
From Macro Plans to Automata Plans

Christer Bäckström 1 and Anders Jonsson 2 and Peter Jonsson 1

Abstract. Macros have a long-standing role in planning as a tool for

representing repeating subsequences of operators. Macros are useful

both for guiding search towards a solution and for representing plans

compactly. In this paper we introduce automata plans which con-

sist of hierarchies of finite state automata. Automata plans can be

viewed as an extension of macros that enables parametrization and

branching. We provide several examples of the utility of automata

plans, and prove that automata plans are strictly more expressive than

macro plans. We also prove that automata plans admit polynomial-

time sequential access of the operators in the underlying “flat” plan,

and identify a subset of automata plans that admit polynomial-time

random access. Finally, we compare automata plans with other rep-

resentations allowing polynomial-time sequential access.

1 INTRODUCTION

In artificial intelligence planning, it is common to encounter planning

problems, or sets of planning problems, whose solutions contain re-

peating subsequences of operators. Such planning problems present

an opportunity to reduce the work of planning algorithms, either by

maintaining a library of known repeating subsequences in the hope

of reducing the search effort, or simply by obviating the need to store

multiple copies of the same subsequence.

Macros have long been a popular tool in planning for representing

repeating subsequences of operators. Several researchers have used

macros in the context of search [4, 13, 15], where the idea is that

longer subsequences of operators can help the search algorithm reach

the goal in fewer steps. In some cases [13], the resulting search space

can even be exponentially smaller than the original search space.

Macros can also be used as a compact representation of plans with

repeating subsequences. Under certain conditions, a macro represen-

tation of a plan can be exponentially smaller than the plan itself.

Sometimes it is even possible to generate a macro representation of

an exponentially long plan in polynomial time [9, 11]. In the lat-

ter case, macros can be viewed as a tool for identifying classes of

tractable planning problems.

In this paper we introduce the concept of automata plans, which

are plans represented by hierarchies of finite state automata. Au-

tomata plans can be viewed as an extension of macro plans in two di-

mensions. The first dimension is that automata can be parametrized,

making it possible to store families of repeating subsequences com-

pactly, where a family consists of all possible assignments to the vari-

ables in the input of the automata. The second dimension is that au-

tomata can branch on input, making it possible to represent similar

subsequences of operators and distinguish between them by provid-

ing different input to the automata.

1 IDA, Linköping University, SE-581 83 Linköping, Sweden.
Email: christer.backstrom@liu.se peter.jonsson@liu.se

2 DTIC, Universitat Pompeu Fabra, 08018 Barcelona, Spain.
Email: anders.jonsson@upf.edu

Finite state automata are commonly used to program behavior

in robotics [5] and computer games [6]. In planning, researchers

have proposed automata or automata-like representations of the en-

tire planning problem [10, 14] and of individual variables [16]. There

also exist algorithms that derive automata-like representations of

plans automatically [3, 8] or from examples [17]. However, we are

unaware of any application of hierarchical automata in planning.

In this paper we focus on the problem of plan representation, al-

though we note that automata plans may also prove useful during

search, or as a tool for defining novel classes of tractable planning

problems as in the case of macros [11]. We show that automata plans

offer a flexible and powerful way of representing plans, by provid-

ing several examples of how automata plans can be used to store

plans compactly. We also compare automata plans to HTNs, which

are similar in concept but usually viewed as a representation of plan-

ning problems as opposed to a plan representation.

We study the theoretical properties of automata plans and compare

them to existing compact plan representations. We first show that au-

tomata plans are strictly more expressive than macro plans. We then

relate automata plans to plan representations that allow polynomial-

time random access or sequential access [1]. We show that a sub-

class of automata plans can be random accessed in polynomial time,

and that representations that admit polynomial-time sequential ac-

cess cannot be converted to automata plans in polynomial time.

The paper is organized as follows. Section 2 introduces notation

that is used throughout. Section 3 presents the concept of automata

plans, and Section 4 provides examples of their utility. In Sections 5–

7 we prove several theoretical results regarding automata plans and

related representations. Section 8 concludes with a discussion.

2 NOTATION

Let F be a set of fluents. A literal l is a positive or negative fluent.

A set of literals L is consistent if f /∈ L or f /∈ L for each f ∈ F .

Let L+ = {f ∈ F : f ∈ L} and L− = {f ∈ F : f ∈ L} be the

sets of positive and negative fluents in L. A set of literals L holds in

a state s ⊆ F if L+ ⊆ s and L− ∩ s = ∅. Applying L to s results

in a new state (s \ L−) ∪ L+. Given a set X , let X∗ and X+ denote

sequences and non-empty sequences of elements from X .

A STRIPS planning problem with negative pre-conditions is a tu-

ple p = 〈F, O, I, G〉, where F is a set of fluents, O a set of op-

erators, I ⊆ F an initial state, and G ⊆ F a goal state. Each op-

erator o = 〈pre(o), post(o)〉 ∈ O has a pre-condition pre(o) and

a post-condition post(o), both consistent sets of literals. A plan for

p is a sequence of operators ω = 〈o1, . . . , ok〉 such that, for each

1 ≤ i ≤ k, pre(oi) holds following the application of o1, . . . , oi−1

to I . We say that ω solves p if G holds after applying o1, . . . , ok to I .

Given two sequences ω and ω′, let ω; ω′ denote their concatenation.

We also define an untyped STRIPS planning domain as a tuple

d = 〈P, A〉, where P is a set of predicates and A is a set of actions.

Each predicate p ∈ P and action a ∈ A has an associated number of

parameters n(p) and n(a), respectively. The pre- and post-condition

of an action a consist of sets of (positive or negative) predicates, each

with an associated function from its parameters to {1, . . . , n(a)}.

In this context, a STRIPS planning problem is induced by a tu-

ple 〈Λ, I, G〉, where Λ is a set of objects that implicitly defines sets

of fluents F and operators O by assigning objects to parameters of

predicates in P and actions in A, respectively. Each pre- and post-

condition of an operator a(λ1, . . . , λn(a)) ∈ O, where λj ∈ Λ for

each 1 ≤ j ≤ n(a), is given by p(λϕ(1), . . . λϕ(n(p))) ∈ F , where

ϕ is the function from p’s parameters to a’s parameters.

Note that, for each predicate p ∈ P and action a ∈ A of a planning

domain, the planning problem induced by 〈Λ, I, G〉 has |Λ|n(p) flu-

ents and |Λ|n(a) grounded operators. To avoid an exponential blowup

in the size of the planning problem, we assume that n(p) and n(a)
are constants that are independent of the size of d = 〈P, A〉.

3 AUTOMATA PLANS

Let Σ be an alphabet, A a set of actions, and M a set of automata.

Also let AΣ = {a[x] : a ∈ A, x ∈ Σ∗} and MΣ = {M [x] : M ∈
M, x ∈ Σ∗}. Intuitively, AΣ corresponds to operators and MΣ to

automata calls. An automaton is a tuple M = 〈G, sI , sA〉, where

• G = (S, E) is a graph on a set of states S,

• sI ∈ S is the initial state,

• sA ∈ S is the accepting state.

Each edge (s, t) ∈ E has an associated label c/u, where c ∈ Σ∪{ǫ}
is a condition and u ∈ (AΣ ∪MΣ)∗ is a sequence of action symbols

(i.e. operators and automata calls). Automata with more than one ac-

cepting state can easily be converted to automata with one accepting

state, by adding a new accepting state sA to S and an edge (s, sA)
with label ǫ/〈〉 from each former accepting state s.

The execution model for an automaton M consists of an input

string x ∈ Σ∗, a current state sC (initially set to sI), an index k (ini-

tially set to 0), and a sequence of action symbols θ (initially empty).

We only consider deterministic automata such that each state s ∈ S
has either no outgoing edge, exactly one outgoing edge with condi-

tion ǫ, or |Σ| outgoing edges, each with a distinct condition σ ∈ Σ.

The execution of an automaton proceeds as follows. If sC has a

single outgoing edge (sC , s) with label ǫ/u, sC is set to s and u is

appended to θ. If sC has |Σ| outgoing edges, the symbol x[k] at in-

dex k of the input string x determines which edge to move along.

If (sC , s) is the outgoing edge with label x[k]/u, sC is set to s, k is

incremented, and u is appended to θ. If sC = sA or sC has no outgo-

ing edges, execution stops. The result of executing an automaton M
on input x is Apply(M, x) = θ if sC = sA when execution stops,

and Apply(M, x) = ⊥ otherwise. We only consider automata such

that |Apply(M, x)| ≥ 1 whenever Apply(M, x) 6= ⊥.

Note that our definition forces automata to process the symbols of

the input string x in order. We do not, however, require automata to

process all symbols of the input string, although it would be trivial

to extend our definition to such automata by introducing |Σ| edges

from sA to itself, each with label σ/〈〉 for some σ ∈ Σ. In contrast,

we allow the input strings x′ of the action symbols a′[x′] and M ′[x′]
in edge labels to freely copy symbols from x in any order.

The expansion graph GM = 〈M, ≺〉 is a directed graph where,

for each pair M, M ′ ∈ M, M ≺ M ′ if and only if the automata call

M ′[x′] appears in some edge label of M , for any x′ ∈ Σ∗.

An automata plan is a 4-tuple µ = 〈Σ, A,M, r〉 where

• Σ, A, M, and each automaton M ∈ M are defined as above,

• GM is acyclic and its underlying undirected graph is connected,

• r ∈ MΣ.

We refer to r as the root of µ. We define the expansion function Exp
on (AΣ ∪ MΣ ∪ {⊥})∗ ∪ {⊥} as follows:

1) Exp(⊥) = ⊥,

2) Exp(a[x]) = a[x] if a[x] ∈ AΣ,

3) Exp(M [x]) = Exp(Apply(M, x)) if M [x] ∈ MΣ,

4) Exp(u1; . . . ; uk) = ⊥ if Exp(ui) = ⊥ for some 1 ≤ i ≤ k,

5) Exp(u1; . . . ; uk) = Exp(u1); . . . ; Exp(uk) otherwise.

Lemma 1. For each automata plan µ = 〈Σ, A,M, r〉,

Exp(M [x]) ∈ A+
Σ ∪ {⊥} for each M [x] ∈ MΣ.

Proof. We prove the lemma for all automata plans µ = 〈Σ, A,M, r〉
and all choices of M [x] ∈ MΣ by induction over |M|. If |M| =
1, since GM is acyclic, Apply(M, x) is either ⊥ or a sequence of

operators in A+
Σ . In either case, Exp(M [x]) = Apply(M, x).

If |M| = n > 1, Apply(M, x) is either ⊥, in which case

Exp(M [x]) = ⊥, or a sequence of action symbols u1; . . . ; uk ∈
(AΣ ∪ (M \ {M})Σ)+. Since |M \ {M}| = n − 1, by hypothesis

of induction Exp(ui) ∈ A+
Σ ∪ {⊥} for each 1 ≤ i ≤ k such that

ui = M ′[x′] is an automaton. On the other hand, if ui = a′[x′]
is an operator, Exp(ui) = ui ∈ AΣ. If Exp(ui) = ⊥ for some

1 ≤ i ≤ k, then Exp(M [x]) = ⊥, else Exp(M [x]) ∈ A+
Σ .

An automata plan µ represents an operator sequence ω if and only

if Exp(r) = ω. We remark that a macro plan is a special case of an

automata plan with empty input strings and such that each automaton

has a single edge from sI to sA with condition ǫ. We show that just

as for macros, the operators represented by an automata plan can be

sequentially accessed with polynomial delay.

Lemma 2. Given a polynomial-size automata plan µ for a plan ω,

we can output the operators of ω sequentially with polynomial delay.

Proof sketch. We can output the operators represented by µ in se-

quential order by maintaining a stack of execution models (current

input string x, current state sC , current index k) for each automaton

recursively called by the root automaton. Since we require the expan-

sion of each automaton to contain at least one operator, an automaton

never has to make more than one additional recursive call (that might

propagate down to a leaf) to reach the next operator. Combined with

the fact that the expansion graph GM is acyclic and has polynomial

size, and that the size of each automaton is polynomially bounded,

we can always output the next operator in polynomial time.

4 EXAMPLES

In this section we show several examples of the expressive power

of automata plans. Just like macros, automata plans can com-

pactly represent plans that are exponentially long. Figure 1 shows

an automaton Mn for moving n discs from peg x to peg y via

peg z in Towers of Hanoi (ToH). An[xy] is the action for mov-

ing disc n from x to y. For n = 1 the edge label should be

ǫ/〈A1[xy]〉. It is not hard to show that the automata plan µ =
〈{1, 2, 3}, {A1, . . . , AN}, {M1, . . . , MN}, MN [132]〉 is a plan for

the ToH instance with N discs. Unlike macro solutions for ToH [11],

the automata plan has a single automaton for each number n of discs.

The ability to parametrize automata also makes it possible to rep-

resent other types of plans compactly. Figure 2 shows an automaton

ǫ/〈Mn−1[xzy], An[xy], Mn−1[zyx]〉

Figure 1. Automaton Mn[xyz] for Towers of Hanoi.

D for delivering a package in Logistics. The set of symbols Σ con-

tains the objects of the problem: packages, airplanes, trucks, cities,

and locations. The input to D is the package p to be delivered, an

airplane a and two trucks tf , tt, two cities cf and ct, the current and

target location lf and lt of the package, the current location v of the

airplane and w, x of the two trucks, and intermediate airports y, z.

Figure 2 also shows the automaton T for moving a package us-

ing a truck. DT, LT, and UT stand for DriveTruck, LoadTruck, and

UnloadTruck, respectively. The automaton A for moving a package

using an airplane is almost identical. These three automata can be

used to move any package between any two locations given the initial

location of the different objects. Note that the validity of the solution

depends on DT and FA (FlyAirplane) working properly even if the

current and target location are the same.

The ability to branch on input also makes it possible for automata

plans to represent more complex plans. For example, in contingent

planning, a plan is a tree that branches on the observations made dur-

ing execution. We can represent a contingent plan as an automata

plan with symbols {0, 1}, such that the input string of the root au-

tomaton determines the chain of observations made during plan ex-

ecution (the automata plan thus represents a single branch of the

contingent plan tree). The meaning of each observation need not be

known. In the worst case, the automata plan is as big as the original

contingent plan. However, if the contingent plan contains subtrees

that repeat themselves, each such subtree can be represented as a sin-

gle automaton, causing the plan to be more compact. This is true even

if the actions in two different subtrees have different parameters.

Finally, it is possible to define recursive automata that call them-

selves, branching on the input in a way that causes recursion to stop

when the base case is reached. For example, we could modify the

ToH example so that the solution is represented by a single recursive

automaton M such that the number of discs n is part of the input

string. Note, however, that some of the properties we later prove re-

garding automata plans do not apply if we allow recursive automata.

Automata plans are similar in concept to Hierarchical Task Net-

works (HTNs), in that both are hierarchical formalisms for planning.

However, HTNs are usually viewed as a representation of planning

problems, while automata plans are a representation of plans (i.e. so-

lutions to planning problems). In this respect, an important difference

is that HTNs need to keep track of the current state to search for a

plan, something automata plans (as defined in this paper) cannot do.

To keep track of the effect of operators on the current state, each au-

tomaton would need a mechanism for returning an output string that

can be interpreted by its “parent” automata.

5 AUTOMATA PLANS AND MACROS

In this section we show that automata plans are strictly more expres-

sive than macros. We first show that any macro plan can be converted

to an automata plan. We then prove that there are small automata

plans that cannot be converted to any macro plan of polynomial size.

Lemma 3. Every STRIPS plan ω that can be represented using poly-

nomially many macros has an automata plan µ of polynomial size.

ǫ/〈T[tfpwlfycf], A[apvyz], T[ttpxzltct]〉

ǫ/〈DT[txyc], LT[tpy], DT[tyzc], UT[tpz]〉

ǫ/〈FA[axy], LA[apy], FA[ayz], UA[apz]〉

Figure 2. Automata D[patf ttcf ctlf ltvwxyz] for delivering a package
and T[tpxyzc], A[apxyz] for moving a package using a truck/airplane.

Proof. Replace every macro with an automaton having a single edge

from sI to sA with condition ǫ.

Definition 4. Let R be a type of plan representation. Then the fol-

lowing problem is defined for R:

Operator in Interval

INSTANCE: A STRIPS problem p, an R representation ρ of an oper-

ator sequence ω ∈ O∗, an operator o ∈ O and two integers i and j
such that 1 ≤ i < j ≤ |ω|.
QUESTION: Does o occur in position k of ω for some i ≤ k ≤ j?

Lemma 5. Operator in Interval is in P for macro plans.

Proof sketch. We can compute the length of the full expansion of

all macros in polynomial time [2], by viewing macro plans as con-

text free grammars with the non-terminal symbols being macros, the

terminal symbols operators, the production rules the sequences asso-

ciated with each macro, and the start symbol the root macro. Given

i and j we can find all macros that are used in the expansion of the

subsequence from i to j. It is sufficient to check if o occurs in the di-

rect expansion of any of these macros. If the index i is in the middle

of a macro expansion, we should only recursively check the macros

that contain operators from i forward (the opposite is true for j).

We next construct a planning instance pn corresponding to the set

of all 3SAT instances on n variables. We show that the solution to pn

can be represented by a small automata plan.

Construction 6. For an arbitrary positive integer n, define the set

Xn = {x1, . . . , xn} of atoms and the corresponding set Ln =
{ℓ1, . . . , ℓ2n} of literals, where ℓ2i−1 = xi and ℓ2i = xi for

each i. Also define a total order < on Ln such that ℓi < ℓj if

and only if i < j. Let Cn = {c1, . . . , cm(n)} be the set of all 3-

literal clauses over Ln, where each clause is represented as a tuple

ck = 〈ℓ1k, ℓ2k, ℓ3k〉 such that ℓ1k, ℓ2k, ℓ3k ∈ Ln and ℓ1k ≤ ℓ2k ≤ ℓ3k.

Construct a STRIPS instance pn = 〈Fn, On, In, Gn〉, where

Fn = {fe, fx, fs, sat, e1, . . . , em(n), x1, . . . , xn, v0, . . . , vm(n)},

In = ∅, Gn = {fe, e1, . . . , em(n), x1, . . . , xn}, and On given by

os = 〈{fe, v0}, {v0, fs}〉
ol1k = 〈{vk−1, vk, ek, ℓ1k}, {vk}〉

ol2k = 〈{vk−1, vk, ek, ℓ1k, ℓ2k}, {vk}〉

ol3k = 〈{vk−1, vk, ek, ℓ1k, ℓ2k, ℓ3k}, {vk}〉

onk = 〈{vk−1, vk, ek, ℓ1k, ℓ2k, ℓ3k}, {vk, fs}〉
ovk = 〈{vk−1, ek}, {vk}〉
ot = 〈{vm(n), fs}, {fx, v0, . . . , vm(n), sat}〉

of = 〈{vm(n), fs}, {fx, v0, . . . , vm(n)}〉

oxj = 〈{fx, xj , xj+1, . . . , xn}, {fe, fx, xj , xj+1, . . . , xn}〉
oei = 〈{fe, x1, . . . , xn, ei, ei+1, . . . , em(n)},

{fe, sat, x1, . . . , xn, ei, ei+1, . . . , em(n)}〉

Lemma 7. For each positive integer n, the STRIPS instance pn

according to Construction 6 always has a unique plan ωn =
〈o1, . . . , oh〉 with the following property: For every 3SAT instance

s with n variables there are two polynomial-time computable indices

i and j such that s is satisfiable if and only if the subplan oi, . . . , oj

contains one or more occurrences of operator ot.

Proof sketch. The instance pn has a unique solution ωn of the form

ωn = E0, oe, E1, oe, . . . , oe, E2m(n)−1,

Ei = V 0
i , ox, V 1

i , ox, . . . , ox, V 2n−1
i ,

Vi = os, oy1, oy2, . . . , oym(n), oz.

The variables e1, . . . , em(n) and x1, . . . , xn are used as two binary

counters e and x and the plan can be viewed as a nested loop. Each

oe operator is a deterministic choice among oe1, . . . , oem(n), and

the same holds for ox. The outer loop enumerates all values from 0
to 2m(n) − 1 for e. There is one variable ei for each clause in Cn, so

this loop enumerates all 3SAT instances over Xn. That is, each Ei

block corresponds to a unique 3SAT instance si.

For each such instance, the inner loop enumerates all possible as-

signments to the variables in Xn. There is a V j
i block for each as-

signment whose purpose is to check if si is satisfied for the current

assignment. A V j
i block contains exactly one operator oyk for each

of the m(n) clauses, checking each of the clauses in order. If clause

ck is not “enabled” (that is, ek is false) then oyk = ovk which “skips

over” the clause. Otherwise, oyk = onk if the clause is not satisfied

in the current assignment x, and either of ol1k, ol2k, ol3k if it is sat-

isfied. Note that the latter three operators are mutually exclusive so

the choice is deterministic. Each V j
i block ends with ot if all enabled

clauses were satisfied for the current assignment and of otherwise.

The variable fs keeps track of whether all clauses were satisfied.

The variable sat is false at the start of every Ei block and is true at

the end if and only if all clauses were satisfied for some assignment to

x. The only action that makes sat true is ot, so si is satisfiable if and

only if ot occurs in block Ei. Since the plan has a regular structure

and all blocks of the same type have the same length, it is trivial to

compute the indices for the start and end of an Ei block.

Note that the variable sat is not part of any precondition or the goal;

it is the operator ot itself that we use in the proof of the next lemma.

Lemma 8. Unless the polynomial hierarchy collapses there is no

polynomial p such that for every positive integer n, the plan ωn for

pn according to Lemma 7 has a macro plan of size at most p(||pn||).

Proof. Suppose there is a polynomial p such that ωn has a macro

plan µn of size at most p(||pn||) for each n > 0. Construct an

advice-taking deterministic Turing machine M with input i on the

form Ii
n = 〈pn, i〉, where n and i are integers such that n > 0 and

0 ≤ i < 2m(n). Let i be represented in binary using m(n) bits. Then

the input size sn = ||Ii
n|| is strictly increasing in n and does not de-

pend on i. Define the advice function a such that a(sn) = µn. Since

M chooses advice based only on the size of its input the choice of

advice depends entirely on n and is independent of i.
Given an arbitrary 3SAT instance s we can compute n and i such

that s corresponds to block Ei in plan ωn and thus compute Ii
n, all

in polynomial time. Lemma 7 says that s is satisfiable if and only

if block Ei of ωn contains operator ot. Since the advice a(sn) =
µn is macro plan for ωn and the advice is given to M for free, it

follows from Lemma 5 that we can use M to decide satisfiability for

an arbitrary 3SAT instance in polynomial time. However, that means

NP ⊆ P/poly, which is impossible unless the polynomial hierarchy

collapses [12, Theorem 6.1], thus contradicting that p exists.

Note that this proof does not make any assumption about the time

complexity of computing µn, just that such a macro plan exists.

We say that an automata plan is append restricted if whenever an

automaton with input string x calls another automaton it can only

pass as input a constant string or x with a constant string appended.

Note that this imposes a strong condition on automata.

Lemma 9. There is a polynomial p such that for each n > 0, the

plan ωn for STRIPS instance pn according to Lemma 7 has an au-

tomata plan ρ of size at most p(||pn||), even if ρ is append restricted.

Proof. For each n > 0, there exists an automata plan ρn =
〈{0, 1}, {Ei} ∪ {Xj} ∪ {Sk} ∪ {Uk}, On, E1[]〉, shown in Figure

3, that represents ωn. Since m(n) < 8n3 there is some polynomial

p such that ||ρn|| ≤ p(||pn||) for each n.

The automata plan works as follows. The automata E1, . . . , Em(n)

enumerate all combinations of values for the e variables, and the au-

tomata X1, . . . , Xn enumerate all combinations of values for the x
variables. Whenever S1[x] is called, the input string consists of m(n)
literals for the e variables in order, followed by n literals for the x
variables in order.

Each clause ck is verified by either Sk or Uk, which are almost

identical. They first check the e literals to see if clause ck is enabled

(1) or not (0). If it is enabled, then they continue to the end of the

e literals and then check the x literals. This can be done in a sim-

ilar fashion since we have assumed that the literals of a clause are

ordered. The purpose of the automata fragments η1, η2, ξ1, ξ2, and

ξ3 is simply to consume the correct number of input symbols. For

reference, η1 appears at the bottom of Figure 3.

The symbol ℓ1k on labels in Sk or Uk represents 1 if ℓ1k = xi for

some i, and 0 otherwise. The opposite is true for ℓ1k. If ck is satis-

fied by one of ℓ1k, ℓ2k, ℓ3k, then Sk[x] calls Sk+1[x] to verify the next

clause, otherwise it calls Uk+1[x], while Uk[x] always calls Uk+1[x].
Automaton Sk+1[x] is called if and only if c1, . . . , ck are either

satisfied or disabled. As soon as we find a clause that is enabled but

not satisfied we shift from S automata to U automata and can never

shift back. This constitutes a simple memory to keep track of whether

all clauses were satisfied or not. Note that the U automata must still

check each clause and output the correct operator in order to repre-

sent the exact plan ωn. The only difference is that the S “branch” and

the U “branch” output different operators at the end.

In Section 6 we show that we can randomly access the operators

of the automata plan ρn from the proof of Lemma 9 in polynomial

time. This does not contradict Lemma 8 (in fact, Operator in Inter-

val is NP-hard for automata plans, which we leave without proof).

Intuitively, even though we can access individual operators in poly-

nomial time, the interval [i, j] can be exponentially large, and for

the given interval, each automaton is called with exponentially many

different input strings, which makes it hard to determine whether a

given operator is part of an interval.

Theorem 10. Automata plans are strictly more compact than macro

plans. This holds even for append restricted automata plans.

Proof. Follows directly from Lemmas 3, 8, and 9.

6 AUTOMATA WITH UNIFORM EXPANSION

A CRAR [1] is any polynomial representation of a plan that allows

polynomial-time random access of its operators. Any plan that can

Ei[x] ǫ/〈Ei+1[x0], oei, Ei+1[x1]〉

Em(n)[x] ǫ/〈X1[x0], oem(n), X1[x1]〉

Xj [x] ǫ/〈Xj+1[x0], oxj , Xj+1[x1]〉

Xn[x] ǫ/〈os, S1[x0], oxn, os, S1[x1]〉

ℓ2k/〈ol2k〉

ℓ2k/〈ol2k〉

Sk[x] η1

1/〈〉 η2

ǫ/〈〉

ξ1

ℓ1k/〈ol1k〉

ℓ1k/〈〉 ξ2 ℓ2k/〈〉 ξ3

0/〈ovk, Sk+1[x]〉

ℓ3k/〈ol3k〉

ℓ3k/〈onk, Uk+1[x]〉

ǫ/〈Sk+1[x]〉

Uk[x] η1

1/〈〉 η2

ǫ/〈〉

ξ1

ℓ1k/〈ol1k〉

ℓ1k/〈〉 ξ2 ℓ2k/〈〉 ξ3

0/〈ovk, Uk+1[x]〉

ℓ3k/〈ol3k〉

ℓ3k/〈onk, Uk+1[x]〉

ǫ/〈Uk+1[x]〉

Sm(n)+1[x] ǫ/〈ot〉

Um(n)+1[x] ǫ/〈of〉

η1

0/〈〉

1/〈〉

0/〈〉

1/〈〉

Figure 3. Automata used in the proof of Lemma 9.

be represented by a polynomial-size macro plan has this property [2]

(again, by viewing macros as context free grammars). In this section

we show that automata plans can also be random accessed in polyno-

mial time, provided that they have a certain attribute that we define.

We say that an automata plan 〈Σ, A,M, r〉 has uniform expansion

if and only if for each M ∈ M there exists a number ℓM such that

|Exp(M [x])| = ℓM for each x ∈ Σ∗ such that Exp(M [x]) 6= ⊥.

In this section we show that the operators of an automata plan with

uniform expansion can be randomly accessed in polynomial time.

Note that all automata used in the proof of Lemma 9 have uniform

expansion. For each Sk, 1 ≤ k ≤ m(n), and each x, Apply(Sk, x)
contains exactly one operator among ovk, ol1k, ol2k, ol3k, onk, fol-

lowed by either Sk+1[x] or Uk+1[x]. The same is true for Uk.

Theorem 11. Let p and q be arbitrary polynomials. Assume X is a

family of STRIPS instances satisfying the following conditions:

1. every solvable instance p ∈ X has a plan ω of length ≤ 2||p||

with a corresponding automata plan µ = 〈Σ, A,M, r〉,

2. µ is of size O(p(||p||)),

3. each M ∈ M has size O(q(||p||)), and

4. µ has uniform expansion.

Then each solvable instance p ∈ X has a plan ω with a CRAR.

Proof. Let p be a STRIPS instance with solution ω, represented

by an automata plan µ = 〈Σ, A,M, r〉 that satisfies the require-

ments above. Since µ has uniform expansion there exist numbers

1 function Find(i,u)

2 if u is an operator

3 then return u
4 else (∗ u = M [x] ∗)
5 〈u1, . . . , uk〉 := Apply(M, x)
6 s := 0, j := 1
7 while s + ℓ(uj) ≤ i do

8 s := s + ℓ(uj), j := j + 1
9 return Find(i − s,uj)

Figure 4. Algorithm for using an automata plan as a CRAR.

ℓM , M ∈ M, such that |Exp(M [x])| = ℓM for each x ∈ Σ∗ such

that Exp(M [x]) 6= ⊥. Note that for each M ∈ M, ℓM ≤ 2||p||,

implying that ℓM can be represented by at most ||p|| bits. Without

loss of generality, we assume that we have access to these numbers.

We prove that the recursive algorithm Find in Figure 4 has the

following properties, by induction over the number of recursive calls:

1) for each u ∈ MΣ such that Exp(u) = 〈a1[x1], . . . , ak[xk]〉 6=
⊥, Find(i, u) returns operator ai[xi] for 1 ≤ i ≤ k, and

2) for each a[x] ∈ AΣ, Find(i, a[x]) returns a[x].

Basis: If Find(i, u) does not call itself recursively, then u must be

an operator. By definition, Exp(u) = u since u ∈ AΣ.

Induction step: Suppose the claim holds when Find makes at most

n recursive calls for some n ≥ 0. Assume Find(i, M [x]) makes

n + 1 recursive calls. Let 〈u1, . . . , uk〉 = Apply(M, x) and, for

each 1 ≤ i ≤ k, ℓ(ui) = 1 if ui ∈ AΣ and ℓ(ui) = ℓM′ if

ui = M ′[x′] ∈ MΣ. Lines 6–8 computes s and j such that either

1) j = 1, s = 0 and i < ℓ(u1) or

2) j > 1, s = ℓ(u1) + . . . + ℓ(uj−1) ≤ i < ℓ(u1) + . . . + ℓ(uj).

By definition, Exp(u) = Exp(u1); . . . ; Exp(uk) so operator i in

Exp(u) is operator i − s in Exp(uj). It follows from the induction

hypthesis that the recursive call Find(i − s, uj) returns this operator.

To prove that Find runs in polynomial time, note that Find calls

itself recursively at most once for each M ∈ M since GM is acyclic.

Moreover, the complexity of generating Apply(M, x), as well as its

length k, are polynomial in O(q(||p||)), the size of automaton M .

The loop on line 7 runs at most k times. Since µ has size O(p(||p||))
by assumption, Find is guaranteed to run in polynomial time.

We have showed that µ together with the procedure Find and the

values ℓM , M ∈ M, constitute a CRAR for ω. Since only M · ||µ||
bits are needed to represent the values and the procedure Find obvi-

ously runs in polynomial space (in the size of µ and consequently in

||p||), this CRAR is polynomial both in time and space.

7 AUTOMATA AND SEQUENTIAL ACCESS

In this section we prove that CSARs cannot be converted to automata

plans in polynomial time, unless an unlikely complexity-theoretic

collapse occurs. A CSAR [1] is any polynomial representation of

a plan that allows sequential access of the operators in polynomial

time. Together with Lemma 2, this implies that automata plans and

CSARs have different computational properties and are, thus, not

equivalent notions of compact representations.

Definition 12. Let R be a type of plan representation. Then the fol-

lowing problem is defined for R:

Last Operator

INSTANCE: A STRIPS instance p, an R representation ρ of an oper-

ator sequence ω ∈ O∗, and an operator o ∈ O.

QUESTION: Is o the last operator in ω?

Theorem 13. If there is a polynomial-time algorithm for transform-

ing any CSAR into an equivalent automata plan, then P = PSPACE.

Proof. We prove the theorem by showing that Last Operator is in

P for automata plans, but PSPACE-hard for CSARs. The given algo-

rithm could solve Last Operator for CSARs in polynomial time, by

transforming a CSAR to an automata plan and solving Last Operator

for the automata plan. This is only possible if P = PSPACE.

We first show that Last Operator is in P for any automata plan

µ = 〈Σ,M, A, r〉. For each M [x] ∈ MΣ, let Apply(M, x) =
〈u1, . . . , uk〉. The last operator in Exp(M [x]) has to equal the last

operator in Exp(uk). We can thus define a recursive procedure for

finding the last operator, and apply this procedure to the root automa-

ton r. Since the expansion graph GM is acyclic and has polynomial

size, the number of calls to this recursive procedure is polynomi-

ally bounded. Since the automata have polynomial size, generating

Apply(M, x) also takes polynomial time.

We next show that Last Operator is PSPACE-hard for CSARs.

Bylander [7] proved that STRIPS planning is PSPACE-hard by pre-

senting a polynomial-time reduction from polynomial-space DTM

acceptance to STRIPS plan existence. The details of this reduction

is not important in this proof but we note that it has the following

property: if there is a path from the initial state I to some state s
in the state-transition graph, at most one operator is applicable in s.

This implies that if I has a solution, then there is a unique path in the

state-transition graph from I to G.

We provide a polynomial-time reduction from polynomial-space

DTM acceptance to Last Operator for CSARs. Given such a DTM,

construct (in polynomial time) the corresponding STRIPS instance

p = 〈F, O, I, G〉 according to Bylander. Construct a new instance

p′ = 〈F ′, O′, I, G′〉 where F ′ = F ∪ {NAo | o ∈ O} ∪ {OK},

O′ = O′′ ∪
⋃

o∈O Xo ∪ {yes, no}, and G′ = {OK}. The variables

NAo will be used for indicating that operator o is Not Applicable.

Define O′′ = {〈pre ∪ {NAo | o ∈ O}, post〉 | 〈pre, post〉 ∈ O}.

Given an operator o ∈ O, let Xo contain operator 〈{x}, {NAo}〉 for

each literal x ∈ pre(o). Finally, let yes = 〈G, {OK}〉 and no =
〈{NAo | o ∈ O}, {OK}〉.

If the DTM does not accept its input, then there is a path (using

operators in O′′ only) in the state transition graph from I to some

state s where no operator in O′′ is applicable. In state s, at least one

operator in each set Xo is applicable so we can make all NAo vari-

ables true and reach the goal state G′ by applying operator no. If the

DTM accepts its input, then there is a path from I to G using oper-

ators in O′′ only. Furthermore, there is no state on this path where

at least one operator in each Xo is applicable. Consequently, there is

only one path from I to G′ and this path ends with the operator yes.

Finally, we note that there is a simple polynomial CSAR for p′.

This CSAR selects the only applicable operator in O′′, as long as

such an operator exists, and an applicable operator in Xo otherwise,

for some o ∈ O. The CSAR finishes with operator yes or no. We

have thus shown that Last Operator is PSPACE-hard for CSARs,

which concludes the proof of the theorem.

8 CONCLUSION

We have introduced the novel concept of automata plans, i.e. plans

represented by hierarchies of finite state automata. Automata plans

extend macro plans by allowing parametrization and branching, and

can be used to represent solutions to a variety of planning problems.

We have showed that automata plans are strictly more expressive than

macro plans, and related automata plans to the recent concepts of

polynomial-time random access and sequential access.

Out of several possible extensions, possibly the most interesting

one is to endow automata with the ability to produce output other

than the sequence of action symbols. This could be used to keep

track of the current state in automata plans, by updating the state

each time an operator is encountered and returning the updated state

to the previous automaton on the call stack. The ability to branch on

the current state would cause automata plans to resemble HTNs, and

further research is needed to clarify similarities and differences.

ACKNOWLEDGMENTS

A. Jonsson is partially supported by grants TIN2009-10232,

MICINN, Spain, and EC-7PM-SpaceBook.

REFERENCES

[1] C. Bäckström and P. Jonsson, ‘Algorithms and limits for compact plan
representations’, Journal of Artificial Intelligence Research, 44, 141–
177, (2012).

[2] P. Bille, G. Landau, R. Raman, K. Sadakane, S. Satti, and O. Weimann,
‘Random access to grammar-compressed strings’, in Proceedings of the

22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 373–
389, (2011).

[3] B. Bonet, H. Palacios, and H. Geffner, ‘Automatic Derivation of Finite-
State Machines for Behavior Control’, in Proceedings of the 24th Na-

tional Conference on Artificial Intelligence (AAAI), (2010).
[4] A. Botea, M. Enzenberger, M. Müller, and J. Schaeffer, ‘Macro-FF:

Improving AI Planning with Automatically Learned Macro-Operators’,
Journal of Artificial Intelligence Research, 24, 581–621, (2005).

[5] R. Brooks, ‘A robot that walks; emergent behaviours from a carefully
evolved network’, Neural Computation, 1, 253–262, (1989).

[6] M. Buckland, Programming Game AI by Example, Wordware Publish-
ing, Inc, 2004.

[7] T. Bylander, ‘The computational complexity of propositional STRIPS
planning’, Artificial Intelligence, 69, 165–204, (1994).

[8] A. Cimatti, M. Roveri, and P. Traverso, ‘Automatic OBDD-based Gen-
eration of Universal Plans in Non-Deterministic Domains’, in Proceed-

ings of the 15th National Conference on Artificial Intelligence (AAAI),
pp. 875–881, (1998).

[9] O. Giménez and A. Jonsson, ‘The Complexity of Planning Problems
with Simple Causal Graphs’, Journal of Artificial Intelligence Re-

search, 31, 319–351, (2008).
[10] S. Hickmott, J. Rintanen, S. Thiébaux, and L. White, ‘Planning via Petri

Net Unfolding’, in Proceedings of the 20th International Joint Confer-

ence on Artificial Intelligence (IJCAI), pp. 1904–1911, (2007).
[11] A. Jonsson, ‘The Role of Macros in Tractable Planning’, Journal of

Artificial Intelligence Research, 36, 471–511, (2009).
[12] R. Karp and R. Lipton, ‘Some connections between nonuniform and

uniform complexity classes’, in Proceedings of the 12th ACM Sympo-

sium on Theory of Computing (STOC), pp. 302–309, (1980).
[13] R. Korf, ‘Planning as search: A quantitative approach’, Artificial Intel-

ligence, 33(1), 65–88, (1987).
[14] S. LaValle, Planning Algorithms, Cambridge Press, 2006.
[15] S. Minton, ‘Selectively generalizing plans for problem-solving’, in Pro-

ceedings of the 9th International Joint Conference on Artificial Intelli-

gence (IJCAI), pp. 596–599, (1985).
[16] D. Toropila and R. Barták, ‘Using Finite-State Automata to Model and

Solve Planning Problems’, in Proceedings of the 11th Italian AI Sym-

posium on Artificial Intelligence (AI*IA), pp. 183–189, (2010).
[17] E. Winner and M. Veloso, ‘DISTILL: Towards learning domain-specific

planners by example’, in Proceedings of the 20th International Confer-

ence on Machine Learning (ICML), pp. 800–807, (2003).

