From Low-distortion Norm Embeddings to Explicit Uncertainty Relations and Efficient Information Locking

Omar Fawzi ${ }^{1}$ Patrick Hayden ${ }^{12}$ Pranab Sen ${ }^{3} 1$

School of Computer Science

2

3
Tata Institute of
Fundamental Research

$$
\text { arXiv:1010. } 3007
$$

Encryption of a classical message

Alice Bob

Resources
Shared secret key $K \in_{u}\{0,1\}^{s}$
Public communication channel classical or quantum

Task
Transmit X to Bob

- Bob: K known \rightarrow Decode $\mathcal{E}(X, K)$ using K to get X

Encryption of a classical message

Alice Bob

Resources
Shared secret key $K \in_{u}\{0,1\}^{s}$
Public communication channel classical or quantum

Task
Transmit X to Bob

- Bob: K known \rightarrow Decode $\mathcal{E}(X, K)$ using K to get X
- Eve: K unknown $\rightarrow \mathcal{E}(X, K)$ gives no information about X

Encryption of a classical message

Task
Transmit X to Bob
$K \in u\{0,1\}^{s}$
Alice
Bob

(1) Perfect secrecy: X and I are independent

Encryption of a classical message

Task
Transmit X to Bob
$K \in u\{0,1\}^{s}$

Alice Bob
$X \in \mathfrak{u}\{0,1\}^{n}$ (message)

(1) Perfect secrecy: X and I are independent

- Must have $s \geqslant n$ (classical or quantum channels)

Encryption of a classical message

Task
Transmit X to Bob

$$
K \in \in_{\mathfrak{u}}\{0,1\}^{s}
$$

Alice

$$
X \in \mathfrak{u}\{0,1\}^{n} \text { (message) }
$$

(1) Perfect secrecy: X and I are independent

- Must have $s \geqslant n$ (classical or quantum channels)
- Possible with $s=n: \mathcal{E}(X, K)=X \oplus K$ [One-time pad]

Encryption of a classical message

Task
Transmit X to Bob

$$
\mathcal{K} \in_{\mathfrak{u}}\{0,1\}^{s}
$$

Alice

$$
X \in \in_{\mathfrak{u}}\{0,1\}^{n} \text { (message) }
$$

(1) Perfect secrecy: X and I are independent

- Must have $s \geqslant n$ (classical or quantum channels)
- Possible with $s=n: \mathcal{E}(X, K)=X \oplus K$ [One-time pad]
(2) Approximate secrecy: X and I e-close to independent
- Classical channel: $s \geqslant n-1$ for $\epsilon<1 / 2$

Encryption of a classical message

Task
Transmit X to Bob

$$
\mathcal{K} \in_{\mathfrak{u}}\{0,1\}^{s}
$$

Alice

$$
X \in \in_{\mathfrak{u}}\{0,1\}^{n} \text { (message) }
$$

(1) Perfect secrecy: X and I are independent

- Must have $s \geqslant n$ (classical or quantum channels)
- Possible with $s=n: \mathcal{E}(X, K)=X \oplus K$ [One-time pad]
(2) Approximate secrecy: X and $I \epsilon$-close to independent
- Classical channel: $s \geqslant n-1$ for $\epsilon<1 / 2$
- Quantum channel:

Encryption of a classical message

Task
Transmit X to Bob

$$
K \in \in_{\mathfrak{u}}\{0,1\}^{s}
$$

Alice

$$
X \in \in_{\mathfrak{u}}\{0,1\}^{n} \text { (message) }
$$

(1) Perfect secrecy: X and I are independent

- Must have $s \geqslant n$ (classical or quantum channels)
- Possible with $s=n: \mathcal{E}(X, K)=X \oplus K$ [One-time pad]
(2) Approximate secrecy: X and I e-close to independent
- Classical channel: $s \geqslant n-1$ for $\epsilon<1 / 2$
- Quantum channel:

There exists \mathcal{E}, \mathcal{D} with $s=3 \log (1 / \epsilon)$

Encryption of a classical message

Task
Transmit X to Bob

$$
K \in \mathfrak{u}\{0,1\}^{s}
$$

Alice

$$
X \in \in_{\mathfrak{u}}\{0,1\}^{n} \text { (message) }
$$

(1) Perfect secrecy: X and I are independent

- Must have $s \geqslant n$ (classical or quantum channels)
- Possible with $s=n: \mathcal{E}(X, K)=X \oplus K$ [One-time pad]
(2) Approximate secrecy: X and I e-close to independent
- Classical channel: $s \geqslant n-1$ for $\epsilon<1 / 2$
- Quantum channel:

There exists \mathcal{E}, \mathcal{D} with $s=3 \log (1 / \epsilon)$
There exists \mathcal{E}, \mathcal{D} efficient quantum circuits with $s=O(\log (n / \epsilon))$

Outline

(1) Metric uncertainty relations: definition and applications

- Definition
- Application: Encryption
- Application: Quantum equality testing
(2) Metric uncertainty relations: constructions
- Known constructions
- Metric interpretation
- Efficient metric uncertainty relation

Outline

(1) Metric uncertainty relations: definition and applications

- Definition
- Application: Encryption
- Application: Quantum equality testing
(2) Metric uncertainty relations: constructions
- Known constructions
- Metric interpretation
- Efficient metric uncertainty relation

Uncertainty relations

Property of:

- A set of measurements $\left\{\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{t-1}\right\}$ (bases here)
- Notational convenience: $\left\{\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{t-1}\right\} \leftrightarrow\left\{U_{0}, U_{1}, \ldots, U_{t-1}\right\}$ where $U_{k}: \mathcal{B}_{k} \mapsto\{|x\rangle\}_{x \in\{0,1\}^{n}}$ fixed computational basis

Measure $\mathcal{B}_{k} \Longleftrightarrow$ apply U_{k} and measure $\{|x\rangle\}_{x \in\{0,1\}^{n}}$

Uncertainty relations

Property of:

- A set of measurements $\left\{\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{t-1}\right\}$ (bases here)
- Notational convenience: $\left\{\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{t-1}\right\} \leftrightarrow\left\{U_{0}, U_{1}, \ldots, U_{t-1}\right\}$ where $U_{k}: \mathcal{B}_{k} \mapsto\{|x\rangle\}_{x \in\{0,1\}^{n}}$ fixed computational basis

$$
\text { Measure } \mathcal{B}_{k} \Longleftrightarrow \text { apply } U_{k} \text { and measure }\{|x\rangle\}_{x \in\{0,1\}^{n}}
$$

Expresses:

- Uncertainty of outcome distributions
- Measurements "incompatible"

Uncertainty relations

Property of:

- A set of measurements $\left\{\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{t-1}\right\}$ (bases here)
- Notational convenience: $\left\{\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{t-1}\right\} \leftrightarrow\left\{U_{0}, U_{1}, \ldots, U_{t-1}\right\}$ where $U_{k}: \mathcal{B}_{k} \mapsto\{|x\rangle\}_{x \in\{0,1\}^{n}}$ fixed computational basis

$$
\text { Measure } \mathcal{B}_{k} \Longleftrightarrow \text { apply } U_{k} \text { and measure }\{|x\rangle\}_{x \in\{0,1\}^{n}}
$$

Expresses:

- Uncertainty of outcome distributions $\left\{p_{U_{0}|\psi\rangle}, \ldots, p_{U_{t-1}|\psi\rangle}\right\} \forall|\psi\rangle$
- Measurements "incompatible"

Example: $\{+, \times\} \leftrightarrow\{I, H\}$

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

$$
\left.\left.p_{I|\psi\rangle}=\left.[|\langle 0| I| \psi\rangle\right|^{2},|\langle 1| I| \psi\right\rangle\left.\right|^{2}\right]=\left[|\alpha|^{2},|\beta|^{2}\right]
$$

$$
\left.\left.p_{H|\psi\rangle}=\left.[|\langle 0| H| \psi\rangle\right|^{2},|\langle 1| H| \psi\right\rangle\left.\right|^{2}\right]=\left[\frac{|\alpha+\beta|^{2}}{2}, \frac{|\alpha-\beta|^{2}}{2}\right]
$$

Incompatibility of + and \times :
For all $|\psi\rangle, \quad$ uncertainty $\left(p_{I|\psi\rangle}\right)+$ uncertainty $\left(p_{H|\psi\rangle}\right) \geqslant$ large

Quantifying uncertainty

$$
\text { For all }|\psi\rangle, \quad \sum_{k=0}^{t-1} \text { uncertainty }\left(p_{U_{k}|\psi\rangle}\right) \geqslant \text { large }
$$

Quantifying uncertainty

$$
\text { For all }|\psi\rangle, \quad \sum_{k=0}^{t-1} \mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant \text { large }
$$

Uncertainty:

- Entropy H(•)

Quantifying uncertainty

$$
\text { For all }|\psi\rangle, \quad \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}, \text { unif }\right) \leqslant \text { small }
$$

Uncertainty:

- Entropy H(•)
- Closeness to uniform $\Delta(\cdot$, unif $)$ (the smaller, the more uncertain)
$\Delta(p, q) \stackrel{\text { def }}{=} \frac{1}{2} \sum_{x \in x}|p(x)-q(x)| \quad$ total variation distance

Metric uncertainty relations

Recap of definitions:

$$
\Delta(p, q) \stackrel{\text { def }}{=} \frac{1}{2} \sum_{x \in x}|p(x)-q(x)| \quad \text { total variation distance }
$$

Definition (Metric uncertainty relation)

$\left\{U_{0}, \ldots, U_{t-1}\right\}$ acting on $\left(\mathbb{C}^{2}\right)^{\otimes n}$

$$
\text { For all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}, \operatorname{unif}\left(\{0,1\}^{n}\right)\right) \leqslant \epsilon
$$

Metric uncertainty relations

Recap of definitions:

$$
\left.p_{U_{k}|\psi\rangle}(x) \stackrel{\text { def }}{=}\left|\langle x| U_{k}\right| \psi\right\rangle\left.\right|^{2}
$$

$$
\Delta(p, q) \stackrel{\text { def }}{=} \frac{1}{2} \sum_{x \in x}|p(x)-q(x)| \quad \text { total variation distance }
$$

Definition (Metric uncertainty relation)

$\left\{U_{0}, \ldots, U_{t-1}\right\}$ acting on $\left(\mathbb{C}^{2}\right)^{\otimes n}$

$$
\text { For all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}, \operatorname{unif}\left(\{0,1\}^{n}\right)\right) \leqslant \epsilon
$$

Intuition: $\forall|\psi\rangle$, for most values of $k, \Delta\left(p_{U_{k}|\psi\rangle}\right.$, unif $\left.\left(\{0,1\}^{n}\right)\right) \lesssim \epsilon$
Objectives: t, \in small

Metric uncertainty relations

Recap of definitions:

$$
p_{U_{k}|\psi\rangle}^{A}(a) \stackrel{\text { def }}{=} \sum_{b \in\{0,1\}^{n_{B}}} \left\lvert\,\left\langle\left.\left. a\right|^{A}\left\langle\left. b\right|^{B} U_{k} \mid \psi\right\rangle\right|^{2} \quad \mid \psi\right\rangle-\mathcal{U}_{k} \begin{aligned}
& \text { B } \\
& A \square \sim=p_{U_{k}|\psi\rangle}^{A}
\end{aligned}\right.
$$

$$
\Delta(p, q) \stackrel{\text { def }}{=} \frac{1}{2} \sum_{x \in x}|p(x)-q(x)| \quad \text { total variation distance }
$$

Definition (Metric uncertainty relation)

$\left\{U_{0}, \ldots, U_{t-1}\right\}$ acting on $\left(\mathbb{C}^{2}\right)^{\otimes n}=A \otimes B$ with $A=\left(\mathbb{C}^{2}\right)^{\otimes n_{A}}$ and $B=\left(\mathbb{C}^{2}\right)^{\otimes n_{B}}$

$$
\text { For all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon
$$

Intuition: $\forall|\psi\rangle$, for most values of $k, \Delta\left(p_{u_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right) \lesssim \epsilon$
Objectives: t, \in small

$$
\text { and } \quad n_{A} \text { large }
$$

Metric and entropic uncertainty relations

Entropic uncertainty relations

Use (Shannon) entropy [Bialynicki-Birula, Mycielski, 1975; Deutsch, 1983]
Definition (Metric uncertainty relation)

$$
\text { For all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon
$$

$$
\mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant \mathbf{H}\left(p_{u_{k}|\psi\rangle}^{A}\right) \quad \text { recall } p_{u_{k}|\psi\rangle}^{A}(a)=\sum_{b} p_{U_{k}|\psi\rangle}(a, b)
$$

Metric and entropic uncertainty relations

Entropic uncertainty relations

Use (Shannon) entropy [Bialynicki-Birula, Mycielski, 1975; Deutsch, 1983]

Definition (Metric uncertainty relation)

$$
\text { For all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon
$$

$$
\mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant \mathbf{H}\left(p_{U_{k}|\psi\rangle}^{A}\right) \quad \text { recall } p_{U_{k}|\psi\rangle}^{A}(a)=\sum_{b} p_{U_{k}|\psi\rangle}(a, b)
$$

Proposition (Metric UR \Rightarrow Entropic UR)

U_{0}, \ldots, U_{t-1} define an ϵ-metric $U R$, then

$$
\text { For all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \quad \frac{1}{t} \sum_{k=0}^{t-1} \mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant(1-2 \epsilon) n_{A}-\eta(\epsilon)
$$

Proof: Fannes' inequality

Metric uncertainty relations: parameters

Theorem (Metric uncertainty relations)

$\exists U_{0}, \ldots, U_{t-1}$ acting on $\left(\mathbb{C}^{2}\right)^{\otimes n}=A \otimes B$ with

	$\log t$	n_{A}
Non-explicit	$3 \log (1 / \epsilon)$	$n-2 \log (1 / \epsilon)$
Efficient	$O(\log (n / \epsilon))$	$0.99 n$
Efficient	$O\left(\log ^{2}(n / \epsilon)\right)$	$n-O(\log (n / \epsilon))$

$$
\text { for all }|\psi\rangle \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}^{A}, u n i f\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon .
$$

Encryption of classical messages

Definition (Locking scheme)

Message $X \in u\{0,1\}^{n}$, $\operatorname{key} K \in u\{0,1\}^{s}$ (think $s \ll n$)
\mathcal{E} is ϵ-locking scheme if:
Knowing K, can determine X using $\mathcal{E}(X, K)$

Not knowing K, for any measurement whose outcome is I: $\quad \Delta\left(p_{X I}, p_{X} \times p_{I}\right) \leqslant \epsilon$

Composability

A (2KJ prococol is defined as bcing secare if, for any socurity parameters $s>0$ and $\vec{f}>0$ chowen by slice and Beth, and Gor any eavendroppuing stratery, either the scheme aborts, or it sueceeds with probability at last $1-U\left(2^{-i}\right)$, and guarantexs that Ere's mutual information with the final kev is less than 2^{2}. The key string musi alsur he essentially random.

Composability

Quantum Computation and Quantum Information
 MICHAEL A. NIELSEN
 AKD I5AAC L.CHUANG

Security of Quantum Key Distribution

A dissertation submitted to
SWISS FEDERAL INSTITUTE OF TECHNOLOGY
 ZURICH
for the degree of tor of Natural Sciences
presented by
Renato Renner Dipl. Phys. ETH

A QKI prococol is defined as bcing secare if, for any socurity parameters $s>0$ and $\vec{f}>0$ chowen by Alicc and Betr, and Gor any eavexdropping stratery, either the scheme aborts, or it succeeds with probability at Icast $1-\left(V\left(2^{-\dot{-}}\right)\right.$, and guarantexs that Eve's mutual information with the final kev is less than 2^{2}. The kev string musi alsur he exsentially random.

2.2.1 Standard security definitions are not universal

Unfortmately, many secerity definitions that are commonly used in quantum cryptography are not universal. For instance, the security of the key S generated by a QKD scheme is typically defined in terms of the mutual information $I(S ; W)$ between S and the classical outcome W of a measurcment of the adversary's system (sere, e.g., [LCS9, SPCO, NCOX, [GI.033, LCAM05] anu] also the discussion in $\overline{\mathrm{BOHL}}{ }^{+0} \mathbf{5}$) and (RKO5) . Formally, S is suid to be secure if, for some small ε,

$$
\begin{equation*}
\max _{W} I(S ; W) \leq \varepsilon, \tag{2.5}
\end{equation*}
$$

where the maximum ranges ower all measurements on the adversary's system with oulput W. Such a defimitinn-alhhaukh it louks rassomahle-dous however. not guarantee that the kev S' can safelv be used in applications, Roughly speaking, the reason for this flaw is that criterion ([2.5) does not necount for the fact that an adverssry might wnit with the messurcment of her syskem until she lesarns paris of the key. (We also reler to [RKC30 $]$

Not necessarily composable!

[Ben-Or, Horodecki, Leung, Mayers, Oppenheim, 2005; Konig, Renner, Bariska, Maurer, 2007]

Information locking: History

[DiVincenzo, Horodecki, Leung, Smolin, Terhal, 2004]

- $X \in_{u}\{0,1\}^{n}$ (message) and $K \in_{u}\{0,1\}$ (key)
- If $K=0, \mathcal{E}(x, 0)=|x\rangle$
- If $K=1, \mathcal{E}(x, 1)=H^{\otimes n}|x\rangle$

Knowing K, can determine X

Without knowing K, for any measurement whose outcome is I : $\mathbf{I}(X ; I) \leqslant n / 2$

One bit of information (K) can unlock $\frac{n}{2}$ bits about X hidden in the quantum system $\mathcal{E}(X, K)$

Information locking: History

[DiVincenzo, Horodecki, Leung, Smolin, Terhal, 2004]

- $X \in_{u}\{0,1\}^{n}$ (message) and $K \in_{u}\{0,1\}$ (key)
- If $K=0, \mathcal{E}(x, 0)=|x\rangle$
- If $K=1, \varepsilon(x, 1)=H^{\otimes n}|x\rangle$

Knowing K, can determine X

Without knowing K, for any measurement whose outcome is I : $\mathbf{I}(X ; I) \leqslant n / 2$

One bit of information (K) can unlock $\frac{n}{2}$ bits about X hidden in the quantum system $\mathcal{E}(X, K)$

Encoding in random bases

- [Hayden, Leung, Shor, Winter, 2004] $\mathbf{I}(X ; I) \leqslant 3$ with $K \in\{0,1\}^{4 \log n}$
- [Dupuis, Florjanczyk, Hayden, Leung, 2010] I $(X ; I) \leqslant \epsilon$ with $K \in\{0,1\}^{O(\log (n / \epsilon))}$ and stronger definition

Locking scheme from a metric uncertainty relation

$\left\{U_{k}\right\}$ satisfies metric uncertainty relation

Locking scheme from a metric uncertainty relation

$\left\{U_{k}\right\}$ satisfies metric uncertainty relation

Locking scheme from a metric uncertainty relation

$\left\{U_{k}\right\}$ satisfies metric uncertainty relation

Locking scheme from a metric UR: proof

For $a \in\{0,1\}^{n_{A}}$ and $k \in[t]$

$$
\mathcal{E}(a, k)=U_{k}^{\dagger}\left(|a\rangle\left\langle\left. a\right|^{A} \otimes \frac{\mathbb{I}^{B}}{2^{n_{B}}}\right) U_{k}\right.
$$

- Can assume measurement $\left\{\xi_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|\right\}_{i}$
- Outcome I
- Unknown K:

$$
\mathbf{P}\{X=a \mid I=i\}=\frac{1}{t} \sum_{k=0}^{t-1} p_{U_{k}\left|e_{i}\right\rangle}^{A}(a)
$$

Locking scheme from a metric UR: proof

For $a \in\{0,1\}^{n_{A}}$ and $k \in[t]$

$$
\mathcal{E}(a, k)=U_{k}^{\dagger}\left(|a\rangle\left\langle\left. a\right|^{A} \otimes \frac{\mathbb{I}^{B}}{2^{n_{B}}}\right) U_{k}\right.
$$

- Can assume measurement $\left\{\xi_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|\right\}_{i}$
- Outcome I
- Unknown K:

$$
\mathbf{P}\{X=a \mid I=i\}=\frac{1}{t} \sum_{k=0}^{t-1} p_{U_{k}\left|e_{i}\right\rangle}^{A}(a)
$$

By definition of metric UR: $\Delta\left(\frac{1}{t} \sum_{k=0}^{t-1} p_{u_{k} \mid e_{i}}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon$
$\Rightarrow \quad \Delta\left(p_{X \mid I=i}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon$ for any i

Parameters of locking scheme

Theorem

There exists ϵ-locking schemes

	Bits of key	Qubits of $\mathcal{E}(x, k)$
Non-explicit	$5 \log (1 / \epsilon)$	n
Efficient	$O(\log (n / \epsilon))$	$1.01 n$
Efficient	$O\left(\log ^{2}(n / \epsilon)\right)$	n

	Inf. leakage	Key	Ciphertext	Efficient ?
[DHLST04]	$n / 2$	1	n	yes
[HLSW04]	3	$4 \log (n)$	n	no
[DFHL10]	ϵn	$2 \log \left(n / \epsilon^{2}\right)$	n	no
I	ϵn	$5 \log (1 / \epsilon)$	n	no
II	ϵn	$O(\log (n / \epsilon))$	$1.01 n$	yes
III	ϵn	$O\left(\log ^{2}(n / \epsilon)\right)$	n	yes

Note: Can take $\epsilon=\eta / n$

Another application: Quantum equality testing

Quantum identification or approximate measurement simulation

Inputs	Alice	Bob	Relaxation of quantum info transmission
	$\|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$	description of $\|\phi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$	
Ouput		yes with prob $\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$	
		no with prob $1-\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$	[Winter, 2004]
Objective	Minimi	communication	

Another application: Quantum equality testing

Quantum identification or approximate measurement simulation

Inputs	Alice	Bob	Relaxation of quantum info transmission
	$\|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$	description of $\|\phi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$	
Ouput		yes with prob $\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$	
		No with prob $1-\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$	[Winter, 2004]
Objective	Minimiz	communication	

Classical equality testing or identification

Alice

Inputs
Ouput

Objective

$$
x \in\{0,1\}^{n}
$$

$$
0
$$

Bob
$y \in\{0,1\}^{n}$
yes with prob $\mathbf{1}_{\mathrm{x}=\mathrm{y}} \pm \epsilon$
No with prob $\mathbf{1}_{x \neq y} \pm \epsilon$
Minimize classical communication

Communication complexity equality

Remark: Communication is one way

Quantum equality testing

	Alice	Bob
Inputs	$\|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$	description of $\|\phi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
Ouput		yes with prob $\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$ no with prob $1-\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$
Resource	quantum communication	

- Optimal quantum communication $\approx n / 2$ qubits [Winter, 2004]

Quantum equality testing

	Alice	
Inputs	$\|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$	Bob description of $\|\phi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
Ouput		Yes with prob $\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$ No with prob $1-\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$
Resource	quantum communication	

- Optimal quantum communication $\approx n / 2$ qubits [Winter, 2004]
- With free classical communication: $o(n)$ qubits [Hayden, Winter, 2010]
- Remark: classical communication alone is useless

Quantum equality testing

	Alice	
Inputs	$\|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$	Bob description of $\|\phi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
Ouput		Yes with prob $\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$ No with prob $1-\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$
Resource	quantum communication	

- Optimal quantum communication $\approx n / 2$ qubits [Winter, 2004]
- With free classical communication: $o(n)$ qubits [Hayden, Winter, 2010]
- Remark: classical communication alone is useless

Theorem (Quantum equality testing)

Using free classical communication

- There exists a protocol using $O(\log (1 / \epsilon))$ qubits communication
- There exists an efficient protocol using $O\left(\log ^{2}(n / \epsilon)\right)$ qubits communication

Quantum equality testing

	Alice	
Inputs	$\|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$	Bob description of $\|\phi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
Ouput		Yes with prob $\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$ No with prob $1-\|\langle\psi \mid \phi\rangle\|^{2} \pm \epsilon$
Resource	quantum communication	

- Optimal quantum communication $\approx n / 2$ qubits [Winter, 2004]
- With free classical communication: $o(n)$ qubits [Hayden, Winter, 2010]
- Remark: classical communication alone is useless

Theorem (Quantum equality testing)

Using free classical communication

- There exists a protocol using $O(\log (1 / \epsilon))$ qubits communication
- There exists an efficient protocol using $O\left(\log ^{2}(n / \epsilon)\right)$ qubits communication

Classical equality testing:

- With free shared randomness: $O(\log (1 / \epsilon))$ bits communication
- Public-coin randomized comm. complexity of equality is $O(\log (1 / \epsilon))$

From metric UR to quantum equality testing

Quantum communication: $\log t+n_{B}$ qubits Classical communication: n_{A} bits

From metric UR to quantum equality testing

Quantum communication: $\log t+n_{B}$ qubits Classical communication: n_{A} bits

Proof: via duality between forgetfulness and geometry preservation [Hayden, Winter, 2010]

From metric UR to quantum equality testing

Quantum communication: $\log t+n_{B}$ qubits Classical communication: n_{A} bits

Proof: via duality between
forgetfulness and geometry preservation [Hayden, Winter, 2010]

Outline

(1) Metric uncertainty relations: definition and applications

- Definition
- Application: Encryption
- Application: Quantum equality testing
(2) Metric uncertainty relations: constructions
- Known constructions
- Metric interpretation
- Efficient metric uncertainty relation

Entropic URs with $t=2$ measurements

Rectilinear and diagonal basis

- $I, H^{\otimes n}$

$$
\frac{1}{2}\left(\mathbf{H}\left(p_{|\psi\rangle}\right)+\mathbf{H}\left(p_{H^{\otimes n}|\psi\rangle}\right)\right) \geqslant \frac{1}{2} n
$$

- U_{0}, U_{1} mutually unbiased: $\left.\forall x, y \in\{0,1\}^{n}\left|\langle x| U_{0} U_{1}^{\dagger}\right| y\right\rangle\left.\right|^{2}=\frac{1}{2^{n}}$

$$
\frac{1}{2}\left(\mathbf{H}\left(p_{U_{0}|\psi\rangle}\right)+\mathbf{H}\left(p_{U_{1}|\psi\rangle}\right)\right) \geqslant \frac{1}{2} n
$$

[Maassen, Uffink, 1989]

Recall: $p_{|\psi\rangle}(x)=|\langle x \mid \psi\rangle|^{2}$
The factor $1 / 2$ is optimal for $t=2$ measurements

Entropic URs with $t=2$ measurements

Rectilinear and diagonal basis

- $I, H^{\otimes n}$

$$
\frac{1}{2}\left(\mathbf{H}\left(p_{|\psi\rangle}\right)+\mathbf{H}\left(p_{H^{\otimes n}|\psi\rangle}\right)\right) \geqslant \frac{1}{2} n
$$

- U_{0}, U_{1} mutually unbiased: $\left.\forall x, y \in\{0,1\}^{n}\left|\langle x| U_{0} U_{1}^{\dagger}\right| y\right\rangle\left.\right|^{2}=\frac{1}{2^{n}}$

$$
\frac{1}{2}\left(\mathbf{H}\left(p_{U_{0}|\psi\rangle}\right)+\mathbf{H}\left(p_{U_{1}|\psi\rangle}\right)\right) \geqslant \frac{1}{2} n
$$

[Maassen, Uffink, 1989]

Recall: $p_{|\psi\rangle}(x)=|\langle x \mid \psi\rangle|^{2}$
The factor $1 / 2$ is optimal for $t=2$ measurements
To increase the lower bound, need $t>2$ measurements

Entropic URs with $t>2$ measurements

Want: $\quad \frac{1}{t} \sum_{k=0}^{t-1} \mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant h(t) \quad$ for all $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
with $h(t)>n / 2$ large
Natural candidate: Take t mutually unbiased bases (MUBs)

Entropic URs with $t>2$ measurements

Want: $\quad \frac{1}{t} \sum_{k=0}^{t-1} \mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant h(t) \quad$ for all $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
with $h(t)>n / 2$ large
Natural candidate: Take t mutually unbiased bases (MUBs)

Definition (Mutually unbiased bases)

U_{0}, \ldots, U_{t-1} define MUBs if for all $x, y \in\{0,1\}^{n}$ and all $k \neq k^{\prime}$

$$
\left.\left|\langle x| U_{k} U_{k^{\prime}}^{\dagger}\right| y\right\rangle \left\lvert\, \leqslant \frac{1}{2^{n / 2}}\right.
$$

Entropic URs with $t>2$ measurements

Want: $\quad \frac{1}{t} \sum_{k=0}^{t-1} \mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant h(t) \quad$ for all $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$
with $h(t)>n / 2$ large
Natural candidate: Take t mutually unbiased bases (MUBs)

Definition (Mutually unbiased bases)

U_{0}, \ldots, U_{t-1} define MUBs if for all $x, y \in\{0,1\}^{n}$ and all $k \neq k^{\prime}$

$$
\left.\left|\langle x| U_{k} U_{k^{\prime}}^{\dagger}\right| y\right\rangle \left\lvert\, \leqslant \frac{1}{2^{n / 2}}\right.
$$

- For $t=2^{n}+1$ (full set of MUBs):

$$
h(t) \geqslant \log \left(2^{n}+1\right)-1 \geqslant n-1 \text { [Sanchez, 1993; Ivanovic, 1994] }
$$

Entropic URs with $t>2$ measurements

Want: $\quad \frac{1}{t} \sum_{k=0}^{t-1} \mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant h(t) \quad$ for all $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$ with $h(t)>n / 2$ large
Natural candidate: Take t mutually unbiased bases (MUBs)

Definition (Mutually unbiased bases)

U_{0}, \ldots, U_{t-1} define MUBs if for all $x, y \in\{0,1\}^{n}$ and all $k \neq k^{\prime}$

$$
\left.\left|\langle x| U_{k} U_{k^{\prime}}^{\dagger}\right| y\right\rangle \left\lvert\, \leqslant \frac{1}{2^{n / 2}}\right.
$$

- For $t=2^{n}+1$ (full set of MUBs): $h(t) \geqslant \log \left(2^{n}+1\right)-1 \geqslant n-1$ [Sanchez, 1993; Ivanovic, 1994]
- For $t<2^{n / 2}$, general MUBs do not work well: $\exists t$ MUBs with $h(t) \approx n / 2$ [Ballester and Wehner, 2007; Ambainis, 2009]

Entropic URs with $t>2$ measurements

Want: $\quad \frac{1}{t} \sum_{k=0}^{t-1} \mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant h(t) \quad$ for all $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$ with $h(t)>n / 2$ large

Other candidate: random bases [Hayden, Leung, Shor, Winter, 2004] For $t=n^{4}$, there exists U_{0}, \ldots, U_{t-1}

$$
\frac{1}{t} \sum_{k=0}^{t-1} \mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant n-3
$$

Remark: Not explicit

Metric URs: metric interpretation

Definition (Metric uncertainty relation)

$$
\text { For all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}^{A}, \text { unif }\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon
$$

In terms of fidelity
$1-\epsilon \leqslant \frac{1}{t} \sum_{k} F\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right)$

Metric URs: metric interpretation

Definition (Metric uncertainty relation)

$$
\text { For all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon
$$

In terms of fidelity
$\left.1-\epsilon \leqslant \frac{1}{t} \sum_{k} F\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right)=\frac{1}{t} \sum_{k} \sum_{a \in\{0,1\}^{n}}\left|\langle a| U_{k}\right| \psi\right\rangle \left\lvert\, \cdot \frac{1}{\sqrt{2^{n}}}\right.$

Metric URs: metric interpretation

Definition (Metric uncertainty relation)

$$
\text { For all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon
$$

In terms of fidelity
$\left.1-\epsilon \leqslant \frac{1}{t} \sum_{k} F\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right)=\frac{1}{t} \sum_{k} \sum_{a \in\{0,1\}^{n}}\left|\langle a| U_{k}\right| \psi\right\rangle \left\lvert\, \cdot \frac{1}{\sqrt{2^{n}}}\right.$

Define

$$
V:|\psi\rangle \mapsto \frac{1}{\sqrt{t}} \sum_{k}|k\rangle \otimes U_{k}|\psi\rangle
$$

For all $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$,

$$
\| V|\psi\rangle\left\|_{1} \geqslant(1-\epsilon) \sqrt{t 2^{n}}\right\||\psi\rangle \|_{2}
$$

Metric URs: metric interpretation

Definition (Metric uncertainty relation)

$$
\text { For all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon
$$

In terms of fidelity
$\left.1-\epsilon \leqslant \frac{1}{t} \sum_{k} F\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right)=\frac{1}{t} \sum_{k} \sum_{a \in\{0,1\}^{n}}\left|\langle a| U_{k}\right| \psi\right\rangle \left\lvert\, \cdot \frac{1}{\sqrt{2^{n}}}\right.$

Define

$$
V:|\psi\rangle \mapsto \frac{1}{\sqrt{t}} \sum_{k}|k\rangle \otimes U_{k}|\psi\rangle
$$

For all $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}, \quad \sqrt{t 2^{n}} \||\psi\rangle\left\|_{2} \geqslant\right\| V|\psi\rangle\left\|_{1} \geqslant(1-\epsilon) \sqrt{t 2^{n}}\right\||\psi\rangle \|_{2}$
V is a low-distortion embedding $\left(\mathbb{C}^{2^{n}}, \ell_{2}\right) \hookrightarrow\left(\mathbb{C}^{ \pm 2^{n}}, \ell_{1}\right)$

Metric URs: metric interpretation

Definition (Metric uncertainty relation)

$$
\text { For all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n} \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon
$$

In terms of fidelity
$1-\epsilon \leqslant \frac{1}{t} \sum_{k} F\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right)=\frac{1}{t} \sum_{k, a} \sqrt{\sum_{b} \mid\left.\langle a|\langle b| U_{k}|\psi\rangle\right|^{2}} \cdot \frac{1}{\sqrt{2^{n_{A}}}}$

Define $\quad V:|\psi\rangle \mapsto \frac{1}{\sqrt{t}} \sum_{k}|k\rangle \otimes U_{k}|\psi\rangle$
For all $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}, \quad \sqrt{t 2^{n}} \||\psi\rangle\left\|_{2} \geqslant\right\| V|\psi\rangle\left\|_{\ell_{1}\left(\ell_{2}\right)} \geqslant(1-\epsilon) \sqrt{t 2^{n}}\right\||\psi\rangle \|_{2}$
V is a low-distortion embedding $\left(\mathbb{C}^{2^{n}}, \ell_{2}\right) \hookrightarrow\left(\mathbb{C}^{t 2^{n}}, \ell_{1}\left(\ell_{2}\right)\right)$
For $|\psi\rangle \in A \otimes B, \quad \||\psi\rangle\left\|_{\ell_{1}^{A}\left(\ell_{2}^{B}\right)}=\sum_{a \in\{0,1\}^{n_{A}}}\right\|\langle a \mid \psi\rangle \|_{2}$

$\ell_{2} \hookrightarrow \ell_{1}$ embeddings

Dvoretzky's theorem:
For any normed space $\left(\mathbb{R}^{d},\|\cdot\|\right)$, there is a large subspace $\|\cdot\| \approx_{e}\|\cdot\|_{2}$ [Dvoretzky, 1961; Milman, 1971; Milman and Schechtman, 1986;...]

Most common proof uses probabilistic method

$\ell_{2} \hookrightarrow \ell_{1}$ embeddings

Dvoretzky's theorem:
For any normed space $\left(\mathbb{R}^{d},\|\cdot\|\right)$, there is a large subspace $\|\cdot\| \approx_{\epsilon}\|\cdot\|_{2}$
[Dvoretzky, 1961; Milman, 1971; Milman and Schechtman, 1986;...]
Most common proof uses probabilistic method

For ℓ_{1} norm

- Explicit constructions [Indyk, 2007; Guruswami, Lee, Razborov, 2009;...]
- Applications: high-dimensional nearest neighbour search and compressed sensing

$\ell_{2} \hookrightarrow \ell_{1}$ embeddings

Dvoretzky's theorem:
For any normed space $\left(\mathbb{R}^{d},\|\cdot\|\right)$, there is a large subspace $\|\cdot\| \approx_{\epsilon}\|\cdot\|_{2}$
[Dvoretzky, 1961; Milman, 1971; Milman and Schechtman, 1986;...]
Most common proof uses probabilistic method

For ℓ_{1} norm

- Explicit constructions [Indyk, 2007; Guruswami, Lee, Razborov, 2009;...]
- Applications: high-dimensional nearest neighbour search and compressed sensing

For Schatten p-norms [Aubrun, Szarek, Werner, 2010]

- Counterexample additivity minimum output entropy [Hayden and Winter 2008; Hastings, 2009]

Metric uncertainty relations: existence

Theorem (Metric uncertainty relations)
$\exists U_{0}, \ldots, U_{t-1}$ acting on $\left(\mathbb{C}^{2}\right)^{\otimes n}=A \otimes B$ with

$$
\begin{aligned}
& \log t=3 \log (1 / \epsilon) \quad \text { and } \quad n_{A}=n-2 \log (1 / \epsilon) \\
& \text { for all }|\psi\rangle \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{u_{k}|\psi\rangle}^{A}, \text { unif }\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon
\end{aligned}
$$

Proof: Probabilistic argument, U_{0}, \ldots, U_{t-1} at random [Milman, 1971]

Efficient metric UR: Structure of the construction

Use ideas of explicit ℓ_{2} into ℓ_{1} embedding of [Indyk, 2007]

Two ingredients:
(1) Min-entropy uncertainty relation (mutually unbiased bases)
(2) Permutation extractors

Min-entropy uncertainty relation

Lemma (MUBs define min-entropy uncertainty relations)

V_{0}, \ldots, V_{r-1} define MUBs with $r=1 / \epsilon^{2}$, for all $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$

$$
\frac{1}{r} \sum_{j=0}^{r-1} \mathbf{H}_{\min }^{\epsilon}\left(p_{V_{j}|\psi\rangle}\right) \gtrsim(1-\epsilon) n / 2
$$

$$
\begin{gathered}
\mathbf{H}_{\min }(p)=-\log \max _{x \in x} p(x) \\
\mathbf{H}_{\min }^{\epsilon}(p)=\max _{q: \Delta(p, q) \leqslant \epsilon} \mathbf{H}_{\min }(q)
\end{gathered}
$$

Min-entropy uncertainty relation

Lemma (MUBs define min-entropy uncertainty relations)

V_{0}, \ldots, V_{r-1} define MUBs with $r=1 / \epsilon^{2}$, for all $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$

$$
\frac{1}{r} \sum_{j=0}^{r-1} \mathbf{H}_{\min }^{\epsilon}\left(p_{V_{j}|\psi\rangle}\right) \gtrsim(1-\epsilon) n / 2
$$

$$
\begin{gathered}
\mathbf{H}_{\min }(p)=-\log \max _{x \in x} p(x) \\
\mathbf{H}_{\min }^{\epsilon}(p)=\max _{q: \Delta(p, q) \leqslant \epsilon} \mathbf{H}_{\min }(q)
\end{gathered}
$$

Remarks

- Interpret as: for most values of $j, \mathbf{H}_{\min }^{\epsilon}\left(p_{V_{j}|\psi\rangle}\right) \gtrsim(1-\epsilon) n / 2$
- Min-entropy UR of [Damgaard, Fehr, Renner, Salvail, Schaffner, 2007] uses $r=2^{n}$ bases
- Rate $1 / 2$ is best possible

Permutation extractors

Definition (Strong permutation extractor)

P_{0}, \ldots, P_{s-1} permutations of $\{0,1\}^{n}$
$\mathbf{H}_{\text {min }}(X) \geqslant \ell$

Permutation extractors

Definition (Strong permutation extractor)

P_{0}, \ldots, P_{s-1} permutations of $\{0,1\}^{n}$

Permutation extractors

Definition (Strong permutation extractor)

P_{0}, \ldots, P_{s-1} permutations of $\{0,1\}^{n}$

Remarks:

- Has to work for any X
- Want n_{A} large (hopefully $n_{A} \approx \ell$) and s small
- Special kind of randomness extractor (complexity and cryptography)
- Want efficient P_{y} and P_{y}^{-1}

Permutation extractors

Definition (Strong permutation extractor)

P_{0}, \ldots, P_{s-1} permutations of $\{0,1\}^{n}$

Remarks:

- Has to work for any X
- Want n_{A} large (hopefully $n_{A} \approx \ell$) and s small
- Special kind of randomness extractor (complexity and cryptography)
- Want efficient P_{y} and P_{y}^{-1}

Adapting [Guruswami, Umans, Vadhan, 2009]

Theorem

\exists efficient strong perm. extractor with $\log s=O(\log (n / \epsilon))$ and $n_{A}=(1-\delta) \ell$

Putting things together

Putting things together

Putting things together

Parameters of the metric uncertainty relation

Theorem (Efficient MURs: key optimized)

$\exists U_{0}, \ldots, U_{t-1}$ with $\log t=c_{\delta} \log (n / \epsilon)$ and $n_{A}=(1-\delta) n$

$$
\text { For all }|\psi\rangle, \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}^{A}, \text { unif }\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon
$$

U_{0}, \ldots, U_{t-1} have quantum circuits of size $O(n \operatorname{polylog}(n / \epsilon))$

Theorem (Efficient MURs: A system maximized)

$\exists U_{0}, \ldots, U_{t-1}$ with $\log t=c \log ^{2}(n / \epsilon)$ and $n_{A}=n-O(\log (1 / \epsilon)+\log \log n)$

$$
\text { For all }|\psi\rangle, \quad \frac{1}{t} \sum_{k=0}^{t-1} \Delta\left(p_{U_{k}|\psi\rangle}^{A}, \operatorname{unif}\left(\{0,1\}^{n_{A}}\right)\right) \leqslant \epsilon
$$

U_{0}, \ldots, U_{t-1} have quantum circuits of size $O(n \operatorname{polylog}(n / \epsilon))$

Summary

Inspired by definitions and results in asymptotic geometric analysis:

- Define metric uncertainty relations
- Prove random bases satisfy URs with better params
- Construct efficient metric URs
- First efficient strong information locking schemes
- One of the schemes uses only Hadamard gates and classical computation
- Quantum equality testing
- Other results in paper:
- Quantum hiding fingerprint [Gavinsky, Ito, 2010]
- String commitment protocol [Buhrman, Christandl, Hayden, Lo, Wehner, 2006]

Open questions

- Other cryptographic applications? Bounded/noisy storage model?
- Explicit constructions of UR matching probabilistic argument?
- Existence results of UR matching lower bounds? Are there U_{0}, \ldots, U_{t-1}

$$
\frac{1}{t} \sum_{k=0}^{t-1} \mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant\left(1-\frac{1}{t}\right) n \quad \text { for } t>2 ?
$$

Open questions

- Other cryptographic applications? Bounded/noisy storage model?
- Explicit constructions of UR matching probabilistic argument?
- Existence results of UR matching lower bounds? Are there U_{0}, \ldots, U_{t-1}

$$
\frac{1}{t} \sum_{k=0}^{t-1} \mathbf{H}\left(p_{U_{k}|\psi\rangle}\right) \geqslant\left(1-\frac{1}{t}\right) n \quad \text { for } t>2 \text { ? }
$$

Thank you!
 arXiv:1010. 3007

See also arXiv: 1011. 1612 [Dupuis, Florjancyk, Hayden, Leung, 2010]
Many thanks to Ivan Savov for comments on the presentation

Extra: Proof of min-entropy uncertainty relation

Lemma (MUBs define min-entropy uncertainty relations)

For "most" values of j, there exists q_{j} s.t. $\Delta\left(p_{V_{j}|\psi\rangle}, q_{j}\right) \leqslant \epsilon$ and $q_{j}(x) \leqq 2^{-n / 2}$
Proof:

$$
\vec{v}=\left[\begin{array}{c}
V_{0} \\
\vdots \\
V_{r-1}
\end{array}\right]|\psi\rangle \in \mathbb{C}^{r 2^{n}} \quad \vec{v}_{j, x}=\langle x| V_{j}|\psi\rangle \quad V=\left[\begin{array}{c}
V_{0} \\
\vdots \\
V_{r-1}
\end{array}\right] \in \mathbb{C}^{r 2^{n} \times 2^{n}}
$$

(1) \vec{v} is spread: for any $|S| \leqslant 2^{n / 2},\left\|\vec{v}_{S}\right\|_{2}^{2} \leqslant \frac{2}{r}\|\vec{v}\|_{2}^{2}$

- $\vec{v}_{S}=V_{S}|\psi\rangle$
- $\left.\left\|\vec{v}_{S}\right\|_{2}^{2}=\left|\langle\psi| V_{S}^{\dagger} V_{S}\right| \psi\right\rangle \mid \leqslant \max$ eigenvalue of $V_{S}^{\dagger} V_{S}$

$$
V_{S}^{\dagger} V_{S}=\left[\begin{array}{ccc}
1 & \langle y| V_{j^{\prime}}^{\dagger} V_{j}|x\rangle & \ldots \\
\langle x| V_{j}^{\dagger} V_{j^{\prime}}|y\rangle & \ddots & \vdots \\
\vdots & \ldots & 1
\end{array}\right]
$$

- max eigenvalue of $V_{S}^{\dagger} V_{S} \leqslant 1+|S| 2^{-n / 2} \leftarrow$ use MUB here

Extra: Proof of min-entropy uncertainty relation

Lemma (MUBs define min-entropy uncertainty relations)

For "most" values of j, there exists q_{j} s.t. $\Delta\left(p_{V_{j}|\psi\rangle}, q_{j}\right) \leqslant \epsilon$ and $q_{j}(x) \lesssim 2^{-n / 2}$
Proof:

$$
\vec{v}=\left[\begin{array}{c}
V_{0} \\
\vdots \\
V_{r-1}
\end{array}\right]|\psi\rangle \in \mathbb{C}^{r 2^{n}} \quad \vec{v}_{j, x}=\langle x| V_{j}|\psi\rangle \quad V=\left[\begin{array}{c}
V_{0} \\
\vdots \\
V_{r-1}
\end{array}\right] \in \mathbb{C}^{r 2^{n} \times 2^{n}}
$$

(1) \vec{v} is spread: for any $|S| \leqslant 2^{n / 2},\left\|\vec{v}_{S}\right\|_{2}^{2} \leqslant \frac{2}{r}\|\vec{v}\|_{2}^{2}$
(2) $S=$ largest $2^{n / 2}$ indices of $\vec{v} \quad \vec{w}_{j, x}= \begin{cases}\vec{v}_{j, x} & \text { if }(j, x) \notin S \\ 0 & \text { if }(j, x) \in S\end{cases}$
(3) Define $q_{j}(x)=\left|w_{j, x}\right|^{2}\left(\right.$ recall $\left.p_{V_{j}|\psi\rangle}(x)=\left|\vec{v}_{j, x}\right|^{2}\right)$
(4) For "most" values of $j, q_{j} \approx_{\epsilon}$ distribution
(5) $|S| \cdot q_{j}(x) \leqslant\|\vec{v}\|_{2}^{2}=r \quad \Rightarrow \quad q_{j}(x) \leqslant r 2^{-n / 2}$

Extra: Proof of min-entropy uncertainty relation

Lemma (MUBs define min-entropy uncertainty relations)

For "most" values of j, there exists q_{j} s.t. $\Delta\left(p_{V_{j}|\psi\rangle}, q_{j}\right) \leqslant \epsilon$ and $q_{j}(x) \lesssim 2^{-n / 2}$
Proof:

$$
\vec{v}=\left[\begin{array}{c}
V_{0} \\
\vdots \\
V_{r-1}
\end{array}\right]|\psi\rangle \in \mathbb{C}^{r 2^{n}} \quad \vec{v}_{j, x}=\langle x| V_{j}|\psi\rangle \quad V=\left[\begin{array}{c}
V_{0} \\
\vdots \\
V_{r-1}
\end{array}\right] \in \mathbb{C}^{r 2^{n} \times 2^{n}}
$$

(1) \vec{v} is spread: for any $|S| \leqslant 2^{n / 2},\left\|\vec{v}_{S}\right\|_{2}^{2} \leqslant \frac{2}{r}\|\vec{v}\|_{2}^{2}$
(2) $S=$ largest $2^{n / 2}$ indices of $\vec{v} \quad \vec{w}_{j, x}= \begin{cases}\vec{v}_{j, x} & \text { if }(j, x) \notin S \\ 0 & \text { if }(j, x) \in S\end{cases}$
(3) Define $q_{j}(x)=\left|w_{j, x}\right|^{2}\left(\right.$ recall $\left.p_{V_{j}|\psi\rangle}(x)=\left|\vec{v}_{j, x}\right|^{2}\right)$
(4) For "most" values of $j, q_{j} \approx_{\epsilon}$ distribution
(5) $|S| \cdot q_{j}(x) \leqslant\|\vec{v}\|_{2}^{2}=r \quad \Rightarrow \quad q_{j}(x) \leqslant r 2^{-n / 2}$

Extra: Min-entropy uncertainty relation (generalized)

Approximate MUB: $\left.\quad \forall x, y\left|\langle x| V_{j} V_{j^{\prime}}^{\dagger}\right| y\right\rangle \left\lvert\, \leqslant \frac{1}{2^{r n / 2}} \quad \gamma \in[0,1]\right.$
Lemma (Min-entropy uncertainty relations)

$$
V_{0}, \ldots, V_{r-1} \text { define } \gamma \text {-MUBs with } r=1 / \epsilon^{2}, \text { for all }|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}
$$

$$
\frac{1}{r} \sum_{j=0}^{r-1} \mathbf{H}_{\min }^{\epsilon}\left(p_{V_{j}|\psi\rangle}\right) \gtrsim(1-\epsilon) \gamma n / 2
$$

Extra: Min-entropy uncertainty relation (generalized)

Approximate MUB: $\left.\quad \forall x, y\left|\langle x| V_{j} V_{j^{\prime}}^{\dagger}\right| y\right\rangle \left\lvert\, \leqslant \frac{1}{2 r / / 2} \quad \gamma \in[0,1]\right.$
Lemma (Min-entropy uncertainty relations)
V_{0}, \ldots, V_{r-1} define γ-MUBs with $r=1 / \epsilon^{2}$, for all $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes n}$

$$
\frac{1}{r} \sum_{j=0}^{r-1} \mathbf{H}_{\min }^{\epsilon}\left(p_{V_{j}|\psi\rangle}\right) \gtrsim(1-\epsilon) \gamma n / 2
$$

Lemma ($1 / 2-\mathrm{MUBs}$ with single qubit unitaries)

There exist $V_{j} \in\left\{H^{u_{1}} \otimes H^{u_{2}} \otimes \cdots \otimes H^{u_{n}}: u_{i} \in\{0,1\}\right\}$ for $j \in[t]$ that define $1 / 2$-MUBs
H : transforms + to \times

