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Abstract— Because of its moderate cost in terms of electronics, 

resonant sensing has become commonplace in the context of 

MEMS and NEMS devices. It is usual to drive such resonators 

below the critical open-loop Duffing amplitude, above which 

the oscillations become unstable. However, when scaling 

sensors down to NEMS, nonlinearities may occur at very low 

amplitudes, making oscillations very difficult to detect. This 

paper describes a very general way to compute the critical 

amplitude in open-loop operation for beam resonators, before 

it focuses on closed-loop Duffing-type resonators. The major 

contribution of this paper is the use of describing function 

analysis validated by numerical simulations to show that it is 

possible to obtain stable oscillations with amplitudes much 

larger than the critical Duffing amplitude. As a practical 

consequence, the measured currents are significantly increased 

and the constraints on the sensing electronics can be relaxed. 

I. INTRODUCTION 

Resonant sensing consists in measuring the frequency 
shift of a system subject to the variation of a given physical 
quantity. Because of its moderate complexity, this 
measurement technique is becoming commonplace in the 
context of MEMS and NEMS devices [1]. This paper 
focuses on closed-loop resonant sensors, where the 
micromechanical structure, which can usually be modelled as 
a Duffing pendulum [2], is brought to oscillate by being 
placed inside a nonlinear feedback loop. The motion of the 
electrostatically-actuated Euler-Bernoulli beam (Fig. 1-2) is 
described by the usual non-linear partial differential equation 
of the fourth order in space: 

( )
elec

f
t

w
bh

t

w

x

w
wT

x

wEbh
=

∂

∂
+

∂

∂
+

∂

∂
−

∂

∂
2

2

2

2

4

43

12
ρµ , (1) 

where w are the displacements of the beam, E is Young’s 

modulus, ρ is the material’s density, µ is a damping factor, T 

is an axial force caused by the beam elongation and 
elec

f  is 

the electrostatic force density.  
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The equivalent block-diagram of (2) is represented in Fig. 3.  

In the first part of this paper, we show how describing 
function analysis (DFA) [3] can be used to account for the 
critical amplitude phenomenon (Fig. 3) occurring in Duffing 
oscillators [4]. It is found that, in the limit of large quality 
factors, the amplitude at the critical point is 

2/1463.1 −≈ hQw
crit

 and the amplitude of the peak of the 

frequency response is 2/1

max
685.1 −≈ hQw . For large quality 

factors, this sets an upper limit to the signal amplitudes that 
can be measured at the output of an open-loop Duffing 
oscillator without incurring hysteretic behaviour or dynamic 
instability and, as a consequence, is detrimental to the sensor 
resolution. 

In the second part of the paper, the closed-loop problem, 
in which the excitation is a nonlinear function of the 
system’s state, is studied. We show how DFA applies in this 
case. The analytical expression of the oscillation amplitude 
and frequency of a pulse-actuated microbeam (for which a 
short negative or positive voltage pulse is applied every time 
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Figure 1.  Electrode (blue)-beam (green) arrangement and notations (top 

and bottom gaps are identical). The clamped-clamped microbeam is the 
mobile midpoint of a capacitive half-bridge (Fig. 2). 
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Figure 2.  Cross-section of the electrode/beam arrangement of Fig. 1 and 

notations. The mobile beam is used for sensing and for actuating. Vc should 

be properly chosen, to measure the beam displacements without crosstalk. 

the measured signal crosses zero [5]) is obtained, showing 
that there is only one possible oscillation state for such a 
system and that it is stable. Finally, these analytical results 
are compared with simulations of the fully nonlinear system, 
in the practical case of the micro-accelerometer developed in 
the ANR-funded M&NEMS project.  

II. CALCULATION OF THE CRITICAL DUFFING AMPLITUDE 

To determine the critical Duffing amplitude, we study a 
simpler problem where electrostatic nonlinearities are 
neglected. Let us then consider a sinusoidally-forced Duffing 
pendulum: 
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The transient problem may be studied with a method of 
averaging, along the lines developed in [4]. In the present 
case, however, it is sufficient to use DFA to establish the 
steady-state properties of (3). Under the assumptions that the 
linear part of the system filters out the harmonics introduced 
by the nonlinear part and that the system has reached a 
periodic regime, we have: 

( )ϕω += tAa sin .  (4) 

The expressions of a  and a  can be derived from (4) in a 

straightforward fashion. Neglecting higher-order harmonics  
and switching to complex notations, the signal at the output 
of the nonlinear part (Fig. 4) is: 
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Using classical system theory, one can then write: 
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where 22

0
ωω −=U  and QV /

0
ωω= . Taking the square of 

the modulus of (6) and expanding yields: 
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Since A  is positive, (7) may have up to three distinct real 
roots. The critical regime is reached when (7) has one triple 

real root. In this case, (7) has the form ( ) 0
32 =− CA , with 

positive C . Thus, we find that: 
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Eliminating C  from (8) leads to a second-order equation in 
2ω . It is then simple to derive the expression of the pulsation 

of the critical point: 
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In the limit of large quality factors, this becomes:  
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One can then use the expression of the beam’s central 
frequency and stiffening coefficient to obtain the 
corresponding critical displacement amplitude: 

2/1463.1 −≈ hQw
crit

.  (11) 

At the same excitation amplitude, the maximum 
displacement (corresponding to the maximum of the system 

frequency response) is found equal to 2/1

max
685.1 −≈ hQw . 



 
Figure 3.   Possible frequency responses of an electrostatic MEMS device, 

for different bias voltages (from [4]): softening behaviour (red curve), 

linear behaviour (black curve), hardening behaviour (green curve) and 

mixed behaviour (blue curve). 
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Figure 4.  Equivalent block diagram representation of the open-loop 

Duffing pendulum. 

III. STUDY OF THE CLOSED-LOOP PROBLEM 

A. Describing function analysis of closed-loop systems 

With the same assumptions as in section II, the self-
oscillating closed-loop nonlinear system of Fig. 5 may be 
analysed with DFA: its amplitude and frequency can be 
determined, as well as the stability of the oscillations.  

In order to use DFA on a closed-loop system, one must:  

1. assume ( )tAa ωsin= ,  

2. find the equivalent complex gain ( )ω,AN  of the 

nonlinear part ( )aaF , , 

( ) ( ) ( )∫=
ωπ

ω
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ω
ω

/2

0

exp,
2

, dttjaaF
A

AN . (12) 

3. check for an oscillatory regime by verifying the 
Barkhausen conditions, i.e. solve  

( ) ( ) 1, =ωω jHAN ,   (13) 

for A  and ω , where ( )ωjH  is the transfer function of 

the linear part. 

Steps 1 and 2 are almost equivalent to the approach 
presented in section II. Step 3 is equivalent to saying that the 
total phase lag in the loop is equal to zero. 

B. DFA of the pulse-actuated microbeam 

In the case of the electrostatic microbeam shown in Fig. 
1-2, one may write: 
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where 
c

V  consists in short voltage pulses of amplitude 
p

V±  

and duration 
p

T  that are triggered when the detected signal 

crosses zero [5]. In the present case, the detected signal is the 

charge accumulated on the microbeam. The charge density is 
given by:  
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It is simple to show that the total charge crosses zero 
whenever a  (and, as a consequence, w ) crosses zero. Thus, 

assuming the pulses are short (with respect to the period of 

oscillation), one may neglect the wV
c

 term appearing in 

(14). We also neglect nonlinear electrostatic softening, i.e. 

we suppose ( ) 4222 GwG ≈− . Thus: 
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Finally, (16) can be injected into (2). This yields: 
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The equivalent gain of ( )aaF ,  is found to be: 
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Using this expression in (13) yields one unique solution: 
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This clearly shows that there exists only one possible self-
oscillation state for the electrostatic pulse-actuated 
microbeam. 
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Figure 5.  Equivalent block diagram of an electrostatically-actuated, 

stress-stiffened microbeam (shaded area) with its nonlinear feedback 

electronics and actuation scheme. The system may be looked at as a linear 
system with one complex feedback nonlinearity.  
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Figure 6.  Comparison of maximum displacements obtained by DFA 

(circles) and by transient simulation (crosses). 

The approach described in [3] can be used to determine 
the stability of the oscillations. The oscillations are stable (in 
the sense that the system goes back to its original oscillatory 
state after a slight perturbation) when the following 
inequality is satisfied: 
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where R  and I  are the real and imaginary part of 

( ) ( )ωω jHAN ,  and the partial derivatives are taken at 

osc
AA =  and 

osc
ωω = . In the present case, it is simple to 

show that 0>α  is sufficient for the oscillations to be stable. 

However, it should be noted that, for very large displacement 
amplitudes, the electrostatic softening is no longer linear. As 
a consequence, it is impossible to predict the dynamic pull-in 
amplitude of the beam with this method. This is the subject 
of ongoing work. 

IV. SIMULATION AND RESULTS 

In this section, we compare the results obtained by 

simulation of (2) to the analytical expressions obtained in 

section III. The parameters of the resonator correspond to 

those of the accelerometer structure developed in the ANR-

funded M&NEMS project: L =25µm, b =500nm, 

Gh = =250nm (
0

ω =2.2×10
7
rad.s

-1
.), Q =6000 and 

b
V =1.2V. The duration of the impulses is set to pT =10ns. 

The results obtained with Matlab-Simulink for different 

values of 
p

V  are shown in Fig. 6 and compared to those 

derived from the analytical expressions of (19). There is a 

very good agreement between the two approaches even for 

very large displacement amplitudes: this validates the 

assumptions made in section III, in particular those 

concerning the neglected terms in (14). The results show 

that it is not only possible to actuate the beam with 

amplitudes much larger than the critical Duffing amplitude 

(
crit

w =4.7nm), but also to have stable oscillations beyond 

the static pull-in point ( ≈3/G 83nm). For 
p

V =0.2V, the 

current that must be amplified by the analog front-end is 

about 50 times larger than the current corresponding to the 

critical amplitude. For larger values of the pulse amplitude, 

dynamic pull-in is observed in simulation. The analytical 

model should be improved to account for this phenomenon 

(the approach presented in [4] could be used, for example).  

V. CONCLUSION 

We have shown how DFA can be used to determine the 
oscillatory regime of a Duffing resonator, operated in open 
or closed-loop. In particular, we have calculated the critical 
Duffing amplitude for a clamped-clamped beam and shown 

this to be equal to 2/1463.1 −≈ hQw
crit

. Furthermore, we have 

shown that a pulse-actuated electrostatic microbeam can be 
actuated with amplitudes much larger than this critical value, 
without risk of hysteretic behaviour. As a practical 
consequence, the measured currents are significantly 
increased and the constraints on the sensing electronics can 
be relaxed. This was validated by comparing the analytical 
results given by DFA to those obtained with transient 
simulations of the resonant accelerometer sensing cell 
developed in the framework of the M&NEMS project.  
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