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A. V. Shenoy, S. Chattopadhyay, and V. M. Nadkarni 

Polymer Science and Engineering Group, Chemical Engineering Division, National Chemical Laboratory Pune (India) 

Abstract: A knowledge of the complete flow curve or rheogram of a polymeric 
melt depicting the variation of the melt viscosity over industrially relevant range 
of shear rate and temperature is essential in the design of polymer processing 
equipment, process optimization and trouble-shooting. These data are generated 
on sophisticated rheometers that are beyond the financial and technical means of 
most plastics processors. The only flow parameter available to the processor is 
the melt flow index of the material; 

In the present work, a method has been proposed to estimate the rheograms of 
a melt at temperatures relevant to its processing conditions with the use of a 
master curve, knowing the melt flow index and glass transition temperature of 
the material. Master curves that coalesce rheograms of different grades at 
various temperatures have been generated and presented for low density 
polyethylene, high density polyethylene, polypropylene, polystyrene and 
styrene-acrylonitrile copolymer. 
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Nomenclature 

D 
K,K '  
l 
L 
MFI 
A P  
Q 
T1 
r2 
Tg 
Ts 
V 
W 

ya 
rh 
rla 
rls 
P 
T 

diameter of the tube (cm) 
constants 
length of the tube (cm) 
weight of piston and load (kg) 
melt flow index (g/10 min) 
pressure drop through tube (dynes/cm 2) 
volumetric flow rate (cm 3) 
temperature at condition 1 (K) 
temperature at condition 2 (K) 
glass transition temperature (K) 
standard reference temperature (K) (= Tg + 50 K) 
average velocity (cm/s) 
weight rate of flow (g) 
shear rate (s-1) 
apparent shear rate (s-l) 
viscosity at condition 1 (poise) 
apparent viscosity (poise) 
viscosity at standard temperature (poise) 
density (g/cm 3) 
shear stress (dynes/cm 2) 

1. Introduction 

Shearing flow of  polymeric fluids is encountered in 
a number of polymer processing operations. The vis- 

*) NCL Communication Number 2903. 
863 

cosity under simple shear is an important material 
parameter used for determining the pumping efficien- 
cy of an extruder, the pressure drop through a die, 
designing balanced flow runner systems in multiple 
cavity injection molding, computing the temperature 
rise due to viscous heat generation during processing 
etc. The viscosity of polymeric meks is dependent on 
both the temperature and shear rate. Therefore, 
knowledge of the complete flow curve or rheogram 
depicting the variation of  the melt viscosity over 
industrially relevant range of shear rates and 
temperature is essential in the design of  polymer 
processing equipment, process optimization and 
trouble-shooting. 

The rheological data needed for constructing a 
rheogram are obtained on sophisticated scientific 
instruments such as the Weissenberg Rheogonio- 
meter, the Instron Capillary Rheometer, Rheometrics 
Mechanical Spectrometer, etc. These instruments are 
very expensive and require trained operators. Thus 
collection of the necessary flow data is beyond the 
financial and technical capabilities of most processors 
of  polymeric materials. 

The only flow parameter the processor has ready 
access to is the melt flow index (MFI). The MFI is 
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either specified by the material supplier or can be 
easily measured using a relatively inexpensive appara- 
tus. MFI is defined as the weight of the polymer in 
grams extruded inten minutes through a capillary of 
specific diameter and length in a melt flow indexer by 
pressure applied through dead weight under prescrib- 
ed temperature conditions as specified by ASTM D 
1238. Although MFI is a good indicator of the most 
suitable end use for which the particular grade can be 
used [1], it is not a fundamental polymer property. It 
is an empirically defined parameter critically 
influenced by the conditions of measurement, besides 
the physical properties and molecular structure of the 
polymer. It is a single point viscosity measurement at 
relatively low shear rate and temperature. Since the 
values of temperature and shear rate employed in the 
MFI test differ substantially from those encountered 
in actual large-scale processes, the results do not 
correlate directly with processing behaviour. This 
point has been well illustrated by Shida and Cancio 
[2] and Smith [3]. The latter has also shown the 
insensitivity of MFI to the effects of molecular-weight 
distribution. This is due to the fact that variation in 
molecular-weight distribution would normally affect 
the flow behaviour at very low (10 -1 s -1) and very 
high (104 s -z) shear rates, whereas MFI is measured 
at an intermediate shear rate. The effect of molecular 
weight distribution on processibility and insensitivity 
of the MFI measurement to these effects have also 
been described by Borzenski [4]. Despite all these 
limitations, MFI still remains to be a simple, easily 
obtainable viscosity parameter from a relatively 
inexpensive apparatus within the technical and 
financial means of plastics processors. 

In the present paper, a method has been proposed 
for estimating the rheogram of a polymeric material 
from its MFI knowing the conditions of the MFI test 
and the glass transition temperature of the resin. 
Menges et al. [5] have suggested a mathematical 
equation as a universal viscosity function based on the 
zero-shear viscosity, and had shown that the function 
can be used to estimate the rheogram from a knowl- 
edge of zero-shear viscosity and glass-transition 
temperature. The zero-shear viscosity is a difficult 
parameter to obtain experimentally. The method 
proposed in the present paper uses the melt flow index 
as a normalizing parameter. Therefore the technique 
is more convenient for the processor since the MFI 
can be very easily measured. The polymer systems 
included in the present investigation are low density 
polyethylene, high density polyethylene, polypropy- 
lene, polystyrene and styrene-acrylonitrile copoly- 
mers. Based on the available data on consumption 

patterns [6], these polymers constitute about 55% of 
the total sales of polymers, thus rendering the results 
of the present work useful to a large number of 
plastics processors. 

2. Data Collection 

Data collection has been done in three ways. Vis- 
cosity versus shear rate data were generated on the 
above mentioned polymer systems with our own labo- 
ratory facilities. The data were taken on the Weissen- 
berg rheogoniometer R19 in the lower shear rate 
region (10-1 to 102 s- 1) and on the Instron Capillary 
Rheometer Model 3211 in the higher shear rate region 
(10-103 s-l) .  All the data were analysed to give 
master curves which are independent of the polymer- 
grade measuring temperature and load in MFI meas- 
urements. For each of the studied systems, data from 
published literature were also collected to confirm the 
master curves. As a further check, data were obtained 
on viscosity versus shear rate curves directly from 
manufacturers of the various polymers along with 
details of MFI values and measurement conditions. 
All this was done in order to consolidate the findings 
of the master curves and eliminate any dependence 
these might have on the measuring techniques, 
equipment or operator. A summary of the systems 
analysed in the present study is given in table I. 

3. Data Analysis 

The flow of the polymer melt through the capillary 
die of the MFI apparatus is a simple shear flow in 
laminar region. The volumetric flow rate of the fluid 
through a circular tube is given by the Hagen-Poi- 
seuille law: 

7rAPD 4 
Q - - -  (1) 

128r/al 

where D are the diameter and l the length of the tube, 
zIP the pressure drop through the tube, Q the 
volumetric flow rate and r/a the apparent viscosity of 
the fluid. 

Within the melt flow indexer die, capillary entrance 
effects are important as L / D =  3.8. However, from 
the subsequent analysis it will be clear that MFI would 
be used merely as a normalising factor to obtain 
reduced viscosity shear rate curves. The MFI values 
used in generating the plots as well as those which 
would be used for obtaining the rheograms from the 
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Tab le  1 

P o l y m e r  G r a d e  M F I  (Tempera tu re ,  T e m p e r a t u r e  No.  o f  d a t a  Source  
° C / L o a d  C o n d i t i o n ,  at wh ich  po in t s  
kg) da t a  ( shear  ra te  

genera ted ,  range ,  s -  1) 
°C  

1 2 3 4 5 6 

L D P E  I n d o t h e n e  2 2 F A 0 0 2  0.16 a) (175/2,16)  175 9(0.01 - 1000) This  w o r k  
- d o -  0.2 b) (190 /2A6)  190 9 ( 0 . 0 1 - 1 0 0 0 )  - d o -  
- do  - 0.25 a) (205/2,16)  205 9(0.01 - 1000) - do  - 
I n d o t h e n e  2 4 M A 0 4 0  3.0 a) (175 /2A6)  175 10(0.01 - 1000) - d o -  
- d o -  4.0 b) (190 /2A6)  190 10(0.01 - 1000) - d o -  
- d o -  5.0 a) (205/2.16)  205 10(0.01 - 1000) - d o -  
I n d o t h e n e  24FS040  3.0 a) (175/2.16)  175 10(0.01 - 1000) - d o -  
- d o -  4.0 a) (190 /2A6)  190 1 0 ( 0 . 0 1 - 1 0 0 0 )  - d o -  
- d o -  5.0 ~) (205/2.16)  205 10(0.01 - 1000) - d o -  
I n d o t h e n e  2 6 M A 2 0 0  16 a) (175/2A6)  175 10(0.01 - 1000) - do  - 
- do  - 20 b) (190/2,16) 190 10(0.01 - 1000) - do  - 
- do  - 25 a) (205/2A6)  205 10(0.01 - 1000) - do  - 

L D P E - B  1.2 b) (190/2A6)  190 4 ( 0 . 0 1 -  1000) Ref .  [9] 
L D P E - C  2,1 b) (190 /2A6)  190 4(0.01 - 1000) - d o -  
L D P E - D  6.9 b (190/2.16)  190 4(0.01 - 1000) - do  - 

H D P E  G D  6260 2,34 ~) (175 /2A6)  175 6 ( 2 - 7 0 0 )  This  w o r k  
- d o -  3.6 b) (190/2.16) 190 6 ( 2 -  700) - d o -  
- do  - 3.17 b) (205/2,16)  205 6(2 -- 700) -- do  - 
G F  5740 0.35 ~) (175/2,16)  175 6 ( 2 -  700) - d o -  
- do  - 0.45 b) (190/2,16)  190 6 ( 2 -  700) - do  - 
- do  - 0.57 a) (205/2,16) 205 6 ( 2 -  700) - do  - 
Mar lex  E H M - 6 0 6  0.54 ~) (170 /2A6)  170 18(0.01 - 1000) Ref .  [10] 
- do  - 0.64 a) (180 /2A6)  180 18(0.01 - 1000) - do  - 
- d o -  0.75 b (190/2,16)  190 1 8 ( 0 . 0 1 - 1 0 0 0 )  - d o -  
- do  - 0.88 a) (200/2,16)  200 17(0.01 - 500) - do  - 
- d o -  1.0 a) (210/2,16)  210 1 8 ( 0 . 0 1 - 1 0 0 0 )  - d o -  
- d o -  1.2 ~) (220/2,16) 220 18(0.01 - 1000) - d o -  
H D P E  4 0.8 b) (190/2,16)  190 5 ( 0 . 0 1 -  1000) Ref .  [9] 

P P  Koylene  E B  0730 0.3 b) (200/2,16) 200 1 7 ( 0 . 0 0 5 - 7 0 0 )  This  w o r k  
- d o -  0.5 ~) (215/2.16)  215 1 6 ( 0 . 0 0 5 - 7 0 0 )  - d o -  
- d o -  0.7 b) (230/2.16) 230 1 6 ( 0 . 0 0 5 - 7 0 0 )  - d o -  

Koy lene  1730 0.75 a) (200/2.16)  200 1 2 ( 0 . 0 3 -  700) This  w o r k  
- d o -  1.2 a) (215/2.16)  215 13(0.05 - 700) - do  - 
-- do  - 1.7 b) (230/2.16)  230 13(0.05 - 700) - do  - 
Koy lene  3030 1.3 a) (200/2,16)  200 16(0.03 - 700) - do  - 
- d o -  2.0 ~) (215 /2A6)  215 13(0.1 - 700) - d o -  
- d o -  3.0 b) (230/2,16) 230 13(0.1 - 700) - d o -  
M o p l e n  015 1.5 b) (230/2,16) 230 4 ( 2 0 -  1000) Ref .  [12] 
M o p l e n  040 4.0 b) (230/2,16)  230 7 ( 2 0 -  1000) - do  - 
M o p l e n  120 12.0 b) (230/2,16) 230 4 ( 2 0 -  1000) - d o -  
P P  10-1046 3.7 a) (210/2,16) 210 6 ( 1 0 - 5 0 0 )  Ref .  [13] 
- do  - 6.3 b) (230/2.16) 230 6 ( 1 0 -  500) - do  - 
- d o -  10.0 a) (250 /2A6)  250 6 ( 1 0 -  500) - d o -  
P P  10-6016 3.9 a) (210 /2A6)  210 6 ( 1 0 -  500) - d o -  
- do  - 6.5 b) (230/2,16)  230 6 ( 1 0 -  500) - d o -  
- d o -  10.3 ~) (250/2.16)  250 6 ( 1 0 -  500) - d o -  

PS  Styrene  666 U 7.5 b) (200/5) 200 10(5 - 5000) Ref .  [14] 
- do  - 37.0 ~) (220/5) 220 10(5 - 5000) - do  - 
- do  - 130.0 ~) (240/5) 240 10(5 - 5000) - do  - 
X P  6065.00 8.0 b) (200/5) 200 1 0 ( 5 - 5 0 0 0 )  Ref .  [14] 
- do - 42.0 a) (220/5) 220 10(5 - 5000) - do  - 
- do  - 139.0 a) (240/5) 240 10(5 - 5000) - do  - 
S tyrene  666 9.4 b) (200/5) 200 7 ( 0 . 0 1 -  0.55) Ref .  [11] 
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Table I (Continued) 

Polymer Grade MFI (Temperature, Temperature No. of data Source 
°C/Load Condition, at which points 
kg) data (shear rate 

generated, range, s -1) 
°C 

1 2 3 4 5 6 

SAN 

Polysar 201 1.5 b) (200/5) 200 1(100) 
- d o -  7.4 a) (220/5) 220 1(100) 
Polysar 205 0.9 a) (180/5) 180 1(100) 
- d o -  6.8 b) (200/5) 200 1(100) 
- do - 33.5 a) (220/5) 220 1(100) 
Polysar E 520 2.4 b) (200/5) 200 1(100) 
- d o -  12.0 ~) (220/5) 220 1(100) 
Polysar M 520 0.7 a) (180/5) 180 1(100) 
- d o -  5.4 b) (200/5) 200 1(100) 
- do - 26.5 ~) (220/5) 220 1(100) 
H 5M 15.4 a) (210/5) 210 6(10-  500) 
- d o -  47.7 a) (230/5) 230 5(20-  500) 
- do - 121.0 ~) (250/5) 250 6(10-  500) 
G 2 27.4 a) (210/5) 210 6(10-  500) 
- d o -  85.1a) (230/5) 230 6(10-  500) 
- d o -  215.0 ~) (250/5) 250 6(10-  500) 
Tyril 860B 1.0 ~) (200/3.8) 200 10(20- 600) 
- d o -  3.4 ~) (215/3.8) 215 10(20- 600) 
- d o -  9.5 b) (230/3.8) 230 10(20- 600) 
- d o -  29.5 a) (250/3.8) 250 10(20- 600) 
Tyril 867B 0.5 a) (200/3.8) 200 10(20- 600) 
- d o -  1.6 a) (215/3.8) 215 10(20- 600) 
- d o -  4.5 b) (230/3.8) 230 10(20- 600) 
- d o -  14.0 ~) (250/3.8) 250 10(20- 600) 

Ref. [15] 
- d o  - 

- d o -  

- d o -  

- d o  - 

- d o -  

- d o  - 

- d o  - 

- d o  - 

- d o -  

R e f .  [13] 
- d o  - 

- d o  - 

R e f .  [13] 
- d o  - 

- d o  - 

R e f .  [14] 
- d o  - 

- d o -  

- d o -  

- d o  - 

- d o  - 

- d o  - 

- d o -  

a) MFI value calculated from eq. (15) knowing the MFI as per B and To from table 2. 
b) MFI value given by manufacturer under ASTM testing conditions. 

mas te r  plots would have  the capil lary entrance effects 
implicit  in them and  hence would annul  each other.  

F r o m  the def ini t ion of  M F I  

M F I  = 1 0 x  6 0 x  W (2) 

where  W is the weight rate o f  f low in g/cm 3 

W = Qp.  (3) 

Combin ing  eqs. (1), (2) and  (3) we obta in  

D 4 
M F I  = (14.13p)  ~ (AP) ~ (4) 

t/a 

[Note - all pa ramete r s  are in c.g.s, units.] 
For  a given po lymer  melt ,  p can be assumed 

constant .  The  geometr ic  pa ramete r s  D and l are fixed 
as per the A S T M  test specifications.  Once a test 
condi t ion is prescribed,  the load is specified thereby 

fixing AP. Thus,  in the A S T M  test measu remen t  of  
the mel t  f low index, eq. (4) reduces to 

(MFI)(~a)  = K (5) 

where the cons tant  K is determined by  the test condi- 
t ions and  the density of  the polymer .  

The  appa ren t  shear rate,  ~a, is given by 

~ a  = / ~ _ f f _ _ V  ( 6 )  

D 

where V is the average  velocity th rough  the capil lary 
of  d iameter  D ; / (  is a funct ion of  the pseudoplas t ic i ty  
index n for  a s t ructural ly complex  power- law fluid 
and takes a value of  8 for  a Newton ian  fluid. Now 

V -  Q 
(7t/4) D2 . (7) 
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Therefore, from eqs. (1) and ( 5 -  7) we obtain 

/' - K '  
MFI 

where the constant 

K t m 
I (  A P  D 

K 32 l 

As per eqs. (5) and (8), the MFI of a material is 
directly proportional to the apparent shear rate and 
inversely proportional to the apparent viscosity of the 

• material under the conditions of temperature and 
pressure percentage prescribed in the test. Although 
eqs. (5) and (8) are valid only at the particular MFI 
test condition, in effect the validity of these equations 
over the entire flow curve can be constituted by a 
change of dead-weight condition and hence the pro- 
portionality constant. It should, therefore, be pos- 
sible to coalesce the n a vs. )a rheograms of polymer 
grades of different MFI by plotting (MFI x ~/a) 
versus @ J M F I )  on log-log scale at a given temper- 
ature and pressure. The coalescence would be 
governed by the shape of  the original n a versus )'a. 
Similar shaped curves would, undoubtedly, coalesce 
better. Shapes of the rheograms are known to vary 
with regard to molecular parameters like long-chain 
branching and molecular-weight distribution. This 
explains why the master curves of LDPE (branched 
PE) and HDPE (linear PE) do not coalesce into a 
single master curve. In arriving at the master curves, 
the viscosity and shear rate are normalized via the 
melt-flow index. As melt-flow index is itself insen- 
sitive to subtle changes in molecular parameters, this 
limitation would be expected to be present even in the 
master curves. The limitation of molecular-weight 
distribution would be more critical in the very low and 
very high shear rate regions. However, the working 
ranges for most polymer processing operations fall in 
the intermediate shear rate region and therefore, the 
master curves would still be effective for use as a 
handy tool for polymer processors. 

The correlation suggested by Boenig [7] between 
MFI and melt viscosity of polyethylene at 190°C 
appears to be a specific case of eq. (5): 

logMFI = Constant - logr/0. (lo) 

Vinogradov and Malkin [8] have proposed a uni- 
versal viscosity function at a constant temperature. 
Viscosity data for a number of polymers such as 
polyethylene, polypropylene, polystyrene and poly- 

isobutylene were reported to fall within a band on a 
master curve of log(~//q0 ) vs. log~/0~,. Combination 

(8) of this reported observation and the inverse depend- 
ence of  t/0 on MFI also suggests that a master curve 
should be possible by replacing t/0 with reciprocal of 
MFI. The arguments used in arriving at eqs. (5) and 
(8) are based on flow equations, which appear to be 

(9) supported by the empirical correlations put forth in 
the prior literature. 

The temperature dependence of the master curve 
can be eliminated by using a relationship derived from 
the WLF equation: 

In 8s _ 8 . 8 6  (7"1 - Ts)  (11) 

q l  1Ol .6  + (r~ - TA 

where T 1 is the temperature at which viscosity is to be 
determined, T s the reference temperature related to 
the glass transition temperature, r h the viscosity at T~, 
and ~/s the viscosity at T s.  The latter quantity is 
defined as 

Ts = Tg + 50K (12) 

where T o is the glass transition temperature of the 
material. From eq. (5) we have 

/11 (MFI)2 

/ '12 (MFI)I 
(13) 

rh = fl__L, fl__2_ s " (14) 
/12 F/s /72 

Combining eqs. (11), (13) and (14), we obtain 

l n m  
(MFI)2 8 . 8 6  ( T 2  - Ts)  

(MFI)I 1 0 1 . 6  + (T2 - Ts) 

8.86 (7'1 - Ts)  

101.6 + (r~ - Ts) 
(15) 

The effective MFI of a polymer at processing tem- 
perature can be readily estimated from the MFI 
reported as the ASTM test temperature using eq. (15). 

From ASTM 1238-73, it is clear that MFIs are 
determined under different test load conditions and 
hence it is necessary to eliminate the MFI test load 
dependency of the master curve. In order to do this, it 
is essential to first appreciate that the melt flow meas- 
urement is done under constant shear stress which is 
directly proportional to the combined weight of the 
piston and the load on it. 
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Thus 

r oc L (weight of piston: load) (16) 

o r  

L 
r/a ~ - - .  (17) 

Since MFI is nothing but a flow rate, it can be directly 
related to shear rate through the geometry of the melt 
flow apparatus, and the following proportionality can 
easily be established 

MFI oc ~. (18) 

MFI values obtained under ASTM testing conditions 
give apparent shear rates which are larger than the 
critical shear rate at which the polymer starts 
behaving as a shear-thinning system. Within this 
portion of the curve the apparent viscosity can be 
characterized by a power-law model as follows 

r/a ~ }'("-~) (•9) 

where (n - 1) would be the slope of the viscosity 
versus shear rate curve. Combining eqs. (17), (18) and 
(19) gives the following relationship 

1 

MFI ~ L " (20) 

o r  

1 MFI2_(L2   
MFI1 \ ~ - l /  " 

(21) 

For a given polymer grade at a given temperature, 
there is only one viscosity versus shear rate curve and 
hence the master curve can be generated using the 
MFI at some standard loading condition (say 2.16 kg) 
if known or calculated from eq. (21) when the loading 
is different. 

4. Results and discussion 

The polymer systems investigated include LDPE, 
HDPE,  PP,  PS and SAN, and the plots generated for 
these are illustrated in figures 1 -  9. 

Figure 1 shows a plot of  viscosity versus shear rate 
for three grades of LDPE with MFI's  of  0.2, 4 and 10 
at a temperature of  190 °C. The curves were generated 
from data taken on the Weissenberg Rheogoniometer 
and Instron Capillary Rheometer. Unification of  the 
three curves was attempted through the use of  a plot 

10 s 

10 4 

t 0  3 

| l~ 2 t 0  -1 10 0 101 10 2 

Fig. 1. Viscosity versus shear rate curve for three different grades of LDPE with different MFI at 190 °C 

10 3 
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10 6 

tO s 

A & 

LOW DENSITY POLYETHYLENE (LDPE) 

• i 

10 4 

22 FAO02 24 FS040 
190*C 2-t6 kg T & 

103 , I 
t~  z t.6 ~ lo 0 

26 MA 200 

t / M F I  

Fig. 2. Master curve for three different grades of LDPE with 

l illl[l 
UNITS 

R -  POfSE 
- SEC-~ 

MFI - -  gm/lOmlns 

& 

T = 

i01 10 2 

different MFI at 190°C 

I I 

I 
' 1 

1o 3 

of  r/. MFI versus ) /MFI  and the resulting curve is 
shown in figure 2. This curve is now grade-independ- 
ent but dependent on the MFI test conditions of  
190°C/2.16 kg load. 

Figure 3 shows a plot of viscosity versus shear rate 
at three different temperatures 175°C, 190°C and 
205°C for one grade of  LDPE,  namely, 24FS040 
with a MFI of  4 (190 ° C/2.16 kg). In order to obtain a 
unified master curve of t/ • MFI versus ~/MFI, it is 
essential to obtain MFI values at different tempera- 
tures but same loading conditions, namely, 175 °C/  
2.16 kg and 205 °C/2.16 kg. Eq. (15) was then used to 
obtain these effective MFI values at 175°C and 
205°C, knowing the MFI at 190°C and the glass 
transition temperature of  the polymer (table 2). Using 
the appropriate MFI values with each of the curves in 

Table 2. Polymer glass transition temperatures used for 
computation 

Polymer type Glass transition temperature 

Polyethylene 153 K 
Polypropylene 263 K 
Polystyrene 373 K 
Styrene acrylonitrile 388 K 

figure 3, a plot of  r/ • MFI versus ~/MFI was 
generated as shown in figure 4. This unified curve is 
then temperature independent but dependent only on 
the testing load condition of  2.16 kg. When a plot of 

• MFI versus ~/MFI is to be generated at a different 
load condition, eq. (21) is used to obtain the MFI at 
the required load condition. Thus, for example, 
knowing the MFI of LDPE 24FS040 at 190°C for a 
load of  2.16 kg to be 4, the value of MFI under 5 kg 
load at the same temperature is calculated to be 21 
from eq. (21) using a value of  0.5 for n determined 
from the slope of  the viscosity vs. shear rate curve. 

Under the fixed loading condition of 2.16 kg, 
curves in figures 2 and 4 can be plotted together in 
figure 5 to give a master curve independent of  
polymer grade and temperature. The number of data 
points included in this curve and their sources are 
summarized in table 1. Master plots similar to figure 5 
have been generated for HDPE,  PP,  PS and SAN and 
are given in figures 6, 7, 8 and 9 respectively. The 
internal data and .the data f rom outside sources are 
found to fit very well considering the variation in 
measurement techniques and the varied element of  
human error during measurement. 

Figures 5 -  9 thus represent the master curves for 
LDPE, HDPE,  PP,  PS and SAN from which the 
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entire viscosity versus shear rate curves can be gener- 
ated at any temperature simply through the knowledge 
of  MFI. The MFI is either given by the manufacturer 
or obtained from a standard MFI apparatus under 
ASTM conditions. The steps involved in generating 
such rheograms are the following: 

- O b t a i n  MFI value under standard specified tem- 
perature and loading conditions. 

- If  the loading condition is different from the one 
used in generating the master curve, obtain value 
of  MFI at the loading condition of  the master 
curve by using eq. (21) and calculating n from the 
value of the slope of  the master curve in the non- 
Newtonian region. 

- If  the specified temperature condition of MFI is 
also different from the temperature of interest at 
which viscosity versus shear rate curve is to be 
generated, then calculate a new value of  MFI using 
eq. (15) and the correct determined value of Tg for 
the specific polymer under consideration. 

- Knowing the effective MFI at the temperature of 
interest the rheogram can be generated by simply 
substituting the value in the master curve. 

It is to be noted that the value of an effective MFI 
for a resin at a temperature other than the ASTM test 

temperature, computed using eq. (15) is very sensitive 
to the value of  the glass transition temperature used. 
Since the glass transition temperature of  various 
grades of an amorphous polymer could vary over a 
broad range of  1 0 -  15 °C, it is recommended that the 
actual glass transition temperature of the particular 
resin be determined whenever possible. 

The values of the heat distortion temperatures of 
various grades of polystyrene are reported in table 3. 
The heat distortion temperature, being a thermo- 
mechanical property of a resin, is qualitatively related 
to the glass transition temperature. Therefore, for 
these grades, the glass transition would also vary over 
about 8 °C. The sensitivity of the effective MFI value 
to the glass transition temperature is illustrated in the 
last two columns of table 3. In formulating the master 
curve for polystyrene (figure 8), a single value of 
100 °C was used for the glass transition temperature, 
whereas the glass transition temperature of an impact 
polystyrene is expected to be lower than that of the 
general purpose crystal grade. The rheograms of the 
various grades at different temperatures would 
coalesce in a narrower band, if the correct glass 
transition temperatures for the grades were available. 

Even with a semi-crystalline polymer like high 
density polyethylene, where the density could vary 
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Table 3. Sensitivity of  the effective MFI to the glass transition temperature for polystyrene resins 

Grade Heat Reported MFI Computed values of effective MFI for 50 kg at different temperatures 
Distoration at ASTM 
Temp. °F T a = 80°C T a = 100°C 
(264 lbf/in 2) 

oC o C 

conditions 
of 200 °C/ 
5.00 kg 

160 180 210 220 230 240 250 160 180 210 220 230 240 250 

Amoco G2 185 14.1 27.4 - 85.1 - 215 - - 33.0 - 135 - 415 
Amoco H5M 190 7.9 15.4 - 47.7 - 121 - - 18.4 - 75.6 - 239 
Polysar 205 193 6.8 0.17 1.4 - 24.0 0.05 0.85 - 33.5 - - - 
Styron 666U 197 7.5 26.4 - 73.5 . . . .  37.0 - 130 - 

f rom 0.940 to 0.965, the glass transit ion temperature  
would  be different  for  different  grades. The range o f  
this var ia t ion in the semi-crystalline polymers is 
generally nar rower  than  that  in amorphous  polymers.  

5. Conclusion 

A n  effective method  has been proposed  to estimate 
the viscosity versus shear rate flow curves o f  a resin at 
temperatures  relevant to the processing condit ions 
f rom its melt f low index and glass transit ion tempera- 
ture. The rheograms obtained by using the method  
would give an order  o f  magni tude  in format ion  on 
viscosity, adequate  for  mos t  exercises in process 
design, opt imizat ion and trouble shooting.  However ,  
the flow curves so generated cannot  be used for  
material  quali ty control  purposes.  Therefore,  for  
example, subtle differences in the low and high shear 
viscosities o f  the resin arising f r o m  variable molecular  
weight distr ibution cannot  be elucidated. This limita- 
t ion o f  the method  is to be expected, since the rheo- 
grams are generated using a value of  MFI  measured 
under  A S T M  test condit ions that  are insensitive to the 
effects o f  the molecular-weight  distribution, as 
illustrated by Smith [3]. The proposed  method  has 
been in t roduced as a handy  aid to the plastics 
processor  in the event o f  his having no other rheo- 
logical data  on the material  besides the melt f low 
index. 
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