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Abstract

Developing distributed real-time systems is a complex task that has historically entailed specialized handcraft. In this paper,
we propose a retrospective on the (r)evolutionary changes that led to the transition from low-level programming to industrial
full-fledged model-based development embodied by the Rubus Component Model and its tool-ecosystem. We focus on the
needs, challenges, and solutions of a 15-year-long evolution journey of a software development approach that has gone from
low-level and manual programming to a highly automated environment offering modeling, analysis, and development of

vehicular software systems with multi-criticality for deployment on single- and multi-core platforms.

Keywords Component model - Model-based development - Vehicular embedded systems real-time systems

1 Introduction

Vehicles have gone from mechanics-intensive to software-
intensive in the last two decades. With software replacing
mechanical and hydraulic components, both manufacturers
and customers started to envision an entirely new set of fea-
tures that modern vehicles could provide (e.g., autonomous
driving). Since then, demands on vehicular embedded sys-
tems have constantly increased, leading to a steady growth
of vehicular software’s complexity. Estimations are point-
ing out that current low-end vehicles are rapidly nearing 100
Electronic Control Units (ECUs) and 100 million lines of
code,! which is expected to reach 300 million by 2030.>
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Given these numbers, it became clear rather early to man-
ufacturers that they needed efficient processes to cope with
the size of these newly become software-intensive systems to
maximize the throughput of software development in terms
of cost and time. In addition, most vehicular embedded sys-
tems have extra-functional requirements that must be taken
into serious account from the very early stages of devel-
opment. More specifically, vehicular embedded systems are
real-time systems, meaning that they must deliver their func-
tionality within their timing deadlines. Consequently, timing
requirements are crucial for these systems. It became soon
evident that low-level programming, although accessible and
non-disruptive to manufacturers’ existing processes, was not
going to be a sustainable solution for the engineering of soft-
ware for vehicular embedded systems (or ECUs).

Instead, component-based software engineering (CBSE)
first and model-driven engineering (MDE) later were iden-
tified as key methodologies to effectively deal with the
increasing complexity of vehicular embedded software for
complementary reasons. In 2003, the AUTOS AR partnership
was officially presented at the VDI Conference Baden-
Baden® with the goal of settling an open and standardized
software architecture for vehicular ECUs. In 2008, the
Rubus Component Model (RCM) [1] was formalized to
add a component-based engineering layer for the definition,

3 https://www.autosar.org/about/history.
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early analysis, and implementation of software for vehicular
ECUs.

In this paper, we present a retrospective on the (r)evoluti
onary changes that led to the transition from low-level
programming to industrial full-fledged model-based devel-
opment embodied by the RCM and its underlying tools.
Starting from the first formalization of the RCM in 2008, we
unwind and discuss the set of needs, challenges, and solu-
tions of a 15-year-long evolution of a development approach
that has gone from low-level and manual programming to
a highly automated environment offering modeling, analy-
sis, and development of component-based vehicular software
with multi-criticality for deployment on distributed single-
and multi-core platforms. We achieve this by providing
answers to the following research questions (RQs), which
contribute to different and unique objectives of this study:

RQ1: Which are the research publication trends on RCM?

RQ2a: Which were the requirements that drove the design
and development of RCM?

RQ2b: Which were the strategies emerged to fulfill the
requirements?

RQ3a: Which were the requirements that triggered the evo-
lutions of RCM ?

RQ3b: Which were the challenges to be tackled for evolving
RCM?

The remainder of this paper is structured as follows. Sec-
tion2 describes the Rubus concept as well as RCM and its
accompanying tool. Section 3 answers RQ1 by presenting the
publication trends over the years and venue types. Section4
answers RQ2 by eliciting the core requirements that drove
the design and development of RCM. In addition, for each of
these requirements, it identifies the strategies emerged and
used to fulfill the requirements. Section5 answers RQ3 by
eliciting the requirements that triggered the various evolu-
tions of RCM. Additionally, Sect. 5 describes the challenges
related to the evolutions of RCM. A discussion on lessons
learnt is provided in Sect.6. Section7 concludes the paper
with final remarks and planned future works.

2 The Rubus concept

Arcticus Systems®* has been developing Rubus in collabora-
tion with Mélardalen University (MDU) and other academic
and industrial partners for over 25 years. The overarching
goal of Rubus is to develop predictable and analyzable con-
trol functions in resource-constrained embedded systems by
being aggressively resource-efficient. The Rubus concept is
materialized in terms of the RCM [1], the Rubus Integrated

4 https://www.arcticus-systems.com.
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Component development Environment (Rubus-ICE), and its
real-time operating system Rubus Kernel Real-Time Oper-
ating System (RTOS). Rubus-ICE includes modeling and
analysis tools, code generators, and a run-time infrastructure.
The RTOS is certified to the highest ASIL level (ASIL-
D) according to the ISO 26262 Road vehicles—Functional
Safety Standard.’ Several OEMs and Tier-1 companies in
the vehicle industry (e.g., Volvo Construction Equipment,
BAE Systems Hiégglunds, Hoerbiger and Knorr-Bremse)
in South Korea, China, Germany, France, USA, Sweden,
use Rubus for the development of safety-critical real-time
embedded software systems. Rubus-ICE provides integra-
tion of Simulink models in RCM, which facilitates analysis
of the real-time behavior of the design including Simulink
models.

Alternatives to RCM and Rubus-ICE are Vector’s DaVinci,
which differently from RCM only focuses on the imple-
mentation level (i.e., AUTOSAR), MentorGraphics’ VNA,
which only focuses on network modeling, Inchron’s chron-
SIM, which focuses on timing analysis only. To summarize,
Rubus-ICE is the only model-based environment providing
modeling and analysis/simulation of hardware and software,
including network, of software-circuit-based distributed sys-
tems, and it covers all abstraction levels of automotive
systems development—vehicle, analysis, design, implemen-
tation.

2.1 The Rubus Component Model

RCM [1] is a domain-specific language for developing
predictable and analyzable control functions in resource-
constrained, real-time embedded systems. An example of
RCM model is depicted in Fig. 1. A model is described in
block-like composite component diagram where control- and
data-flows are explicitly and separately modeled via specific
ports. Signals on ports trigger flows and software circuits
to start their behavior. Models are mapped to C/C++ code
specifically thought for real-time embedded systems. The
first public definition of RCM dates back to 2008 when
Hinninen et al. introduced a compact component model
for the development of distributed embedded systems [1].
Since then, the language has evolved, and currently RCM
features four packages, which are hardware [2], software,
allocation [2] and timing [3].

The hardware data model provides the description of
the hardware platform in terms of its processing units and
network busses abstracting from low-level details such as
memory hierarchies or the operating system, which are taken
care from the accompanying RTOS and development envi-
ronment. The hardware abstraction is described using node,
core, partition, and network elements. Processing

> https://www.iso.org/standard/68383.html.
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Fig.1 Software architecture example model in RCM

units are represented using node elements. Their internal
structure is described using core and partition ele-
ments that represent physical cores and logical partitions
of cores, respectively. Network elements encapsulate net-
work specification details and protocol stack information
of different network communication protocols such as the
Time Sensitive Networking (TSN) [4] and different CAN
protocols [5]. The allocation data model provides for the
specification of software-to-hardware allocation.

The timing data model allows expressing of the software
architecture’s real-time requirements and properties. These
are rooted in the timing augmented description language
TADL2 [6]. RCM allows defining the timing constraints on
events, either for single components or for the data propa-
gation through an event chain. The event chain concept is a
direct result of TADL?2, where stimuli and a response event
define event chain items. A detailed discussion of the repre-
sentation of TADL?2 timing constraints in RCM is provided
in [7].

The software data model is used for describing soft-
ware systems in terms of software functions and connections
among them. In RCM, a Software Circuit (SWC)
is the smallest unit of functionality, similar to a type or
class that can be used multiple times. RCM distinguishes
between data and control flows when considering interactions
between SWCs. This makes it easier to define control spec-
ifications and interactions (typical of real-time embedded
systems). Interfaces of SWCs contain data and control
ports, with data ports representing data communication
and control ports representing triggering conditions.
In RCM, it is important to separate the functional code from
the infrastructure that handles execution. This makes it easier
to see explicit synchronization and data access at the model-

ing level and promotes reuse of SWCs in different contexts.
Additionally, this principle ensures that a SWC does not need
to be aware of how it connects to other components. SWCs
have the following semantics:

1. read data on all data input ports upon receiving a trigger
signal on the trigger input port;

2. execute the encapsulated software function;

write data to all data output ports; and

4. activate the trigger output port.

»

This semantic can often be efficiently implemented without
locks or barriers and allow development of very resource effi-
cient systems. The need for locks and/or globally allocated
memory can be determined, and automatically implemented,
during the compilation stage

2.2 The Rubus analysis framework

RCM allows the specification of timing requirements and
properties of the software architecture. These timing con-
straints can be used to associate real-time requirements
with generated events and output triggers along a chain of
SWCs. RCM includes all of the timing constraints from
the AUTOSAR standard, and allows designers to spec-
ify real-time properties such as worst-case, best-case, and
average-case execution times, as well as stack usage, for
SWCs [7]. The scheduler takes these real-time constraints
into account when creating a schedule. For event-triggered
SWCs, response times are calculated and compared to
the corresponding timing requirements. RCM also supports
various types of timing analysis, including response-time
analysis and end-to-end data-propagation delay analysis [3].

@ Springer
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Fig.2 Rubus research collaborations

2.3 The Rubus run-time framework

In RCM, SWCs are mapped to run-time entities called tasks.
Each external event trigger defines a task, and the SWCs
that are connected through the chain of triggered SWCs are
allocated to that task. SWC chains that are triggered by peri-
odic clocks are assigned to an automatically generated static
schedule that satisfies precedence order and timing require-
ments. The inter-SWC communication within these chains is
optimized to use the most efficient means of communication
for each link. The mapping of SWCs to tasks and the gener-
ation of the schedule can be optimized to minimize response
times or memory usage. The run-time system executes all
tasks on a shared stack, eliminating the need for static allo-
cation of stack memory to each task, which results in a small
runtime footprint for the software architecture.

2.4 The Rubus multi-core hypervisor

The Rubus multi-core hypervisor uses resource isolation
techniques to manage shared resources within and among
cores [8]. These techniques are commonly used in various
fields, e.g., avionics [9, 10], to partition system resources in
time and space. The Rubus hypervisor implements the time
division multiple access (TDMA) [11] protocol to arbitrate
the shared system bus among cores and uses memory par-
titioning techniques to isolate shared memories such as L3
cache and RAM [12]. These isolation techniques allow cores
and partitions within cores to be virtually independent from
one another, meaning that each partition can be treated like
a single-core processor with dedicated resources, although
with reduced capacity based on the size of the shared memory
and system bus bandwidth allocated to it. One benefit of this
model is that the overall system becomes simpler to model,
as there is no need to explicitly model shared resources such
as memories and I/O in the software architecture.

@ Springer
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2.5 The Rubus collaborative research

Rubus has been developed by Arcticus Systems in collabora-
tion with several academic and industrial partners. Figure 2
shows some of these research collaborations in the form
of collaborative research projects. The first collaboration
dates back to 1994 when the Basement collaborative research
project with several Swedish companies and universities was
started. Basement introduced a distributed real-time architec-
ture for the automotive industry that was the foundation for
RCM, which was presented to the research community later
in 2008 [13]. Ever since then, RCM and the whole Rubus
approach have undergone through three major improvements
that happened within more than ten collaborative national and
European research projects.

3 RQ1: publication trends

To answer RQI, we conducted a lightweight literature
review to identify the publication trends of this 20-year-long
academia-industry collaboration over time. We collected the
data through the web search engine Google Scholar® using
the following search string:

“rubus AND component AND model”
We ran a full-text search. The RCM was formally defined in
2008 by Hinninen et al. [1], but the first hints on RCM date
back to 2003. For this reason, we carried out our search from
2003 to date (December 15, 2022).

The initial search gave 265 results. After removing impu-
rities and duplicates, we applied the following inclusion and
exclusion criteria:

e I1: Studies written in English
e I2: Studies exploiting the Rubus Component Model

6 https://scholar.google.com.
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e E1: Studies with full-text not available

e E2: Studies in the form of tutorial papers, editorials,
reports, etc., since they do not carry the type of infor-
mation that we seek.

Eventually, we obtained a set of 171 primary studies. We
provide a publicly available replication package’ containing
the raw data from the initial search and the list of primary
studies.

Figure 3 shows the venue types of the studies over the
years. The high number of conference articles (105 out of
171) and journal articles (37 out of 171) suggests that RCM
has gained interest as a research topic despite being mainly
developed in industrial settings. Conversely, the low number
of workshop papers (19 out of 171) indicates that researchers
tend to focus on journal and conference publications, which
are more likely to carry mature valuable scientific results.
Finally, the tight and fruitful collaboration between Arcticus
and MDU on RCM-related research has produced 5 success-
ful PhDs.

Figure 4 depicts the distribution of publications on RCM
over the years. From 2003 to 2008, seventeen articles were
published. The main focus was on the development of the
commercial product around RCM as well as on its limita-
tions [14]. For example, the Rubus Design Language was
implemented in-house with a custom-built modeling lan-
guage. Additionally, component-level program debugging
was not supported. The generation and synchronization of the
schedulers could not be explicitly defined but were instead
hidden in the tools. From 2008 onward, the number of studies
applying or using RCM increased gradually and reached its
peak in 2017, but maintaining a steady > 10 publications per
year. A few publications were produced in 2009 and 2010, the
first two years after RCM was formalized, and researchers
mainly employed it as related work. However, starting in
2011, the increasing scientific interest in the RCM became
more evident. For instance, Mubeen et al. [15] extended the

7 https://github.com/amletodisalle/SosyM-expert-voice-RCM.

RCM to model different nodes within an embedded sys-
tem. Finally, from 2013, studies published in journal venues,
including the Journal of Systems and Software (JSS), Soft-
ware and Systems Modeling (SoSyM), and the Journal of
Systems architecture (JSA), increased.

In the following, we give some insights into the primary
studies that can be considered milestones in the history of
Rubus.

In 2008 Hianninen et al. [1] defined the new component
model RubusCM v3 to enable the creation of embedded
control systems with a combination of hard, soft, and non-
real-time requirements. In particular, the authors defined
the essential architectural elements such as software circuits
(SWCs), input and output ports, assemblies, and composites
as building blocks to develop the system through differ-
ent views, emphasizing different aspects. Additionally, a
developer could provide real-time execution properties that
allowed triggering executions, execution requirements, and
temporal characteristics of SWCs through actions. Each
SWC has a run-time profile that details the execution time
and memory use across several platforms to enable real-time
analysis.

In 2013 Mubeen et al. [3] extended Rubus-ICE to provide
a complete timing behavior prediction of multi-rate real-
time systems. The authors implemented two plugins for two
well-known timing analysis techniques, i.e., the end-to-end
response-time named end-to-end delay analysis (E2EDA)
and delay analysis named Holistic Response-Time Analysis
(HRTA).

In 2014, Bucaioni et al. formalized the first version of
the RCM metamodel focusing on the elements describing
the software architecture. [16]. In particular, the meta-
model allows abstracting hardware and operating system
elements [17]. Moreover, the metamodel defines metaclasses
for the data and the control flows. In 2020, Bucaioni et al. [2]
extended the first version by including elements to manage
multi-criticality for deployment on multi-core platforms of
vehicular software systems.

In 2018, Bucaioni et al. [18] defined a methodology
for vehicular embedded systems named MoVES based on
model-driven techniques. The aim is to support a system’s
semi-automatic and guided development following timing
properties. In particular, MoVES leverages the collaboration
between EAST-ADL and RCM through model transforma-
tions to allow timing-aware design and model-based timing
analysis of a system.

In 2022, Bucaioni et al. [19] published a study on the
interoperability between the two architectural languages,
AMALTHEA and RCM, for the design and timing analy-
sis of automotive software systems.

@ Springer
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4 RQ2: requirements for the development of
RCM and strategies to fulfill them

The idea for the Rubus concept originated in the late 1990s
in the Basement architecture. At that time, the computing
power of commonly produced electronic control units was
very limited compared to the present day, and the use of
16-bit architecture and operating systems were just start-
ing to become popular. Automotive manufacturers primarily
focused on per-unit cost, and development time and time-to-
market for software were not yet a significant consideration.
Nevertheless, developers were still struggling with issues
related to software quality and integration.

At its dawn, the core emphasis of the Rubus concept was
on resource efficiency and predictability. Over time, many
other aspects of software development have been taken into
account, and, currently, the Rubus concept takes a wide range
of requirements into consideration. The primary technical
requirements (TR) that the Rubus concept aimed at fulfilling
are:

TRI: Resource constrained The implemented system
should conserve use of memory. Especially expensive and
power-hungry RAM should be kept to a minimum.

TR2: Testable and debuggable Components, subsystems, and
the complete system should be amenable for testing both on
the target and the development platforms.

TR3: Analyzable The design needs to be automatically ana-
lyzable both to derive static properties like memory usage and
timing delays, and also to allow optimized code generation
when building tasks and task-chains during synthesis.

@ Springer
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TR4: Portable Components and systems designs should be
portable to new platforms with limited manual effort. The
portability of Rubus designs is dependent on the availability
of compatible compilers and RubusOS for the new platform.
Also, architectural features like word-length and compiler
features like the size of native types may need manual effort
for portation.
TRS5: Interoperable Designs should be able to interoperate
with selected technologies to allow system integration when
parts of the system are developed using other approaches than
the Rubus concept. Technologies that are currently supported
include execution of Autosar components, development of
components using Simulink, architecture generation from
EAST-ADL specifications, and integration of legacy ECUs
communicating in various CAN protocols.
TR6: Validatable and certifiable The system should be able
to validate against top-level requirements and, different parts
of the system should be able to be certified to different safety
levels. This means that both subsystems and the whole sys-
tem should be executable and observable to give sufficient
evidence that all needed properties are satisfied.

In addition, development requirements (DR) addressed by
the Rubus concept include:
DRI: Reusable Components and subsystems should be
reusable across product variants and versions. One of the
industrial users maintains a product line of over 100 variants
of vehicles with many shared physical components. The asso-
ciated software components need to be able to be integrated
into various combinations corresponding to the variations of
the products.
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DR?2: Maintainable A product in the vehicular industry has
a planned life span for several decades and thus the software
needs to be able to evolve with the maintenance of the prod-
uct. The tooling environment needs to allow maintenance of
software components and keep track of versions and variants
and their usage in different products.

DR3: Understandable The component technology needs to
be easy to learn and understand for many types of stake-
holders. A component developer needs to understand the
requirements of a component (usually specified in terms of
input and output of data, and limits on the resource consump-
tion of the component), and a system architect needs to be
able to view the system in a hierarchical way and abstract
away from low-level details, test engineers need to under-
stand the external interfaces and how to insert stimulus and
interpret output to asses test conformance. Etc.

DRA4: Introducible The component technology needs to fit
into the existing development processes and tools. The use
of existing programming languages and system development
tools needs to be supported rather than hindered.

Some of the strategies derived to address DRs are:
Run-to-completion semantics The execution semantics
described in Sect. 2.1 permit a “run-to-completion” approach
where a component continues without interruption once it
starts, as long as all necessary inputs are present. This sim-
plicity makes it easy to combine components and achieve
efficient performance in a minimal runtime environment.
Additionally, the code generator can create individual mem-
ory spaces for input and output buffers, allowing for lock-free
data manipulation. Furthermore, tasks can be preempted and
share the same stack, negating the need for allocating mem-
ory for specific tasks.

Furthermore, the run-to-completion semantics allow com-

ponents (and aggregates of components) to be executed in
isolation for, e.g., testing and debugging. Unit testing of com-
ponents can easily be automated and most tests can be done
in the development environment without the need to deploy
the unit under test to the target hardware.
Source code components The internal function of compo-
nents are represented in C or some dialect of C such as System
C or C++. Basically, any language that can be compiled to
stand-alone machine-code for the target platform can be used
as long as the components’ entry- and exit-points conform
to the C calling conventions. The use of source-code com-
ponents allows components to be generated from other tools
such as Matlab/Simulink.

Although there is a risk that component developers may
violate the established model by including code that cre-
ates unpredictable dependencies on the environment (such
as using global variables), this approach is still chosen. The
Rubus concept does not provide any means to automati-
cally verify that a component’s implementation adheres to
the defined semantics.

Static configuration The strong requirements for resource
efficiency, predictability, testability, and ultimately certifia-
bility to the highest safety levels have led to the decision
to only allow statically configured systems. In Rubus, all
tasks must be defined off-line and created by the code-
generation tool. This results in a very predictable system
with very limited dynamic behavior. The lack of dynam-
icity makes system-level testing much easier than it is for
highly dynamic systems. Certain types of run-time errors are
completely eliminated by the static configuration approach.
These include failure to create tasks and failure to allocate
memory. To provide some level of dynamicity, the Rubus
concept allows a system to switch between a set of predefined
modes. Each mode defines a set of tasks that are executed in
that mode. For an engine-control node, some of the typical
modes would be engine start mode, engine run mode, and
engine shutdown mode. The Rubus concept guarantees that
mode-shifts are done within a predictable time and that all
tasks and memory buffers that are needed for the new mode
are preallocated in memory.

The need for resource efficiency, predictability, testability,
and certifiability to high safety levels has led to the deci-
sion to use only statically configured systems in Rubus. All
tasks must be defined offline and generated by the code-
generation tool, resulting in a highly predictable system with
minimal dynamic behavior. This lack of dynamicity makes
it easier to test the system. Additionally, certain types of run-
time errors are eliminated through the static configuration
approach, such as failures to create tasks and allocate mem-
ory.

To provide some level of dynamic behavior, Rubus allows

for switching between predefined modes, each of which
includes a set of tasks to be executed. For example, in an
engine control node, there may be modes for engine start,
engine run, and engine shutdown. The Rubus concept guar-
antees that mode shifts are completed within a predictable
time frame and that all necessary tasks and memory buffers
are preallocated in memory.
Hybrid task-scheduling The Rubus concept employs three
levels of scheduling, each utilizing different scheduling
mechanisms. At the highest level, tasks are executed by hard-
ware interrupts, which are scheduled by the hardware and
may provide priority or first-in-first-out (FIFO) scheduling.
This level is typically reserved for lightweight device drivers
that have minimal execution time. The second level of prior-
ity is a static cyclic schedule where components triggered by
periodic clocks are placed by the offline code generator. This
level is typically used for functions in higher safety levels
and control loops with tight timing requirements. The low-
est level of scheduling is for dynamically scheduled tasks
triggered by asynchronous events or with very long periods.
These tasks are scheduled using fixed-priority scheduling,
allowing for analysis of worst-case response time.

@ Springer
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As long as the amount of asynchronous event trigger-
ing interrupts and/or dynamically scheduled tasks is bound,
each of the scheduling levels can be used for hard real-
time processing with deterministic upper bounds on their
response-times.

5 RQ3: requirements for the evolution of
RCM and related challenges

Since the late 2010, the automotive industry witnessed a
significant shift in how software was designed, developed,
and used in vehicles. One of the most notable innova-
tions was the increasing use of multi-core processors as a
way of handling the growing amount of data and real-time
processes required by advanced driver assistance systems,
infotainment, etc. Such a shift made languages and solu-
tions specifically tailored to single-core hardly reusable when
dealing with challenges specific to multi-core, such as core
inter-dependency and allocation of parallel software to hard-
ware. Hence, evolving RCM was not only desirable but rather
needed to maintain its place in the automotive domain. Here-
after, we list and describe the main requirements that drove
this evolution (ER).

ERI: Software legacy In the automotive domain, up to 90%
of the vehicle software is reused from previous releases [20].
Hence, the evolution of RCM needed to ensure backward
compatibility with legacy software systems modeled with
older RCM versions and not to cause any modification to the
Rubus run-time framework and certified kernel.

ER2: Supplier legacy Original Equipment Manufacturers
(OEMs) have decennial contracts with Tier-N suppliers
including modeling languages, environments, etc. Changes
to assets such as the evolution of RCM should not affect these
contracts.

ER3: Certified run-time support Model-based solutions
targeting safety-critical sectors such as the automotive
domain rely on certified development environments and
RTOS [21]. Typically, certification processes add a develop-
ment cost overhead between 25 and 100% of the development
costs [22]. Hence, evolutions of RCM needed to be compliant
with the certified development environment and RTOS.
ER4: Interoperability Typically, automotive software is
developed through a constellation of languages, tools and
frameworks. The RCM evolution needed to disclose the
opportunity to easily integrate the Rubus analysis and run-
time frameworks within a typical automotive development
chain.

Besides the requirements mentioned above, we evolved
RCM by providing means for modeling multi-core and
multi-criticality vehicular systems. Multi-criticality refers
to vehicular software composed of various functions with
varying levels of criticality. Some of these functions, e.g.,
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Fig.5 Simplified representation of the RCM packages before and after
the evolution

deployment of airbags, are considered safety-critical and
have strict real-time requirements. Other functions, e.g.,
speedometer, have real-time requirements although not being
safety-critical. Nevertheless, other functions, e.g., infotain-
ment systems, are not considered critical at all. Vehicular
software needs to handle multiple levels of criticality and
allocate it to the appropriate hardware reliably and cost-
effectively. In doing so, we encountered several challenges
that we discuss hereafter.

ECI1: Separation of concerns Separation of concerns aims
at improving the ability to reason about and specify differ-
ent aspects of the software. This concept, first advocated by
Dijkstra [23], has been a key element in developing mod-
ern modeling languages, especially for those supporting the
component-based design pattern [24]. However, in the case
of languages with a strong industrial focus, such as RCM, the
implementation of separation of concerns has been neglected
in favor of more practical considerations. Before the evo-
lution, RCM was a fairly monolithic and blended element
for modeling, e.g., software, hardware, analysis, and aspects
together. Here the challenge was to introduce separation of
concerns while ensuring backward compatibility with legacy
code.

We dealt with this challenge by introducing packages and
removing structural containment occurring between hard-
ware and software elements (more details on this come in the
following paragraphs). Prior to the evolution, RCM did not
feature any package (see Fig.5). Although not optimal, this
was a pragmatic choice driven by the language only meant
to support one single type of target hardware platform. We
introduced packages for introducing and ensuring the sep-
aration of concerns, improving the understandability of the
language, and enhancing its extensibility.

EC2: Extending hardware modeling capabilities — Before
the evolution, RCM only allowed the modeling of single-
core CPU-based hardware. We needed to evolve RCM to
allow the modeling of multi-core, even heterogeneous, hard-
ware architectures. This included general information about
the hardware (e.g., partitions, number of cores) and rela-
tionships among hardware elements. Here the challenge was
two-folded. On the one hand, the evolution should have intro-



Before the evolution After the evolution

Fig.7 Simplified representation of the elements providing for the allo-
cation of software to hardware before and after the evolution
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Fig.6 Simplified representation of the elements in the hardware pack-
age before and after the evolution

duced the minimum number of hardware elements crucial
for the software to hardware allocation and for modeling and
extracting the timing information to support the timing anal-
ysis engines. On the other hand, the evolution should not have
invalidated previous hierarchies of hardware elements.
First, we evolved RCM with elements for modeling cores
and partitions as depicted in Fig.6. In its previous def-
inition, Target contained Mode elements, whereas Mode
acted as a container for the software application. However,
such a containment relation was too restrictive for model-
ing multi-criticality software on multi-core as it prescribed
that software elements (represented by Mode elements) were
structurally contained by hardware elements (represented by
Target elements). This pragmatic choice suited the modeling
of single-core CPU-based hardware since the allocation of
software to hardware cannot variably split across cores.
Nevertheless, multi-criticality software on multi-core
CPU-based hardware demanded more flexibility since the
allocation of software to hardware is a variability point that
can be affected by the criticality levels, and a structural
containment can hardly represent that. To provide such flex-
ibility while ensuring backward compatibility with legacy
RCM models, we modified the existing hierarchy adding the
metaclasses TargetlLegacy and TargetNew, both inheriting
from the abstract metaclass Target. TargetLegacy represents
a legacy single-core processor. Hence, we did not modify its
structural containment with Mode elements. TargetNew can
represent either a single- or multi-core processor. TargetNew
contains one or more core elements, which in turn can con-
tain partition elements. The software to hardware allocation

information for the elements in the new hierarchy is entrusted
by a many-to-many association between allocatable and allo-
cator elements (more details on this come in the following
paragraphs).

EC3: Allocation of software to hardware As discussed above,
the allocation of multi-criticality software to multi-core
CPU-based hardware is a variability point that demands
greater flexibility than the allocation of software to single-
core CPU-based hardware. We addressed this challenge by
acting in two directions. First, we introduced new model-
ing elements: the metaclasses application, allocatable and
allocator (along with their attributes) and the isAllocated
association between allocatable and allocator (see Fig.7).
In addition, we enriched RCM with a structural constraint
specified through the object constraint language (OCL) as
an invariant of partition elements to prevent software with
different criticality levels from being allocated together on
the same partition.

Application elements model pieces of software imple-
menting a dedicated functionality. They have an attribute
criticalityLevel that specifies the level of safety criticality
according to the ISO 26262 automotive safety standard. The
standard has four levels of criticality (A to D), where A is
the lowest criticality level, whereas D is the highest criticality
level. To prevent software applications with different critical-
ity levels from being allocated together on the same partition,
we evolved RCM with the structural OCL constraint speci-
fied in Listing 1.

1 FOR each application::Application allocated to
partition::Partition
2 criticality.add (application.
criticalityLevel) ;
i IF criticality.size () <=1 THEN

5 True
6 ELSE
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7 False
8}

Listing 1 OCL constraint avoiding that no Application elements with
different criticality levels are allocated on the same Partition element.

EC4: Run-time support Functional safety is paramount in
the vehicular domain. To earn acceptance, RCM needed to
provide modeling capabilities for capturing all the character-
istics of vehicular applications along with certified run-time
support. Here, the challenge was to identify a design option
that would enable the reuse of the certified Rubus Kernel. To
address this challenge, we used resource-isolation techniques
for the arbitration of intra- and inter-core shared resources.
Such techniques are used in many sectors (e.g., avionics [9,
10, 25]) to ease and partition the system resources in time
and space. The Rubus hypervisor implements the time divi-
sion multiple access (TDMA) protocol to arbitrate the shared
system bus among the cores [11]. Similarly, memory parti-
tioning techniques are used to isolate the shared memories,
including L3 cache and RAM among the cores [12]. Isola-
tion techniques enable cores and partitions within those cores
to become virtually independent from other cores or parti-
tions. Simply put, each partition can be seen as a single-core
processor equivalent with dedicated system resources. The
single-core processor equivalent model simplifies the over-
all system model as there is no need to model memories
explicitly, I/Os, and other shared resources in the software
architecture. This is reflected in the evolution of RCM,
which did not entail any modeling elements for these con-
cerns. One drawback is that the evolved RCM is not suitable
for approaches where explicit modeling of the memory is
required. Moreover, the virtualized design option increases
the overall footprint of the developed vehicular application
since each core or partition can host a separate instance of
the kernel. In our case, this was not a primary concern as the
footprint of the Rubus Kernel is reasonably low.

6 Discussion

Although introduced in the 1990s, the Rubus concept has
succeeded in keeping its place as a favorite development
approach for market leaders in the automotive, aerospace,
and defense sectors throughout these many years. This suc-
cess can be attributed to a combination of well-tailored initial
development requirements (Sect.4) and thoughtful evolu-
tions over time (Sect. 5). Rubus’ ability to meet the demands
of end-users while staying at the forefront of technological
advancements in multiple IT fields has been a crucial ele-
ment in its success over time. From component-based and
model-driven software architecture, design, and engineering,
to safety-critical hard real-time scheduling, the concept has
been able to remain relevant by incorporating the latest scien-
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tific advancements. The thoughtful evolution of the language
improved the decoupling of the modeling concepts from the
Rubus ICE. In turn, this allowed for steady progress that did
not disrupt the, e.g., tools’ compliance with the ISO-26262
standard for functional safety in road vehicles.

From a technical perspective, the journey of defining and
evolving RCM has been very enlightening. For example, the
diversification of use and details contained in source code
components and model components has taught us valuable
lessons. By maintaining the existing source code components
“as-is” before evolving RCM, we were able to capitalize on
existing compilers and third-party tools to generate source
code components. This allowed us to purposefully charac-
terize functionality at a different level of detail than model
components, which is not only useful but in most cases nec-
essary for device drivers. Additionally, this mechanism can
also be used to efficiently include legacy functions that do
not conform to RCM metamodel, as well as to include COTS
components, provided they are certified. While this flexibility
in the definition of source code components is a vital feature,
it must be handled with care by the engineer. For example, in
early usage, engineers tended to rely on global variables for
data structures that were too large to transit through ports,
which can lead to problems if not handled properly.

In terms of scheduling, the Rubus concept enforces a strict
synchronization model that is based on run-to-completion
and read-execute-write semantics. This model has proven to
be highly attractive for the embedded systems community,
and as a result, major standard safety-critical architectures
such as Autosar have adopted it. However, it is important
to note that while more flexible models, such as those that
allow for synchronization within components or flexible syn-
chronization patterns in component connectors, may seem
appealing, they tend to result in systems that are less pre-
dictable, less analyzable, and less optimizable. To maintain
the aforementioned model, we evolved Rubus according to
the virtualization design option. This approach involves using
a single-core processor equivalent model for multi-core sys-
tems. This simplified the overall system model as there is
no need to explicitly model memories, I/Os and other shared
resources in the software architecture. However, it should be
noted that this approach made the evolved RCM less suitable
for situations where explicit memory modeling is required.
Additionally, the virtualization design option increases the
overall footprint of the developed application as each core or
partition can host a separate instance of the kernel.

The practical deployment of software in industrial settings
required a high level of verifiability, including analyzability,
debuggability, and testability [26]. To achieve this, automa-
tion and the ability to perform these activities within the
development environment were crucial [27]. The evolution
of Rubus, specifically the implementation of a metamodel
definition, facilitated the definition of seamless and round-
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trip verification processes [28]. This is exemplified by the
integration of Rubus with other industrial automotive lan-
guages such as EAST-ADL and AMALTHEA, as described
in Sect. 2.

Standards are of crucial importance in software engineer-
ing, especially in application domains with specific criticality
issues. Standards, both de-jure and de-facto, are hard to
establish and maintain. RCM and the tooling around it can
be considered a de-facto standard in certain safety-critical
real-time domains in defence and construction vehicles. Cer-
tification processes of both the design tool and the runtime
(RTOS) are very expensive activities, both in terms of time
and cost. It is then crucial, in similar settings, to build
such an ecosystem in a component-based manner, where the
various parts can be certified by themselves and the interac-
tion between parts strictly follow a formalized specification.
Doing so, changes to one part do not trigger the need to re-
certify the entire ecosystem, but rather focus on the changed
portion.

7 Outlook

The use of component-based and model-driven software
engineering methodologies has proven key to effectively
dealing with the great complexity of vehicular embedded
software and the challenges posed by its development. Our
work in improving the development of such systems through
Rubus continues.

Some of the ongoing works focus on addressing the chal-
lenges related to providing Rubus ICE with agile features
as well as support for blended modeling [29] notations such
as textual and graphical. Another research line focuses on
providing Rubus with more effective ways to analyze and
optimize software product lines. Eventually, we are also
extending the language with support for new network proto-
cols such as Ethernet or wireless protocols.
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