ (y) = Taylor expansion at zero of − (dϕ)(y)−1 d

d t
ϕt (y)

∣∣∣
t=0

is a vector field in W which depends only on the infinite jet of ϕt . For simplicity we

often omit the bracket in [ϕ] when no confusion arises. The map ωMC(ϕ) : ξ 7→ ξ̂

is in fact an isomorphism from the tangent space at ϕ of Mcoor to W and defines the

W -valued Maurer-Cartan form ωMC ∈ �1(Mcoor,W ) on Mcoor. Its inverse defines a

Lie algebra homomorphism W 7→ {vector fields on Mcoor}, which means that W acts

on Mcoor, and is equivalent to the fact that ωMC obeys the Maurer-Cartan equation

dωMC +
1

2
[ωMC, ωMC] = 0, (2)

where the bracket is the Lie bracket in W and the wedge product of differential forms.

The action of W , restricted to the subalgebra W0 of vector fields vanishing at the

origin, can be integrated to an action of G0. In particular, the subgroup GL(d,R) of

linear diffeomorphisms in G0 acts on Mcoor, and we set Maff = Mcoor/GL(d,R).

We need the fact that the fibers of the bundle Maff → M are contractible so that
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there exist sections ϕaff : M → Maff. Over Mcoor we have the trivial vector bundle

Mcoor × R[[y1, . . . , yd ]]. It carries a canonical flat connection, d + ωMC, which has

the property that its horizontal sections are precisely the Taylor expansions of smooth

functions on M : if f ∈ C∞(M), then ϕ 7→ (Taylor expansion at zero of f ◦ ϕ) is a

horizontal section and all horizontal sections are obtained in this way.

Since the Maurer-Cartan form is GL(d,R)-equivariant, the canonical connection

induces a connection on the vector bundle Ẽ0 = Mcoor ×GL(d,R) R[[y1, . . . , yd ]] over

Maff, as is seen in detail in Lemma 4.1. Let ϕaff : M → Maff be a section of the

fiber bundle Maff → M . Then E0 = ϕaff Ẽ0 is a vector bundle over M with fiber

R[[y1, . . . , yd ]]: a point in the fiber of E0 over x is a GL(d,R)-orbit of pairs (ϕ, f ),

where ϕ is a representative of the class ϕaff(x) and f ∈ R[[y1, . . . , yd ]]. The action of

g ∈ GL(d,R) is (ϕ, f ) 7→ (ϕ ◦ g, f ◦ g). The pullback of the canonical connection

is a flat connection D0 on E0.

This vector bundle also has a description independent of the choice of section,

which we now turn to. Let J (M) be the vector bundle of infinite jets of func-

tions on M ; the fiber over x ∈ M consists of equivalence classes of smooth func-

tions defined on open neighborhoods of x , where two functions are equivalent if

and only if they have the same Taylor series at x (with respect to any coordinate

system). It is easy to see that the map J (M) → E0 sending the jet p at x to

(ϕ,Taylor expansion at zero of (p ◦ ϕ)), ϕ ∈ ϕaff(x), is an isomorphism. The pull-

back of the connection induces a canonical connection on J (M)which is independent

of the choice of ϕaff.

3. The Kontsevich star product and formality theorem on Rd

Let α =
∑
αi j (y)(∂/∂yi ) ∧ ∂/∂y j be a Poisson structure on Rd . The Kontse-

vich star product of two functions f , g on Rd is given by a series f ⋆ g =

f g +
∑∞

j=1(ǫ
j/ j !)U j (α, . . . , α) f ⊗ g. The operator U j (α1, . . . , α j ) is a multilinear

symmetric function of j arguments αk ∈ Ŵ(Rd ,
∧2

T Rd), taking values in the space

of bidifferential operator C∞(Rd) ⊗ C∞(Rd) → C∞(Rd). In fact, U j (α1, . . . , α j )

is defined more generally as a multilinear graded symmetric function of j multi-

vector fields αk ∈ Ŵ(Rd ,
∧mk T Rd) with values in the multidifferential operators

C∞(Rd)⊗r → C∞(Rd), where r =
∑

k mk − 2 j + 2. The maps U j are GL(d,R)-

equivariant and obey a sequence of quadratic relations (amounting to the fact that

they are Taylor coefficients of an L∞-morphism) of which the associativity of the star

product is a special case.

Let Sℓ,n−ℓ be the subset of the group Sn of permutations of n letters consisting

of permutations such that σ(1) < · · · < σ(ℓ) and σ(ℓ + 1) < · · · < σ(n). For

σ ∈ Sℓ,n−ℓ, let

ε(σ ) = (−1)
∑ℓ

r=1 mσ(r)(
∑σ(r)−1

s=1 ms−
∑r−1

s=1 mσ(s)).
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The formality theorem for Rd is (with the signs computed in [3]) the following theo-

rem.

THEOREM 3.1 (Kontsevich [9, Sec. 6.4])

Let α j ∈ Ŵ(Rd ,∧m j T Rd), j = 1, . . . , n, be multivector fields. Let εi j =

(−1)(m1+···+mi−1)mi +(m1+···+mi−1+mi+1+···+m j−1)m j .

Then, for any functions f0, . . . , fm ,

n∑

ℓ=0

m∑

k=−1

m−k∑

i=0

(−1)k(i+1)+m
∑

σ∈Sℓ,n−ℓ

ε(σ )Uℓ(ασ(1), . . . , ασ(ℓ))
(

f0 ⊗ · · · ⊗ fi−1

⊗ Un−ℓ(ασ(ℓ+1), . . . , ασ(n))( fi ⊗ · · · ⊗ fi+k)⊗ fi+k+1 ⊗ · · · ⊗ fm

)

=
∑

i< j

εi jUn−1

(
[αi , α j ], α1, . . . , α̂i , . . . , α̂ j , . . . , αn

)
( f0 ⊗ · · · ⊗ fm).

Here [ , ] denotes the Schouten-Nijenhuis bracket, and a caret denotes omission.

We need some special cases of Theorem 3.1, namely, the cases involving vector fields

and a Poisson bivector field.

Let α ∈ Ŵ(Rd ,
∧2

T Rd) be a Poisson bivector field, and let ξ, η be vector fields.

Let us introduce the formal series

P(α) =

∞∑

j=0

ǫ j

j !
U j (α, . . . , α),

A(ξ, α) =

∞∑

j=0

ǫ j

j !
U j+1(ξ, α, . . . , α),

F(ξ, η, α) =

∞∑

j=0

ǫ j

j !
U j+2(ξ, η, α, . . . , α).

The coefficients of the series P , A, F are, respectively, bidifferential operators, dif-

ferential operators, and functions. They obey the relations of the formality theorem.

To spell out these relations, it is useful to introduce the Lie algebra cohomology dif-

ferential.

Definition 2

A local polynomial map, from Ŵ(Rd ,
∧2

T Rd) to the space of multidifferential op-

erators on Rd , is a map α 7→ U (α) ∈
⊕∞

r=0 C∞(Rd)⊗ R[∂/∂y1, . . . , ∂/∂yd ]⊗r , so

that the coefficients of U (α) at y ∈ Rd are polynomials in the partial derivatives of

the coordinates αi j (y) of α at y. We denote by U the space of these local polynomial

maps.
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The Lie algebra W of vector fields on Rd acts on U, and we can form the Lie algebra

cohomology complex C ·(W,U) = HomR(
∧·

W,U). An element of Ck(W,U) sends

ξ1 ∧ · · · ∧ ξk , for any vector fields ξ j , to a multidifferential operator S(ξ1, . . . , ξk, α)

depending polynomially on α. Then P ∈ C0(W,U)[[ǫ]], A ∈ C1(W,U)[[ǫ]], and F ∈

C2(W,U)[[ǫ]]. The differential (extended to formal power series by R[[ǫ]]-linearity) is

denoted by δ. If 8t
ξ denotes the flow of the vector field ξ , we have

δS(ξ1, . . . , ξp+1, α) = −

p+1∑

i=1

(−1)i−1 d

dt

∣∣∣
t=0

S
(
ξ1, . . . , ξ̂i , . . . , ξp+1, (8

t
ξi
)∗α

)

+
∑

i< j

(−1)i+ j S
(
[ξi , ξ j ], ξ1, . . . , ξ̂i , . . . , ξ̂ j , . . . , ξp+1, α

)
.

COROLLARY 3.2

We have

(i) P(α) ◦ (A(ξ, α)⊗ Id + Id ⊗ A(ξ, α))− A(ξ, α) ◦ P(α) = δP(ξ, α),

(ii) P(α) ◦ (F(ξ, η, α)⊗ Id − Id ⊗ F(ξ, η, α))− A(ξ, α) ◦ A(η, α)+ A(η, α) ◦

A(ξ, α) = δA(ξ, η, α),

(iii) −A(ξ, α) ◦ F(η, ζ, α) − A(η, α) ◦ F(ζ, ξ, α) − A(ζ, α) ◦ F(ξ, η, α) =

δF(ξ, η, ζ, α).

These relations can be deduced from Theorem 3.1 by noticing that some terms vanish

owing to the Jacobi identity [α, α] = 0 and that [ξ, α] is the Lie derivative of α in the

direction of the vector field ξ .

Remark. The relations, together with the associativity relations P ◦ (P ⊗

Id − Id ⊗ P) = 0, may be written compactly in the Maurer-Cartan form δS +

(1/2)[S, S] = 0, where S = P + A + F and where the bracket is composed of

the Gerstenhaber bracket on Hochschild cochains (see [9]) and the cup product in the

Lie algebra cohomology complex.

Remark. Relation (i) gives the behavior of the Kontsevich star product under coor-

dinate transformations: if we do an infinitesimal coordinate transformation, the star

product changes to an equivalent product.

We also need the form of the lowest-order terms of P , A, F and their action on 1 ∈

R[[y1, . . . , yd ]]. The following results are essentially contained in [9]. They amount

to an explicit calculation of certain integrals over configuration spaces of points in the

upper half-plane.
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PROPOSITION 3.3

We have

(i) P(α)( f ⊗ g) = f g + ǫα(d f, dg)+ O(ǫ2),

(ii) A(ξ, α) = ξ + O(ǫ), where we view ξ as a first-order differential operator,

(iii) A(ξ, α) = ξ if ξ is a linear vector field,

(iv) F(ξ, η, α) = O(ǫ),

(v) P(α)(1 ⊗ f ) = P(α)( f ⊗ 1) = f ,

(vi) A(ξ, α)1 = 0.

Remark. As the coefficients of the multidifferential operators U j are polynomial

functions of the derivatives of the coordinates of the multivector fields, all re-

sults in this section continue to hold in the formal context, namely, if we replace

C∞(Rd) by R[[y1, . . . , yd ]] and take the coordinates of the tensors α, ξ, η, ζ also in

R[[y1, . . . , yd ]].

4. Deformation quantization of Poisson manifolds

4.1. A deformation of the canonical connection

Let Ẽ be the bundle of R[[ǫ]]-modules

Mcoor ×GL(d,R) R[[y1, . . . , yd ]][[ǫ]] → Maff,

and let ϕaff be a section of the projection p : Maff → M . Such a section is defined by

a family (ϕx )x∈M of infinite jets at zero of maps ϕx : Rd → M such that ϕx (0) = x ,

defined modulo GL(d,R)-transformations.

Let E = (ϕaff)∗ Ẽ be the pullback bundle. As the Kontsevich product is

GL(d,R)-equivariant, it descends to a product, also denoted by ⋆, on Ŵ(E).

Let us describe this product. For simplicity, we suppose that an open cover-

ing of M , consisting, say, of contractible sets, has been fixed and that representa-

tives ϕx of the GL(d,R)-equivalence classes have been fixed on each open set of

the covering. In this way, we may pretend that the bundle E → M is trivial with

fiber R[[y1, . . . , yd ]][[ǫ]]. Since all formulae are GL(d,R)-equivariant, all statements

have a global meaning. A section f of E is then locally a map x 7→ fx , where

fx = fx (y) ∈ R[[y1, . . . , yd ]][[ǫ]]. The product of two sections f , g of Ŵ(E) is

( f ⋆ g)x = P(αx )( fx ⊗ gx ), where αx = (ϕ−1
x )∗α is the expression of α in the

coordinate system ϕx . Thus

( f ⋆ g)x (y) = fx (y)gx (y)+ ǫ

d∑

i, j=1

α
i j
x (y)

∂ fx (y)

∂yi

∂gx (y)

∂y j
+ · · · . (3)
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We now introduce a connection D : Ŵ(E) → �1(M) ⊗C∞(M) Ŵ(E) on Ŵ(E). We

first assume that M is contractible and that a section ϕ : M → Mcoor is fixed. We set

(D f )x = dx f + AM
x f,

where dx f is the de Rham differential of f , viewed as a function of x ∈ M with

values in R[[y1, . . . , yd ]][[ǫ]], and, for ξ ∈ Tx M ,

AM
x (ξ) = A(ξ̂x , αx ), ξ̂x = ϕ∗ωMC (ξ).

LEMMA 4.1

Let ϕ, ϕ′ : M 7→ Mcoor be sections of Mcoor such that ϕ′
x = ϕx ◦ g(x) for some

smooth map g : M → GL(d,R), and let D, D′ be the corresponding connections.

Then D′( f ◦ g) = (D f ) ◦ g.

Proof

Let f : M → R[[y1, . . . , yd ]] be a section, and set f ′
x = fx ◦ g(x). We have D′ =

dx + A(ϕ′∗ωMC(x), (ϕ
′
x
−1
)∗α). Let us choose local coordinates x i on U . Then the

covariant derivative in the direction of ∂/∂x i is

D′
i f ′

x =
∂

∂x i

(
fx ◦ g(x)

)
+ A

(
ϕ′∗ωMC

( ∂

∂x i

)
, (ϕ′

x
−1
)∗α

)
.

By the chain rule, we have, for x ∈ U ,

∂

∂x i

(
fx (g(x)y)

)
=
∂ fx

∂x i

(
g(x)y

)
+ θi

(
fx ◦ g(x)

)
(y), θi (y) = g(x)−1 ∂

∂x i
g(x)y.

The vector-valued function y 7→ θi (y) is viewed here as an element of W . On the

other hand,

ϕ′∗ωMC

( ∂

∂x i

)
=

(
g(x)−1

)
∗
ϕ∗ωMC

( ∂

∂x i

)
− θi ,

as can be seen from the definition of the Maurer-Cartan form. Also, α′
x = (ϕ′

x
−1
)∗α =

(g(x)−1)∗(ϕ
−1
x )∗α. Using the GL(d,R)-equivariance of A, we then obtain

D′
i f ′

x = (Di fx ) ◦ g(x)+ θi f ′
x − A(θi , α

′
x ) f ′

x .

The point is that since θi is a linear vector field, we have A(θi , α
′
x ) = θi , by Proposi-

tion 3.3(iii).

Now let M be a general manifold. Suppose that a section of Maff → M is given. Its

restriction to a contractible open set U is an equivalence class of sections ϕ : U →

U coor, x 7→ ϕx . Two sections ϕ, ϕ′ are equivalent if there exists a map g : U →
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GL(d,R) such that ϕ′
x = ϕx ◦ g(x). If we change ϕ to ϕ′, then the same section f

of ϕaff Ẽ is described by a map x 7→ f ′
x = fx ◦ g(x). Lemma 4.1 shows that D is

independent of the choice of representatives and therefore induces a globally defined

connection, which we also denote by D, on E = (ϕaff)∗ Ẽ .

Let us extend D to the �·(M)-module �·(E) = �·(M) ⊗C∞(M) Ŵ(E) by the

rule D(ab) = (dx a)b + (−1)paDb, a ∈ �p(M), b ∈ �·(E). The wedge product

on �·(E) and the star product on the fibers induce a product, still denoted by ⋆, on

�·(E).

PROPOSITION 4.2

Let F M ∈ �2(E) be the E-valued two-form x 7→ F M
x with F M

x (ξ, η) =

F(ξ̂x , η̂x , αx ), ξ, η ∈ Tx M. Then, for any f, g ∈ Ŵ(E),

(i) D( f ⋆ g) = D f ⋆ g + f ⋆ Dg,

(ii) D2 f = F M ⋆ f − f ⋆ F M ,

(iii) DF M = 0.

These identities are obtained by translating the identities of Corollary 3.2, using the

following fact.

LEMMA 4.3

Let ϕ : M 7→ Mcoor be a section of Mcoor, and denote by D the vector

space of formal multidifferential operators on Rd . The map (Hom(
∧·

W ,U), δ) →

(�·(M,D), dde Rham), σ 7→ σM with

σM
x (ξ1, . . . , ξp) = σ

(
ϕ∗ωMC(ξ1), . . . , ϕ

∗ωMC(ξp), (ϕ
−1
x )∗α

)

is a homomorphism of complexes.

Proof

Suppose that σ is a homogeneous polynomial of degree k in α. Then there exists a

C∞(M)-multilinear graded symmetric, multidifferential operator-valued function S

of p vector fields and k bivector fields such that

σ(η1, . . . , ηp, α) = S(η1, . . . , ηp, α, . . . , α).

Let us work locally and introduce coordinates x1, . . . , xd . Let ψ j = ϕ∗ωMC(∂/∂x j ).

The Maurer-Cartan equation (2) is then

∂

∂xµ
ψν −

∂

∂xν
ψµ + [ψµ, ψν] = 0.
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With the abbreviation αx = (ϕ−1)∗α, we then have

dde Rhamσ
M
x

( ∂

∂xµ1
, . . . ,

∂

∂xµp+1

)

=

p+1∑

j=1

(−1) j−1 ∂

∂xµ j
σM

x

( ∂

∂xµ1
, . . . ,

∂̂

∂xµ j
, . . . ,

∂

∂xµp+1

)

=

p+1∑

i 6= j=1

(−1) j−1S
(
ψµ1

, . . . ,
∂

∂xµ j
ψµi

, . . . , ψ̂µ j
, . . . , ψµp+1

, αx , . . . , αx

)

+

p+1∑

j=1

(−1) j−1
k∑

l=1

S
(
ψµ1

, . . . , ψ̂µ j
, . . . , ψµp+1

, αx , . . . ,
∂

∂xµ j
αx , . . . , αx

)
.

The claim follows by using the Maurer-Cartan equation and the relation

∂

∂xµ
αx + [ψµ, αx ] = 0,

which is an expression of the fact that αx is the Taylor expansion of a globally defined

tensor.

By Proposition 4.2(i), the space of horizontal sections Ker D is an algebra. However,

D has curvature, so we need to modify it in such a way as to kill the curvature, still

preserving Proposition 4.2(i). This can be done by a method similar to the one adopted

by Fedosov [5], which we now describe in a slightly more general setting. We come

back to our case in Section 4.3.

4.2. Connections on bundles of algebras

If E → M is a bundle of associative algebras over the ring R = R[[ǫ]] or R = R,

then the space of sections Ŵ(E) with fiberwise multiplication is also an associative

algebra over R and a module over C∞(M). The product of sections is denoted by ⋆,

and we also consider the commutator [ a, b]⋆ = a ⋆ b − b ⋆ a of sections. Let D :

Ŵ(E) → �1(M) ⊗C∞(M) Ŵ(E) be a connection on E , that is, a linear map obeying

D( f a) = d f ⊗ a + f Da, f ∈ C∞(M), a ∈ Ŵ(E). Extend D to the �·(M)-module

�·(E) = �·(M) ⊗C∞(M) Ŵ(E) in such a way that D(βa) = (dβ)a + (−1)pβDa

if β ∈ �p(M), a ∈ �·(E). The space �·(E) with product (β ⊗ a) ⋆ (γ ⊗ b) =

(β ∧ γ ) ⊗ (a ⋆ b) is a graded algebra. We say that D is a compatible connection if

D(a ⋆ b) = Da ⋆ b + a ⋆ Db for all a, b ∈ Ŵ(E). A connection D is compatible if

and only if its extension on �·(E) is a (super) derivation of degree 1, that is, if

D(a ⋆ b) = Da ⋆ b + (−1)deg(a)a ⋆ Db, a, b ∈ �·(E).

If this holds, then the curvature D2 is a C∞(M)-linear derivation of the algebra

�·(E).
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Definition 3

A Fedosov connection D with Weyl curvature F ∈ �2(E) is a compatible connection

on a bundle of associative algebras such that D2a = [ F, a]⋆ and DF = 0.

Note that the Weyl curvature of a Fedosov connection is not uniquely determined by

the connection: Weyl curvatures corresponding to the same connection differ by a

two-form with values in the center.

PROPOSITION 4.4

If D is a Fedosov connection on E and γ ∈ �1(E), then D + [ γ, ·]⋆ is a Fedosov

connection with curvature

F + Dγ + γ ⋆ γ.

Proof

Let D̄ = D + [γ, ·]⋆. If a ∈ Ŵ(E),

D̄2a = [F, a]⋆ + D[ γ, a]⋆ +
[
γ, D(a)

]
⋆
+

[
γ, [γ, a]⋆

]
⋆

= [F, a]⋆ + [Dγ, a]⋆ +
[
γ, [γ, a]⋆

]
⋆

=
[

F + Dγ +
1

2
[γ, γ ]⋆, a

]
⋆
.

In the last step we use the Jacobi identity. Now,

D̄
(

F + Dγ +
1

2
[γ, γ ]⋆

)
= D2γ +

1

2
[ Dγ, γ ]⋆ −

1

2
[γ, Dγ ]⋆ + [γ, F + Dγ ]⋆

= [ F, γ ]⋆ + [ γ, F]⋆ = 0.

The term [γ, [γ, γ ]⋆]⋆ vanishes by the Jacobi identity.

Definition 4

A Fedosov connection is flat if D2 = 0.

If D is a flat Fedosov connection, we may define cohomology groups H j (E, D) =

Ker(D : � j (E) → � j+1(E))/ Im(D : � j−1(E) → � j (E)).

If E0 is a vector bundle over M , let E0[[ǫ]] be the associated bundle of R[[ǫ]]-

modules. Sections of E0[[ǫ]] are formal power series in ǫ whose coefficients are sec-

tions of E0. Let us suppose that E = E0[[ǫ]], as a bundle of R[[ǫ]]-modules, and that

D is a Fedosov connection on E . Then we have expansions

D = D0 + ǫD1 + ǫ2 D2 + · · · , F = F0 + ǫF1 + ǫ2 F2 + · · · ,

where D0 is a Fedosov connection on the bundle of R-algebras E0 with Weyl curva-

ture F0.
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LEMMA 4.5

Suppose that F0 = 0 and that H2(E0, D0) = 0. Then there exists a γ ∈ ǫ�1(E) such

that D + [ γ, · ]⋆ has zero Weyl curvature.

Proof

By Proposition 4.4, we need to solve the equation F+Dγ+γ ⋆γ = 0 for γ ∈ ǫ�1(E).

If γ = 0, this equation holds modulo ǫ. Assume by induction that γ (k) = ǫγ1 + · · ·+

ǫkγk obeys

F̄ (k) := F + Dγ (k) + γ (k) ⋆ γ (k) = 0 mod ǫk+1.

Then, for any choice of γk+1 ∈ �1(E), F̄ (k+1) = F̄ (k) + ǫk+1 D0γk+1 mod ǫk+2.

By Proposition 4.4, DF̄ (k) + [ γ (k), F̄ (k)]⋆ = 0. Since F̄ (k) = 0 mod ǫk+1, we then

have D0 F̄ (k) = 0 mod ǫk+2. Since the second cohomology is trivial, we can choose

γk+1 so that D0γk+1 = −ǫ−k−1 F̄ (k)|ǫ=0, and we get F̄ (k+1) = 0 mod ǫk+2. The

induction step is proved, and γ =
∑∞

j=1 ǫ
jγ j has the required properties.

If D0 is a flat connection on E0, then the differential forms with values in the

vector bundle End(E0) of fiber endomorphisms form a differential graded algebra

�·(End(E0)) acting on �·(E0). The differential is the super commutator D0(8) =

D0 ◦8− (−1)p8 ◦ D0, 8 ∈ �p(End(E0)).

If D = D0 + ǫD1 + · · · is a connection on E = E0[[ǫ]], then clearly D j ∈

�1(End(E0)) for j ≥ 1.

LEMMA 4.6

Suppose that D = D0+ǫD1+· · · is a flat Fedosov connection on E = E0[[ǫ]] and that

H1(End(E0), D0) = 0. Then there exists a formal series ρ = Id + ǫρ1 + ǫ2ρ2 + · · ·

with coefficients ρi ∈ �0(End(E0)) which induces an isomorphism of topological

R[[ǫ]]-modules H0(E0, D0)[[ǫ]] → H0(E, D). If B is an algebra (not necessarily

with unit) subbundle of End(E0) such that

(i) �·(B) is a subcomplex of �·(End(E0)),

(ii) D j ∈ �1(B), j ≥ 1,

(iii) H1(B, D0) = 0,

then the ρ j may chosen in �0(B).

Proof

The proof is very similar to the proof of Lemma 4.5. We construct recursively a solu-

tion ρ = Id + ǫρ1 + · · · ∈ �0(B)[[ǫ]] of the equation

D ◦ ρ − ρ ◦ D0 = 0. (4)

Since the series ρ starts with the identity map, it is then automatically invertible as a

power series with coefficients in �0(B), and the claim follows.
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Equation (4) is clearly satisfied modulo ǫ. Let us assume by induction that ρ(k) =

Id + ǫρ1 + · · · + ǫkρk solves the equation modulo ǫk+1. The next term ρk+1 must

obey 8(k) + ǫk+1 D0(ρk+1) ≡ 0 mod ǫk+2, where 8(k) = D ◦ ρ(k) − ρ(k) ◦ D0 ≡

0 mod ǫk+1. Since D and D0 are flat, we have D◦8(k)+8(k)◦D0 = 0. It follows that

D0(8
(k)) = D0 ◦8(k) +8(k) ◦ D0 ≡ 0 mod ǫk+2. It then follows from the vanishing

of H1(B, D0) that such a ρk+1 exists.

4.3. Proof of Theorem 1.1

Let us return to our problem. Fix a section ϕaff : M → Maff, and let E = (ϕaff)∗ Ẽ , as

above. Let D = D0 + ǫD1 + · · · be the deformed canonical connection on E defined

in Section 4.1.

LEMMA 4.7

For any p > 0, and any section of Maff, H p(E0, D0) = 0.

This result is standard, but we give a proof below in Appendix B, which also gives an

algorithm to represent canonically cycles as coboundaries.

By Proposition 4.2, D is a Fedosov connection with Weyl curvature F M . By

Proposition 3.3(iv), its constant term vanishes. If we add to F M a term ǫω with ω ∈

�2(E) such that Dω = 0 and [ω, ·]⋆ = 0, then we still get a Weyl curvature for D.

We can thus apply Lemma 4.5 to find a solution γ ∈ ǫ�1(E) of (1). In particular,

D̄ = D +[ γ, ·]⋆ is flat. Then H0(E, D̄) = Ker D̄ is an algebra over R[[ǫ]]. Let Bk be

the subbundle of End(E0) consisting of differential operators of order ≤ k vanishing

on constants.

LEMMA 4.8

The differential forms with values in Bk form a subcomplex of �·(End(E0)), and we

have H p(Bk, D0) = 0 for p > 0.

Lemma 4.8 is proved in Appendix B. By using Lemma 4.8 and the fact that the maps

U j are given by multidifferential operators, we deduce that B =
⋃

k Bk obeys the

hypotheses of Lemma 4.6. Therefore we have a homomorphism

ρ : H0(E0, D0) 7→ H0(E, D̄), ρ( f ) = f + ǫρ1( f )+ ǫ2ρ2( f )+ · · · ,

with ρ j ∈ �0(B), j = 1, 2, . . . . Composing ρ with the canonical isomorphism

C∞(M) → H0(E0, D0) which sends a function to its Taylor expansions, we get

a section a 7→ ã of the projection H0(E, D̄) → C∞(M), f 7→ (x 7→ fx (0)), with

the property that the constant function 1 is sent to the constant section 1.
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PROPOSITION 4.9

H0(E, D̄) is a quantization of the algebra of smooth functions on the Poisson mani-

fold M.

Proof

The section a 7→ ã extends to an isomorphism C∞(M)[[ǫ]] → H0(E, D̄) by Lemma

4.6. So (i) in the definition of quantization is fulfilled.

To prove Definition 1(ii), let f , g ∈ C∞(M), and denote by fx (y), gx (y) the

Taylor expansions at y = 0 of f ◦ ϕx , g ◦ ϕx , respectively. Then, by construction, we

have f̃ ⋆ g̃ = h̃ with h of the form

h(x) =

∞∑

j=0

ǫ j
∑

J,K

a
j
J,K (x; y)∂ J

y fx (y)∂
K
y gx (y)

∣∣∣
y=0

(J, K are multi-indices). Since D0 fx = 0 = D0gx , we may use these differential

equations to replace partial derivatives with respect to y by partial derivatives with

respect to x . Indeed, D0 fx = 0 is equivalent, in local coordinates, to

∂ fx (y)

∂x i
=

∑

j,k

Rk
j (x, y)

∂ϕ
j
x (y)

∂x i

∂ fx (y)

∂yk
.

The matrix R is the inverse of the Jacobian matrix (∂ϕi
x (y)/∂y j ). Differentiating the

identity ϕ
j
x (0) = x j , we see that the matrix (∂ϕi

x (y)/∂x j ) is invertible (as a matrix

with coefficients in R[[y1, . . . , yd ]]). Thus h is expressed as a sum of bidifferential

operators acting on fx (0) = f (x) and gx (0) = g(x).

Since ρ sends 1 to 1 and since 1 is the identity for the Kontsevich product (see

Prop. 3.3(v)), we deduce that 1̃⋆ f̃ = f̃ ⋆1̃ = f̃ . Finally, by Proposition 3.3(i), f̃ ⋆ g̃ =

h̃ with h = f g +ǫ{α(d f, dg)+[ρ1( fx )gx +ρ1(gx ) fx −ρ1( fx gx )](y = 0)}+ O(ǫ2).

Therefore the skew-symmetric part of P1 is α.

This completes the proof of Theorem 1.1.

5. Casimir and central functions

In this section we discuss the relation between Casimir functions on the Poisson man-

ifolds and the center of the deformed algebra. Let us first formulate a local version,

due to Kontsevich, of Theorem 1.2. Suppose that α is a formal bivector field on Rd

and that f is a formal function on Rd . Let

R( f, α) =

∞∑

j=0

ǫ j

j !
U j+1( f, α, . . . , α) ∈ R[[y1, . . . , yd ]][[ǫ]].
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THEOREM 5.1 (Kontsevich [9])

If α is a Poisson bivector field, then the map f 7→ R( f, α) is a ring homo-

morphism from the ring Z0(R
d) of Casimir functions to the center Z(Rd) of

(R[[y1, . . . , yd ]][[ǫ]], ⋆).

Since U1( f ) = f , R is a deformation of the identity map, and therefore it extends by

R[[ǫ]]-linearity to an isomorphism of R[[ǫ]]-algebras Z0(R
d)[[ǫ]] → Z(Rd).

To find a global version of this result, we need two more special cases of the

formality theorem, Theorem 3.1.

COROLLARY 5.2 (Continuation of Cor. 3.2)

We have

(iv) P(α) ◦ (R( f, α)⊗ Id − Id ⊗ R( f, α)) = ǫA([α, f ], α),

(v) A(ξ, α)R( f, α) = ǫ
∑∞

0 (ǫ
j/ j !)U j+2([ξ, α], f, α, . . . , α) + R([ξ, f ], α) +

ǫF([α, f ], ξ, α).

These universal identities may be translated to identities for objects on the Poisson

manifold M . We fix as above a section ϕaff of Maff, and we let D denote the deforma-

tion of the canonical connection D0 on the algebra bundle E . We also locally choose

representatives ϕ : M → Mcoor of ϕaff, and we set αx = (ϕ−1
x )∗α, x ∈ M . For

f ∈ �0(E0), set

RM ( f ) = R( f, αx ) ∈ �0(E).

Let Der(E0) be the Lie algebra bundle of derivations of the algebra bundle E0. A

section of Der(E0) is represented locally via ϕ by a function on M with values in the

Lie algebra W of formal vector fields on Rd . For η ∈ Ŵ(Der(E0)), set

C M (η) = A(η, αx ) ∈ �0
(
End(E)

)
,

G M (η) = F
(
η, ϕ∗ωMC(·), αx

)
∈ �1(E).

PROPOSITION 5.3

Let f ∈ �0(E0), g ∈ �·(E). We have

(i) DRM ( f ) = RM (D0 f )+ ǫG M ([αx , f ]),

(ii) [RM ( f ), g]⋆ = ǫC M ([αx , f ])g.

The proof of Proposition 5.3 is similar to the proof of Proposition 4.2.

5.1. A quantization map compatible with the center

The idea is now to look for a quantization map of the form ρ( f ) = RM ( f ) +

β([α, f ]), for some β(η) ∈ �0(E), defined for Hamiltonian vector fields [α, f ]
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on M . Such a ρ clearly restricts to a ring homomorphism from Z0(M) = { f ∈

C∞(M) | [α, f ] = 0} to the ring of sections of E taking values in the center. Let

D̄ = D + [γ, ·]⋆ be a flat deformation of the canonical connection as above. We have

to choose β so that ρ sends D0-horizontal sections to D̄-horizontal sections. Then, by

Proposition 5.3, we have, for any f ∈ �0(E0),

D̄
(
RM ( f )

)
= RM (D0 f )+ ǫG M ([αx , f ])+ [γ, RM ( f )]⋆

= RM (D0 f )+ ǫG M ([αx , f ])− ǫC M ([αx , f ])γ. (5)

This formula suggests introducing, for any η ∈ Ŵ(Der(E0)), the one-form

H M (η) = G M (η)− C M (η)γ ∈ �1(E).

Moreover, G M (η) ∈ ǫ�1(E) (see Prop. 3.3) and γ ∈ ǫ�1(E), so H M (η) ∈ ǫ�1(E).

LEMMA 5.4

Let η = [α, f ] be a Hamiltonian vector field on M. Let η̄ ∈ Ŵ(Der(E0)) be the Taylor

expansion of η in the coordinates ϕ. Then D̄H M (η̄) = 0.

Proof

Apply D̄ to (5).

Remark. Lemma 5.4 holds more generally for Poisson vector fields, that is, vector

fields obeying [α, η] = 0.

Since the first cohomology of D0 vanishes, we may recursively find a solution β(η) ∈

ǫ�0(E) of the equation D̄β(η) = −H M (η̄). The solution is unique if we impose the

normalization condition

β(η)(y = 0) = 0. (6)

By this uniqueness, β depends linearly on the Poisson vector field η. In particular, it

defines a linear map f 7→ β([α, f ]) from C∞(M) to �0(E).

We thus obtain the following result.

PROPOSITION 5.5

Let D̄ = D+[γ, ·]⋆ be a flat connection on E as in Section 4.3, and for a Poisson vec-

tor field η, let β(η) be the solution of D̄β(η) = −H M (η̄) obeying the normalization

condition (6). Then the map ρ : C∞(M) ≃ H0(E0, D0) → H0(E, D̄),

f 7→ RM ( f )+ ǫβ([α, f ]) = f + O(ǫ2)

is a quantization map. Its restriction to the ring Z0 of Casimir functions extends to an

R[[ǫ]]-algebra isomorphism from Z0[[ǫ]] to the center of H0(E, D̄).
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Proof

It remains to prove that ρ is a quantization map, that is, that it defines (via the

canonical identification of C∞(M) with H0(E0, D0)) a map f 7→ f̃ obeying

condition (ii) in the definition of quantization given in the introduction. We have

U j+1(1, α, . . . , α) = δ j,01, as can immediately be seen from that definition. Thus

ρ sends 1 to 1. Also, ρ( f ) = f + O(ǫ2). So P1( f, g) = α(d f, dg).

We are left to prove that the product is given by bidifferential operators. The

normalization condition (6) is imposed by using the Fedosov homotopy b = k−1d∗
0

(see (7)) to solve recursively the equation D̄β(η) = −H(η̄). It is then clear that

β([α, f ]) is a power series whose coefficients are differential operators acting on the

Taylor series of f . Since the same holds for RM , the same reasoning as in the proof of

Proposition 4.9 implies that all coefficients of the product are given by bidifferential

operators.

In particular, Theorem 1.2 holds.

5.2. Quantization of Hamiltonian vector fields

The quantization map ρ defined in Proposition 5.5 is compatible with the action of

Hamiltonian vector fields in the following sense. For a given Poisson vector field ξ ,

we define

τ(ξ) = ǫρ−1 ◦
(

A(ξx , αx )+ [β(ξ), ]∗
)
◦ ρ.

Then we have the following result.

PROPOSITION 5.6

The map τ sends Hamiltonian vector fields on M to inner derivations of the star

product ⋆M .

Proof

Using property (iv) of Corollary 5.2, we can prove for any h, f ∈ C∞(M) that

τ([α, h])( f ) = ǫρ−1
(

A([αx , hx ], αx )ρ( f )+ [β([α, h]), ρ( f )]⋆
)

= ρ−1
[
R(hx , αx )+ ǫβ([α, h]), ρ( f )

]
⋆

= [h, f ]⋆M
.

From the associativity of ⋆M , it follows then that

τ([α, h])( f ⋆M g) = [h, f ]⋆M
⋆M g + f ⋆M [h, g]⋆M

.

5.3. Central two-forms

The space of sections Ŵ(E0) is a Poisson algebra. Denote by Z0(Ŵ(E0)) the sub-

algebra of Casimir sections. Define Z0(�
·(E0)) = �·(M) ⊗C∞(M) Z0(Ŵ(E0)). It
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is easy to see that Z0(�
·(E0)) is a subcomplex of �·(E0) with differential D0.

Similarly, we define Z(�·(E)) = �·(M) ⊗C∞(M) Z(Ŵ(E)), where Z(Ŵ(E)) is

the algebra of central sections of E . This is again a subcomplex of �·(E) with

differential D̄. By (5), RM establishes an isomorphism (of complexes of algebras)

Z0(�
·(E0))[[ǫ]] → Z(�·(E)).

In particular, to each D̄-closed form ω ∈ Z(�2(E)) considered in (1), there

corresponds a unique D0-closed ω0 = (RM )−1(ω) in Z0(�
2(E0)).

Appendices

A. Topological k[[ǫ]]-modules

Let k[[ǫ]] be the ring of formal power series
∑∞

j=0 a jǫ
j with coefficients a j in some

field k. It is a topological ring with the translation invariant topology such that ǫ j k[[ǫ]],

j ≥ 1, form a basis of neighborhoods of zero. Thus a subset U of k[[ǫ]] is open if and

only if for every a ∈ U there exists a j ≥ 1 such that a + ǫ j k[[ǫ]] ⊂ U . With

this topology, called the ǫ-adic topology, the ring operations are continuous. More

generally, if M is a k[[ǫ]]-module, we may define a translation invariant topology on

M by declaring that the submodules ǫ j M form a basis of neighborhoods of zero.

This topology is Hausdorff if and only if m ∈ ǫ j M for all j implies m = 0. In this

case the ǫ-adic topology comes from a metric d on M . Set d(m,m′) = ‖m − m′‖,

where ‖m‖ = 2− j and j is the largest integer such that m ∈ ǫ j M . We say that M is

complete if it is complete as a metric space. Moreover, M is called ǫ-torsion free if,

for all j ∈ Z≥0, ǫ j m = 0 implies m = 0. If M is a k[[ǫ]]-module, then M/ǫM is a

module over k = k[[ǫ]]/ǫk[[ǫ]].

The category of topological k[[ǫ]]-modules is the subcategory of the category of

k[[ǫ]]-modules whose objects are k[[ǫ]]-modules and whose morphisms are continuous

morphisms of k[[ǫ]]-modules.

LEMMA A.1

A topological k[[ǫ]]-module M is isomorphic to a module of the form M0[[ǫ]] for some

k-vector space M0 if and only if M is Hausdorff, complete, and ǫ-torsion free.

Proof

Let M0 be a k-vector space, and let M = M0[[ǫ]]. Then M is clearly ǫ-torsion free. It

is Hausdorff: if a =
∑

a jǫ
j 6= b =

∑
b jǫ

j , then a ∈ U =
∑N

j=1 a jǫ
j +ǫN+1 M and

b ∈ V =
∑N

j=1 b jǫ
j + ǫN+1 M are open sets, which are disjoint if N is large enough.

A sequence x1, x2, . . . ∈ M is Cauchy if and only if for any given N , xn −xm ∈ ǫN M0

for all sufficiently large n,m. Then x = x1 + (x2 − x1)+ (x3 − x2)+ (x4 − x3)+ · · ·

is a well-defined element of M since the coefficient of ǫ j , for any j , is determined by
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finitely many summands. Since, for any n, x = xn + (xn+1 − xn)+· · · , it follows that

xn converges to x . Thus M is complete.

Conversely, suppose that M is a Hausdorff, complete, ǫ-torsion free k[[ǫ]]-

module. Let M0 = M/ǫM , and denote by p : M → M0 the canonical projection. Let

us choose a k-linear section, that is, a k-linear map s : M0 → M such that p ◦ s = id.

Then s extends to a continuous k[[ǫ]]-linear map

s : M0[[ǫ]] → M,

∞∑

j=0

a jǫ
j 7→

∞∑

j=0

s(a j )ǫ
j .

The series on the right converges since the partial sums form a Cauchy sequence and

M is complete.

The kernel of s is trivial since M is ǫ-torsion free: if 0 6= a ∈ Ker(s), then, for

some j , a = ǫ j (a j + ǫa j+1 + · · · ) with a j 6= 0 and ǫ j (s(a j )+ ǫs(a j+1)+ · · · ) = 0.

Then m = s(a j )+ ǫs(a j+1)+ · · · = 0, and thus p(m) = a j = 0, a contradiction.

The image of s is M since M is Hausdorff. Let m ∈ M , and suppose inductively

that there exist a0, . . . , a j ∈ M0 such that m = s(x j ) mod ǫ j+1 M , where x j =∑ j

i=0 aiǫ
i . Thus m − s(x j ) = ǫ j+1r for some r ∈ M . If we set a j+1 = p(r), then

m = s(x j+1) mod ǫ j+2 M . It follows that x =
∑∞

j=0 a jǫ obeys s(x)− m ∈ ǫ j M for

all j . Thus s(x) = m.

To appreciate the meaning of Lemma A.1, it is instructive to have counterexamples

if one of the hypotheses is removed. Here they are. The module of formal Laurent

series M = k((ǫ)) is ǫ-torsion free but not Hausdorff since every Laurent series

belongs to
⋂

j≥0 ǫ
j M . If M0 is an infinite-dimensional k-vector space, then M =

k[[ǫ]] ⊗k M0 is Hausdorff, ǫ-torsion free, but not complete: if e1, e2, . . . ∈ M0 are

linearly independent, the sums
∑n

1 e jǫ
j form a divergent Cauchy sequence. Finally,

k[[ǫ]]/ǫN k[[ǫ]] is Hausdorff, complete, but not ǫ-torsion free.

Definition 5

A topological algebra over k[[ǫ]] is an algebra over k[[ǫ]] with continuous product

A × A → A.

If A = A0[[ǫ]] for some k-module A0, then any k-bilinear map A0 × A0 → A

extends uniquely to a k[[ǫ]]-bilinear map A × A → A, which is then continuous.

Thus a topological algebra structure on the k[[ǫ]]-module A0[[ǫ]] with unit 1 ∈ A0

is the same as a series P = P0 + ǫP1 + ǫ2 P2 + · · · whose coefficients Pj are k-

bilinear maps A0 × A0 → A0 obeying the relations
∑m

j=0 Pm− j (Pj ( f, g), h) =∑m
j=0 Pm− j ( f, Pj (g, h)), Pm(1, f ) = δm,0 f = Pm(1, f ), for all f, g, h ∈ A0,

m ∈ {0, 1, 2, . . . }.
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B. Vanishing of the cohomology

We compute the cohomology of�·(E0) and�·(Bk), and in particular we prove Lem-

mas 4.7 and 4.8. Let us start with E0.

Proof of Lemma 4.7

For k = 0, 1, . . . , let R[[y1, . . . , yd ]]k be the space of power series a vanishing at zero

to order at least k, that is, such that a(t y1, . . . , t yd) is divisible by tk . These subspaces

are stable under GL(d,R) and form a filtration. Thus we have a filtration

E0 = E0
0 ⊃ E1

0 ⊃ E2
0 ⊃ · · · .

From the local coordinate expression of the differential

D0 = dx i
( ∂

∂x i
− R

j
k (x, y)

∂ϕk
x (y)

∂x i

∂

∂y j

)
, R(x, y)−1 =

(∂ϕi
x (y)

∂y j

)
i, j=1,...,d

(sum over repeated indices) expanded in powers of y, we see that most terms do not

decrease the degree in y except the constant part of the second expression, which

decreases the degree by one. It follows that the spaces

Fk�p(E0) = �p(E
k−p

0 ), k = p, p + 1, . . . ,

form a decreasing filtration of subcomplexes of �·(E0). The first term in the asso-

ciated spectral sequence is the cohomology of
⊕

k Fk�·(E0)/Fk−1�·(E0). The kth

summand may be identified locally, upon choosing a representative in the class ϕaff,

with the space of differential forms with values in the homogeneous polynomials of

degree k, with differential

d0 =
∑

i

dx i R
j
i (x, 0)

∂

∂y j
.

As in [5], we introduce a homotopy (for k > 0). Let

d∗
0 =

∑

i, j

yi ∂ϕ
j
x (0)

∂yi
ι
( ∂

∂x j

)
, (7)

where ι denotes interior multiplication. Then d0d∗
0 + d∗

0 d0 = k Id; so if d0a = 0,

then a = d0b with b = k−1d∗
0 a. Moreover, k−1d∗

0 is compatible with the action of

GL(d,R) and is thus defined independently of the choice of representative of ϕaff.

Thus the cohomology of d0 is concentrated in degree zero, and the spectral sequence

collapses. In degree zero, cocycles are sections that are constant as functions of y.

Thus

H p(E0, D0) =

{
C∞(M), p = 0,

0, p > 0.



“115i2˙04” — 2002/10/29 — 9:12 — page 351 — #23
✐

✐

✐

✐

✐

✐

✐

✐

FROM LOCAL TO GLOBAL DEFORMATION QUANTIZATION 351

Proof of Lemma 4.8

The calculation of the cohomology of �·(Bk) to prove Lemma 4.8 is similar. We first

use the filtration Bk ⊃ Bk−1 ⊃ · · · ⊃ B0 = 0 by the order of the differential operator,

which leads us to computing H ·(B j/B j−1, D0), 1 ≤ j ≤ k. As B j/B j−1 may be

canonically identified with the j th symmetric power of the tangent bundle, the com-

plex is �·(M, S j T (Rd)) with differential dde Rham + L , where the value of the one-

form L on ξ ∈ Tx M is the Lie derivative in the direction of ϕ∗ωMC(ξ). By using the

filtration by the degree of the coefficients as above, we obtain H p(B j/B j−1, D0) = 0

for p ≥ 1, j ≥ 1. It follows that H p(Bk, D0) = 0 for all k ≥ 0, p ≥ 1.

Acknowledgments. G. Felder thanks A. Losev for inspiring discussions.
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Switzerland; lorenzo@math.ethz.ch




