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ABSTRACT
Quantum uncertainty relations are at the heart of many quantum
cryptographic protocols performing classically impossible tasks.
One operational manifestation of these uncertainty relations is a
purely quantum effect referred to as information locking [12]. A
locking scheme can be viewed as a cryptographic protocol in which
a uniformly random n-bit message is encoded in a quantum system
using a classical key of size much smaller than n. Without the
key, no measurement of this quantum state can extract more than a
negligible amount of information about the message (the message
is “locked”). Furthermore, knowing the key, it is possible to recover
(or “unlock”) the message.

In this paper, we make the following contributions by exploiting
a connection between uncertainty relations and low-distortion
embeddings of `2 into `1.

• We introduce the notion of metric uncertainty relations
and connect it to low-distortion embeddings of `2 into
`1. A metric uncertainty relation also implies an entropic
uncertainty relation.

• We prove that random bases satisfy uncertainty relations with
a stronger definition and better parameters than previously
known. Our proof is also considerably simpler than earlier
proofs. We apply this result to show the existence of locking
schemes with key size independent of the message length.

• We give efficient constructions of bases satisfying metric
uncertainty relations. These bases are computable by
quantum circuits of almost linear size. This leads to the
first explicit construction of a strong information locking
scheme. Moreover, we present a locking scheme that can
in principle be implemented with current technology. These
constructions are obtained by adapting an explicit norm
embedding due to Indyk [27] and an extractor construction
of Guruswami, Umans and Vadhan [20].

• We apply our metric uncertainty relations to give commu-
nication protocols that perform equality-testing of n-qubit
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states. We prove that this task can be performed by a sin-
gle message protocol using O(log(1/ε)) qubits and n bits of
communication, where ε is an error parameter. We also give
a single message protocol that uses O(log2 n) qubits, where
the computation of the sender is efficient.

Categories and Subject Descriptors
E.4 [Data]: Coding and Information Theory; F.1.1 [Theory of
Computation]: Computation by Abstract Devices—Models of
Computation

General Terms
Algorithms, Theory

Keywords
quantum information theory, quantum cryptography, quantum
uncertainty relation, low-distortion norm embedding, randomness
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1. INTRODUCTION
Uncertainty relations express the fundamental incompatibility

of certain measurements in quantum mechanics. Far from just
being puzzling constraints on our ability to know the state of
a quantum system, uncertainty relations are arguably the main
reason that some classically impossible cryptographic primitives
become possible when quantum communication is allowed. For
example, so-called entropic uncertainty relations lie at the heart of
security proofs in the bounded and noisy quantum storage models
[8, 7, 29]. A simple example of an entropic uncertainty relation
was given by Maassen and Uffink [11, 31]. Let B+ denote a
“rectilinear” or computational basis of C2 and B× be a “diagonal”
or Hadamard basis and let B+n and B×n be the corresponding
bases obtained on the tensor product space (C2)⊗n. Then we have
that for any quantum state on n qubits described by a unit vector
|ψ〉 ∈ (C2)⊗n, the average measurement entropy satisfies

1

2

(
H(pB+n ,|ψ〉) + H(pB×n ,|ψ〉)

)
≥ n

2
(1)

where pB,|ψ〉 denotes the outcome probability distribution when
|ψ〉 is measured in basis B and H denotes the Shannon entropy.
Equation (1) expresses the fact that measuring in a random basis
BK where K ∈u {+n,×n} produces an outcome that has some
uncertainty irrespective of the state being measured.

A important consequence of entropic uncertainty relations is the
effect known as information locking [12]. Suppose Alice holds
a uniformly distributed random n-bit string X . She chooses a



random basis K ∈u {+n,×n} and encodes X in the basis BK .
This random quantum state E(X,K) is then given to Bob. How
much information about X can Bob extract from this quantum
state by a measurement without knowing K? To better appreciate
the quantum case, observe that if X were encoded in a classical
state Ec(X,K), then Ec(X,K) would “hide” at most one bit about
X; more precisely, the mutual information I(X; Ec(X,K)) ≥
n − 1. For the quantum encoding E , one can show that for
any measurement that Bob applies on E(X,K) whose outcome is
denoted I , we have I(X; I) ≤ n/2 [12]. The n/2 missing bits
of information about X are said to be locked in the quantum state
E(X,K). If Bob had access to K, then X can be easily obtained
from E(X,K): The one-bit key K can be used to unlock n/2 bits
about X .

A natural question is whether it is possible to lock more than n/2
bits in this way. In order to achieve this, the keyK has to be chosen
from a larger set. In terms of uncertainty relations, this means that
we need to consider more than two bases to achieve an average
measurement entropy larger than n/2 (equation (1)). The authors
of [23] show the existence of an encoding that locks n−3 bits about
X ∈ {0, 1}n using a key K ∈ {0, 1}4 logn. They prove this result
by showing that random bases satisfy entropic uncertainty relations
of the form (1) with more than two measurements. Recently,
[14] proves that random encodings exhibit a locking behaviour
in a stronger sense and that it is possible to lock up to n − δ
bits for any arbitrarily small constant δ while still using a key of
O(logn) bits. In this setting, a locking scheme can be viewed as a
cryptographic protocol that uses a key of size O(logn) to encrypt
a random classical n-bit message in a quantum state. Knowing the
key, it is possible to recover the message from this quantum state.
However, without the key, for any measurement, the distribution of
the message X conditioned on the outcome I of the measurement
is close to the prior distribution of X in total variation distance.

It should be noted that entropic uncertainty relations of the
form of (1) with t > 2 measurements are not well understood.
A natural generalization of rectilinear and diagonal bases called
mutually unbiased bases does not work as well for more than two
measurements. In fact, it was shown in [4] that there are up to
t = 2n/2 mutually unbiased bases {B0,B1, . . . ,Bt−1} that only
satisfy an average measurement entropy of n/2, which is only as
good as what can be achieved with two measurements (1). To
achieve an average measurement entropy of (1 − ε)n for small
ε while keeping the number of bases subexponential in n, the
only known constructions are probabilistic and computationally
inefficient [23]. Furthermore, standard derandomization techniques
are not known to work in this setting. For example, unitary designs
[9] define an exponential number of bases. Moreover, using a δ-
biased subset of the set of Pauli matrices fails to produce a locking
scheme unless the subset has a size of about 2n (see Appendix of
[16]).

1.1 Our results
In this paper, we study uncertainty relations in the light of

a connection with low-distortion embeddings of (Cd, `2) into
(Cd

′
, `1). The intuition behind this connection is very simple.

Consider the measurements defined by a set of orthonormal bases
{B0,B1, . . . ,Bt−1} of (C2)⊗n. The bases {B0,B1, . . . ,Bt−1}
verify an uncertainty relation if for every n-qubit state |ψ〉 and
“most” bases Bk, the vector representing |ψ〉 in Bk is “spread”.
One way of quantifying the spread of a vector is by its `1 norm,
i.e., the sum of the absolute values of its components. A vector
|ψ〉 ∈ (C2)⊗n of unit `2 norm is well spread if its `1 norm is close
to its maximal value of

√
2n. For technical reasons, it turns out

that the relevant norm for us is not the `1 norm but rather a closely
related norm called `1(`2).

This connection suggests measuring the uncertainty of a distri-
bution by taking a marginal and measuring its closeness to the
uniform distribution. This is a stronger requirement than having
large Shannon entropy and it leads to the definition of metric un-
certainty relations (see Definition 2.1). Using standard techniques
from asymptotic geometric analysis, we prove the existence of strong
metric uncertainty relations (Theorem 3.1). This result can be seen
as a strengthening of Dvoretzky’s theorem [15, 32] for the special
case of the `1(`2) norm. In addition to giving a stronger state-
ment with better parameters, our analysis of the uncertainty rela-
tions satisfied by random bases is considerably simpler than earlier
proofs [23, 14]. In particular, for large n, we prove the existence of
entropic uncertainty relations with average measurement entropy
strictly increasing with the number of measurements. This result
also leads to better results on the existence of locking schemes (see
Table 1).

Moreover, adapting an explicit low-distortion embedding of
(Rd, `2) to (Rd

′
, `1) with d′ = d1+o(1) due to Indyk [27],

we obtain explicit bases of (C2)⊗n that verify strong metric
uncertainty relations for a number of bases that is polynomial
or quasi-polynomial in n (Theorems 4.7 and 4.9). Measuring in
these bases can be performed by polynomial size quantum circuits.
The main new ingredient that makes our “quantization” of Indyk’s
construction verify stronger uncertainty relations than do general
mutually unbiased bases is the additional use of strong permutation
extractors, which are a special kind of randomness extractor. A
strong permutation extractor (Definition 4.3) is a small family of
permutations of bit strings with the property that for any probability
distribution on input bit strings with high min-entropy, applying a
typical permutation from the family to the input induces an almost
uniform probability distribution on a prefix of the output bits.
Our construction of efficiently computable bases satisfying strong
metric uncertainty relations involves an alternating application of
approximately mutually unbiased bases and strong permutation
extractors. Our approximately mutually unbiased bases consist
of sets of single-qubit Hadamard gates. Moreover, both the
permutations and their inverses have to be efficiently computable
for our construction. We build such strong permutation extractors
using the results of Guruswami, Umans and Vadhan [20].

We use these uncertainty relations to build an explicit locking
scheme whose encoding and decoding operations can be performed
by circuits of size almost linear in the length of the message. More-
over, we also obtain a locking scheme where both the encoding
and decoding operations consist of a classical computation with
polynomial runtime and a quantum computation using only a small
number of single-qubit Hadamard gates (Corollary 4.8). Perform-
ing these quantum operations can be done using the same technol-
ogy as implementing the BB84 quantum key distribution protocol
[5], but as was the case for BB84, our idealized scheme must still be
made robust to noise and imperfect devices. It should be noted that
this simple scheme requires a ciphertext that is longer than the mes-
sage. On the way to obtaining this result, we prove a min-entropy
uncertainty relation on a sparse set of BB84 states that might be of
independent interest (Lemma 4.2 with Lemma 4.1).

We also give an application of our uncertainty relations to a
problem called quantum identification. Quantum identification is a
communication task for two parties Alice and Bob, where Alice is
given a quantum state |ψ〉 and Bob wants to simulate measurements
of the form {|ϕ〉〈ϕ|, 11 − |ϕ〉〈ϕ|} on |ψ〉 where |ϕ〉 is a quantum
state. This task can be seen as a quantum analogue of the problem
of equality testing [1, 30] where Alice and Bob hold n-bit strings



x and y and Bob wants to determine whether x = y using a one-
way classical channel from Alice to Bob. Hayden and Winter [25]
showed that classical communication alone is useless for quantum
identification. However, having access to a negligible amount of
quantum communication makes classical communication useful.
Their proof is non-explicit. Here, we describe an efficient encoding
circuit that also uses less quantum communication: it allows the
identification of an n-qubit state by communicating only a single
message of O(log2 n) qubits and n classical bits.

1.2 Other related work
Aubrun, Szarek and Werner [3, 2] also used a connection

between norm embeddings and quantum information. They
use variants of Dvoretzky’s theorem to prove the existence of
channels that violate additivity of minimum output entropy, as was
previously demonstrated by [24, 22].

1.3 Notation
We use the following notation throughout the paper. For a

positive integer n, we define [n] = {0, . . . , n − 1}. Random
variables are usually denoted by capital lettersX,K, . . . , while pX
denotes the distribution of X , i.e., P {X = x} = pX(x). unif(S)
is the uniform distribution on the set S. To measure the distance
between probability distributions on a finite set X , we use the total
variation distance or trace distance ∆(p, q) = 1

2

∑
x∈X |p(x) −

q(x)|. The Shannon entropy of a distribution p on X is defined as
H(p) = −

∑
x∈X p(x) log p(x) where the log is taken here and

throughout the paper to base two. We will also write H(X) for
H(pX). The mutual information between two random variables
X and Y is defined by I(X;Y ) = H(X) + H(Y ) −H(X,Y ).
The min-entropy of a distribution p is defined as Hmin(p) =
− log maxx p(x). The weight of a binary vector v (number of
ones) is denoted by w(v) and the Hamming distance between two
binary vectors v, v′ (number of components that are different) is
written as dH(v, v′).

The state of a quantum system is described by a unit vector |ψ〉
in a Hilbert space. The quantum systems we consider are denoted
A,B,C . . . and are identified with their corresponding Hilbert
spaces. The dimension of a Hilbert space A is denoted by dA.
Every Hilbert space A comes with a preferred orthonormal basis
{|a〉A}a∈[dA] that we call the computational basis. The elements
of this basis are labeled by integers from 0 to dA − 1 and also by
strings in {0, 1}n for n-qubit spaces. For a state |ψ〉 ∈ A, p|ψ〉 is
the distribution of the outcomes of the measurement of |ψ〉 in the
computational basis {|a〉}. We have

p|ψ〉(a) = |〈a|ψ〉|2. (2)

The tensor product A⊗B is sometimes denoted AB. S(A) is the
set of density operators acting on A.

2. METRIC UNCERTAINTY RELATIONS
AND INFORMATION LOCKING

2.1 Metric uncertainty relations
The most common way of quantifying uncertainty of measure-

ment outcomes is the entropy. As described in the introduction, a
set of measurements defined by bases {B0, . . . ,Bt−1} of Cd veri-
fies an entropic uncertainty relation if for all states |ψ〉 ∈ Cd, the
average measurement entropy obeys

1

t

t−1∑
k=0

H(pBk,|ψ〉) ≥ h (3)

for some positive h. It is more convenient here to talk about
uncertainty relations for the set of unitary transformations {Uk}
that transform the bases {Bk} to the fixed computational basis
{|x〉}. By definition, we then have pUk|ψ〉 = pBk,|ψ〉 (see equation
(2)). Entropic uncertainty relations have been used in proving
the security of cryptographic protocols in the bounded and noisy
quantum storage models [7, 29]. For more details on entropic
uncertainty relations and their applications, see the recent survey
[37].

Here, instead of using the entropy as a measure of uncertainty,
we use closeness to the uniform distribution. In other words, we
are interested in sets of unitary transformations U0, . . . , Ut−1 that,
for all |ψ〉 ∈ Cd, satisfy 1

t

∑t−1
k=0 ∆

(
pUk|ψ〉, unif([d])

)
≤ ε for

some ε ∈ (0, 1). This condition is too strong and we will see that a
weaker definition is enough to give entropic uncertainty relations.
Let Cd = A ⊗ B (for example, if d = 2n, A might represent
the first n − logn qubits and B the last logn qubits) and let the
computational basis for Cd be of the form {|a〉A⊗ |b〉B}a,b where
{|a〉} and {|b〉} are the computational bases of A and B. Instead
of asking for the outcome of the measurement in the computational
basis of the whole space to be uniform, we only require the outcome
of a measurement of the A system in its computational basis {|a〉}
to be close to uniform. Naturally, the larger the A system, the
stronger the uncertainty relation is for a fixed size for theB system.
We define for a ∈ [dA],

pAUk|ψ〉(a) =

dB−1∑
b=0

|〈a|A〈b|BUk|ψ〉|2. (4)

DEFINITION 2.1 (METRIC UNCERTAINTY RELATION). LetA
and B be Hilbert spaces. We say that a set {U0, . . . , Ut−1} of uni-
tary transformations on AB satisfies an ε-metric uncertainty rela-
tion on A if for all states |ψ〉 ∈ AB,

1

t

t−1∑
k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≤ ε. (5)

Remark. Using Fannes’ inequality, one can show that {U0, . . . , Ut−1}
defines an uncertainty relation with average measurement entropy
of (1− ε) log dA−η(ε) where η is independent of the dimensions.
Hence, all our results on metric uncertainty relations imply entropic
uncertainty relations.

We briefly mention the connection to low-distortion embeddings.
A metric uncertainty relation directly defines an embedding of `2
into `1(`2). In fact, the linear map |ψ〉 7→ 1√

t

∑
k Uk|ψ〉 ⊗ |k〉 is

an embedding of (AB, `2) into (AKB, `AK1 (`B2 )) with distortion
(1−ε)−1, where the `A1 (`B2 ) norm of a vector |ψ〉 =

∑
a,b αa,b|a〉|b〉

in AB is defined by ‖|ψ〉‖12 =
∑
a

√∑
b |αa,b|2. Observe that a

general low-distortion embedding of (AB, `2) into (AKB, `AK1 (`B2 ))
does not necessarily give a metric uncertainty relation as it need not
be of the form |ψ〉 7→ 1√

t

∑
k Uk|ψ〉 ⊗ |k〉.

2.2 Information locking
We view information locking as a cryptographic task in which

a message is encoded into a quantum state using a key whose size
is much smaller than the message. We propose a definition of a
locking scheme that is stronger than all previous definitions [12,
23, 14].

DEFINITION 2.2 (ε-LOCKING SCHEME). Let n be a positive
integer and ε ∈ [0, 1]. An encoding E : [2n]× [t]→ S(C) is said
to be ε-locking for the quantum system C if:



Inf. leakage Size of key Size of ciphertext Efficient ?
[12] n/2 1 n yes
[23] 3 4 log(n) n no
[14] εn 2 log(n/ε2) +O(log log(1/ε)) n no

Corollary 3.2 εn 2 log(1/ε) +O(log log(1/ε)) n+ 2 dlog(9/ε)e no
Corollary 3.2 εn 4 log(1/ε) +O(log log(1/ε)) n no
Corollary 4.8 εn Oδ(log(n/ε)) (4 + δ) · n, with δ > 0 yes

Corollary 4.10 εn O(log(n/ε) log(n)) n yes

Table 1: Comparison of different locking schemes. n is the number of bits of the message. The information leakage is measured in
bits and gives a bound on the mutual information between the message and the outcome of a measurement applied on the ciphertext.
The size of the key is measured in bits and the size of the ciphertext in qubits. Efficient locking schemes have encoding and decoding
quantum circuits of size polynomial in n. The locking schemes of the first and next to last row only use classical computations and
simple single-qubit transformations. It should be noted that our locking definition is stronger than all the previous definitions. Note
that the variable ε can depend on n. For example, one can take ε = η/n to make the information leakage arbitrarily small. The
symbol O(·) refers to constants independent of ε and n, but there is a dependence on δ for the next to last row.

• For all x 6= x′ ∈ [2n] and all k ∈ [t], ∆(E(x, k), E(x′, k)) =
1.

• Let X be a uniformly distributed random variable on [2n]
and K be an independent uniform random variable on [t].
For any measurement {Mi} on C and any outcome i,

∆
(
pX|[I=i], pX

)
≤ ε.

where I is the outcome of measurement {Mi} on the random
quantum state E(X,K).

The state E(x, k) for x ∈ [2n] and k ∈ [t] is referred to as the
ciphertext.

Remark. The relevant parameters of a locking scheme are: the
number of bits n of the (classical) message, the dimension d of
the (quantum) ciphertext, the number t of possible values of the
key and the error ε. Strictly speaking, a classical one-time pad
encryption, for which t = 2n, is 0-locking according to this
definition. However, here we seek locking schemes for which t
is much smaller than 2n, say t polynomial in n. This cannot be
achieved using a classical encoding.

The next theorem shows that a locking scheme can be constructed
using a metric uncertainty relation.

THEOREM 2.3. Let ε ∈ (0, 1) and {U0, . . . , Ut−1} be a
set of unitary transformations of AB that satisfies an ε-metric
uncertainty relation on A, where dA = 2n. Then, the mapping
E : [2n]× [t]→ S(AB) defined by

E(x, k) =
1

dB

dB−1∑
b=0

U†k

(
|x〉〈x|A ⊗ |b〉〈b|B

)
Uk.

is ε-locking.

Remark. The state that the encoder inputs in theB system is simply
private randomness. The encoder chooses a uniformly random
b ∈ [dB ] and sends the quantum state U†k |x〉

A|b〉B . Note that b
does not need to be part of the key (i.e., shared with the receiver).
This makes the dimension d = dAdB of the ciphertext larger than
the number of possible messages 2n. If one insists on having a
ciphertext of the same size as the message, it suffices to consider
b as part of the message and apply a one-time pad encryption to
b. The number of possible values taken by the key increases to
t · dB .

PROOF. First, it is clear that for any value of the key, the
ciphertexts for different messages x 6= x′ are distinguishable. We
now prove the locking property. LetX be the uniformly distributed
random variable representing the message. Let K be a uniformly
random key in [t] that is independent of X . Consider a POVM
{Mi}i on the system AB. Without loss of generality, we can
suppose that the POVM elements Mi have rank 1. So we can write
the elements as weighted rank one projectors: Mi = ξi|ei〉〈ei|
where ξi > 0. To evaluate the trace distance between pX|[I=i]
and pX , we start by computing the distribution of the measurement
outcome I , given the value of the message X = x:

P {I = i|X = x}

=
ξi
tdB

t−1∑
k=0

dB−1∑
b=0

tr
[
Uk|ei〉〈ei|U†k · |x〉〈x|

A ⊗ |b〉〈b|B
]

=
ξi
dB

1

t

t−1∑
k=0

pAUk|ei〉(x).

Recall that pA|ψ〉 is defined in (4). Since X is uniformly distributed,
P {I = i} = ξi/(dB ·2n). Then, for all x ∈ [dA], P {X = x|I = i} =
1
t
·
∑t−1
k=0 p

A
Uk|ei〉(x). Thus, ∆

(
pX|[I=i], pX

)
≤ ε using the fact

that {Uk} satisfies a metric uncertainty relation on A.

3. METRIC UNCERTAINTY RELATIONS:
EXISTENCE

In this section, we prove the existence of families of unitary
transformations satisfying strong metric uncertainty relations.
The proof proceeds by showing that choosing random unitaries
according to the Haar measure defines a metric uncertainty relation
with positive probability. The techniques we use date back to
Milman’s proof of Dvoretzky’s theorem [32, 17]. In fact, using the
connection to embeddings of `2 into `1(`2) described in Section
2, Theorem 3.1 can be viewed as a strengthening of Dvoretzky’s
theorem for the `1(`2) norm [33].

THEOREM 3.1 (EXISTENCE OF UNCERTAINTY RELATIONS).
Let ε ∈ (0, 1). LetA andB be Hilbert spaces with dB ≥ 9/ε2 and
dAB ≥ 92·162π3

ε2
. Then, for all t > 2·92·π2·ln(9/ε)

ε2
, there exists a

set {U0, . . . , Ut−1} of unitary transformations ofAB satisfying an



ε-metric uncertainty relation on A: for all states |ψ〉 ∈ AB,

1

t

t−1∑
k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≤ ε.

PROOF. The basic idea is to evaluate the expected value of
∆
(
pAU|ψ〉, unif([dA])

)
for a fixed state when U is a random

unitary chosen according to the Haar measure. Then, we
use a concentration argument (Lévy’s lemma) to show that
with high probability, this distance is close to its expected
value. After this step, we show that the additional averaging
1
t

∑t−1
k=0 ∆

(
pAUk|ψ〉, unif([dA])

)
of t independent copies results in

additional concentration at a rate that depends on t. We conclude
by showing the existence of a family of unitaries that makes this
expression small for all states |ψ〉 using a union bound over a δ-
net.

The previous theorem together with Theorem 2.3 proves the
existence of ε-locking schemes whose key size depends only on
ε and not on the size of the encoded message.

COROLLARY 3.2 (EXISTENCE OF LOCKING SCHEMES). Let
n be a positive integer and ε ∈ (0, 1). Then there exists an ε-
locking scheme encoding an n-bit message using a key of at most
2 log(1/ε) + O(log log(1/ε)) bits into at most n + 2 log(1/ε) +
O(1) qubits.

Remark. Observe that in terms of number of bits, the size of the
key is only a factor of two larger (up to smaller order terms) than
the lower bound of log(1/(ε + 2−n)) bits that can be obtained
by guessing the key. In fact, consider the strategy of performing
the decoding operation corresponding to the key value 0. In this
case, we have P {X = i|I = i} ≥ P {K = 0} = 1/t. Thus,
∆
(
pX|I=i, pX

)
≥ 1/t− 2−n.

4. METRIC UNCERTAINTY RELATIONS:
EXPLICIT CONSTRUCTION

In this section, we are interested in obtaining families of
unitaries {U0, . . . , Ut−1} verifying metric uncertainty relations
where U0, . . . , Ut−1 are efficiently computable using a quantum
computer. For this section, we consider for simplicity a Hilbert
space composed of qubits, i.e., of dimension d = 2n for some
integer n. This Hilbert space is of the form A ⊗ B where A
describes the states of the first log dA qubits and B the last log dB
qubits. Note that we assume that both dA and dB are powers of
two.

We construct a set of unitaries by adapting an explicit low-
distortion embedding of (Rd, `2) into (Rd

′
, `1) with d′ = d1+o(1)

by Indyk [27]. Indyk’s construction has two main ingredients: a set
of mutually unbiased bases and an extractor. Our construction uses
the same paradigm while requiring additional properties on both
the mutually unbiased bases and the extractor.

In order to obtain a locking scheme that only needs simple
quantum operations, we construct sets of approximately mutually
unbiased bases (see equation (6) below for a definition) from a
restricted set of unitaries that can be implemented with single-
qubit Hadamard gates. Moreover, we impose three additional
properties on the extractor: we need our extractor to be strong,
to define a permutation and to be efficiently invertible. We want
the extractor to be strong because we are constructing metric
uncertainty relations as opposed to a norm embedding. The
property of being a permutation extractor is needed to ensure that
the induced transformation on (C2)⊗n preserves the `2 norm. We
also require the efficient invertibility condition to be able to build

an efficient quantum circuit for the permutation. See Definition 4.3
for a precise formulation.

The intuition behind Indyk’s idea is as follows. Let V0, . . . , Vr−1

be unitaries defining (approximately) mutually unbiased bases and
let {Py}y∈S be a permutation extractor. The role of the MUBs is to
guarantee that for all states |ψ〉 and for most values of j ∈ [r], most
of the mass of the state Vj |ψ〉 is “well spread” in the computational
basis. This spread is measured in terms of the min-entropy of the
distribution pVj |ψ〉. Then, the extractor {Py}y will ensure that on
average over y ∈ S, the masses

∑
b |〈a|〈b|PyVj |ψ〉|

2 are almost
equal for all a ∈ [dA]. More precisely, the distribution pAPyVj |ψ〉 is
close to uniform.

Mutually unbiased bases.
We start by presenting the construction of γ-MUBs. A set of

unitary transformations {U0, . . . , Ut−1} of Cd is said to define
γ-approximately mutually unbiased bases (γ-MUBs) if for all
elements |x〉 and |y〉 of the computational basis and all k 6= k′,
we have

|〈x|U†kUk′ |y〉| ≤
1

dγ/2
. (6)

1-MUBs correspond to the usual notion of mutually unbiased
bases.

We want to construct a set of γ-MUBs consisting of n-qubit uni-
taries from the setH = {Hv = Hv1 ⊗ · · · ⊗Hvn , v ∈ {0, 1}n},
where H is the Hadamard transform on C2 defined by

H =
1√
2

(
1 1
1 −1

)
.

LEMMA 4.1 (APPROXIMATE MUBS IN H). Let n′ be a pos-
itive integer and n = 2n

′
.

1. For any integer r ≤ n, there exists a family V0, . . . , Vr−1 ∈
H that define 1/2-MUBs.

2. For any δ ∈ (0, 1/2), there exists c > 0 independent of n
such that for any r ≤ 2cn there exists a family V0, . . . , Vr−1

of unitary transformations inH that define (1/2−δ)-MUBs.

Moreover, in both cases, given an index j ∈ [r], there is a
polynomial time (classical) algorithm that computes the vector
v ∈ {0, 1}n that defines the unitary Vj = Hv .

PROOF. Observe that for any v ∈ {0, 1}n and any y ∈ {0, 1}n,
we have

Hv (|y1〉 ⊗ · · · ⊗ |yn〉) = Hv1 |y1〉 ⊗ · · · ⊗Hvn |yn〉

=
∑

y′i∈{0,1} for vi=1

y′i=yi for vi=0

(−1)v·y

√
2

w(v)
|y′1 . . . y′n〉.

Thus,

|〈x|HvHv′ |y〉| = |〈x|Hv+v′ |y〉| ≤ 1

2dH (v,v′)/2
. (7)

Using this observation, we see that a binary code C ⊆ {0, 1}n
with minimum distance γn defines a set of γ-MUBs in H. It is
now sufficient to find binary codes with minimum distance as large
as possible.

For the first construction, we use the Hadamard code that has
minimum distance n/2. The Hadamard codewords are indexed by
x ∈ {0, 1}n

′
; the codeword corresponding to x is the vector v ∈



{0, 1}n whose coordinates are vz = x ·z for all z ∈ {0, 1}n
′
. This

code has the largest possible minimum distance for a non-trivial
binary code but its shortcoming is that the number of codewords
is only n. For our applications, it is sometimes desirable to have
r larger than n (this is useful to allow the error parameter ε of our
metric uncertainty relation to be smaller than n−1/2).

For the second construction, we use families of linear codes
with minimum distance (1/2 − δ)n with a number of codewords
that is exponential in n. For this, we can use Reed-Solomon
codes concatenated with linear codes on {0, 1}n

′
that match the

performance of random linear codes; see for example Appendix
E in [19]. For a simpler construction, note that we can also get
2Ω(
√
n) codewords by using a Reed-Solomon code concatenated

with a Hadamard code.

Observe that using 1-MUBs is possible (for example, the construc-
tion of [39]), but the effect on the final parameters of the construc-
tion is minimal. The next lemma shows that for any state |ψ〉, for
most values of j, the distribution pVj |ψ〉 is close to a distribution
with large min-entropy provided {Vj} define γ-MUBs. This result
might be of independent interest. In fact, the authors of [7] prove a
lower bound close to n/2 on the min-entropy of a measurement in
the computational basis of the state U |ψ〉 where U is chosen uni-
formly from the full set of the 2n unitaries of H. They leave as an
open question the existence of small subsets of H that satisfy the
same uncertainty relation. When used with the γ-MUBs of Lemma
4.1, the following lemma partially answers this question by exhibit-
ing such sets of size polynomial in n but with a min-entropy lower
bound close to n/4 instead. This can be used to reduce the amount
of randomness needed for many protocols in the bounded and noisy
quantum storage models.

LEMMA 4.2. Let n ≥ 1 and ε ∈ (0, 1) and consider a set
of r =

⌈
2
ε2

⌉
unitary transformations V0, . . . , Vr−1 of (C2)⊗n

defining γ-MUBs. For all |ψ〉 ∈ (C2)⊗n,∣∣∣{j ∈ [r] : ∃qj ,∆
(
pVj |ψ〉, qj

)
≤ ε and

Hmin(qj) ≥
γn

2
− log(8/ε2)

}∣∣∣ ≥ (1− ε)r.

We give a proof along the lines of the proof of [27, Lemma
4.2]. Similar results can also be found in the sparse approximation
literature; see [36, Proposition 4.3] and references therein.

PROOF. Let d = 2n. Consider the rd × d matrix V obtained
by concatenating the rows of the matrices V0, . . . , Vr−1. For
S ⊆ [rd], VS denotes the submatrix of V obtained by selecting the
rows in S. The coordinates of the vector V |ψ〉 ∈ Crd are indexed
by z ∈ [rd] and denoted by (V |ψ〉)z .

Claim. We have for any set S ⊆ [rd] of size at most dγ/2 and
any unit vector |ψ〉,

‖(V |ψ〉)S‖22 ≤ 1 +
|S|
dγ/2

. (8)

To prove the claim, we want an upper bound on the operator 2-
norm of the matrix (VS), which is the square root of the largest
eigenvalue of G = VSV

†
S . As two distinct rows of V have an

inner product bounded by 1

dγ/2
, the non-diagonal entries of G are

bounded by 1

dγ/2
. Moreover, the diagonal entries of G are all 1.

By the Gershgorin circle theorem, all the eigenvalues of G lie in
the disc centered at 1 of radius |S|−1

dγ/2
. We conclude that (8) holds.

Now pick S to be the set of indices of the dγ/2 largest entries
of the vector {|(V |ψ〉)z|2}z∈[rd]. Using the previous claim, we
have ‖(V |ψ〉)S‖22 ≤ 2. Moreover, since S contains the dγ/2

largest entries of {|(V |ψ〉)z|2}z , we have that for all z /∈ S,
|(V |ψ〉)z|2dγ/2 ≤ ‖V |ψ〉‖22 =

∑r−1
j=0 ‖Vj |ψ〉‖

2
2 = r. Thus, for

all z /∈ S, |(V |ψ〉)z|2 ≤ r

dγ/2
.

We now build the distributions qj . For every j ∈ [r], define

wj =
∑

z∈S∩{jr,...,(j+1)r−1}

|(V |ψ〉)z|2,

which is the total weight in S of Vj |ψ〉. Defining Tε = {j : wj >
ε}, we have |Tε|ε ≤ ‖(V |ψ〉)S‖22 ≤ 2. Thus,

|Tε| ≤ 2/ε ≤ εr.

We define the distribution qj for j ∈ [r] by

qj(x) =

{
|〈x|Vj |ψ〉|2 +

wj
d

if jd+ x /∈ S
wj
d

if jd+ x ∈ S.

One can easily verify that for j /∈ Tε, ∆
(
pVj |ψ〉, qj

)
≤ ε. The

distribution qj for j /∈ Tε also has the nice property that for
all x ∈ [d], qj(x) ≤ r

dγ/2
+ 1

d
≤ 2r

dγ/2
. In other words,

Hmin(qj) ≥ γn
2
− log(8/ε2).

Permutation extractors.
We now move to the second building block in Indyk’s construc-

tion: randomness extractors. Randomness extractors are functions
that extract almost uniform random bits from weak sources of ran-
domness.

DEFINITION 4.3 (STRONG PERMUTATION EXTRACTOR). Let
n andm ≤ n be positive integers, ` ∈ [0, n] and ε ∈ (0, 1). A fam-
ily of permutations {Py}y∈S of {0, 1}n where each permutation
Py is described by two functions PEy : {0, 1}n → {0, 1}m (the
first m output bits of Py) and PRy : {0, 1}n → {0, 1}n−m (the
last n−m output bits of Py) is said to be an explicit (n, `)→ε m
strong permutation extractor if:

• For any random variableX on {0, 1}n such that Hmin(X) ≥
`, we have

1

|S|
∑
y∈S

∆
(
pPEy (X), unif({0, 1}m)

)
≤ ε. (9)

• For all y ∈ S, both the function Py and its inverse P−1
y are

computable in time polynomial in n.

We can adapt an extractor construction of [20] to obtain a
permutation extractor with the following parameters.

THEOREM 4.4 (EXPLICIT PERMUTATION EXTRACTORS). For
all (constant) δ ∈ (0, 1), there exists c > 0, such that for all posi-
tive integers n, all ε ∈ (0, 1/2), and all k ∈ [c log(n/ε), n], there
is an explicit (n, k) →ε (1 − δ)k strong permutation extractor
{Py}y∈S with log |S| = O(log(n/ε)). Moreover, the functions
(x, y) 7→ Py(x) and (x, y) 7→ P−1

y (x) can be computed by cir-
cuits of size O(npolylog(n/ε)).

The main construction of Guruswami, Umans and Vadhan [20] is
a lossless condenser based on Parvaresh-Vardy codes. Using this
condenser, they build an explicit extractor with good parameters.
However, this lossless condenser based on Parvaresh-Vardy codes
does not seem to be easily extended into a permutation condenser.
The same paper also presents a lossy condenser based on Reed-
Solomon codes, which can indeed be transformed into a permuta-
tion condenser. This permutation condenser can then be used in
the extractor construction instead of the lossless condenser giving



a strong permutation extractor. Here, we describe how to turn the
Reed-Solomon condenser into a permutation condenser. For a com-
plete description of the resulting permutation extractor, we refer the
reader to the full version [16].

DEFINITION 4.5 (PERMUTATION CONDENSER). A function
C : {0, 1}n × S → {0, 1}n

′
is an (n, k)→ε (n′, k′) condenser if

for every X with min-entropy at least k, C(X,US) is ε-close to a
distribution with min-entropy k′ when US is uniformly distributed
on S. A condenser C is strong if (US , C(X,US)) is ε-close to
(US , Z) for some random variable Z such that for all y ∈ S,
Z|US=y has min-entropy at least k. A condenser is explicit if it
is computable in polynomial time in n.

A family {Py}y∈S of permutations of {0, 1}n is an (n, k) →ε

(n′, k′) strong permutation condenser if the function PC :
(x, y) 7→ PCy (x) where PCy (x) refers to the first n′ bits of Py(x)
is an (n, k) →ε (n′, k′) strong condenser. A strong permutation
condenser is explicit if for all y ∈ S, both Py and P−1

y are
computable in polynomial time.

The following theorem describes the condenser that will be used
as a building block in the extractor construction. It is an analogue
of Theorem 7.2 in [20].

THEOREM 4.6. For all positive integers n and ` ≤ n, as well
as α, ε ∈ (0, 1/2), there exists an explicit family of permutations
{RSy}y∈S of Fn2t that is an

(nt, (`+ 1)t)→ε (`t, (1− α)`t− 4)

strong permutation condenser with t =
⌈
1/α · log(24n2/ε)

⌉
and log |S| ≤ t. Moreover, the functions (x, y) 7→ RSy(x)
and (x, y) 7→ RS−1

y (x) can be computed by a circuit of size
O(npolylog(n/ε)).

Remark. Note that the input space of the condenser is {0, 1}nt
instead of {0, 1}n. But one can see such a condenser as a
permutation condenser (P ′y) on the smaller space {0, 1}n defined
by P ′y(x) = Py(x0t) for all x ∈ {0, 1}n where x0t is obtained by
appending t zeros to x.

PROOF. Set q = 2t and ε0 = ε/6. Consider the function
C′ : Fnq × Fq → F`+1

q defined by

C′(f, y) = [y, f(y), f(ζy), . . . , f(ζ`−1y)]

where Fnq is interpreted as the set of polynomials over Fq of degree
at most n − 1 and ζ is a generator of the multiplicative group F∗q .
First, we compute the input and output sizes in terms of bits. The
inputs can be described using log |Fnq | = n log q = nt bits, the
seed using log |Fq| = t bits and the output using log |F`+1

q | =
(`+ 1)t. Using Theorem 7.1 in [20], for any integer h, C′ is a(

nt, log

(
q` − 1

ε0

))
→2ε0

(
`t+ t, log

(
Ah` − 1

2ε0

))
(10)

condenser where A def
= ε0q − (n − 1)(h − 1)`. We now choose

h =
⌈
q1−α⌉. As q ≥ (4n2/ε0)1/α, we have A ≥ ε0q − n2h ≥

ε0q − ε0qα/4 · (q1−α + 1) ≥ ε0q/2. Thus, we can compute the
bounds we obtain on the condenser C′:

log

(
q` − 1

ε0

)
= `t+ log(1/ε0) ≤ (`+ 1)t

and

log

(
Ah` − 1

2ε0

)
= log

(
Ah`

2ε0

)
+ log

(
1− 1

Ah`

)
≥ log(q/4) + ` log h− 1

≥ t+ (1− α)`t− 3.

Plugging these values in equation (10), we get that C′ is a

(nt, (`+ 1)t)→2ε0 (`t+ t, (1− α)`t+ t− 3)) (11)

condenser.
Observe that the seed y is part of the output of the condenser.

As we want to construct a strong condenser, we do not consider
the seed as part of the output of the condenser. For this, we
define C : Fnq × Fq → F`q by C(f, y) = [f(y), . . . , f(ζ`−1y)].
Moreover, as will be clear later when we try to build a permutation
condenser, we take the seed to be uniform on S def

= F∗q = Fq − {0}
instead of being uniform on the whole field Fq . Note that this
increases the error of the extractor by at most 2−t ≤ ε0 (because
one can choose UF∗q = UFq with probability 1− 2−t). Here and in
the rest of this proof, we will be using Doeblin’s coupling lemma:
for any distributions p and q, there exist joint random variables X
and Y , X ∼ p and Y ∼ q such that ∆(p, q) = P {X = Y }.

Equation (11) then implies that if X has min-entropy at least
(` + 1)t and US is uniform on S, then the distribution of
(US , C(X,US)) is 3ε0-close to a distribution with min-entropy at
least (1 − α)`t + t − 3. Let Y ∈ S and Z ∈ {0, 1}(`+1)t be
random variables such that Hmin(Y,Z) ≥ (1− α)`t + t− 3 and
(US , C(X,US)) = (Y,Z) with probability at least 1 − 3ε0. If
Y was uniformly distributed on S, then it would follow directly
that for all y ∈ S, Hmin(Z|Y = y) ≥ (1 − α)`t. However, Y
is not necessarily uniformly distributed. We define a new random
variable Z′ by

Z′ =

{
Z if Y = US
U ′ if Y 6= US

where U ′ is uniformly distributed on {0, 1}(`+1)t and independent
of all the other random variables. We have for any z ∈ {0, 1}(`+1)t

and y ∈ S,

P
{
Z′ = z|US = y

}
=

1

P {US = y}
(
P
{
Z′ = z, Y = y, Y = US

}
+ P

{
Z′ = z, US = y, Y 6= Us

} )
≤ 1

P {US = y}

(
2−(1−α)`t−t+3 + 2−(`+1)t · 1

|S|

)
≤ 2 · 2−(1−α)`t+3.

Moreover, we have (US , C(X,US)) = (US , Z
′) with probability

at least 1− 6ε0.
We conclude that C is a

(nt, (`+ 1)t)→ε (`t, (1− α)`t− 4)) (12)

strong condenser.
To define our permutation condenser, we set the first n′ = `t bits

RSCy (x) of RSy(x) to be RSCy (x) = C(x, y). We then define
the remaining bits by RSRy (f) = [f(ζ`y), . . . , f(ζn−1y)]. As
q ≥ n−1 and ζ is a generator of F∗q , the elements y, ζy, . . . , ζn−1y

are distinct provided y 6= 0. So for y 6= 0, (RSC , RSR)y(f) is the
evaluation of the polynomial f of degree at most n−1 in n distinct
points. Thus, f 7→ Py(f) is a bijection in Fnq for all y 6= 0. This is
why the value 0 for the seed was excluded earlier.



It only remains to show that RSy and RS−1
y can be efficiently

computed. This follows from the fact that RSy is simply the
evaluation of a polynomial on elements of a field Fq in which
computations can be performed efficiently.

In addition to the lossless condenser based on Parvaresh-Vardy
codes, the extractor construction of [20, Theorem 5.10] uses a
simple extractor based on two-universal hash functions [26], which
is easily seen to be strong and invertible. Hence, using Theorem
4.6 in the recursive extractor construction of [20, Theorem 5.10],
we obtain the strong permutation extractor of Theorem 4.4

The permutation extractor {Py} will be seen as a family of
unitary transformations over n qubits. In fact, a permutation P
on {0, 1}n naturally defines a unitary transformation on (C2)⊗n

that we also call P . Moreover, just as we decomposed the space
{0, 1}n into the first m bits and the last n−m bits, we decompose
the space (C2)⊗n intoA⊗B, whereA represents the firstm qubits
and B represents the last n − m qubits. The properties of {PEy }
will then be reflected in the system A.

The construction.
Combining the γ-MUBs of Lemma 4.1 with the permutation

extractor of Theorem 4.4 via Lemma 4.2, we obtain a set of
unitaries of the form PyVj for j ∈ [r] and y ∈ S satisfying a metric
uncertainty relation. We just mention that the reason we wanted the
permutations defining the extractors to be efficiently invertible is to
be able to build quantum circuits that compute the permutation Py
acting on (C2)⊗n.

THEOREM 4.7 (EXPLICIT UNCERTAINTY RELATIONS I). Let
δ > 0 be a constant, n be a positive integer, ε ∈ (2−c

′n, 1) (c′ is
a constant independent of n). Then, there exists t ≤

(
n
ε

)c (for
some constant c independent of n and ε) unitary transformations
U0, . . . , Ut−1 acting on n qubits such that: if A represents the first
(1− δ)n/4−O(log(1/ε)) qubits and B represents the remaining
qubits, then for all |ψ〉 ∈ AB,

1

t

t−1∑
k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≤ ε.

Moreover, the mapping that takes the index k ∈ [t] and a state
|ψ〉 as inputs and outputs the state Uk|ψ〉 can be performed by
a classical computation with polynomial runtime and a quantum
circuit that consists of single-qubit Hadamard gates on a subset
of the qubits followed by a permutation in the computational
basis. This permutation can be computed by (classical or quantum)
circuits of size O(npolylog(n/ε)).

We use these uncertainty relations to build locking schemes as
described in Theorem 2.3. Observe that such a locking scheme
encodes x into a quantum state of the form V †P †|x〉 ⊗ |b〉 where
P is a permutation of the computational basis elements and V
is a tensor product of single-qubit unitaries. Therefore the state
V †P †|x〉 ⊗ |b〉 can be prepared only using classical computations
and single-qubit gates. The resulting efficient locking scheme can
be used to obtain efficient string commitment protocols [6].

COROLLARY 4.8 (EFFICIENT LOCKING SCHEME I). Let δ >
0 be a constant, n be a positive integer, ε ∈ (2−c

′n, 1) (c′ is a con-
stant independent of n). Then, there exists an efficient ε-locking
scheme encoding an n-bit message in a quantum state of n′ ≤
(4+δ)n+O(log(1/ε)) qubits using a key of sizeO(log(n/ε)) bits.
In fact, both the encoding and decoding operations are computable
using a classical computation with polynomial running time and a

quantum circuit with only Hadamard gates and preparations and
measurements in the computational basis.

Note that in Theorem 4.7, the B system we obtain is quite
large. To strengthen the uncertainty relations, we can repeat the
construction of the Theorem 4.7 on the B system.

THEOREM 4.9 (EXPLICIT UNCERTAINTY RELATION II). Let
n be a positive integer and ε ∈ (2−c

′n, 1) (c′ is a constant inde-
pendent of n). Then, there exists t ≤

(
n
ε

)c logn (for some constant
c independent of n and ε) unitary transformations U0, . . . , Ut−1

acting on the n-qubit system AB that satisfy an ε-metric uncer-
tainty relation onA whereA represents the first n−O(log logn)−
O(log(1/ε)) qubits. All the unitaries Uk can be implemented by
quantum circuits of size O(npolylog(n/ε)).

COROLLARY 4.10 (EFFICIENT LOCKING SCHEME II). Let n
be a positive integer, ε ∈ (2−c

′n, 1) (c′ is a constant indepen-
dent of n). Then, there exists an efficient ε-locking scheme encod-
ing an n-bit message into an n-qubit system using a key of size
O(log(n) log(n/ε)) bits.

5. QUANTUM IDENTIFICATION
Consider the following quantum analogue of the equality testing

communication problem. Alice is given an n-qubit state |ψ〉 ∈ C
and Bob is given |ϕ〉 ∈ C. Namely, Bob wants to output 1 with
probability in the interval [|〈ψ|ϕ〉|2 − ε, |〈ψ|ϕ〉|2 + ε] and 0 with
probability in the interval [1 − |〈ψ|ϕ〉|2 − ε, 1 − |〈ψ|ϕ〉|2 + ε].
This task is referred to as quantum identification [38]. Note that
communication only goes from Alice to Bob. There are many
possible variations to this problem. One of the interesting models is
when Alice receives the quantum state |ψ〉 and Bob gets a classical
description of |ϕ〉. An ε-quantum-ID code is defined by an encoder,
which is a quantum operation that maps Alice’s quantum state
|ψ〉 to another quantum state which is transmitted to Bob, and a
family of decoding POVMs {Dϕ, 11 − Dϕ} for all |ϕ〉 that Bob
performs on the state he receives from Alice. Hayden and Winter
[25] showed that classical communication alone cannot be used
for quantum identification. However, a small amount of quantum
communication makes classical communication useful. Using our
metric uncertainty relations, we prove better bounds on the number
of qubits of communication and give an efficient encoder for this
problem. This protocol is illustrated in Figure 1.

THEOREM 5.1 (QUANTUM IDENTIFICATION). Let n be a
positive integer and ε ∈ (2−c

′n, 1) (c′ is a constant independent
of n). Then for some m = O(log(1/ε)), ε-quantum identification
can be performed using a single message of n bits and m qubits.

Moreover, for some m = O(log(n/ε) · log(n)), ε-quantum
identification can be performed using a single message of n bits
and m qubits with an encoding quantum circuit of polynomial size.

PROOF. We use the following result.

THEOREM 5.2 (THEOREM 7 IN [25]). Let ε > 0 and V C→ABKE

be an isometry satisfying

∀|ψ〉 ∈ C, ∆

(
trABK

(
V ψV †

)
,

11
dimE

)
≤ ε.

Then, there exists a family of POVMs {Dϕ, 11 −Dϕ} for |ϕ〉 ∈ C
such that together with the encoding map E(·) = trE

(
V · V †

)
,

they define an η-quantum-ID code for the noiseless quantum
channel with η = 6ε1/4.



id⊗m2

id2
⊗n

|ψ〉

1√
t

∑
k |k〉

Uk

Classical description of |ϕ〉

Dϕ

A

B

K Outcome
of

measurement

Figure 1: The system K is prepared in a uniform superposition state 1√
t

∑
k |k〉. Then, controlled by system K, the unitary Uk is

applied to A⊗ B. The A system is then measured in the computational basis. The outcome of this measurement is sent through the
classical channel id2. The systems B and K are sent using the quantum channel id2. The receiver constructs a POVM {Dϕ, I−Dϕ}
based on a classical description of his state |ϕ〉 and the classical communication he receives.

Let {U0, . . . , Ut−1} be a set of unitaries on n qubits given
by Theorem 4.9 verifying an ε′- metric uncertainty relation with
ε′ = (ε/6)4. We start by preparing the uniform superposition
1√
t

∑t−1
k=0 |k〉

K and apply the unitary Uk on system C controlled
by the register K. We get the state 1√

t

∑
k |k〉

K(Uk|ψ〉)AB . The
next step is to measure the systemA in the computational basis. To
apply Theorem 5.2, we purify this operation by introducing a new
ancilla systemE initialized to |0〉 having the same dimension asA.
We replace the measurement on A by a coherent copy (controlled-
NOT gates) of the computational basis of A into the ancilla E. We
obtain the state

|ρ〉KABE =
1√
t

∑
k,a,b

|k〉K
(
〈a|A〈b|BUk|ψ〉

)
|a〉A|b〉B |a〉E .

We now verify that the reduced state on E is close to maximally
mixed for all states |ψ〉.

ρE =
1

t

∑
k,a,b

∣∣∣〈a|A〈b|BUk|ψ〉∣∣∣2 |a〉〈a|E =
1

t

∑
k,a

pAUk|ψ〉(a)|a〉〈a|E .

(13)
As a result,

∆

(
ρE ,

11
dimE

)
= ∆

(
1

t

∑
k

pUk|ψ〉, unif([dA])

)

≤ 1

t

∑
k

∆
(
pUk|ψ〉, unif([dA])

)
≤ ε′.

Using Theorem 5.2, the encoder described in Figure 1 and some
set of POVM’s {Dϕ, 11 − Dϕ} form an η-quantum-ID code for
the noiseless qubit channel with η = 6ε′1/4 = ε. We conclude
by observing that sending the outcome of the measurement can be
done using a classical channel. The number of uses of the noiseless
bit channel is log dimA ≤ log dimC = n. The number of uses
of the noiseless qubit channel is m = log dimB + log dimK ≤
c log(n/ε) · log(n) for some constant c.

The fact that the encoding can be computed by a quantum circuit
of polynomial size follows from Lemma 4.1 and Theorem 4.4.

This result can be thought of as a quantum analogue of the
well-known fact that the public-coin randomized communication
complexity of the classical equality function is O(log(1/ε)) for
an error probability ε [30]. Quantum communication replaces
classical communication and classical communication replaces
public random bits. Classical communication can be thought of

as an extra resource because, on its own, it is useless for quantum
identification [25, Theorem 11].

6. CONCLUSION
We have seen how the problem of finding uncertainty relations is

closely related to the problem of finding large almost Euclidean
subspaces of (Cd, `1(`2)). Using techniques from the study of
the geometry of normed spaces, we were able to obtain explicit
families of bases satisfying strong metric uncertainty relations and
to improve previous analyses of the uncertainty relations satisfied
by random bases.

We used these uncertainty relations to exhibit strong locking
effects. We should emphasize that, even though we presented
information locking from a cryptographic point of view, it is not
a composable primitive because an eavesdropper could choose to
store quantum information about the message instead of measuring.
For this reason, a locking scheme has to be used with great care
when composed with other cryptographic primitives. In fact, as
shown in [28], using the communicated message X as a key for
a one-time pad encryption might not be secure. On the other
hand, a locking scheme achieves a higher security standard than
entropically-secure schemes [35, 13, 10]. We note that an ε-locking
scheme hides the message in a stronger sense if the adversary
is limited to a small quantum memory. In fact, using the same
technique as [21, Corollary 2] based on [34], if the adversary is
allowed to store m qubits, then the joint state of the message and
the knowledge of the adversary is (c2mε)-close to a product state
for some universal constant c. For example, if m = O(logn),
then a key of logarithmic size can still be used. Thus, the locking
scheme in Corollary 4.8 can be used as a quantum key distribution
protocol with no interaction between the parties that is secure in the
bounded quantum storage model where the quantum memory of the
adversary is limited to O(logn) qubits. We also show in the full
version [16] how a locking scheme can be used to build quantum
hiding fingerprints [18] and string commitment protocols [6].
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